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ABSTRACT

In the context of multi-body modeling techniques, this paper introduces a
new analytical approach to build a Two-Input-Two-Output Port (TITOP) model
for a clamped-clamped flexible appendage. By expanding the previous work
found in literature, which relied on numerical procedures, this model rep-
resents a fundamental block for the construction of parametric multi-body
systems in a sub-structuring approach, such as closed-loop kinematic mecha-
nisms. Specifically, this new procedure allows to assemble a linear state-space
system by analytically inversing the input-output channels of the original
clamped-free TITOP model. This analytical method presents the advantage of
avoiding non-physical behaviors introduced by numerical inversions as well
as removing the need to reduce the quasi-zero poles associated with the non-
analytical model. This paper presents the mathematical formulation of the
system, as well as the formalism behind the method, and an illustrative case
study to showcase the advantages of this approach.

Keywords: Multibody dynamics, Analytical Inversion, Linear System, Closed-
Loop Kinematics.

1 INTRODUCTION

In the past decades, structural and control co-design has attracted a lot of attention due
to its ability of merging multiple multidisciplinary requirements in a single design flow.
Moreover, the increasing use of large structures and appendages for Space applications
has rendered flexible modal analysis mandatory for the design of proper spacecraft con-
trol laws.

In order to tackle the non-trivial modeling and analysis of these large and complex space
systems, a sub-structuring technique using a multi-body approach is often considered to
conceptually simplify the model. Seeing the overall structure as an assembly of multi-
ple simpler sub-systems with increasing complexity has also the advantage of handling
different types of boundary conditions at block assemblage level and easy sub-system
validation.

The wide use of this approach for space applications has raised a significant interest in
the development of proper modeling techniques that can prove to be versatile enough
to account for multiple multi-body configurations, ranging from open-loop chains to
closed-loops mechanisms.

Many sub-structuring techniques can be found in literature. A common approach relies
on approximations linked to the Finite Element Method (FEM) or the Assumed Modes
Method (AMM) [1]. However, these methods are heavily influenced by the set of prede-
termined boundary conditions assigned to the model, which may be drastically variable,



for example by time-varying mass changes in the system. Another approach often used is
the Transfer Matrix Method (TMM) [2], which creates a transfer matrix that links up the
state vectors (generalized accelerations and forces) of the two extremities of the flexible
body. This has also been linked with the Finite Element Method in order to reduce com-
putational times in solving the eigenvalue problem (FE-TMM). These methods are partic-
ularly well suited for serially connected bodies and open-chain structures. Their major
drawback is the inversion problems of the model, whose matrices may be non-square or
non-invertible depending on the boundary conditions. Moreover, these approaches are
not optimal for a multi-body tree-like structures, where multiple appendages are con-
nected to a single central parent body: in this case the interest is finding the dynamic
relation between state vectors in the same root point for each sub-structure. Methods
based on effective mass/inertia of the appendages [3] represent a viable option to solve
this last problem, but they lose the complete vibrational behavior description, as they
aim at delivering only the dynamic relation of state variable at the appendage root point
with a simplified model of the body.

The Two-Input-Two-Output Port (TITOP) Model, a direct dynamic approach initially
proposed in [4], overcomes these issues. The structure is conceived as a minimal state-
space transfer between the accelerations and wrenches at the extremity points of the
appendage and embeds both the direct and inverse dynamics: the IN/OUT channels are
easily numerically invertible to account for multiple boundary conditions. Moreover, as
seen in [5], this approach in a block-diagram model permits the design of closed-chain
multi-body systems for any boundary conditions by creating feedback loops and invert-
ing IN/OUT channels. These models, already implemented in a toolbox developed at
ISAE-Supaero - the Satellite Dynamics Toolbox (SDT) [6]- represent the basis of this re-
search.

