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Anomaly detection for ICS based on deep learning: a use case
for aeronautical radar data

Théobald de Riberolles1 · Yunkai Zou2 ·Guthemberg Silvestre2 · Emmanuel Lochin2 · Jiefu Song1

Abstract
Industrial control systems (ICS) are no longer restricted to industrial production. They are also at the heart of safety critical
systems and carry out key information that require strong need in terms of availability and integrity. Furthermore, they are
gradually connected with the Internet. In the context of Air Traffic Management, safety critical data are generally time
series which contain periodic events. Anomalies can hardly be detected as we only have a little knowledge of the traffic
characteristic and the kind of anomalies we might encounter. Consequently, detecting them is challenging as it requires high
detection accuracy currently unfeasible with traditional methods based on anomaly signatures or predictions. To cope with
this issue, we introduce an anomaly detection method for ICS based on Long Short Term Memory (LSTM) that outperforms
the accuracy of traditional ones. We experiment and develop our method with one major dataset containing French civil
radar aviation data. We then evaluate our scheme with different datasets containing ICS monitoring data (publicly available
predictable time series data) and show that our autoencoder can detect anomalies from predictable times series and present
a higher detection rate on average than traditional detection methods.

Keywords Anomaly detection · Industrial control systems · Deep learning · Cybersecurity

1 Introduction

Industrial control systems provide the building blocks to
perform tasks such as the provision of utilities and the exe-
cution of complex manufacturing processes. Industrial con-
trol system (ICS) is, by definition, a combination of control
components (electrical, mechanical, hydraulic, pneumatic,
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etc.) that act together to achieve an industrial objective
(manufacturing, transportation of matter and energy, etc.).
Actually, ICS encompasses a broad denomination which
includes several types of systems such as SCADA (Super-
vision Control And Data Acquisition), DCS (Distributed
Control System), IACS (Industrial Automation and Control
Systems) or PCS (Process Control System).

Traditionally, ICS were considered to be well protected
by a so-called air-gapped separation. Because of their
criticality and importance, ICS are usually set on private
networks, that are (supposed to be) isolated from the
Internet. There is therefore no need to develop dedicated
Intrusion Detection Systems for them. However, ICS
networks are increasingly connected to open networks and
can be targeted by external incoming attacks, e.g., using
a USB key or smartphone. As an example, we recall two
famous incidents that occurred severe damage in the past:
the attack on a power grid in Ukraine in 2015 [23] and
the Stuxnet virus, which targeted Siemens industrial control
systems [6]. This evolution towards a better interconnection
makes them vulnerable to cyber-attacks.

According to ICS-CERT (the Industrial Control Systems
Cyber Emergency Response Team, an infrastructure of the
Cybersecurity and Infrastructure Security Agency (CISA)),



targeted attacks on ICS have increased in recent years.
In 2015,1 295 incidents were reported to the ICS-CERT
compared to 73 in 2013,2 as a matter of fact, this trend
must be thwart. NIST (the National Institute of Standards
and Technology) summarizes the main security concerns of
modern ICS.3 Some of them are:

– Design-insecure communication protocols [9];
– Insecure network separation and access controls [19];
– Lack of specific ICS firewalls and anomaly detection

systems [24].

This last vulnerability motivates us to develop an anomaly
detection method specific for ICS. We propose to monitor
network activities from data logs or network traffic
and generate alarms when anomalies are detected. The
development and use of anomaly detection has been widely
discussed for traditional systems; however, little work has
been done to ensure an efficient Anomaly Detection System
for ICS. The main challenge for this type of anomaly
detection lies in the fact that most of ICS are based
on specific communication protocols and which are not
considered by traditional anomaly detection; then, there is a
need to take into account the behavior of the data transmitted
by the specific protocol and to explore the specific aspects
of the data flows to develop the mechanism of detection.
There is also a lack of actual ICS datasets to assess anomaly
detection. Furthermore, for this type of anomaly detection,
the temporal character of the data which are time series,
must be inspected to assess whether or not we are front
to an anomaly in comparison with a normal behavior, to
prevent false positives and obtain an exhaustive detection
system. We contribute by developing an anomaly detection
for ICS. Based on the data exchanges at the heart of these
systems, we detect anomalies with a higher accuracy than
the state of the art. Our method is based on machine learning
techniques using an autoencoder based on Long Short Term
Memory (LSTM) network cells [12] which are coupled with
signatures of normal network behavior at the time series
analysis level allowing to detect anomalies accurately and
fastly.

