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Abstract

We give a review of our recent works related to the Malliavin Calculus
of Bismut type for non markovian generator. Part IV is new and relates
the Malliavin Calculus and the general theory of elliptic pseudo-differential
operators.

1 Introduction

Le M be a compact Riemannian manifold endowed with its natural Riemannian
measure dz (x is the generic element of M). In local coordinates, we can think
of the linear space R? endowed with the metric g; j(z)dz’ ® dz’ where x are the
local coordinates and z — (g, (x)) is a smooth function from R¢ into the space

of symmetric strictly positive matix. The Riemannian measure associated is
dz = det(g.,)~Y?dzt.. @ da? (1)

We consider a linear symmetric positive operator densely defined on L?(dz)
acting on a space which separates the point on M. This means if f and g belong
to this space,

/g(a:)Lh(a:)dx:/ h(x)Lg(z)dx (2)
M M

/ h(z)Lh(z)dx >0 (3)
M

It has by abstract theory a selfadjoint extension on L?(dxz), which generates a
contraction semi-group P; on L?(dx) which solves the heat equation for ¢ > 0

)
oy Fih = —LP:h (4)



with initial condition
Pyh=h (5)

It is a natural question to know if there is a heat kernel:

Pih(z) = /Mpm,y)h(y)dy (6)

There are several ways to solve this problem:

-)The microlocal analysis ([12],[18],[19]) which uses as basic tool the Fourier
transform and some regularity on the coeflicients of L. In the case of a partial
differential operator on R, this means that L =3 a(q) (@ )2 where (@) is a
multiindex and x — a4 () is smooth.

-)The harmonic analysis, which uses as basic tools functional inequalities
and does not need any regularity on the coefficients of L ([3], [13], [51]).

-)The Malliavin Calculus([20], [44], [49]), which works for Markov semi-
groups: Pif > 0if f > 0. The Malliavin Calculus requires moreover that
the semi-group is represented by a stochastic differential equation.

More precisely, the Malliavin Calculus needs a probabilistic representation of
the semi-group P; by using the theory of stochastic differential equations where
a flat Brownian motion or a Poisson process play a fundamental role.

Let us recall the main idea of the Malliavin Calculus in the case of the flat
Brownian motion. Let us consider the Hilbert space H of finite energy maps
starting from 0 from [0, 1] into R™ ¢ — r, = (r}) endowed with the Hilbert norm

mo a1
=3 / \d/dtri Pt ()
=1

We consider the formal Gaussian measure on H (written in the heuristic way of
Feynman path integral)

dp(r) = 1/Z exp| — ||r[|*/2]dD(r) (8)

where dD(r) is the formal Lebesgue measure on H. Haar measure satisfying all
the axioms of measure theory on a group exists if and only the group is locally
compact. (We refer to [2] and [30] to defined Haar measure in infinite dimensin
in a generalized way). This explains that we need to construct this measure on
a bigger space, the space of continuous fonction C([0, 1], R™)t — B; issued from
0 from [0,1] into R™. There are a lot of Gaussian measures on C([0, 1], R™)
([48]]) but the law of the Brownian motion is related to the heat equation on
Rm

8(a

O P =172 Z Pff (9)
We have namely
Pih(z) = E[h(B; + )] (10)

if f is a bounded continuous function on R™. In such a case we have a semigroup
operating on continuous function on R™.



We consider m smooth vector fields on R? with bounded derivatives at each
order. Vector fields here are considered as first order partial differential opera-
tors. We consider the operator

L:1/2§:X§ (11)

We introduce the Stratonovitch differential equation ([20], [49]) starting from x
(Vector fields here are considered as vectors whichs depends smoothly of x).:

m

dxy(z) = ZXi(xt(x))dBf (12)

i=1
This is (and not the It6 equation) the correct equation associated to

m

day(r)(x) = Y Xi(w,(h)(x))dr (13)

i=1

for r € H endowed with the formal Gaussian measure du(r).
By It6 Calculus (]20],[49]), we can show that the semigroup P; generated by
L=1/23" X?isrelated to the diffusion x;(x) by the formula

Fi(h)(z) = Elh(z(2))] (14)

if h is a continuous function on R? (In such a case, the semigroup acts on
continuous bounded functions on R%).