Nevertheless, the application of the numerical channel inversion proposed in [5] shows
some critical aspects, specifically in obtaining the clamped-clamped boundary conditions.
For this boundary condition configuration twelve rigid modes are expected to be at ex-
actly zero frequency. However, because of numerical issues in the channel inversion,
these modes present a quasi-null value instead. This issue, which may seem trivial at
single beam level, can have a huge impact in the context of sub-structuring models: it
may introduce numerical issues due to block repetitions as well as increasing the effort
for model reduction at global structure level.

This research therefore proposes a new approach to obtain a TITOP clamped-clamped
model, introducing a novel analytical procedure to invert the TITOP channels to obtain
a model which does not present the previously discussed numerical issues. This was
achieved by relying on a modal transformation of the state variables, distinguishing from
flexible and junction modes, as introduced in [3] and later on applied by [7].

In the first section, the general formalism used to define flexible and junction modes is
detailed, as well as how these concepts were applied to the formulation of the TITOP
model. This will outline the basis for the mathematical formulation of the analytically
inverted TITOP model presented in section 3. A simple example finally proves the in-
creased accuracy of the proposed framework.



2 ANALYTICAL BEAM MODEL

2.1 Formalism Adopted

Let us consider a generic flexible appendage. A common approach used to characterize its
vibrational response is to use modal analysis to find normal modes whose superposition
describes the flexible behavior of the body.

The formalism adopted in this paper slightly varies from this classic approach. The vec-
tor of Degrees of Freedom (DOFs) u is divided into two sub-vectors, using the formalism
proposed in [3]: internal DOFs ui and junction DOFs uj . The latter are generally asso-
ciated to boundary conditions or interfaces with other bodies. They are mostly reserved
for parts of the structure where a generic imposed motion is applied. While the internal
DOFs respond with a motion ui, u̇i, üi to a force/torque forcing term Fi, the junction DOFs
respond with a reaction force/torque Fj to an imposed motion-type excitation uj, u̇j, üj.
The equations of motion for a dynamic system may be written according to the following
subdivision of the DOFs:[

Mii Mij

MT
ij Mjj

][
üi
üj

]
+
[
Cii Cij

CT
ij Cjj

][
u̇i
u̇j

]
+
[
Kii Kij

KT
ij Kjj

][
ui
uj

]
=

[
Fi
Fj

]
(1)

where we can identify the three fundamental symmetrical matrices: the mass matrix M,
the damping matrix C and the stiffness matrix K, each one composed of sub-matrices
associated with both types of DOFs (internal and junction). The modes are obtained
by analyzing the homogeneous undamped harmonic equations of motion. To obtain the
homogeneous system, the forcing terms Fi and uj are suppressed from the previous equa-
tion. Additionally, the undamped equations are considered by setting the whole damping
matrix C = 0. This approach leads to two sets of equations: the first one allows for the
definition of the normal modes.

Miiüi + Kiiui = 0 (2)

The normal modes of the system, denoted with ΦΦΦ ik , can be derived by imposing the
harmonic solution ui = Uie

jωt:

(−ω2Mii + Kii)Ui = 0 (3)

By solution of the corresponding eigenvalue problem, the eigenvaluesωk are obtained, as
well as the normal eigenmodesΦΦΦ ik where k denotes the association with the k-eigenvalue
frequency fk = ωk

2π . These modes have diagonalizing properties on both Mii and Kii .

Furthermore, it is possible to define static modes denoted as junction modes Ψ by impos-
ing a unit displacement uj = 1 on the second homogeneous undamped equation derived
from Eq. 1. These modes verify:

Ψjj = Ijj , KiiΨij + Kij = 0

=⇒ Ψij = −K−1
ii Kij

(4)

An important remark is that the static modes can be interpreted as static transmissibility
in displacements between the DOFs i and j. The two sets of modes can be exploited to
perform a modal superposition in order to describe the displacement vector u = [ui ,uj ]T

as described as follows: [
ui
uj

]
=

[
ΦikΨij

0 Ijj

][
ηηηk
uj

]
(5)