The article is organized as follows. A background linked
to the detection of anomalies, the ICS, the critical systems
security measures in Section 2. Section 3 describes the
datasets and formulates the paper problem. The deep
learning model for the detection of outliers is explained in

1https://us-cert.cisa.gov/sites/default/files/Monitors/ICS-CERT
Monitor Nov-Dec2015 S508C.pdf
2https://us-cert.cisa.gov/sites/default/files/Annual Reports/
Year In Review FY2013 Final.pdf
3https://us-cert.cisa.gov/sites/default/files/recommended practices/
DHS Common Cybersecurity Vulnerabilities ICS 2010.pdf

Section 4. The use of our method to detect anomaly in an
aviation dataset is illustrated in Section 5. An example of
detection of spoofing attack in this dataset is reported in
Section 6 with a comparison with other detection methods.
An opening by using our method with other ICS is proposed
in Section 7. Finally, Section 8 concludes the article.

2 Background

This section defines what is an anomaly and provides
an anomaly detection background. We then highlight the
challenge faced with ICS anomaly detection and show
existing solutions. The last part of this section focus on a
method that we use for our detection.

When analyzing real-world datasets, a common need is
to determine which instances stand out as being different
from all the others. Such instances are called anomalies
deviants or outliers in the data mining and statistics
literature [1]. Anomalies can be caused by data errors
but are sometimes indicative of a new underlying process,
previously unknown. They are usually the cause of an attack
that can take place on the system itself. One of the best-
known attacks illustrating this is a Spoofing attack through
a Man In The Middle: an attacker is placed between the
transmitter and the receiver with the objective to alter data,
thus impacting the system thereafter. Taking the example of
radar data, an attacker can continually change the aircraft
position information given by the radar message, that is, the
“bubbling” spoofing attack [4], the radar monitoring system
will have difficulty detecting these subtle differences,
resulting in improper guidance from air traffic controllers or
delays in responding to the collision avoidance system, thus
a potential danger to human lives.

The purpose of anomaly detection is to assess the
distance between the collected data and a reference standard
behavior. This detection is a defense applied for decades
as in abnormal program behavior, botnet, and IoT intrusion
detection.

Regarding air traffic data itself, there is few work about
anomaly detection. In his thesis, Nanduri [18] deals with
this type of anomaly detection, as detecting atypical flights
and anomalies based on statistical signatures or detecting
anomalies in the data in the vector space.

In their document “Using ASTERIX in accident investi-
gation” [10] Farrel and Schuurman explain that radar data
are often used for investigation of air accidents, and discuss
ASTERIX data,4 for safety use.

4ASTERIX stands for STructured Eurocontrol suRveillance Informa-
tion eXchange and is the EUROCONTROL (European Organisation
for the Safety of Air Navigation) standard for the exchange of
surveillance-related data.

https://us-cert.cisa.gov/sites/default/files/Monitors/ICS-CERT_Monitor_Nov-Dec2015_S508C.pdf
https://us-cert.cisa.gov/sites/default/files/Annual_Reports/Year_In_Review_FY2013_Final.pdf
https://us-cert.cisa.gov/sites/default/files/Annual_Reports/Year_In_Review_FY2013_Final.pdf
https://us-cert.cisa.gov/sites/default/files/recommended_practices/DHS_Common_Cybersecurity_Vulnerabilities_ICS_2010.pdf
https://us-cert.cisa.gov/sites/default/files/recommended_practices/DHS_Common_Cybersecurity_Vulnerabilities_ICS_2010.pdf


Nevertheless, Casanovas et al. [3] present a proof of
concept about the vulnerability of the ASTERIX protocol.
They were able to set a Man In the Middle attack dedicated
to this traffic with the objective to delete, modify or add
aircraft inside the traffic. This study highlights the fact that
there is a need to have an additional security level against an
attack from inside the network.