Malliavin idea is the following([44]): he differentiates in a generalized sense
the Itd map B, — x(z) . If this It6 map is a submersion in a generalized sense
(The inverse of the Malliavin matrix belongs to all the LP), the law of x(x)
has a smooth density and therefore the semigroup has an heat kernel. Malliavin
for that uses a heavy apparatus of differential operations on the Wiener space.
Let us recall that there are several pioneering works of the Malliavin Calculus
([1], [6], [16]) motivated by mathematical physics, but only Malliavin Calculus
is adapted to the study of stochastic differential equations and fit very well to
the study of all measures of stochastic analysis.

Bismut ([7]) avoids to use this heavy apparatus of differential operations on
the Wiener space, by using a suitable Girsanov transformation and a system of
convenient stochastic differential equations in cascade associated to the original
stochastic differential equation. This allows to Bismut’s way to get in a simpler
way the Malliavin integration by parts for diffusions: if («) is a multiindex, if
t>0,

E[hzy(x))] = Blh(ze(x))Q;") (15)

where an) is a polynomial in the extra compoents of the system of stochastic

differential equations in cascade and in the inverse of the Malliavin matrix.
The fact that only stochastic differential equations in cascade (therefore a

system of semi-groups in cascade) appear in Bismut’s approach of the Malliavin



Calculus allows us to interpret Bismut’s way of the Malliavin Calculus in the
theory of semigroup by expulsating the probabilist language in [31]. We refer
to [32], [33] for reviews with some applications.

[31] uses an elementary integration by parts, which has to be optimized. The
main remark is that we can adapt this elementary integration by parts for non-
markovian semi-groups.. It is possible to adapts Bismut’s way of the Malliavin
Calculus for non-markovian semi-groups.

It is divided in two steps:

-)An algebra on the semi-group. Only existences on the semigroup are re-
quired.

-)Estimates on the enlarged semigroup, which are necessary because poly-
nomial function appear in the Malliavin integration by parts which are not
bounded, which are performed in the non-markovian case by the Davies gauge
transform (In the Markovian case, they were done by an adaptation in semi-
group on the classic Burkholder-Davies-Gundy inequalities of stochastic analy-
sis).

Moreover, Bismut in his seminal work ([9]) has done an intrinsic integration
by part formula for the Brownian motion on a manifold, which overcame the
problem that in the standard Malliavin Calculus there are a lot of stochastic dif-
ferential equations which represent the same semigroup. In part IV we perform
an intrinsic Malliavin Calculus associated to a wide class of pseudodifferential
elliptic operator, by performing a variation of the original pseudodifferential
operator by a fractional power of it intrisically associated to the original op-
erator. We do the relation between the Malliavin Calculus of Bismut type and
the general theory of elliptic pseudodifferential operators.

Bismut in his seminal work [9] pointed out the relation between the Malliavin
Calculus and the large deviation theory for the study of short time asymptotics
of the heat-kernel associated to diffusion semi-groups. We refer to the reviews
[26], [29], [53], the book [5] and the seminal work [47] for probabilist methods
in short time asymptotics of semi-groups.

Let us recall quickly the main goal of large deviation theory, here of Wentzel-
Freidlin type [4], [52] and [54]. We introduce a small parameter and consider
the stochastic differential equation with a small parameter starting from x:

m

duj(z) = €y Xi(xf)(x)dB; (16)

i=1
Wentzel-Freidlin theory allows to get estimates of the type, when € — 0

lim 262 Log|[P[z¢(z) € 0] = — inf r||? 17
glPlei(0) 0] =~ nt ] a7)

if O is an open subset of C([0,1],R%) equipped with the uniform norm. We
don’t give details of the lot of technicalities in this estimate.

It is possible to adapt ([35], [37], [38], [39], [40]) Wentzel-Freidlin estimates
to the case of non-markovian semi groups with the normalisation of W.K.B.
analysis of Maslov school ([45]) (See [17], [27] for seminal works on W.K.B.



analysis). The main remark is that we can get only upper-bounds, because the
semi-group does not preserves the positivity in this case. The second remark is
that these estimates are valid only for the semi-group, because in this case path
space functional integrals are not defined (See [36] for a review and the work
[11], [25], [46]). The normalizations are those classical of semi-classical analysis
but the type of estimates is different. They work for the heat equation and not
for the Schroedinger equation.