The first row expresses the absolute displacement ui as composed by an interpolation of
internal relative DOFs, given by modal coordinates ηηηk , and junction displacements uj .
The second row states that the junction displacements are conserved. By performing this
superposition, a new set of equations of motion can be derived from Eq. 1:[

mkk Lkj
LTkj Mjj

][
η̈̈η̈ηk
üj

]
+
[
ckk 0Tjk
0jk 0jj

][
η̇̇η̇ηk
u̇j

]
+
[
kkk 0Tjk
0jk Kjj

][
ηηηk
uj

]
=

[
ΦΦΦT
ikFi

ΨΨΨ T
ijFi + Fj

]
(6)

Where:

• mkk = ΦT
ikMiiΦik : diagonal matrix of generalized masses mk . By selecting a nor-

malized set of Φik , it corresponds to the identity matrix Ikk ;

• ckk = ΦT
ikCiiΦik : matrix of generalized damping. A priori this matrix is fully pop-

ulated but under hypothesis of proportional damping w.r.t mass and stiffness or
lightly damped structure the matrix can be considered diagonal with ckk = diag(2ωkξmk),
where ξ is the damping coefficient for the appendix;

• kkk = ΦT
ikKiiΦik : diagonal mass of generalized stiffness kk =mkω

2
k ;

• Lkj = ΦT
ik[MiiMij ]

[
ΨijΨijΨij
Ijj

]
= ΦT

ik(MiiΨijΨijΨij + Mij ): matrix of participation factors. It ex-

presses the coupling between the normal and junction modes.

• Mjj = ΨΨΨ T
ijMiiΨΨΨ ij +ΨΨΨ T

ijMij + MT
ijΨΨΨ ij + Mjj : condensed mass matrix. In the case of a

rigid statically determined junction j = r, it is equal to structure rigid body mass
matrix which includes its properties on mass, center of mass and inertia relative to
the unique node reference frame.

• Kjj = Kjj −KT
ijKiiKij : condensed stiffness matrix. In the case of a rigid statically

determined junction, it is equal to zero.

The formalism introduced here has been applied directly to TITOP models to perform
modal analysis in [7]. In the following section the same procedure will be applied specif-
ically for the TITOP beam model and it will provide the fundamental basics for the ana-
lytical inversion described in section 3.

2.2 Application to TITOP Model

2.2.1 TITOP Model Presentation

Let us consider a uniform flexible appendage Li as in Fig. 1, defined by means of two
points: point P , the point to which the flexible appendage is linked to a parent structure
Li−1, and point C, where a child body Li+1 is linked to the beam.

In the beam model of the appendageLi , clamped-free boundary conditions are considered:
the joint at point P is considered rigid and statically determinate, with the parent body
Li−1 imposing a motion on Li , while point C is internal and unconstrained and the action
of Li+1 is by mean of a transmitted effort. This can be done without any loss of generality
as seen in [5].

The flexible appendix is modeled using a beam model, taken from [6], which describes
the 3D vibrational behavior of Li by considering its bending in planes (x,z) and (x,y), tor-
sion around the x-axis and traction along the x-axis in the local frame R0. The resulting
TITOP model DLiP C(s), displayed in Fig. 1, is a {12×12} linear dynamic model function of
the Laplace variable s. Its inputs are:
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üC

P

C
WLi/Li−1,P

WLi+1/Li,C

6

6

6

6

D
Li
PC(s)

üC
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Figure 1. TITOP model and nomenclature for a generic flexible appendage Li

• WLi+1/Li ,C : The {6× 1}Wrench (Forces and Torques) exerted by the body Li+1 to Li
at point C;

• üP : The {6× 1} accelerations (linear and angular) imposed by the parent body Li−1
at point P to Li ;

while the outputs are:

• üC : The {6× 1} components of the accelerations of point C;

• WLi /Li−1, P : The {6× 1}Wrench (Forces and Torques) transferred by Li to the parent
structure Li−1 at point P.

