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Contemporary Mathematics

A strategy to optimize the complexity of Chudnovsky-type
algorithms over the projective line

Stéphane Ballet, Alexis Bonnecaze, and Bastien Pacifico

Abstract. Chudnovsky-type algorithms of multiplication in finite fields are

well known for their good bilinear complexity. Recently, two advances have
been obtained in the study of these algorithms: a strategy to optimize the

scalar complexity of the original algorithm and the development of a generic

recursive construction over the projective line. The construction of recursive
Chudnodvsky-type algorithms over the projective line makes possible an effi-

cient generic strategy to optimize their complexity (number of scalar and bilin-
ear multiplications and additions in the base field). Then, several examples are

given. In particular, considering Baum-Shokrollahi’s experiment (1992), this

constructive method provides a Chudnovsky-type algorithm of multiplication
in F256/F4 with the best known complexity, while being much more efficient

than existing optimization methods.

Keywords: Multiplicative complexity, Finite fields, Chudnovsky-type algo-
rithms.

1. Introduction

The search for finite field multiplication algorithms with good algebraic com-
plexity (cf. [BCS97]) is still a major issue in algorithmics and in cryptography. In
this paper, we are interested in the number of arithmetic operations in the base
field when multiplying in an extension of finite degree of a finite field. Several more
general remarkable methods are known (for example [Kar63], [F09], and [SS71])
and can be used to address this problem. Recently, Harvey and van der Hoeven
[HvdH19] have proven that such a multiplication can be computed with O(n log n)
operations (when q is fixed), assuming a widely-believed hypothesis. Similarly to
the latter, many works focus on multiplication algorithms with efficient asymp-
totic complexities, giving estimations of the total number of operations in the base
field relatively to the degree of the extension using the O notations. But these
methods may not be optimal at finite distance (i.e. not from the point of view of
asymptotic complexity), in particular for moderate-sized parameters (around a few
thousands of bits). For example, Schnhage-Strassen’s algorithm [SS71] has a bet-
ter asymptotic complexity than Karatsuba’s algorithm [Kar63], but outperforms
the latter method only when the parameters become huge (around millions of bits),
exceeding many usage sizes. As for the Frer algorithm [F09], it is competitive for
even larger numbers. Moreover, it is well known that different operations do not
have the same cost in terms of bit operations. In particular, multiplications are
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more expensive than addition and bilinear multiplication is itself more expensive
than scalar multiplication ([STV92], [BCP+21] Section 1). We therefore choose
to consider the algebraic complexity model while taking into account the different
costs of these operations. To do so, we consider the multiplication method of D.V.
and G.V. Chudnovsky [CC88] which admits the best bilinear complexity, both
in finite distance and in asymptotics. We propose a strategy for the construction
of this method in order to optimize the number of scalar multiplications and the
number of additions while keeping the same bilinear complexity. Our goal is to
be able to obtain in practice, i.e. at finite distance, a total complexity competitive
with the best algorithms. It should also be noted that determining the asymptotic
complexity of our method remains an open problem.

Let q be a prime power, Fq the finite field with q elements and Fqn the degree n
extension of Fq. Let B = {e1, ..., en} be a basis of Fqn over Fq then for x =

∑n
i=1 xiei

and y =
∑n

j=1 yjej , the direct calculation of the product is given by

(1) z = xy =

n∑
h=1

zheh =

n∑
h=1

( n∑
i,j=1

tijhxiyj

)
eh,

where eiej =
∑n

h=1 tijheh, tijh ∈ Fq being some constants.
One can distinguish two types of multiplications in this product: the bilinear

ones, that are depending of the two elements being multiplied (i.e. the xiyj); and
the scalar ones that are multiplications by a constant in Fq. At first glance, the
latest computation requires n2 bilinear multiplications, n3 scalar multiplications
and n3 − n additions.

Definition 1.1. Let Uq,n be an algorithm for the multiplication in Fqn over
Fq.

• The number of non-trivial scalar multiplications in Fq (i.e. multiplications
by α ∈ Fq with α 6= 0, 1), used in Uq,n is called its scalar complexity, and
is denoted by µs(Uq,n).

• The number of bilinear multiplications in Fq used in Uq,n is called its
bilinear complexity, denoted by µb(Uq,n).

We also denote by a(Uq,n) the number of additions in Fq in the algorithm. Con-
sequently, the total complexity of Uq,n, denoted by µ(Uq,n) is given by µ(Uq,n) =
µb(Uq,n) + µs(Uq,n) + a(Uq,n). Note that bilinear multiplications are known to be
computationally heavier than the scalar ones. Algorithms with good bilinear com-
plexity are interpolation algorithms. Among them, the method introduced by D.V.
and G.V. Chudnovsky [CC88] makes it possible to obtain the best known bilin-
ear complexity. The original Chudnovsky-Chudnovsky Multiplication Algorithm
(CCMA) is an interpolation algorithm over rational places of a function field. This
construction has been generalized in different ways, for instance with the use of
places of arbitrary degrees or the use of derivative evaluations. A detailed review
on the topic is given in [BCP+21].

Nevertheless, the total complexity of these algorithms has not been deeply
studied yet. The first step in this direction has been made by Ballet et al. [BBD19,
BBD21], giving a strategy to optimize the scalar complexity of the original CCMA.
This strategy can be summarized as follows. The algorithm involves two matrices.
For each coefficient distinct from zero and one of a matrix, a scalar multiplication
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is performed. Therefore, in order to reduce the number of scalar multiplications,
these matrices must have a maximum number of zeros and ones.

In this paper, we focus on the optimization of the recursive Chudnovsky-type
algorithms over the projective line, proposed in [BBP21]. First, we rely on the
work of [BBD21] to extend it to the use of places of arbitrary degrees. Then, a
constructive method is developed to optimize the complexity of the algorithms on
the projective line. The paper is organized as follows. In Section 2, we introduce
Chudnovsky-type algorithms with evaluations at places of arbitrary degrees, and
then the recursive construction over the projective line. In Section 3, we deal with
the scalar complexity of Chudnovsky-type algorithms when non-rational places are
used. Then, we propose a strategy to improve the scalar complexity of recursive
Chudnovsky-type algorithms over the projective line. In Section 4, we give several
examples. In particular, we illustrate this process on the extension of degree 4 of
F4, and obtain an algorithm of same bilinear complexity and better total complex-
ity than the Baum-Shokrollahi experiment [BS91], and its optimizations given in
[BBD21].

2. Chudnovsky-type Algorithms

Let F/Fq be a function field of genus g over Fq. For O a valuation ring, the
place P is defined to be P = O \ O×. We denote by FP = OP /P the residue class
field at the place P , that is isomorphic to Fqd , d being the degree of the place. A
rational place is a place of degree 1. A divisor D is a formal sum D =

∑
i niPi,

where Pi are places and ni are relative integers. The support supp D of D is the
set of the places Pj for which nj 6= 0, and D is effective if all the ni are positive.
The degree of D is defined by degD =

∑
i ni. The Riemann-Roch space associated

to the divisor D is denoted by L(D). A divisor D is said to be non-special if
dimL(D) = deg(D) + 1− g. Details about algebraic function fields can be found in
[Sti08].