This allows to fullfill in this non-markovian context the beautifull request of
Bismut’s book [5] and to do the marriage between the Malliavin Calculus and
Wentzel-Freidlin estimates. The main difference is that we have to consider the
absolute value of the heat-kernel because in such a case the semi-group does
not preserve the positivity such that we get only upper-bound in the studied
Varadhan type estimates (Wentzel-Freidlin estimates are still valid for the heat-
kernel).

This work is a review paper of several of our works. The main novelty is
part IV, which is new.

2 The case of a formal stochastic differential
equation

Let us consider an elliptic differential operator of order [ on a compact manifold
M of dimension d. If we perturb it by a strictly lower order operator L,, it
results by the theory of pseudo-differential operator (which is given by the role
of the principal symbol of an elliptic operator) that the qualitative behaviour
(hypoellipticity..) is the same than the qualitative behavior of L + L,. See
[12],[18],[19] for various textbooks in analysis about this problematic.

Recently, we have introduced an elliptic operator of order 2k Ly = > f?*
where f; is an orthonormal basis of the Lie algebra of a compact Lie group G of
dimension m with generic element g. f; are considered as right invariant vector
fields.We have established the Malliavin Calculus of Bismut type for L. We
consider a polynomial @ of degree strictly smaller than 2k in the vector fieldsf;
with constant components. We consider the total operator

L=Ly+Q (18)

The goal of this part, by using a small interpretation of [41] and [42] is to adapt
in this present situation the strategy of [41] for diffusions.. ( [41] [42] have used
the machinery of the Malliavin Calculus [7] translated by ourself in semi-group
theory for diffusions in [31]) Malliavin matrix plays here a fundamental role in
the optimization of the integration by parts in order to arrive to full Malliavin
integration by parts. All formulas are formally the same if we add or not add
the perturbation of the main operator..
We consider the elliptic operator on G x R

d ok ! 82k _
Q+ 2 f+ ) ridigy + guaw = Li (19)



It generates by elliptic theory a semi-group on Cy(G X R), the space of bounded
continuous function on G x R endowed with the uniform norm..

Theorem 1 (Elementary integration by parts formula). We have if h is smooth
with compact support

/ t Pi_y Y hyeiPilh]ds = Pl'ub](.,0) (20)
0

Proof: It is the same proof than the proof of Theorem 3 of [42]. &
Let V.= GxM,. Mg is the space of symmetric matrices on LieG. (z,v) € V.
v is called the Malliavin matrix. We consider

Xo=1(0,> <g 'fi,.>? (21)
We consider the Malliavin generator (We skipp the problems of signs)
L=Q+> f*-Xo (22)

Theorem 2 L spanns a Semi-group. P, called the Malliavin semi-group on

Cy(M).

proof It is the same proof of theorem 4 of [42] since @ is a polynomial with
constant compoents in the f; and L generates a C,(G) semi-group. The proof
leads to some difficulties because the Malliavin operator is not the perturbation
of an elliptic operator and uses the Volterra expansion. <»

The Malliavin semi-group will allow to us to optimize the elementary inte-
gration by parts of theorem 2. We have the main theorem of this paper:

Theorem 3 (Malliavin) If the Malliavin condition holds
| Bi[v"](9,0) < o0 (23)
for all integer positive integer p, P; has an heat-kernel.

Proof: It is the same proof as in the beginning of the proof of theorem 6 of
[42]. Under Malliavin assumption, we can optimize the elementary integration
by part of Theorem 2, in order to get, according the framework of the Malliavin
Calculus, the inequality for any smooth function h on G

|P,[< dh, f; >]| < C|h||le (24)

¢

Remark: Let us explain quickly the philosophy of this theorem, when there
is no perturbation term. We consider a set of path in R? denoted r! which
kE 92k
of signs. We consider the formal stochastic differential equation

represent the semi-group asoociated to ) We don’t enter in the problem

d
dx,(r)(e) = Z fudr? (25)



issued from e. Formally, this represent the semi-group P; without the pertur-
bation term
Pi[h](e) = "E”[f (w4 (e)] (26)

A

Malliavin assumption express in some sense that the ”1t6” map r — x;(e) is a
submersion.