Furthermore, the survey document [25] presents the
difficulties in developing anomaly detection specific to
system as the ATM one, the ICS and in particular SCADA
because they can have limited resources, components that
are not secure or old, availability requirements. They define
existing approaches such as knowledge-based, behavioral
and hybrid. Steven Chung presents in his article [5] one of
the first IDS for SCADA that builds models used to capture
the normal behavior of the system based on statistical
measurements for a specific communication protocol.
Another approach, close to a conventional approach, is
based on a supervised method with known anomalies [21]
and thus builds up normal behaviors over time by correlating
the various anomalies. These methods are therefore based
both on the system and their knowledge. Note we often have
little knowledge of the behavior of ICS.

To improve these approaches, techniques based on
machine learning methods have been developed in various
fields. Studies such as Javaid [13] have shown that deep
learning methods overtake standard ones. They constructed
self-evolving models for further classification. Based on
the available data and the anomalies identified or not,
these algorithms create profiles of the ICS network
normal behavior. Then, the anomaly detection is made
by calculating the distance of the traffic with the normal
profiles. These methods use classification techniques to a
class as presented in the article [17], but also statistical
Bayesian networks [2] which improve the accuracy of
anomaly detection and make easier to detect anomalies
or new attacks. This reduces the false positive rate by
combining several abnormal detection mechanisms such
as n-grams and invariant induction. A light and fast IDS
for a SCADA system was also based on a Bloom filter-
based intrusion detection for smart grid SCADA using
the regular communication models of the system. There
are many choices for the predictor, such as the ARIMA
auto-regressive integrated moving average predictor, the
predictor based on SVM (Support Vector Machine), and the
predictor based on the long-term memory network (LSTM).

Time series prediction models have proven effective in
detecting anomalies using the prediction error or a function
of the prediction error to measure the severity of the
anomaly [15].

2.1Why choosing LSTM network

The authors in [12] present recurring methods used for many
sequences learning tasks such as handwriting recognition,
speech recognition, and sentiment analysis, and more
recently to perform data prediction on times series.

In particular, LSTM-AD (Long Short Term Memory
networks for Anomaly Detection) is used as prediction
models:

– In time series;
– In anomaly detection in EEG (electroencephalogram)

time signals via deep-long-term memory networks
where the probability of prediction error is used to
measure anomalies.

Given the long-term learning capacity of LSTMs,
their frequent use and their abilities to learn from the
unknown makes them good candidates for solving anomaly
detection problems for ICS. Furthermore, a recent detection
mechanism with a time series level detection model based
on an LSTM network combined with a Bloom filter was
proposed by [11] to develop an IDS specific to ICS
which have better ability in detecting anomalies than other
techniques for ICS networks.

LSTM Encoder-Decoder models are presented as a
natural extension of LSTM models for time series with
better performance. They have recently been proposed
for sequence-sequence learning tasks such as machine
translation [22]. Based on the success of LSTM for anomaly
detection dedicated to the ICS and the need for the most
precise detection possible in an ICS given the criticality
of the data transported, we decided to based our detection
method on the LSTM Encoder-Decoder models.

3 Dataset and problem description

This section presents the method chosen for measurement,
describes our problem and the metric of abnormal score.
We use aviation radar data encapsulated in a specific
protocol named EUROCONTROL ASTERIX (previously
introduced in Section 2), also encapsulated in Ethernet data.
Our dataset is a set of real radar data collected in the
French ATM/ATC System. These data consist in twenty-
three Secondary Surveillance Radar (SSR) and nine Primary
Surveillance Radar (PSR) collected before processed by the
calculators of the control center. We capture these data, in
PCAP format, during the year 2019. With the ASTERIX
protocol, radars identifiers are represented by destination
addresses, and source addresses are the last SIR (Server



of Radar Information identifier), so we used Ethernet
destination address to distinguish the different radars of our
collection.