2.1. CCMA with evaluation at places of arbitrary degrees. The latest
generalization of CCMA is given in [BCP+21]. Before introducing the algorithm,
let us give a definition of the generalized Hadamard product.

Definition 2.1. Let q be a prime power and d1, . . . , dN be positive integers.
The generalized Hadamard product in Fqd1 × · · · × FqdN , denoted by �, is given for
all (a1, . . . , aN ), (b1, . . . , bN ) ∈ Fqd1 × · · · × FqdN by

(a1, . . . , aN )�(b1, . . . , bN ) = (a1b1, . . . , aNbN ).

With this notation, we recall the version of the Chudnovsky-Chudnovsky algo-
rithm useful for our study, namely the one allowing evaluations at places of arbitrary
degrees (see [BCP+21], Corollary 5.4).

Theorem 2.2 (CCMA at places of arbitrary degrees). Let

• n be a positive integer,
• F/Fq be an algebraic function field of genus g,
• Q be a degree n place of F/Fq,
• D be a divisor of F/Fq,
• P = {P1, . . . , PN} be an ordered set of places of arbitrary degrees of F/Fq,

We suppose that supp D ∩ {Q,P1, ..., PN} = ∅ and that



4 STÉPHANE BALLET, ALEXIS BONNECAZE, AND BASTIEN PACIFICO

(i) the evaluation map

EvQ : L(D) → FQ

f 7→ f(Q)

is surjective,
(ii) the evaluation map

EvP : L(2D) → Fqdeg P1 × · · · × Fqdeg PN

f 7→
(
f(P1), . . . , f(PN )

)
is injective.

Then,

(1) we have a multiplication algorithm UF,P
q,n (D, Q) such that for any two ele-

ments x, y in Fqn :

(2) xy = EQ ◦ EvP |ImEvP
−1
(
EP ◦ Ev−1

Q (x)�EP ◦ Ev−1
Q (y)

)
,

where EQ denotes the canonical projection from the valuation ring OQ

of the place Q in its residue class field FQ, EP the extension of EvP on

the valuation ring OQ of the place Q, EvP |ImEvP
−1

the restriction of the
inverse map of EvP on its image, � the generalized Hadamard product
and ◦ the standard composition map;

(2) the algorithm UF,P
q,n (D, Q) defined by (2) has bilinear complexity

µb(UF,P
q,n (D, Q)) =

N∑
i=1

µb(Uq,deg Pi
(Pi)),

where Uq,deg Pi(Pi) is the algorithm used to multiply the evaluations at Pi,
in Fqdeg Pi .

Sufficient application conditions are given in the following.

Proposition 2.3 (Criteria for CCMA at places of arbitrary degrees). Let q be
a prime power and let n > 1 be an integer. If there exists an algebraic function field
F/Fq of genus g with a set of places P = {P1, . . . , PN} and an effective divisor D
of degree n+ g − 1 such that

1) there exists a place Q of degree n (which is always the case if 2g + 1 ≤
q

n−1
2 (q

1
2 − 1)),

2) Supp D ∩ (P ∪Q) = ∅, and D −Q is non-special,

3)
∑N

i=1 degPi = 2n+ g − 1 and 2D −
∑
Pi is non-special,

then,

(i) the evaluation map

EvQ : L(D) → FQ

f 7→ f(Q)

is an isomorphism of vector spaces over Fq,
(ii) and the evaluation map

EvP : L(2D) → Fqdeg P1 × · · · × Fqdeg PN

f 7→
(
f (P1) , . . . , f (PN )

)
is an isomorphism of vector spaces of dimension 2n+ g − 1 over Fq.
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2.2. Recursive Chudnovsky-type algorithm over the projective line.
In this paper, we focus on the optimization of recursive Chudnovsky-type algo-
rithms over the projective line, introduced in [BBP21]. These algorithms are a
specialization of the algorithm from Theorem 2.2 to the rational function field.

Definition 2.4. Let q be a prime power and n be a positive integer. A re-
cursive Chudnovsky-type algorithm UPn

q,n(Q) over the projective line is an algorithm

UF,P
q,n (D, Q) satisfying the assumptions of Theorem 2.2 such that:

• F/Fq is the rational function field Fq(x),
• Q is a place of degree n of Fq(x),
• D = (n− 1)P∞, where P∞ is the place at infinity of Fq(x),
• Pn is a set of places of degrees lower than n such that∑

P∈Pn

degP = 2n− 1,

• the multiplication in FP ' Fqd , where d = degP , is computed by UPd

q,d(P ),
where P ∈ Pn.

Note that if P ∈ Pn is a rational place, the algorithm UP1
q,1(P ) consists in only a

bilinear multiplication in Fq. Such an algorithm verifies the criteria of Proposition
2.3. The bilinear complexity of these algorithms is given by the following.

Proposition 2.5. Let UPn
q,n(Q) be a recursive Chudnovsky-type algorithm over

the projective line. Its bilinear complexity is given by

µb(UPn
q,n(Q)) =

∑
P∈Pn

µb(UPd

q,d(P )),

where d = degP .

Note that the evaluation at P∞ is defined specifically in this context, since P∞
is in the support of D.

Definition 2.6. Let k be a positive integer and P∞ be the place at infinity of

Fq(x). Let D = kP∞, and let f =
∑k

i=0 fix
i ∈ L(D). We define the evaluation at

P∞ to be for all f ∈ L(D),

f(P∞) := fk.

Example 2.7. Consider the multiplication in F44 over F4. Let P0, P1, Pω, Pω2

and P∞ be the rational places of F4[x]. Let P 2 be a place of degree 2, and Q be a
place of degree 4. Then, we can construct a recursive Chudnovsky-type algorithm
over the projective line with P4 = {P0, P1, Pω, Pω2 , P∞, P

2}. This algorithm uses

the algorithm UP2
4,2(P 2), defined with P2 = {P0, P1, P∞}. The diagram of its con-

struction is given in Table 1. As well as the Baum-Shokrollahi experiment [BS91],

this algorithm has an optimal bilinear complexity µb(UP4
4,4(Q)) = 8.

3. Optimization of scalar complexity

3.1. Some general results. First, we discuss how to adapt the work of
[BBD21] to Chudnovsky-type algorithms using places of arbitrary degrees.