By this inequality, we deduce according the framework of the Malliavin Cal-
culus that

PIh)(e) = /G h(g)pre. g)dg (27)

for a non strictly positive heat-kernel p; (dg) denotes the normalized Haar
mesure on (). if the Malliavin assumption is satisfied.

Theorem 4 Under the previous elliptic assumptions,
|Pillv™11)(g0,0) < o0 (28)
ift >0

Proof It is the same proof than the proof of theorem 8 of [42].It is based
upon the initial strategy to invert the Malliavin matrix in stochastic analysis
by slicing the time interval in small time intervals . Only the main part of
the generator plays the main role in this strategy because we are in an elliptic
case.$

We can iterate the integration by parts formulas, by introducing a system
of semi-groups in cascade. We deduce the theorem

Theorem 5 Ift > 0 the semi group P; has a smooth heat kernel

Py([h](g) = /G pe(g, g')dg’ (20)

The main remark is that the heat kernel can change of sign. This theorem
is classical in analysis [51] but it enters in our general strategy to implement
stochastic tools in the general theory of linear semi-groups.

In order to simplify the computation, we have used the symmetry of the
group. In the next part, we will use fully the symmetry of the group to simplify
the computations.

3 The full use of the symmetry of the group

Let us recall what is a pseudodifferential operator on R? ([12], [17], [18]). Let
be a smooth function function from R? x R? into R a(z,&). We suppose that

sup | D Dia(z, )| < Cl¢[™ '+ C (30)
rERA

We suppose that )
inf [a(z,&)| = ClEM™ (31)
z€R?



for |€] > C for a suitable m’ > 0. Let h the fourier transform of the continuous
function h. We consider the operator L defines on smooth function h by :

I(o) = [ alwOh(pde (32)

L is said to be a pesudodifferential operator elliptic of order larger than m/'
with symbol a. This property is invariant if we do a diffeomorphism on R¢
with bounded derivatives at each order. This remark allows to define by using
charts a pseudodifferential operator elliptic of order larger than m’ on a compact
manifold M.

Let f? be a basis of T,G. We can consider as rightinvariant vector fields.
This means that if we consider the action Ry, h — (9 — h(ggo)) on smooth
function h on G, we have

Rgo (fzh) = fi(Rgo h) (33)

We consider a rightinvariant elliptic pseudodifferential positive elliptic op-
erator L of order larger than 2k on G . It generates by elliptic theory a semi
group P; on L?(dg) and even on C(G) the space of continuous functions on G
endowed with the uniform norm.

Theorem 6 Ift > 0,

Ph(go) = /G pi(g0, 9)h(g)dg (34)

where g — p(go, g) is smooth if h is continuous.

This theorem is classical in analysis , but it enters in our general program to
implement stochastic analysis tool in the theory of Non-Markovian semi-group.
See the review [36] for that. See [41], [42] for another presentation where the
Malliavin Matrix plays a key role. Here we don’t use the Malliavin matrix. See
[43] fot the case of rightinvariant differential operators. The proof is divided in
two steps.

3.1 Algebraic scheme of the proof: Malliavin integration
by parts

We consider the family of operators on C*°(G x R™):

- "9 ; " 92k
i=1 v i=1 i

al are smooth function from R* into R. By elliptic theory, E? generates a
semi-group P/* on Cy(G x R™). This semi-group is time inhomegeneous.