2.2.2 Mathematical Formulation

The vector of DOFs used in the description of the vibrational behaviors is assembled
in order to contain two distinct entities: the kinematic parameters of point P and the
relative deformation at point C with respect to point P . The beam is defined by the main
direction of vector P C, which defines the x-axis of the local frame of reference. This
mathematical formulation stems from the one proposed in [5], where a full description
of the DOFs and the corresponding structural matrices can be found.

For the two bending models, the first 4 modes are considered and the DOFs adopted are
reported in Eq. 7 and Eq. 8.

q̃ =
[
yP ,Φ

z
P ,

TbP z
EIz
, yC − lΦz

P − yP ,Φ
z
C −Φ

z
P ,

T zbC
EIz

]T
(7)

p̃ =
[
zP , Φ

y
P ,

T
y
bP
EIy
, zC − lΦ

y
P − zP , Φ

y
C −Φ

y
P ,

T
y
bC
EIy

]T
(8)

Here we denote with (yP , zP ) and (yC , zC) the displacement components of uP and uC
along the corresponding axis. In the same manner, (Φz

P , Φy
P ) and (Φz

C , Φy
C) are the angular

slopes of the deflection on the indicated axis. Finally, (T yb,C , T zb,C) and (T yb,P , T zb,P ) are the
bending moments at the two endpoints.

By means of the DOFs introduced in Eq. 7 and Eq. 8, both mass and stiffness matrices
may be derived, which are denoted with M̃y, K̃y for (x,y) bending and M̃z, K̃z for (x,z)
bending.

The same approach may be applied for torsion and axial deformations, by taking into
account the DOFs vector of Eq. 9-10, originally proposed by [5]:

θ̃̃θ̃θ =
[
θP , θC −θP

]T
=

[
θP , δθ

]T
(9)

ũx =
[
xP , xC − xP

]T
=

[
xP , δu

]T
(10)



In this case only their fundamental mode is taken into account. From these vectors the
mass and stiffness matrices M̃θ, K̃θ and M̃u, K̃u are obtained.

In order to obtain the global mass and stiffness matrices (M̃gl, K̃gl) for the whole beam,
the sub-matrices corresponding to each vibrational behavior may be assembled in a block
diagonal fashion, so that it corresponds to the global DOFs vector d̃gl .

d̃gl =
[
q̃, p̃, θ̃̃θ̃θ, ũx

]T
(11)

M̃gl =


M̃y 0 0 0
0 M̃z 0 0
0 0 M̃θ 0
0 0 0 M̃u

 , K̃gl =


K̃y 0 0 0
0 K̃z 0 0
0 0 K̃θ 0
0 0 0 K̃u

 (12)

A permutation on these matrices can be performed in order to obtain a DOFs division as
seen in Eq. 1, through the use of a permutation matrix P. The resulting global mass and
stiffness matrices, as well as the vector of DOFs dgl is shown in Eq. 13 and Eq. 14. The
point P is a junction node, therefore we can substitute the subscript j with P .

dgl =
[
uP , uf

]T
= Pd̃gl (13)

Mgl = PM̃glP
T =

[
Mrr Mrf

Mf r Mf f

]
, Kgl = PK̃glP

T =
[
0rr 0rf
0f r Kf f

]
(14)

The matrix Mrr represents the mass matrix of the rigid body at point P , while Mf r and
Mrf are the coupling terms between the displacement of point P and the internal flexible
DOFs of vector uf . The vectors uP and uf are given by:

uP =
[
xP , yP , zP , θP , Φ

y
P , Φz

P

]T
uf =

[
xC − xP , yC − yP − lΦz

P , zC − zP − lΦ
y
P ,θC −θP ,

Φ
y
C −Φ

y
P ,Φ

z
C −Φ

z
P ,
T
y
bP

EIy
,
T zbP
EIz

,
T
y
bC

EIy
,
T zbC
EIz

]T
We introduce τττCP as the kinematic link between the internal node C and the junction
node P :

τττCP =
[
I3×3,

∗CP
03×3 I3×3

]
(15)