3.1 Data used

We use the ASTERIX Python module developed by Damir
Salantic for Croatia Control Ltd. to parse EUROCONTROL
ASTERIX protocol data, and an internal Scapy5 module to
manipulate and visualize data radar packets.6

From the ASTERIX packet of CAT48,7 the main
category used in this study, we decode the time, position,
velocity, and flight level information from the radar network
packet, where polar coordinates represent the position
information while the speed information includes the
magnitude and heading of aircraft. A detailed description of
the relevant information is shown Table 1.

3.2 Problem description

An n-dimensional time series S = {S1, S2, ..., SC}
is defined, which represents a radar sequence window,
where C is the length of the time series. Si ={
s1i , s2i , . . . sn

i

}
(1 ≤ i ≤ C) is an n-dimensional

vector, each dimension corresponding to one feature.
Specifically, S represents a window composed of continuous
C radar message information, and each vector Si contains
characteristic information obtained from the corresponding
radar message, namely, position, altitude and speed. During
the training phase, the correct radar time series is used as
training data input into the anomaly detection model, which
forces the reconstruction of the sequence. After the training
is completed, when the correct radar time series is input, the
reconstruction error will be within a certain range. However,
when the sequence containing the abnormality is used as
the input, the reconstruction error will be amplified, thereby
achieving the effect of abnormal detection.

3.3 Abnormal score definition

The cosine similarity [20] is often used when the frequency
of similar occurrence is high in a time series. It is used to
represent the reconstruction error between the output vector
Ŝ and the input vector S, which is defined as follows:

cos
(
Si , Ŝi

)
=

∑n
j=1

(
s
j
i × ŝ

j
i

)

√∑n
j=1 s

j2
i ×

√∑n
j=1 ŝ

j2
i

, with n, the feature dimension.

5Scapy is a packet manipulation tool for computer networks
6In this paper the term packet and frame gave the same meaning.
7A detection category for SSR mode S.

On this basis, the reconstruction anomaly score of the
time series with recurrent behavior [7] can be defined as
follows:

abnormal score =
k+C∑

i=k

1−cos
(
Si , Ŝi

)
, withC, the length of the input window.

4 Anomaly detectionmethod

Following state of the art, we use the “autoencoder model”
to reconstruct the radar time series and then use the
reconstruction error to detect the anomaly. The anomaly
detection process is sliced into the following steps:

1. To decode radar packet from raw radar data;
2. To extract radar series feature;
3. To reconstruct radar series by a deep neural network

based on the autoencoder model;
4. To calculate the reconstruction error;
5. To highlight abnormal data.

The autoencoder belongs to the unsupervised learning
methods class. This model is of interest when the type of
abnormal data cannot be obtained in advance. Thus, the
correct data can be used as a training sample so that the
model can learn from the relevant characteristics of the
correct data. After the model training is completed, if the
input data’s characteristics do not conform to the model’s
laws, the output will also be different, thus achieving the
effect of anomaly detection.

4.1 Autoencoder in a nutshell

An autoencoder aims at reproducing an input n-dimensional
vector S by an output n-dimensional vector Ŝ. It comprises
two components: an encoder and a decoder. The encoder
maps an input vector S into an m-dimensional intermediate
vector F ; then, the decoder maps F to an output vector Ŝ

that is expected to approximate the input vector S.
The encoder and decoder can be formally defined as the

following two functions:

Encoder : ϕ : Rn → Rm

Decoder : φ : Rm → Rn

Then, the objective function of the autoencoder can be
defined as:

argminϕ,φ‖S − φ(ϕ(S))‖22
Our goal is to determine the appropriate function to

minimize the error between the input vector S and the output
vector Ŝ = φ(ϕ(S)). In the encoding phase, the mapping



Table 1 Radar message attributes

Attribute Description Unit Range

Track plot number (TPN) An unique reference to a plot record within a particular plot file – [0, 65535]

TS Epoch standard time in UTC s Varies

THETA Measured position of an aircraft in local polar coordinates deg [0, 360]

RHO Measured position of an aircraft in local polar coordinates nautical mile [0, 250]

Calculated Ground Speed (CGS) Calculated track velocity in polar coordinates Knt [0, 500]