Py n(g)h™ (w))(., ., 0) = /O P [ al M PR h(g)h (W)](.,.)  (36)



Moreover

B uh (OB () s tss) = PP uh (R (] o0 0) + BRAOR ()] e
37
h is a function of g, ™ a function of uq,...,u,. This comes from the fact that
8u‘3+1 commute with the considered operator.
Therefore the two sides of (37) satisfy the same parabolic equation with
second-member. We deduce that

P g [ ush()](, -, 0) = /0 dsP[f ol PP [Tl () (38)
=1 =t

This is an integration by parts formula. We would like to present this formula
in a more appropriate way for our object.
We consider the operator

—n Lo
L'"=L+) — (39)
j=1 8uj

It generates a semi-group ??. In the sequel we will skip the problem of sign
coming if k is even or not.
We introduce a suitable generator

RMHY=T" +F, (40)

by taking care of the relation [f*, f/] =", )\fc’jfk. It is an operator of the type
studied. It generates therefore a time inhomogeneous semi-group 7. Therefore
the integration by parts formula (39) can be written in the more suitable way

n t n
Py s [ [ush (s -,0) = / o s PP [ h [ [l )+
J=1

i=1

/t altdsPl QLR ﬁ uil(-,.)  (41)
0

=1

We do the following recursion hypothesis on I:
Hypothesis (1) There exists a positive real r; such that if («) is a multiindex
of length smaller than I

B n [ wil(g.v)l < T Rlso (14 T T loil) (42)

i=n i=n

where ||.||co is the uniform norm of h.
It is true for I = 1 by (39) and the estimates which follow.

If it is true for [, it is still true for [ + 1, by using (42) for f(®)h and taking
a?—O—l = g™



By choosing suitable a{7 we have according the framework of the Malliavin
Calculus for any multiindex («)

[P R](90)] < Oty Ihlloo (43)

in order to conclude.

3.2 Estimates: the Davies gauge transform

We do as in [43] (26). The problem is that in P}*[h H;.Lzl u;](., .) the test function

uj are not bounded and that P acts only on Cy(G x R™). We do as in [3] the
Davies gauge transform []7 g(u;) where

g(u) = (|ul) (44)

if u is big and g is smooth .
This gauge transform acts on the original operator by the simple formula
(IT= g(ui)) "L ((TT7; 9(us).). On the semi group it acts as

(H g(-))’lpt”[(_H g(ui)h(R"()](-) (45)
But 9 9
(90u)) ™ g (9ls)) = 5 +Clw) (46)

where the potential C'(u;) is smooth with bounded derivatives at each order.
Therefore the transformed semi-group act on Cy(G x R™).

RemarkWe can consider as particular case ([43]) Let G be a compact con-
nected Lie group, with generic element g endowed with its binvariant Rieman-
nian structure and with its normalized Haar measure dg. e is the unit element
of G.

Let f* be a basis of T.G. We can consider as rightinvariant vector fields.
This means that if we consider the action Ry, h — (¢ — h(ggo)) on smooth
function A on G, we haver

Ry, (f'h) = f'(Rg,h) (47)

Let be £ = ¢ ¢9'"" and let be f(@) = fo1_ f%al. (a) is a multi-index
of length |«|.

We consider a matrix aq g for multindices of length k, which is supposed
symmetric strictly positive.

We consider the operator

L= %" f“a@f? (48)
(9)

10



According [51], (—1)¥L is a positive symmetric densely elliptic defined operator
on L%(G), which generates by elliptic theory a semi-group acting on Cy(G),
the space of continuous function on G. In such a case, we have an heat-kernel
associated to the semi-group (See [43]). The case of a rightinvariant differential
operator has exactly the same proof than the case of theorem 6, where the
details will be presented elsewhere.

4 The case of an intrinsic variation

Let L be a strictly positive self-adjoint operator on a compact manifold M. We
suppose that L is a pseudo-differential elliptic operator of order [ > 2k for an
integer k > 1. It generates a contraction semi-group on L?(M) and by ellipticity
a semi-group on Cy(M).

Theorem 7 There is an heat-kernel pi(x,y) associated to Py. Ift >0
PAP@) = [ il fw)dy (49)
M
where y — pi(x,y) is smooth.