Let Uq,n = UF,P
q,n (D, Q) be an algorithm as defined in Theorem 2.2, and verifying

the criteria of Proposition 2.3, for the multiplication in Fqn . Following [BBD21],
we consider that the basis of Fqdeg P1 × · · · × Fqdeg PN is always the canonical basis.
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UP4
4,4(Q)

P0

P1

Pω

Pω2

P∞
UP2

4,2 (P 2)
P0

P1

P∞

Table 1. Diagram of the construction of UP4,4(Q).

The basis BQ of FQ = Fqn is defined by BQ = EvQ(BD), where BD is the basis
of L(D). We also denote by B2D the basis of the Riemann-Roch space L(2D).
Since we take D as an effective divisor, we have that L(D) ⊂ L(2D), and we take
B2D = BD ∪BcD, where BcD is a basis of the supplementary space of L(D) in L(2D).
Let TD (resp. T2D) be the matrix of EP : L(D) −→ Fqdeg P1 × · · · × Fqdeg PN in
the basis BD (resp. EvP : L(2D) −→ Fqdeg P1 × · · · × Fqdeg PN , in the basis B2D).
Let C be the matrix of the map EQ from the Riemann-Roch Space L(2D), in the
basis B2D, to the finite field Fqn , in the basis BQ over Fq. Using these matrices,
Algorithm (2) is written

(3) XY = CT−1
2D (TD(X)�TD(Y )),

where X and Y are the two elements of F44 in the basis BQ being multiplied, and
� is the generalised Hadamard product. In the following, we consider the product

of C and T−1
2D as one matrix CT−1

2D .
Recall that the scalar complexity of the algorithm Uq,n is defined as its number

of multiplications by a non-trivial constant (distinct from 0 or 1) in Fq. In Uq,n, the

matrices TD and CT−1
2D provide some scalar multiplications of the algorithm. We

therefore wish to obtain matrices with as many coefficients equal to zero or one as
possible, to have a maximum number of trivial multiplications that do not count
in the scalar complexity. Consequently, we focus on the number of zeros and ones
in these matrices. We denote by Nz(TD) (resp. Nz(CT−1

2D )) the number of zeros

in TD (resp. CT−1
2D )) and also denote by N1(TD) (resp. N1(CT−1

2D )) the number

of ones in the matrices TD (resp. CT−1
2D ). Note that it is useful to distinguish

between zeros and ones, since the coefficients equal to one must be counted in the
number of additions used by the algorithm. Since the matrix TD is used twice in
the algorithm, and CT−1

2D only once, we denote the total number of zeros by Nz =

2Nz(TD)+Nz(CT−1
2D ) and the total number of ones by N1 = 2N1(TD)+N1(CT−1

2D )
If the algorithm Uq,n is an original CCMA, the evaluations are only at rational

places and all the scalar multiplications are given by the matrices TD and CT−1
2D .

Hence, the scalar complexity is given by [BBD19, BBD21]:

(4) µs(Uq,n) = 3n(n+ g − 1)−Nz −N1.

In our study, we allow the evaluations to be at places of arbitrary degrees.
Consequently, we have to count the scalar multiplications involved in an algorithm
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Uq,d(P ) (not necessarily of type Chudnovsky), where d = degP , for the multipli-
cation in the residue class field FP ' Fqd , required to multiply the evaluations at
P .

Proposition 3.1. Let Uq,n be a Chudnovsky-type algorithm from Theorem 2.2,
with evaluations at places of arbitrary degrees. Then, its scalar complexity is such
that

(5) µs(Uq,n) = 3n(n+ g − 1)−Nz −N1 +
∑
P∈P

µs(Uq,d(P )),

where d = degP and Uq,d(P ) is the algorithm used to multiply the evaluations at
P .

Proof. Follows from (4), where we add the scalar complexity of the multipli-
cations in Fqdeg P for all places P used by the algorithm. �

Since we have to add the scalar complexity of the algorithms Uq,d(P ), for all
P ∈ P and d = degP , the use of non rational places looks heavier for the scalar
complexity. However, this is not necessarily the case. First, because a function
field of lower genus can be used, which implies the use of smaller matrices, and also
because the matrix TD might contain more zeros.

Proposition 3.2. Let Uq,n be a Chudnovsky-type algorithm as defined in The-
orem 2.2, satisfying Proposition 2.3. Consider P ′ ⊂ P constructed by taking places
that are in P by growing degrees as long as the sum of their degrees remains lower
than or equal to n+ g − 1. Then, the number of zeros of TD verifies

Nz(TD) ≤ n
(
n+ g − 1 +

∑
P∈P\P′

(degP − 1)
)
.

Proof. By Proposition 2.3, the divisor D is taken effective and of degree
n+g−1. Thus, a function f in L(D) has at most degD = n+g−1 zeros. Consider
f ∈ BD, then a column of TD is given by the evaluations of f at the places in
P. Moreover, the evaluation at a place of degree d gives d coefficients in Fq, and
such an evaluation can give d − 1 zeros without vanishing. As the ratio (d − 1)/d
is increasing, the column defined by the evaluations of f would have the largest
number of zeros if f has (at most) n+ g− 1 zeros at the places of smallest possible
degree, i.e. at the places in P ′, and degP − 1 coefficients equal to zero for each
other place. Then, a column of TD is given by the evaluations of a function in
L(D) has at most n+ g− 1 +

∑
P∈P\P′(degP − 1) coefficients equal to zeros. The

bound is obtained by counting this maximal number of zeros for all the n columns
of TD. �

Another important result for the strategy of optimization is that for given P,
D and Q, since the basis BD of L(D) is fixed, and that the basis B2D = BD ∪ BcD
of L(2D) is an extension of the basis of L(D), the algorithm does not depend on
the choice of BcD. This result is established in [BBD19, Proposition 1], and is also
true when places of higher degrees are used (same proof holds).

3.2. Optimization of the complexity of a recursive Chudnovsky-type
algorithm over the projective line. Consider a recursive Chudnovsky-type al-
gorithm over the projective line UPn

q,n(Q). The bilinear complexity of such an algo-
rithm is known by Proposition 2.5. In this section, we introduce our strategy to
optimize its total complexity.
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Proposition 3.3. Let UPn
q,n(Q) be a recursive Chudnovsky-type algorithm over

the projective line. Then, the scalar complexity of UPn
q,n(Q) is given by

µs(UPn
q,n(Q)) = 3n(2n− 1)−Nz −N1 +

∑
P∈Pn

µs(UPd

q,d(P )),

where d = degP .

Proof. Follows immediately from Proposition 3.1, where the Chudnovsky-
type algorithm UPd

q,d(P ) over the projective line is used to multiply in FP ' Fqd . �

By the results obtained in [BBD19, BBD21] and the previous section, the
optimization of the scalar complexity of UPn

q,n(Q) only depends on the basis of L(D),
when Pn, D and the place Q of degree n are fixed. Hence, the main focus is to find
a basis BD of L(D) such that the matrices TD and CT−1

2D have the most possible
zeros and ones. The basis of Fqn will be defined in accordance with this basis.