Where ∗CP is the skew-symmetric matrix obtained from the vector from point C to point
P . It can be verified that matrix τCP corresponds exactly to the junction modes matrix
ΨΨΨ ij introduced in section 2. By performing modal analysis on this system, remarking
that by imposing Eq. 4 we get ΨΨΨ ij = 0, the following expression can be found:[

Mrr LTkP
LkP Ikk

][
üP
η̈̈η̈ηk

]
+
[
0P P 0kP
0TkP ckk

][
u̇P
η̇̇η̇ηk

]
+
[
0P P 0kP
0TkP kkk

][
uP
ηηηk

]
=

[
ΦΦΦT
CkWLi+1/Li ,C

τττTCPWLi+1/Li ,C −WLi /Li−1, P

]
(16)

Where:

• LkP =ΦΦΦT
ikMf r • ckk = diag(2ξkωk) • kkk = diag(ω2

k )

The state space system can be directly obtained from this formulation, thanks to the
relation:

üC =ΦΦΦCkη̈̈η̈ηk +τττCP üP (17)



The resulting system is therefore showcased in Eq. 18, where the state-space system
DLiP C(s) is the TITOP model corresponding to the one of Fig. 1.


η̇̇η̇ηk
η̈̈η̈ηk
üC

WLi /Li−1, P

 =


0kk Ikk 0kC 0kP
−kkk −ckk ΦΦΦT

Ck −LkP
−ΦΦΦCkkkk −ΦΦΦCkckk ΦΦΦCkΦΦΦ

T
Ck (τττCP −ΦΦΦCkLkP )

LTkPkkk LTkP ckk (τττCP −ΦΦΦCkLkP )T LTkPLkP −Mrr

︸                                                                           ︷︷                                                                           ︸
DLiP C(s)


ηηηk
η̇̇η̇ηk

WLi+1/Li ,C
üP

 (18)

3 ANALYTICALLY INVERTED TITOP MODEL

3.1 TITOP Beam Models and Closed-Loop Kinematics

The TITOP beam model detailed in section 2.2 presents a specific set of boundary con-
ditions. Despite this, the importance of handling different boundary conditions plays a
fundamental role in the correct modeling of complex systems, specifically in closed-loop
kinematics.

For instance, let us consider a basic closed-loop mechanism, such as a triangle, which can
be used as a building block to assembly more complex structures using a sub-structuring
approach.
This mechanism, composed by three flexible bodies and represented in Fig. 2a, can be
imagined clamped to a parent body L0 at point A and being submitted to efforts coming
from two external bodies L4 and L5 attached at points B and C respectively.

x1

y1

B

C

x2

y2

y3

x3

L1

L2L3

L0

A
üA

WL4/∆,B

W∆/L0,A
üB

üC

L4

L5

WL5/∆,C

(a)

[DL2
B,C(s)]

−1[1:6]

D
L3
C,A(s)

+ +

+

+

+
+

−1

üA

üC

üB

RL2,L1

RL3,L2

RL3,L1

RL3,L1

RL2,L3

RL1,L3

D
L1
A,B(s)

RL1,L2

üB

üCWL1/L0,A

üB
WL2/L1,B

W(L2+L5)/L3,C

üA

üC

WL3/L0,B

W(L2+L4)/L1,B

WL5/∆,C

WL4/∆,C

W∆/L0,A

(b)

Figure 2. Block diagram of the ∆ mechanism, showcased in 2a and modeled in 2b
in the TITOP framework. Note that the blocks Ri,j represent the rotation matrices
between the i−th and j−th frames of references.

The triangular structure, which can be denoted as ∆, can be modeled as a dynamic system
whose inputs are the accelerations üA imposed at point A by L0 and the external efforts
WL4/∆,B, WL5/∆,C applied by the bodies L4 and L5 to the triangle mechanism ∆.

In the context of a sub-structuring approach, the triangular structure ∆ can be conceived
as an assembly of multiple TITOP models, as seen in Fig. 2b. These blocks have to be
properly connected in order to impose the correct input-output configuration and to close
the kinematic loop.