The proof is divided in two steps:

4.1 Algebraic scheme of the proof: Malliavin integration
by parts

Let o belonging to |0, 1[. The fractional power [50] L® is still a strictly positive
pseudodifferential operator elliptic of order «l, which commutes with L. We
skipp up later the problem if £ is even or not. We consider the operator on
C>(M x R™)

= - "9 DL 92k
LS:L—i—sLazi:an—i—i:lW (50)
It is an elliptic operator of order 2k on M x R™. The main part
—n n a2k
L =L+ z:l ng (51)

is positive and is essentially self-adjoint. Therefore the main part generates a
semi-group on Cy(M x R™). This remains true for L™ because L" is a pertur-
bation of L" by a strictly lower operator. We call this semi-group pt”.

The main remark is that L® commutes with L™ such that

L*P = P'L* (52)

11



According the beginning of the previous part, we get the elementary integration
by part

@HwﬁwwmwaFuwm@wﬁwmwb
i=1 i=1
A [wle) [ a6
i=1
Suppose by induction on [ that
\Pt”[(L“)lff[uz'](x,w)\ < Ot flloo(1+ f[ [vi) (54)

i=1 i=1

By applying the elementary integration by parts (54) to (L%)")f, and choosing
r = r(l), we deduce our result. Therefore we have the inequality

[BAL) f(@)] < OOl f oo (55)

The result follows from the fact that L® is an elliptic operator.

4.2 Estimates: the Davies gauge transform

We do as in [43] (26). The problem is that in P;*[h [Tj=, u;](.,.) the test function

u; are not bounded and that P;* acts only on Cy(G x R™). We do as in [35] the
Davies gauge transform [[} g(u;) where

g(u) = (lul) (56)

if w is big and ¢ is smooth strictly positive .
This gauge transform acts on the original operator by the simple formula
(I 9(w)) P LY ((TT7; 9(us).). On the semi group it acts as

n n

(TToO) " PrI T o) hOOR™ (1) (57)

i=1 i=1

But

(9(0) ™ o)) = o+ Clo) 53)

where the potential C'(u;) is smooth with bounded derivatives at each order.
Therefore the transformed semi-group act on Cy(G x R™). It remains to choose

h%”HJ% (59)

in order to conclude. We deduce the bound:

12



Ilstnl[hH\UjI](-;v.) < C(|Ihfloo(X + T loil) (60)

i=n

where |P*| is the absolute value of the semi-group P;".

Remark:We could show that (z,y) — p:(z,y) is smooth if ¢ > 0 by the
same argument.

Remark:We can replace the hypothesis L strictly positive by the hypothesis
L positive by replacing L by (L + CI4)* where C' > 0.

5 Wentzel-Freidlin estimates for the semi-group
only

We consider a differential operator of order 2k on the compact manifold M
which is supposed elliptic of order 2k and strictly positive. We suppose we can

write it as
2k (j)

L=Y Y (Xi;) (61)

§=0 i=0
where X; ; are smooth vector fields on M. The ellipticity assumption states

that
r(2k)

Y < Xigw, € >*= H(z,6) > Cl¢[* (62)

=0

To the Hamiltonian H, we introduce the Lagrangian

L(z,p) = sgp(< p,§ > —H(z,£)) (63)

We get the estimate
~C + Clpl =7 < L(w,p) < O+ |p|* (64)

for some strictly positive constants C'.
If ¢ is a continuous piecewise differentiable path on M, we put:

5(6) = / L(S(t), d)dt(t))dt (65)

and we put

l(z,y) inf S(o) (66)

T 6(0)=z.6(1)=y

By Ascoli theorem, (z,y) — l(x,y) is a continuous function on M x M.

Theorem 8 (Wentzel-Freidlin)If O is an open ball of M, we have when t — 0

Tt 777 log | Py|(1o] () < — inf I(z, ) (67)
Y

13



Proof:-We put € = Rt According the normalisation of Maslov school [37], we
consider the semi-group P¢ associated to L. = €2*~1L. Moreover

P, = P! (68)

where P! is associated to tL ([10]) The result will arise if we show when € — 0

limelog | Pf|(1o](x) < — inf I(z,y) (69)
yeO
The main ingredient is:

Lemma 9 For all § > 0, all C, there exists ss such that if s < sg

PS5 (.0 (x) < exp[—C/e] (70)
where B(x,d) is the ball of radius 6 and center x

Proof of the lemma We imbedd M in a linear space. We consider the semi-group

Q¢ = exp[— < x,{ > /e] P{[exp[< 2',& > [e](a) ](2) (71)