The strategy proposed in [BBD19] and significantly completed in [BBD21] is
to construct a first basis BD, and apply the linear group GLn(Fq) to look for the
best possible bases. It is effective, but expensive. With a recursive algorithm over
the projective line, one can construct directly some bases of L(D) that improve the
total complexity of the algorithm without using the action of the linear group.

3.2.1. Optimization strategy. Now, let us introduce the heart of the strategy
of optimization of Chudnovsky-type algorithms over the projective line. We want
to sculpt BD to obtain the minimum scalar multiplications and additions. For this
purpose, we want to get as many zeros as possible before processing the number of
ones. More precisely, we will focus on obtaining the most possible zeros and then
ones in the matrix TD. Two reasons for that: we do not have information on how
the choice of the basis of L(D) affects the matrix CT−1

2D , and moreover the matrix
TD counts twice. For all these reasons, our goal is finally to sculpt BD such that
TD has a maximal number of zeros, and then a maximal number of ones.

Recall that D = (n−1)P∞, and hence L(D) is the space of polynomials over Fq

of degrees at most n− 1. Moreover, the places of Fq(x) are given by the irreducible
polynomials over Fq[x] and the place at infinity. The idea is to take the vectors
of the basis BD as products of irreducible polynomials associated to places in Pn.
Therefore, the evaluation of such a vector will vanish at the places used to define
it. This translates into zeros in the matrix TD. We define such bases as Pn−bases
of L(D).

Definition 3.4 (Pn−basis of L(D)). Let q be a prime power and n > 1 be
an integer. Let Pn = {P1, . . . , PN} be a set of distinct places of Fq(x) such that∑

P∈Pn
degP = 2n − 1. If Pj is not the place at infinity, let Pj(x) be the monic

irreducible polynomial associated to the place Pj. In the case of Pj = P∞, let
Pj(x) = 1. We say that B = {V1, . . . , Vn} is a Pn−basis of L(D) if every vector Vi
of the basis B is defined as Vi(x) =

∏
Pj∈Vi Pj(x), where Vi is a subset of Pn. The

set Vi is called the support of Vi.

We can notice that since L(D) is the space of polynomials of degree at most
n − 1, the vectors defining the basis shall be of degree at most n − 1. The fol-
lowing proposition gives a lower bound for the number of zeros in the matrices TD
constructed using a Pn−basis of L(D).
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Proposition 3.5. Let B = {V1, . . . , Vn} be a Pn−basis of L(D), and let TD be
a matrix obtained using B. Then,

Nz(TD) ≥
n∑

i=1

deg Vi.

Proof. Every column of TD is given by the evaluation of a vector Vi at the
places in Pn. Every such vector is the product of some Pi,j(x), where Pi,j ∈
Vi ⊂ Pn and Vi can be written as the product Vi(x) = Pi,1(x) . . . Pi,Ni

(x), where∑Ni

j=1 degPi,j = deg Vi. In particular, Vi(Pi,j) = 0, and it gives degPi,j zeros in
the i−th column of TD, for all j = 1, . . . , Ni. Then, the i − th column of TD
contains at least deg Vi zeros. This is the case for all the Vi in BD, and then
Nz(TD) ≥

∑n
i=1 deg Vi. �

The preferred configuration to maximize the number of zeros is when the vectors
of the Pn−basis B are of degree n− 1, or as close to n− 1 as possible.

Corollary 3.6. If P∞ ∈ Pn and for all i, deg Vi = n− 1 or n− 2. Then,

Nz(TD) ≥ n(n− 1).

Proof. If deg Vi = n − 1, then Vi has n − 1 zeros. If deg Vi = n − 2, then
Vi(P∞) = 0 since this evaluation is the coefficient in xn−1 of Vi (by Definition 2.6),
and n− 2 zeros at the places (distinct from P∞) defining Vi. Finally, the n vectors
of the basis have at least n− 1 zeros. �

3.2.2. Generic optimization. Thus far, we have seen that using Pn−bases gives
an information on the number of zeros in the matrix TD, and then can be used to
improve the complexity of Chudnovsky-type algorithms over the projective line. It
remains to be proven that such a basis always exists. An efficient way to obtain such
a basis is to construct B = {V1, . . . , Vn} such that for all i, deg Vi = i−1. Secondly,
we can construct the matrix TD and maximize its number of ones by multiplying
the vectors of the basis by a constant in Fq. For each column in TD, suppose
that a ∈ Fq is the non-zero scalar that occurs the most in the column. Then, we
multiply the corresponding vector of the basis by a−1. The generic construction of
a Pn−basis of L(D) is given in the following algorithm.

Algorithm 1 Construction of a generic Pn−basis of L(D) and the associated
matrix TD.

INPUT: q, n, Pn = {P1, . . . , PN} be a set of places such that
∑

P∈Pn
degP =

2n− 1.
OUTPUT: BD, TD.

(1) For i = 1, . . . , n, construct Vi(x) =
∏

Pj∈Vi Pj(x), such that deg Vi = i − 1,

and Vi is a subset of Pn.
(2) Construct TD. For each column of TD, if a ∈ Fq is the scalar that occurs

the most, multiply both the corresponding vector of BD and the associated
columns of TD by a−1.

The natural strategy to construct Chudnovsky-type algorithms over the pro-
jective line is to include in Pn all places by increasing degrees, until the sum of
their degrees is equal to 2n− 1 (if the sum gets bigger than 2n− 1, remove a place
of the appropriate degree, see [BBP21] Section 4.2).
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Proposition 3.7. If Pn is constructed including places by increasing degrees,
then Algorithm 1 is correct.

Proof. If Pn is constructed by taking places of increasing degrees, then it
contains places of every degrees until some integer k, except in the case of q = 2
and the only degree 2 place of F2(x) has been removed from Pn. We can assume
that P∞ is always in Pn. Note that the polynomial associated to P∞ is defined by
P∞(x) = 1 (see Definition 3.4). Suppose that Pn contains places of every degree
until some integer k. Then, there exists Pj(x) of degree j for j = 1, . . . , k. Set
V1(x) = 1. Then, for i = 2 to n− 1, we construct the polynomials Vi(x) by taking
the product of all monic polynomials by increasing degrees until the degree is equal
to i− 1 (if the degree gets greater than i− 1, divide this product by an appropriate
monic irreducible polynomial, that is in the support of Vi at this moment of the
construction). If q = 2 and Pn does not contain the place of degree 2, we can
divide Vi by the two irreducible polynomials of degree 1. Moreover, the sum of
all Pi(x) is of degree 2n − 2 ≥ n, and then we can construct Vi(x) of degree d
for all d = 0, . . . , n − 1. Finally, since there exists some products of the Pi(x) for
any degree d, one can obtain n vectors V1(x), . . . , Vn(x) of degrees 0, . . . , n − 1
respectively, such that for all j the function Vj(x) is the product of some distinct
Pi(x). Then, B = {V1(x), . . . , Vn(x)} is a Pn−basis of L(D). �

Moreover, Algorithm 1 is ending in polynomial time.