The only way to achieve this result is to use not only clamped-free models, but a clamped-
clamped TITOP model as well. In fact, at sub-structure level, the two beams L1 and L3



can be considered clamped-free using the two direct TITOP models DL1
A,B(s) and DL3

A,C(s),
as they have an acceleration imposed by a parent body at point A and are submitted to
an effort by external bodies at points B and C. The assembly of the closed-loop is then
achieved by imposing force/moment balance at each node of the structure. Since the
distribution of the external efforts on the different beams is unknown, the third beam L2
is considered with accelerations imposed at both ends: the accelerations outputted by the
TITOP models of L1 and L3 are the inputs of the TITOP block of L2, as this allows for
the retrieval of the reaction forces exerted by L2 to the other bodies, namely WL2/L1,B and
WL2/L3,C . This means considering a TITOP model with the first six channels inverted,[
DL2
B,C(s)

]−1[1:6] , that represents a clamped-clamped beam.

A numerical procedure to invert the channels of a TITOP model has been introduced in
[5]. The following section provides a new analytical formulation for the clamped-clamped
beam that solves the numerical issues found in the current TITOP model channel inver-
sion.

3.2 Mathematical Formulation

An analytical inversion is here proposed for the first six channels of the original TITOP
beam model introduced in section 2.2, which correspond to the free node C.

The inversion process aims at obtaining the analytically inversed model
[
DAP C(s)

]−1(1:6)

ana
whose input-output configuration reflects a clamped-clamped boundary condition applied
to the beam. As depicted in Fig. 3, the inputs of the system are the endpoint accelerations
üP and üC , while the corresponding outputs are the efforts on those points, which are still
maintaining the same formalism of the original TITOP model.

6

6

6

6

[D
Li
PC(s)]

−1(1:6)
ana

üC

üP

WLi+1/Li,C

WLi/Li−1,P

Figure 3. Input-output configuration for the analytically inverted clamped-clamped
TITOP beam model

A change of variables is applied to the system in Eq. 16. We introduce vector εεεk , parti-
tioned in two sub-vectors: εεεk1

and εεεk2
. The first one, of size {6 × 1}, corresponds to the

twelve poles at exactly zero frequency of the system. This is done to enforce the clamped-
clamped boundary condition. The second vector, on the other hand, has a size of {4 × 1}
and determines the internal vibrational response of the system. The modal coordinates
can be rewritten as:

ηηηk = Fεεεk =
[
ΦΦΦ+
Ck null(ΦΦΦCk)

][εεεk1

εεεk2

]
(19)

where the (·)+ operator denotes the generalized inverse (or pseudo-inverse) of the non-
square matrix and null(·) the null space operator (or kernel). The use of this last operator
allows the creation of a model whose modes corresponding to εεεk1

are intrinsically set to
zero, while the modes associated to εεεk2

do not get simplified.

The first state equation for the new system can be directly derived from Eq. 19. By
substituting this equation into Eq. 17, an explicit expression for εεεk1

may be obtained as



function of the two inputs üP and üC .

ε̈̈ε̈εk1
=ΦΦΦCkFε̈̈ε̈εk =

[
I 0

]
ε̈̈ε̈εk = üC −τττCP üP (20)

The change of variables may be performed on the modal equations of motion in Eq. 18:

ε̈̈ε̈εk =
[
ε̈̈ε̈εk1

ε̈̈ε̈εk2

]T
= −kkkεεεk − ckkε̇̇ε̇εk −F−1LkP üP + F−1ΦΦΦT

CkWLi+1/Li ,C (21)

where kkk = F−1kkkF and ckk = F−1ckkF. Moreover, this expression may be rewritten in
order to explicit the two sub-vectors which compose vector εεεk , therefore obtaining a set of
two equations. The following notation is hereby introduced, which defines the partition

of matrices kkk and ckk : X =
[
X11 X12
X21 X22

]
.