Its generator is
Lo+ H(x,8)/e (72)
L.=L.+R. (73)

In the perturbation term R, there are only differential operators of order [,

1 €]0,2k[. When a differential operator of degree | appears, there is a power of

at least [ — 1 of € which appears and a power of £ at most 2k which appears.
Let us consider in a small neighborhhod of x the diffeomorphism

€ 2k

Outside a big neighborhood of x, U, is the identity.
We consider the measure f.,

f = PIF(Vc(z))]l(z) (75)

Under the transformation V., the vector fields eI X ; are transformed in the

vector field X, ;(x + e%(y — x)). Therefore we can apply the machinery of
the previous part in order to show that the measure p. has a bounded density
ge(x,.) when € — 0.

Let R be a differential operator of order . We have

| s@rPii@ae = [ g@nm R e (70)

By symmetry
pi(z,y) = pi(y, ) (77)
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Then

/ 9(2) R[] (2)dz = / h(y) P{[Rg)(y)dy
M M
By the previous remark

. C
[PIRA(Y)] < —z= 1]l
€' T2k

Therefore o
[ s@RPp @) < gl e

We deduce that o
IRP{H@)] < 3 Il

We deduce a bound of R.Ps¢

g
|RePih(@)] < = VR h]o
s Sﬁ
We apply Volterra expansion to 5. We get
QA <IPE+ Y01 [ Tdsieads
i=1

1(s)

where A;(s) is the simplex 0 < 51 < .. < 5; < s and

Isl7~~7sl = P‘S‘el (Re + H/e)"'PSEl—Slfl(RE + H/G)Pse—slflh

We deduce a bound of |fA,,(s) I, .. sds1...ds;| by

€ el
We suppose by induction that
Ii(s) = st H6k)

where B €] — 1,0[. It is still true by the recurtion formula

2k—1

Ii41(s) = /OS L(u)(s —u)” "2 du

We deduce the bound

Therefore

|Q<h(@)| < exp[Cs[¢]** /]| hllo
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21k B 21k
‘dl / H(Si—H - si)f%dsl..dsl = N I(s)
AI(S)

(82)

(83)



It remains to remark that we have the bound

P (Lo el (@) < expl- S0 1 e/ (90)
and to extremize in || to conclude.$

End of the proof of theorem 9 We operate as in Freidlin-Wentzel book
[54] and as in [35],[38], and [39]. We slice the time interval [0,,1] in a finite
numbers of time intervals [s;, s;41] where we can apply the previous lemma. We
deduce a positive measure on the set of polygonal paths, where we can repeat
exactly the considerations of [35].

Remark:This estimate is a semi-classical estimate with different type of
estimates of W.K.B. estimates a la Maslov and with a different method. We
consider in W.K.B. estimate a symbol of an operator a(z, £) and we consider the
generator L. associated with the normalized symbol (a la Maslov) 1/ea(z, €€).
Let us suppose that L. generates a semi-group Pf. The object of WKB method
is to get precise estimates of the semi-group Pf when € — 0. For that people
look at a formal asymptotic expansion (we omit to write the initial conditions)
of Py of the type

e "exp[l(y)/e] Y €'Cily) (91)

The function [ satisfy a highly non-linear equation (the Hamilton-Jacobi-Belman
equation) and ¢;(y) satisfy formally a system of linear partial differential equa-
tion in cascade. The cost function in theorem I(z,y) is solution of the highly
non-linear Hamilton-Jacobi-Belman equation, which is difficult to solve. In-
stead of precise asymptotics, we are interested by logarithmic estimates which
are totally different with a method totally different. On the other hand, gener-
ally semi-classical asymptotics considers the case of the Schroedinger equation
instead of the heat semi-group.

On R¢ we can speak without any difficulty of the symbol of an operator.
Poisson processes, Lévy processes and jump processes are more or less generated
by pseudodifferential operators whose generator satisfy the maximum principle
(See [10], [21], [22], [13], [24], [28]). We will present pseudodifferential operators
with a type of compensation of stochastic analysis which do not satisfy the
maximum principle. The end of this part is extracted from [35] and [40]. Let
us consider the generator on Cy (R?)