Proposition 3.8. Algorithm 1 is running in time O(n3 log n log log n).

Proof. Step 1. For the n vectors, we take at most n products of Pi(x). We
roughly consider that we have at most n2 products of polynomials whose degrees are
bounded by n. Each product can be computed with O(n log n log log n) operations
by Schnhage-Strassen ([SS71], [vzGG03, Theorem 8.23.]), thus this step can be
completed in time O(n3 log n log log n).

Step 2. The matrix TD is constructible using O(n3) operations in the base field.
Indeed, the coefficients of the matrix are obtained by computing the evaluations
of the polynomials in the basis of L(D) at the places in Pn. The evaluation of
such a polynomial V (x), that is of degree at most n − 1, at a place P of degree
d < n is obtained by the modular reduction of V (x) modulo P (x). More precisely,

let v(x) = V (x) (mod P (x)) =
∑d−1

i=0 vix
i. The coefficients of {v0, . . . , vd−1} are

exactly the evaluation of V (x) at P in the basis {1, α, . . . , αd−1}, for α a root of
P (x). Such a computation gives d coefficients of the matrix, and can be computed
using the Euclidean Algorithm for polynomials, that uses O(nd) operations by
[vzGG03, Theorem 3.11.]. The matrix TD having O(n2) coefficients, it means that
all of them can be computed using O(n3) operations. Then, for the n columns, we
count each occurrence of non-zero scalars in the 2n− 1 coefficients. Then, we have
to multiply the n vectors of the basis, and the n columns of TD by a scalar. This
last part is computed in O(n2). Finally, this step uses O(n3) operations in Fq. �

Remark 3.9. In [HvdH19], it is proven that if there exists a Linnik constant
with L < 1+2−1162, the product of two degree n polynomials over Fq can be computed
in O(n log q log(n log q)), uniformly in q. Considering that q is fixed, the running
time of Algorithm 1 becomes O(n3 log n).

Example 3.10. Table 2 gives an illustration of the improvement of the com-
plexity of Chudnovsky-type algorithms over the projective line for small extensions
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Table 2. Total complexity of Chudnovsky-type algorithms over F2(x)

n 2 3 4 5 6 · · · 54

Non optimized 7 23 54 91 129 10152
Generic optimization 7 20 49 77 99 8703

of F2, and for the extension of degree 54. The non optimized algorithm uses the
canonical basis {1, x, . . . , xn−1} of L(D), while the generic optimization uses the
basis provided by Algorithm 1. Details are given in Section 4.3.

3.2.3. Non-generic optimization. Even though we obtained a first improvement
of the total complexity, this generic process does not provide the Pn−basis of L(D)
giving the best total complexity. For instance, we should take the vectors in the
basis of the highest possible degree, since it ensures more zeros in the matrix. If
the degree of the extension is low, we can check all possible Pn−bases of L(D).
Nevertheless, there are less than 2#Pn possible vectors for the basis, and hence less

than
(

2#Pn

n

)
possible Pn−bases to try.

Remark 3.11. Even if this complete optimization is too heavy to be used gener-
ically for large extension degree, it is still way more efficient than the optimization
of [BBD19, BBD21] involving the action of the linear group. Considering the
optimization in the extension of degree 13 of F16, the linear group is of cardinal-
ity ' 10203, while our strategy would consist in looking through / 1072 possible
Pn−bases.

Depending on the time and resources that can be used, we can still improve
the complexity of the algorithm. Instead of looking through all possible Pn−bases,
we can focus on the bases including only vectors of degree n− 1 or n− 2. Between
these vectors, one can only look through the ones whose evaluations give a maximum
number of zeros. An example of such optimization is given in Section 4.2.

This ends our strategy to optimize a Chudnovsky-type algorithm UPn
q,n(Q) over

the projective line, when the parameters Pn and Q are fixed. Finally, one can look
for the best parameters, i.e. include in Pn in priority the places P such that the

multiplication in FP with UPdeg P

q,deg P (P ) has the lowest complexity, or similarly for the
place Q of degree n. A full optimization process is given in Section 4.1.

4. Examples

In this section, we provide several examples of optimizations of Chudnovsky-
type algorithms over the projective line. All the computations were done using
Magma Computational Algebra System [BCP97].

4.1. Multiplication in F256 over F4. We now illustrate the strategy intro-
duced in the previous section to the multiplication in the extension of degree 4
of F4. The construction of a recursive Chudnovsky-type algorithm over the pro-
jective line to multiply in this extension has already been given in Example 2.7.

More precisely, consider F4 = F2[x]
(x2+x+1) . Hence, the elements of F4 are {0, 1, ω, ω2},

where ω is a root of x2 + x + 1. Let F4(x), be the rational function field over
F4. This function field has 5 rational places, that we denote by P0, P1, Pω, Pω2 and



12 STÉPHANE BALLET, ALEXIS BONNECAZE, AND BASTIEN PACIFICO

P∞. These places are given by the irreducible polynomials x, x + 1, x + ω, x + ω2

and the place at infinity respectively. There exist 6 places of degree 2, which we
denote by P 2

1 , . . . , P
2
6 , and 60 places of degree 4. As in Example 2.7, we take

P4 = {P0, P1, Pω, Pω2 , P∞, P
2}, where P 2 is one of the six places of degree 2, to

obtain an algorithm of optimal bilinear complexity. Consequently, our algorithm
requires to use the algorithm UP2

4,2(P 2). We first focus on optimizing this algorithm,

in order to take P 2 such that the complexity of UP2
4,2(P 2) is minimal.

4.1.1. Optimization of UP2
4,2(P 2). As seen in Example 2.7, the Chudnovsky-type

algorithm over the projective line for the multiplication in the quadratic extension
of F4 is defined using the ordered set P2 = {P0, P1, P∞}. Actually, the canonical
basis {f1, f2} = {1, x} of L(D) is already optimal. In fact, the matrix TD is then
given by

TD =

 f1(P0) f2(P0)
f1(P1) f2(P1)
f1(P∞) f2(P∞)

 =

1 0
1 1
0 1

 .

It has a maximal number of zero with respect to Proposition 3.2, and all its non-
zero coefficients are equal to one. Hence, this matrix is optimal in terms of scalar
complexity. Thus we do not need to search for a better basis of L(D). It remains
to find for which places of degree 2 we obtain the more competitive algorithms.
Hence, we compute CT−1

2D for all the 6 possible places of degree 2 of F4(x). We
obtain

• Nz(CT−1
2D ) = 2 with P 2

1 = (x2 + x+ ω) and P 2
2 = (x2 + x+ ω2),

• Nz(CT−1
2D ) = 1 with all other places.