Calculated Heading (CHDG) Calculated track velocity in polar coordinates deg [0, 360]

Flight Level (FL) Flight level information hft [0, 400]

relationship is defined as follows:

F = σ1(W1S + B1)

where W1 ∈ Rm×n is a weight matrix, B1 ∈ Rm is an
offset vector, and σ1 is the activation function, i.e., sigmod
function. In the decoding phase, the mapping relationship is
defined as follows:

Ŝ = σ2(W2F + B2)

where W2 ∈ Rn×m• is a weight matrix, B2 ∈ Rn is an offset
vector, and σ2 is the activation function.

4.2 LSTM

In this paper, the encoder and decoder of the autoencoder
model consists in LSTM units. The LSTM architecture
consists of memory cells used to learn long-term modes,
each cell containing its current state and three non-linear
gates: the forget gate, the input gate, and the output gate.
The forget gate is responsible for determining how much
memory information to forget. This innovative gate is linked
to our data processing. This allows us to not only focus
on past data and have properties without memory. It is
determined by a non-linear function that outputs a number
between 0 and 1, where 0 means forgetting all information

in memory, and 1 means retaining all information in
memory. The input gate is responsible for deciding how
to update the old cell state, i.e., the new information is
selectively recorded in the cell state. The output gate is
responsible for deciding how much memorable information
to pass to the next cell.

4.3 Data preprocessing

At first, it was necessary to preprocess the data so that it
could be used to input the model. For that, we first sorted
the data by different aircraft according to the TPN and the
temporal continuity; then, we used the min-max scaling
transform to normalize the data.

We then converted them into a three-dimensional shape
with the sample number, the length of the window, and the
feature number. Here, the data entered the model is in the
form of a sliding window. Specifically, the data index of the
first group entering the model is [0, 9], the second is [1,
10], the third is [2, 11], and so on. Table 2 shows some raw
sample data before preprocessing.

We select about 800,000 pieces of data (time range is
4 hours) as training samples and then select 100 separate
flights as test samples. Actually, the training data we use is
not labeled, but we know that the data located at the flight

Table 2 Raw data sample

INDEX TPN TS THETA RHO CGS CHDG FL

0 3 1555729447 209.0533447 22.203125 453.2 218.704834 330.5

1 3 1555729451 209.2730713 22.69140625 457.6 218.7322998 330.5

2 3 1555729455 209.465332 23.171875 452.54 218.5015869 330.5

3 3 1555729459 209.6685791 23.66015625 454.08 218.5235596 330.5

4 3 1555729463 209.866333 24.140625 452.98 218.7432861 330.5

5 3 1555729467 210.0201416 24.6328125 456.06 218.1445313 330.5

6 3 1555729471 210.1904297 25.125 457.16 218.0291748 330.5

7 3 1555729475 210.3717041 25.61328125 455.4 218.4960938 330.5

8 3 1555729479 210.50354 26.10546875 454.74 218.0731201 330.5

9 3 1555729483 210.6793213 26.59765625 456.06 218.5180664 330.5

10 3 1555729487 210.8166504 27.08984375 456.06 218.4356689 330.5



transition boundary will lead to higher anomaly scores. So
this kind of data can be regarded as abnormal data. We
can distinguish different aircraft by TPN and TS, and the
location of the abnormal data is clearly known, which is
equivalent to “labeled”. Therefore, this method belongs to
the semi-supervised learning method.

5 Analyze suspicious data in the dataset

Firstly, we focus on the possible anomalies in the dataset
itself, which can help us set an accurate anomaly threshold.
Specifically, we will test a series of individual flights
without injection. It turns out four cases may cause a higher
abnormal score. To sum up them:

– normal change of angle: when an aircraft crosses the
radar area vertically, its angle ranges from 0 degree
to 360 degrees or vice versa. These degrees are
numerically different, but both degrees mean the same
angle. This numerically leads to a corner jump, which
is a normal behavior but results in an increase of the
abnormal score. One solution to resolve it could be to
use the sine of the angle instead of the angle;

– change point: there are some change points in the speed
parameters of the aircraft, which also causes an increase
of the abnormal score;

– data continuity interruption: a dataset might contain
lost time sequence in a dataset. These losses can be
either due to data transport or normal loss (the so-called
radar cone of silence) or anomaly. In any case, these
losses must be differentiated as they all increase of the
abnormal score;

– time series of violent fluctuations: we may also have the
case where the speed of the aircraft keeps fluctuating
and some values may belong to outliers. Our method
can identify them.