- 2 - h(z,y)
Lf(z) = (=)' / @) = fla) = 30 <y D) >)pordy (92)

a €] —1,0] h(z,y) =0if |[y| > C and h > 0. The measure w}llz(f%dy is called
the Lévy measure.

Theorem 10 If h(x,0) =1, L is an elliptic pseudo-differential generator.

Definition 11 If h(x,y) = h(y), we will say that L is a generalized Lévy gen-
erator.
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Theorem 12 Suppose that L is of Lévy type and that h(y) = h(—y). L is
positive symmetic, and therefore admits by ellipticity a selfadjoint extension on
L(R?), which generates a contraction semi group on L*(RY) which is still a
semi-group on Cy(RY).

Remark:The symbol a(z, ) of the generator is given by
21

([ eplvT <pg 5 - SR My, gy

P Al |y|2l+1+a

The Hamiltonian associated is the symbol in real phase. Let us conider a gen-
erator of Lévy type of the previous theorem: it is

! 2i
([ eol<nes] - NS oy o)

i=1

The Hamiltonian is a smooth convex function equals to 1 in 0. Associated to
it, we consider the Lagrangian:

L(p) = Slglp(< §&p>—H(E)) (95)

If t — ¢, is a piecewise differentiable continuous curve in R¢, we consider its
action fol dtL(¢e,d/dtp:) = S(¢.) We introduce the control function

lz,y)= _inf  S(¢) (96)
bo=z;p1=y
Let us recall that (z,y) — I(x,y) is positive finite continuous.

We consider the generator associated to 1/ea(e£). This correponds in the
classical case of jump process where the compensation is only of one term to
the case of a jump process with more and more jumps which are more and more
small [54]. We consider the generator L associated to 1/ea(ef). It generates a
semi-group Pf. We get:

Theorem 13 Wenizel-Freidlin ([35], [40]). When € — 0, we get if O is an
open ball of R® if I +1 is even:

limelog | Pf|[10](z) < — inf I(x,y) (97)
yeOo

Remark: For this type of operator, Wentzel-Freidlin estimates are not related
to short time asymtotics.

6 Application: some Varadhan estimates

This part follows closely [43]. Only the mechanism of the integration by part
is different from [39]. For large deviation estimates with respect of W.K.B
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normalization at the manner of Maslov [45] for Non-Markovian operators, we
refer to [38] for instance.
Let us consider the Hamiltonian function from 7*(G) into R*

H(g,6)= > <[> < ¢>an @ < fP6> < f0)¢>
lee|=Fk,|Bl=k
(98)
H(g,p) is positive convex in p. According the theory of large deviation, we
consider the associated Lagrangian

L(g,¢) = Stflp(< §&,p>—H(g,€)) (99)

If t — ¢; is a curve in the group, we consider its action fol dtL(¢e,d/dtdy) =
S(¢.) We introduce the control function

(g0, 91) = inf S(9) (100)

P0=9go;P1=41

Let us recall that (go,91) — 1(go, g1) is positive finite continuous.

We have shown in the previous part that if we consider a small parameter €
and if we consider the generator €2*~!L and the semi group Pf associated and
if go and g1 are not closed , we get for any small ball centered in g; uniformly:

Lime_oeLog|Pr|[1o](g0) < — giféfol(go,gl) (101)

where| Pf| is the absolute value of the semi-group (See [38]). See for that the
previous part

But P; = P} where P! is the semi group associated to tL (See [15]). We put
€ = t'/2k=1 such that

Limqot"/**~ Log| P1|[10](g0) < — nf I(go. 1) (102)
1

We consider x a smooth positive function equals to 0 outside O and equals to 1
on a small open ball centered in g; smaller than 1.

We would like to apply the mechanism of Malliavin integration by parts to
the measure

h = Fi[hx](g0) (103)
such that
N —r —1(g0,91) + 0
IPA ) (g0)] < O expl OIS o)
for a small §. Since (104) is true, we have:
Theorem When t — 0
Limy—ot'** " Log|p:(g0, 91)| < ~1(90,91) (105)
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