Moreover, using P 2
1 or P 1

2 , we have N1(CT−1
2D ) = 3. Hence, we can pick either P 2

1

or P 2
2 as the place of degree 2 in P4. By Proposition 3.3, we obtain

µs(UP2
4,2(P 2

1 )) = 1,

and the number of additions is given by

a(UP2
4,2(P 2

1 )) = 4.

4.1.2. Optimization of UP4
4,4(Q). Recall that P4 = {P0, P1, Pω, Pω2 , P∞, P

2}.
By the previous section, one shall pick P 2 = P 2

1 = (x2+x+ω) or P 2
2 = (x2+x+ω2).

In the following, we choose P 2 = P 2
1 .

We want to construct a good basis BD of L(D), with D = 3P∞. Hence the
Riemann-Roch space L(D) is the space of polynomials of degrees at most 3 over F4.
Note that this time P∞ is in P4. By Definition 2.6, a function f in L(D) has a zero
at P∞ if and only if f is a polynomial of degree at most 2. For all other places P
in P4, let P (x) be the corresponding polynomial. Then, a function f in L(D) has
a zero at P if and only if P (x) | f . By Corollary 3.6, we shall construct the vectors
of the basis as polynomials of degrees n− 1 or n− 2, which are the product of the
polynomials defining the places in P4. Moreover, we want this vectors to vanish on
rational places. Hence, we construct possible vectors for the basis of L(D) as

• the product of two irreducible polynomials of degree one Pi(x)Pj(x), for
i, j ∈ {0, 1, ω, ω2}, then this vector has zeros at the places Pi, Pj and P∞,

• the product of three irreducible polynomials of degree one Pi(x)Pj(x)Pk(x),
for i, j, k ∈ {0, 1, ω, ω2} then this vector has zeros at the places Pi, Pj and
Pk.
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Consequently, we can take the vectors of the basis BD as the product of three
distinct elements of {1, x, x + 1, x + ω, x + ω2} until a basis is found. This gives(

5
3

)
= 10 possible vectors for the basis of L(D). Then, there are

(
10
4

)
= 210 possible

combinations of these vectors to build the basis. Moreover, we want the vectors
in each combination to be relatively prime in terms of polynomials, so that they
do not all vanish at the same place. By computation, There are 150 possibilities
left. We now consider that for given parameters, we only have to look through
150 possibilities to construct a P4−basis of L(D). In the strategy of [BBD19] and
[BBD21], it was required to look through | GL4(F4) |= 2961100800 possibilities.
By Corollary 3.6, there are at least 12 zeros in the matrices TD obtained using these
bases. Nevertheless there can be at most 16 zeros by Proposition 3.2. We obtained
exactly one basis of L(D) such that Nz(TD) = 16. This basis is given by

BD = {(x+ ω)(x+ 1), x(x+ 1), (x+ ω2)(x+ ω), x(x+ ω2)(x+ ω)}.

The corresponding evaluation matrix TD is then

TD =



ω 0 1 0
0 1 0 0
ω 1 0 0
0 0 1 1
0 ω ω2 0
ω 0 0 ω2

0 0 0 1


where the rows are given by the evaluations at the places in P4, with the following
order: P0, Pω, Pω2 , P1, P

2
1 and P∞. Notice that the evaluation at P 2

1 takes two rows,
in the basis {1, α}, where α is a root of P 2

1 (x). Following Step 2 of Algorithm 1,
one shall try to increase the number of ones in this matrix. In particular, the first
column only contains 0 and ω. Hence, we modify the basis by multiplying the first
vector by ω−1 = ω2, we obtain

BD = {ω2(x+ ω)(x+ 1), x(x+ 1), (x+ ω2)(x+ ω), x(x+ ω2)(x+ ω)}

and

TD =



1 0 1 0
0 1 0 0
1 1 0 0
0 0 1 1
0 ω ω2 0
1 0 0 ω2

0 0 0 1


.

The last step is now to find a place Q that gives the best scalar complexity.
Finally, we compute the matrices CT−1

2D using the basis of L(2D) given by B2D =
BD ∪ {x4, x5, x6} for all the 60 places Q of degree 4 in F4(x). There are 3 places
such that CT−1

2D has a maximum number of zeros Nz(CT−1
2D ) = 12. Between those

matrices, two have 4 coefficients equal to one, and the last one, that is defined using
Q = (x4 + ωx2 + ωx + ω2), has 6 coefficients equal to one. The matrix is in this
latest case given by
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CT−1
2D =


ω2 0 ω 0 1 0 1
1 0 0 ω2 ω2 1 ω2

0 ω2 0 0 ω 0 1
0 ω ω 0 0 ω 1

 .

Finally, the algorithm UP4
4,4(Q) is obtained with these parameters. The finite

field F44 is represented as F4[x]/(Q(x)) = F4[β], for β a root of Q(x). Its basis over
F4 is given by BQ = EvQ(BD) and hence by

BQ = {β43, β198, β108, β109}.
4.1.3. Comparison with other algorithms. The matrices obtained containNz(TD) =

16 and Nz(CT−1
2D ) = 12 zeros, and N1(TD) = 9 and N1(CT−1

2D ) = 6 ones. Finally,

we can compute the scalar complexity of UP4
4,4(Q), including the scalar complexity

of UP2
4,2(P 2

1 ). By Proposition 3.3, we obtain,

µs(UP4
4,4(Q)) = 17,

and
a(UP4

4,4(Q)) = 4 + 2× 5 + 12 = 26.

Originally, the Baum-Shokrollahi experiment [BS91] introduced an algorithm
for the extension of degree 4 of F4 with optimal bilinear complexity. This algorithm
is an original CCMA over the function field defined by the Fermat curve u3+v3 = 1.
It also uses 51 scalar multiplications and 52 additions. In [BBD19, BBD21], the
same algorithm is optimized (BS Optimized) with a good choice of the basis of
F44 to obtain only 33 scalar multiplications and 33 additions. In this paper, the
proposed algorithm is constructed over the rational function field, and only requires
17 scalar multiplications and 26 additions, for the same bilinear complexity.

At last, we want to compare our algorithm to well-known methods of polyno-
mial interpolation. The generalized Karatsuba algorithm computes the product of
two 4-terms polynomials using 9 (bilinear) multiplications and 24 additions (see
[WP06], Appendix). Once that this product is computed, the modulo Q(x) re-
duction still needs to be performed. For the comparison, we define F44 as in our
construction, using Q(x) = x4 + ωx2 + ωx + ω2. The reduction then uses 9 ad-
ditions and 8 scalar multiplications. The comparison between these methods is
given in Table 3. We can see that the total complexity of our algorithm is equal to
Karatsuba’s to the nearest 1.

Remark 4.1. Other experiments have similar performances, for example for
the degree 3 extension of F2, regardless of the polynomial used to define the extension
(see Table 6 and Table 7).

