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1 Introduction

It is classical in stochastic analysis that the horizontal lift of a diffusion is
useful in order to construct canonically the Brownian motion on a Riemannian
manifold ([1], [2]). We extend in this note this classical relation on the Brownian
motion and the (degenerated) process associated to the horizontal Laplacian to
the case of a Bilaplacian. See [7] in the subelliptic case.

We consider a compact Riemannian oriented manifold M endowed with its
normalized Riemannian measure dx. x is the generic element of M which is
of dimension m. We consider the special orthonormal frame bundle SO(M)
endowed with the Levi-Civita connection with canonical projection π on M . u
is the generic element of SO(M). We consider the canonical vector fields Xi on
SO(M) and the associated horizontal Laplacian

L =

m∑
i=1

X2
i (1)

∆ is the Laplace-Beltrami operator on M and ∆2 the associated Bilaplacian.
The Bilaplacian is elliptic, symmetric on L2(dx) and by elliptic theory ([5],
[6])generates a unique contraction semi group P∆

t on L2(dx) with generic ele-
ment f .

We can glue on the fiber the normalized ”Haar” measures (We omitt the
details) such that we get a probability measure du on SO(M). L2 is symmetric,
densely defined on L2(du) and therefore admits a self-adjoint extension which
generates a contraction semi-group PL

t on L2(du).

Theorem 1 If f is a smooth function on M , we have if πu = x

P∆
t [f ](x) = PL

t [f ◦ π](u) (2)

This theorem enters in our general program to extend stochastic analysis tools
to the general theory of linear semi-group (See [8] and [9] for reviews).
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2 Proof of the theorem

If u0 belongs to SO(Rm) we get clearly

PL
t [f ◦ π](uu0) = PL

t [f ◦ π(.u0)](u) = PL
t [f ◦ π](u) (3)

Therefore, u → PL
t [f ◦ π](u) defines a function on M . This function when t is

moving defines a semi-group. Namely

PL
t+s[f ◦ π](u) = PL

t [PL
s [f ◦ π]](u) = PL

t [PL
s [f ◦ π] ◦ π](u) (4)

where is the right-hand side PL
s [f ◦ π] is seen as a function on M .

We are therefore in presence of two semi-groups on L2(dx). But

L(f ◦ π) = (∆f) ◦ π (5)

such that
L2(f ◦ π) = (∆2f) ◦ π (6)

Since there is only one semi-group generated by ∆2, the result holds.
♦
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