The first of the two equations obtained from Eq. 21, expressing ε̈̈ε̈εk1
, is:

ε̈̈ε̈εk1
= −kkk11

εεεk1
−kkk12

εεεk2
− ckk11

ε̇̇ε̇εk1
− ckk12

ε̇̇ε̇εk2
+ΦΦΦCkΦΦΦ

T
CkWLi+1/Li ,C −ΦΦΦCkLkP üP (22)

An explicit expression for WLi+1/Li ,C can be derived from this equation, substituting ε̈̈ε̈εk1

by inverting Eq. 20. This represents the first output equation for the new state-space
system:

WLi+1/Li ,C = (ΦΦΦT
Ck)

+ΦΦΦ+
Ck

(
kkk11

εεεk1
+ kkk12

εεεk2
+ ckk11

ε̇̇ε̇εk1

+ ckk12
ε̇̇ε̇εk2

+ üC + (ΦΦΦCkLkP −τττCP )üP
)

(23)

which can be rewritten in the form:

WLi+1/Li ,C = C11εεεk1
+ C12εεεk2

+ C13ε̇̇ε̇εk1
+ C14ε̇̇ε̇εk2

+ D11üC + D12üP (24)

Where:

• C11 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ckkkk11

;

• C12 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ckkkk12

;

• C13 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ckckk11

;

• C14 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ckckk12

;

• D11 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ck ;

• D12 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ck(ΦΦΦCkLkP −τττCP )

The second equation in Eq. 21 describes the behavior of ε̈̈ε̈εk2
:

ε̈̈ε̈εk2
= −kkk21

εεεk1
−kkk22

εεεk2
− ckk21

ε̇̇ε̇εk1
− ckk2

ε̇̇ε̇εk2

−null(ΦΦΦCk)
TΦΦΦT

CkWLi+1/Li ,C −null(ΦΦΦCk)
TLkP üP (25)

Note that by definition of the kernel operator, ΦΦΦCk · null(ΦΦΦCk) = 0. Therefore also
null(ΦΦΦCk)TΦΦΦ

T
Ck = 0. This property has the effect of canceling the contribution of



Table 1. Parameters of TITOP Beams used for the case study

l [m] S [m2] ρ [kg/m2] E [GP a] ν Iy [m−4] Iz [m−4] ξ

20 0.0004 2700 70 0.35 6.7e-7 6.7e-7 0.001

WLi+1/Li ,C to the second order dynamics of εεεk2
, allowing for an explicit expression of

ε̈̈ε̈εk2
as function of state variables and inputs only.

The final expression needed to complete the TITOP model is the output equation for
WLi /Li−1, P . This can be easily obtained from the outputs of Eq. 18, to which the change of
state variables is applied. The resulting equation is:

WLi /Li−1, P = C21εεεk1
+ C22ε̇̇ε̇εk1

+ C23εεεk2
+ C24ε̇̇ε̇εk2

+ D21üC + D22üP (26)

Where:

• LKF = LTkPkkkF;

• LCF = LTkP ckkF;

• TPL = (τττCP −ΦΦΦCkLkP );

• C21 = LKF(:,1 : 6) + TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
Ckkkk11

;

• C22 = LKF(:,1 : 6) + TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
Ckckk11

;

• C23 = LKF(:,7 : 10) + TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
Ckkkk12

;

• C24 = LKF(:,7 : 10) + TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
Ckckk12

;

• D22 = TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
Ck ;

• D22 = LTkPLkP −Mrr + TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
CkTPL

These results can be used to obtain a TITOP Model for the inversed clamped-clamped
beam. By using the results of Eq.s 20,24,25,26, the final system can be assembled as
follows

ε̇̇ε̇εk1

ε̈̈ε̈εk1

ε̇̇ε̇εk2

ε̈̈ε̈εk2

WLi+1/Li ,C
WLi /Li−1, P


=



0k1k1
Ik1k1

0k1k2
0k1k2

0k1C 0k1P

0k1k1
0k1k1

0k1k2
0k1k2

Ik1C −τττCP
0k2k1

0k2k1
0k2k2

Ik2k2
0k2C 0k2P

−kkk21
−ckk1

−kkk22
−ckk2

0k2C −null(ΦΦΦCk)TLkP
C11 C12 C13 C14 D11 D12
C21 C22 C23 C24 D21 D22

︸                                                                         ︷︷                                                                         ︸[
DLiP C(s)