Table 3. Comparison of algorithms for the multiplication in F44

Algorithm µb(U) µs(U) a(U) µ(U)
Baum-Shokrollahi [BS91] 8 51 52 111
BS Optimized [BBD21] 8 19 43 70

Our construction 8 17 26 51
Karatsuba [WP06] + Reduction 9 8 33 50
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4.2. The degree 13 extension of F16. Let the finite field F16 be defined as
F2(ω), where ω is a root of x4+x+1. In [Bal02], Ballet constructed a Chudnovsky-
Chudnovsky Multiplication Algorithm with quasi-optimal bilinear complexity for
the multiplication in the extension of degree n = 13 of F16. This algorithm is defined
using the hyperelliptic curve given by the plane equation y2 + y = x5 of genus 2
that has 33 rational points. The algorithm uses 27 bilinear multiplications, that
is still the best known bilinear complexity for the multiplication in this extension.
The calculation of the number of operations of such an algorithm in Magma gives
833 scalar multiplications and 840 additions.

We can define a Chudnovsky-type algorithm over the projective line for the
multiplication in F1613 over F16. The rational function field over F16 has 17 rational
places and 120 places of degree 2. We construct the set P16 with the 17 rational
places and 4 places of degree 2. Then, the sum of the degrees of the places in P16 is
equal to 17+2×4 = 25 = 2n−1. As in the previous example, we start by including
in P16 the places P 2 of degree 2 such that the algorithm UP2

16,2(P 2) has the best

complexity. There are 8 places P 2 of degree 2 such that µs(UP2
16,2(P 2)) = 1 and

a(UP2
16,2(P 2)) = 4. We include 4 of them in P16. In the following, we consider that

the places of degree 2 in P16 are given by (x2 +x+ω7), (x2 +x+ω14), (x2 +x+ω13)
and (x2 + x + ω11). Consider the place Q = (x13 + x4 + x3 + x + 1) of F16(x) of

degree 13, and D = 12P∞. We can now construct the algorithm UP16
16,13(Q). Without

any optimization, we use the canonical basis of L(D) given by {1, x, . . . , x12}. The
algorithm then uses 29 bilinear multiplications, 686 scalar multiplications and 815
additions.

4.2.1. Generic optimization. With Algorithm 1, we can construct a P16−basis
of L(D). This basis is given by

V1 = 1,
V2 = x,
V3 = ω11x2 + ω12x,
V4 = ω13x3 + ω3x2 + ωx,
V5 = ω13x4 + ω9x3 + ω11x2 + ω4x,
V6 = ω12x5 + ω10x4 + ω3x3 + x2 + ω7x,
V7 = ω13x6 + ω5x5 + x4 + ω3x3 + ω14x2 + ω13x,
V8 = ω12x7 + ω7x6 + ω11x5 + ωx4 + ω3x3 + ω6x2 + ω3x,
V9 = ω11x8 + ω2x7 + ω9x6 + ω8x5 + ω12x4 + ω6x3 + ω7x2 + ω9x,
V10 = ω14x9 + ω13x8 + ωx7 + ω3x6 + ωx5 + ω12x4 + ω4x3 + ω10x2 + ω5x,
V11 = ω7x10 + ω11x9 + ω7x8 + ω5x7 + ω6x6 + ω11x5 + ω5x4

+ω2x3 + ωx2 + ω7x,
V12 = ω5x11 + ω7x10 + ω8x9 + ω14x8 + ω11x7 + ω4x6 + ω7x5

+ω6x4 + ω11x3 + ω6x2 + x,
V13 = x12 + ω9x11 + ω8x10 + ω4x9 + ω9x8 + ω13xx7 + ω4x6 + ω12x5

+ω4x4 + ω5x3 + ω3x2 + ω6x.

Using this basis, the complexity of the algorithm is reduced to 614 scalar multipli-
cations and 705 additions.

4.2.2. Non-generic optimization. In Remark 3.11, we saw that there are too
many possible P16−bases for an exhaustive search. Nevertheless, we can still im-
prove our algorithm. Using the proof of Proposition 3.2, a column of the matrix
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TD contains at most n − 1 + 4 = 16 zeros, since P16 contains 4 places of degree
2. Moreover, this equality is possible if and only if the corresponding vector of
the basis of L(D) vanishes only on rational places. Thus, we consider the set
S = {1, x, x+ω, x+ω2, . . . , x+ω15}. By corollary 3.6, we want to construct prod-
ucts of these elements of degree 11 or 12, such that such a function vanishes on
12 rational places of F16(x). Such a polynomial is the product of 12 elements of S.
Hence, there are

(
17
12

)
= 6188 possibilities. Moreover, the evaluation of each of these

vectors gives at most 16 zeros. For all these functions f , we compute EvP(f), the
vector of the evaluations of f at the places in P16. There are 49 of them containing
16 zeros. Finally, it remains to find a basis using 13 of these vectors. There are
still

(
49
13

)
= 262596783764 possibilities. This is very few compared to an exhaustive

search of a P16−basis (/ 1072 possibilities), but still too much. We finally ran-
domly search a basis using these vectors, and apply Algorithm 1, Step 2 to reduce
the number of scalar multiplications. We obtain the following.

V1 = ω4x12 + ω5x10 + ω8x9 + ω6x8 + ω2x6 + ω10x5 + ω3x4 + ωx3 + ω9x2

+ω12x+ 1,
V2 = ω4x12 + ω5x10 + ω8x9 + ω3x8 + ω2x6 + ω10x5 + ω9x4 + ωx3

+ω12x2 + ω6x,
V3 = ωx12 + ω5x10 + ω2x9 + ω6x8 + ω8x6 + ω10x5 + ω3x4 + ω4x3

+ω9x2 + ω12x,
V4 = ω9x11 + ω9x10 + ω10x9 + ω7x7 + ω7x6 + ω14x5 + x4 + ω12x2 + ω6x,
V5 = ω2x12 + ω10x10 + ω4x9 + ω9x8 + ωx6 + ω5x5 + ω12x4 + ω8x3

+ω6x2 + ω3x,
V6 = ω13x11 + ω13x10 + ω3x9 + ω13x7 + ω13x6 + ω8x5 + ω3x3 + ω8x2 + ω3x,
V7 = x12 + x9 + ω10x8 + x6 + ω5x4 + x3 + ω10x2 + ω5x,
V8 = ω8x12 + ω10x10 + ωx9 + ω12x8 + ω4x6 + ω5x5 + ω6x4 + ω2x3 + ω3x2

+ω9x+ 1,
V9 = ω10x12 + x10 + ω5x9 + ω8x8 + ω5x6 + x5 + ω4x4 + ω10x3 + ω2x2 + ωx,
V10 = x11 + x10 + x9 + ω10x7 + ω10x6 + ω5x5 + ω5x4 + x2 + ω5x,
V11 = ω12x11 + ω12x10 + ω5x9 + ω11x7 + ω11x6 + ω7x5 + x4 + ω6x2 + ω3x,
V12 = ω2x11 + ω2x10 + ω10x9 + x7 + x6 + ω6x5 + ω8x4 + ω9x3 + ω2x2 + ω6x,
V13 = ω14x11 + ω14x10 + ω9x9 + ω14x7 + ω14x6 + ω4x5 + ω9x3 + ω4x2 + ω9x.

Using this basis, the Chudnovsky-type algorithm UP16
16,13(Q) now uses 423 scalar

multiplications and 487 additions.
Karatsuba algorithm is more expensive in terms of bilinear complexity, using

66 bilinear multiplications instead of 29 with our method. It also uses 277 additions
([WP06], Appendix). As in the previous section, we compute the reduction modulo
Q(x) with 66 additions. We notice that there is no scalar multiplication. This
is due to the choice of Q(x) which has all its coefficients in F2. This kind of
situation is more favorable to Karatsuba’s technique than to our method for the
scalar complexity. On the other hand, we can see that our method is clearly more
efficient than the CCMA method using a curve of genus 2. The complexities of all
these algorithms are summarized in Table 4.

4.3. Generic optimization over F2. For this last example, we fix the base
field to be F2. We want to construct and optimize generically Chudnovsky-type
algorithms over the projective line to reach large extensions. In the following,
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Table 4. Comparison of algorithms for the multiplication in F1613

Algorithm µb(U) µs(U) a(U) µ(U)

CCMA [Bal02] 27 833 840 1700

Our construction
Non optimized 29 686 815 1530

Generic optimization 29 614 705 1348
Non-generic optimization 29 423 487 939

Karatsuba [WP06] + Reduction 66 0 338 404

each set of places Pn is constructed by taking all places of growing degrees until
the sum is equal to 2n − 1. Recall that if at some point the sum is bigger than
2n− 1 we can remove from Pn a place to obtain exactly 2n− 1. Note that since we
consider extensions of F2, there are no scalar multiplication. Moreover, the number
of additions depends on the place of degree n used to define the extension. For this
reason, we return a list of values for the number of additions, following the order
of the places given by Magma. We give the results for the extensions of degrees
until 6 for a recursive Chudnovsky-type over the projective line first non-optimized
(Table 5), then generically optimized (Table 6), and compared to the Karatsuba
Algorithm ([WP06], Appendix) with the polynomial reduction (Table 7).

Using all places of degrees lower than or equal to 6 of F2(x), one can define
a Chudnovsky-type algorithm over the projective line for the multiplication in the
extension of degree 54 of F2. The set P54 then contains all of these places. Con-
sidering Q(x) = x54 + x34 + x32 + x31 + x30 + x29 + x27 + x25 + x21 + x18 + x17 +
x16 + x15 + x13 + x7 + x4 + x2 + x+ 1, we obtain the results of Table 8.

Remark 4.2. In this paper, we focused on constructing the matrices that gives
the less possible operations when applied canonically. We did not focus on how
to compute the multiplication by those matrices. For instance, if a non trivial α
appears more than once in a column of a matrix, we can compute the multiplication
by α once and for all, thus reducing the number of scalar multiplications.

Table 5. Non optimized generic Chudnovsky-type algorithms
over the projective line

Extension µb(U) a(U) min{µ(U)}
degree

2 3 [4] 7
3 6 [18, 17] 23
4 11 [44, 44, 43] 54
5 15 [81, 85, 76, 78, 78, 79] 91
6 18 [118, 125, 115, 112, 112, 126, 112, 115, 111] 129

Remark 4.3. This strategy of optimization is specialized to Chudnovsky-type
algorithms over the rational function field Fq(x), where the places are fully defined
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Table 6. Generically optimized Chudnovsky-type algorithms over
the projective line

Extension µb(U) a(U) min{µ(U)}
degree

2 3 [4] 7
3 6 [14, 14] 20
4 11 [41, 41, 38] 49
5 15 [65, 68, 68, 62, 63, 66] 77
6 18 [88, 93, 95, 95, 89, 93, 81, 89, 85] 99

Table 7. Karatsuba [WP06] + Reduction

Extension µb(U) a(U) min{µ(U)}
degree

2 3 [6] 9
3 6 [19, 19] 25
4 9 [32, 30, 35] 49
5 15 [57, 60, 58, 60, 63, 59] 72
6 18 [82, 78, 71, 67, 78, 79, 79, 83, 75] 85

Table 8. Comparison of algorithms for the multiplication in F254

Algorithm µb(U) a(U) µ(U)

Our Construction
Non optimized 303 9849 10152

Generic optimization 303 8400 8703

Karatsuba [WP06]+ Reduction 630 4512 5142

by polynomials over Fq. Nevertheless, one can consider the generalization of this
strategy to optimize algorithms over a function field F/Fq of genus g > 0, by using
local uniformizers of the places instead of monic irreducible polynomials.

Remark 4.4. This work, together with [BBD19, BBD21], are the very first
works on the scalar optimization of Chudnovsky-type algorithms, and it reduces sig-
nificantly the number of algebraic operations used by these algorithms. Concerning
practical efficiency, this is a first step before being able to explore and realize efficient
implementations of the formulae given by the method. It would then be relevant to
realize timings of implementations of our algorithms, and possibly to compare it for
instance with the specific algorithms over F4 presented by Harvey, Lecerf and van
der Hoeven in [HvdHL16]. But this work of comparison with these algorithms
is sufficiently important to require a further work of its own. More precisely, it
requires to translate the algorithms we obtained in terms of computer instructions,
for example using multiplications, additions, but also shifts. Furthermore, it would
also be interesting to compare our results with other algorithms of evaluation and
interpolation over rational points (other than Karatsuba’s), that are closer to our
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method, like the Toom-Cook methods optimized by Bodrato [Bod07] and Bodrato
and Zanoni in [BZ07]. But even this comparison requires a non-trivial translation
of our method, which can only be done later.
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[BBD19] Stéphane Ballet, Alexis Bonnecaze, and Thanh-Hung Dang, On the scalar complexity

of Chudnovsky2 multiplication algorithm in finite fields, Algebraic Informatics (Cham)
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and multiplication in finite fields, Coding Theory and Algebraic Geometry (Berlin)

(H. Stichtenoth and M.A. Tsfasman, eds.), Lectures Notes in Mathematics, no. 1518,
Springer-Verlag, 1992, Proceedings of AGCT-3 conference, June 17-21, 1991, Luminy,

pp. 145–169.

[vzGG03] Joachim von zur Gathen and Jugen Gerhard, Modern computer algebra, Cambridge
University Press, 2003.

[WP06] Andre Weimerskirch and Christof Paar, Generalizations of the Karatsuba Algorithm

for efficient implementations., IACR Cryptology ePrint Archive. (2006).
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