]−1[1:6]

ana



εεεk1

ε̇̇ε̇εk1

εεεk2

ε̇̇ε̇εk2

üC
üP


(27)

The
[
DLiP C(s)

]−1[1:6]

ana
model in Eq. 27 is the analytically inverted clamped-clamped TITOP

model showcased in Fig. 3.



4 MODEL APPLICATION AND VALIDATION

In order to validate the accuracy of the newly derived model, the system has been veri-
fied by comparison to a reference theoretical beam model [3] as well as the numerically
inverted TITOP beam of [5].

Given a homogeneous beam of lenght l, section S, density ρ, Young modulus E, Poisson’s
ratio ν, second moments of inertia Iy , Iz along y and z axes and damping coefficient ξ,
the parameters presented in Table 1 were used to obtain the singular value plots seen in
Fig.4.

This plot describes the transfers between üP and WLi /Li−1,P for both analytically and nu-
merically inverted models. In particular we define:

Gana
WP ,üP

(s) =
([

DLiP C(s)
]−1[1:6]

ana

)
üP→WP

, Gnum
WP ,üP

(s) =
([

DLiP C(s)
]−1[1:6]

num

)
üP→WP

(28)

as the multiple-input-multiple-output transfers between üP and WLi /Li−1,P for the analyt-

ically inverted
[
DLiP C(s)

]−1[1:6]

ana
and the numerically inverted

[
DLiP C(s)

]−1[1:6]

num
models.
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Figure 4. Singular values for the analytically Gana
WP ,üP

(s) and numerically Gnum
WP ,üP

(s)
inverted TITOP models

The two responses match exactly except for near-to-zero frequency values: in this range
the numerical inversion produces artificial behaviors like non-physical zeros and poles.
The proposed analytical system overcomes these issues, granting an infinite gain at zero
frequency with a correct 1/s2 dynamics at low frequency. This is in fact the expected
behavior of the system, where the imposition of non-compatible accelerations at the two
extremities of the rigid beam produces infinite efforts.

These results are furthermore corroborated by comparing the modes of the two models:
Table 2 shows the normalized natural frequencies of the two clamped-clamped models -

analytical and numerical. The frequencies, normalized by
√

EI
ρSl4

, are also compared to

the reference theoretical values expected for each mode.
A study of Table 2 shows how the introduction of the analytical model solved the non-

zero poles issues found in the numerically inverted TITOP model, while granting the
same level of accuracy in the description of the vibrational phenomena. The last four



Table 2. Comparison of the natural frequencies, normalized by
√

EI
ρSl4

, of the nu-

merically inverted TITOP model (ωk,num) and the new analytically inverted model
(ωk,ana) to the reference theoretical value ωref

Mode k ωk,ref ωk,num ωk,ana Mode k ωk,ref ωk,num ωk,ana

1 0 0.00 0.00 6 0 9.15e-08 0.00
2 0 0.00 0.00 7 22.373 22.450 22.450
3 0 6.04e-17 0.00 8 22.373 22.450 22.450
4 0 2.28e-14 0.00 9 61.673 62.929 62.929
5 0 9.15e-08 0.00 10 61.673 62.929 62.929

flexible modes are in fact corresponding exactly to the modes found in [5] for the bend-
ing of a clamped-clamped beam, and represent a good approximation of the reference
frequency value.

5 CONCLUSIONS

An analytical model of a clamped-clamped TITOP beam was derived in order to overcome
the limits of the numerical inversion of the clamped-free TITOP model.
The proposed model has been validated by theoretical results and it represents a building
block for modeling more complex multi-body flexible structures in closed-loop configu-
rations.
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