We give examples of two different aircraft that contain
exactly these four types of anomalies. We have plotted the
anomaly scores of these two aircrafts in Fig. 1. We can
easily see four peaks that correspond to our four cases of
anomalies previously identified.

To confirm whether these cases are true positives, we lay
on the judgment of air traffic controllers that check these
data. This is the only way to prevent detection the normal
cycle change of the aircraft angle as abnormal.

Threshold of suspicious data Different thresholds can be
specified according to different preferences. If we need
more detection of various types of anomaly data, including
a large amount of suspicious data, set a lower threshold,
but at the same time it will also lead to higher false

alarms.8 If we choose to ignore some suspicious data,
we can set a higher threshold, but at the same time it
narrows the scope of anomaly detection. We calculate the
reconstruction abnormal score of training data (after depth
feature extraction), and define an abnormality threshold that
94% of the abnormal score is less than the value. This
value, defined after a study of the ROC curve, allows us
in our case to have the best ratio between high detection
of true positives, but avoiding false positives as much
as possible. This choice was made with the requirements
provided by the industrial partner of this work, meaning it
can be changed following the requirements needed. Data are
considered suspicious if the abnormal score is greater than
the threshold. Basically, we set this value by estimating the
amount of such data based on the total number of flights and
the length of the sliding window.

6 Spoofing attack detection

In this section, we focus on spoofing attack, a type of Man
In TheMiddle attack. The replication and the retransmission
of radar transmit signals, are designed to provide false
information to a radar to corrupt received data.

This kind of attack has the potential to cause the radar to
report false information and greatly increases the risk of a
collision. We concentrate the study with the modification of
data of the two aircrafts which we could observe previously.

We took the initial data and injected them with abnormal
data. In particular, we have increased all the data (except the
time parameter) with a rate of 10%. We did this on the serial
numbers 100 to 110 and 140 to 150 in order to observe two
attacks.

Figure 2 represents the abnormal score of these two
aircrafts after injection of the attack. Modified sequences
are marked in red.

At first, we observe that the model developed is not
sensitive to the data that we have modified. We only observe
slight fluctuations in the modified sequences that merge
into the already existing fluctuations. Thus, the change in
the abnormal score does not allow the abnormalities to be
clearly identified. We, therefore, need to magnify them to
detect them.

6.1 Feature enrichment

The vectors in a time series are often inter-dependent
rather than being independent. Following the study of

8Note the situation that causes false alarm is mainly the change of
the angle parameter near the period value. One improvement is to
convert the polar coordinates into cartesian coordinates. In addition,
the suspicious data mentioned above will also cause false alarms to
some extent



Fig. 1 The reconstructed anomaly scores of the two aircrafts illustrating the four cases of anomaly

Kieu et al. [14], we employ sliding windows to account
for dependencies and compute statistical features in each
window to obtain the deeper feature information. In the
further processed time series, the feature space is much
larger than in the raw time series, which helps the
autoencoder to identify the most representative features for
a small space. There is a three-step procedure to further
process a raw time series.

For each window, we compute d derived features for
each feature in the raw time series. Specifically, we consider
d = 2 derived features—norm (NOR) and difference of
norm (DON). We compute e = 8 statistical features for each
derived feature : mean (MEA), minimum (MIN), maximum
(MAX), 25%-quartiles (25Q), 50%-quartile (50Q), 75%-
quartile (75Q), standard deviation (STD), and peak to peak
(P2P). Then, ed = 16.

The window Ti , a vector of radar sequence denoted
Si , is defined as Ti = 〈Si, Si+1, . . . , Si+c−1〉 ∈
R

n×c. For each window Ti , we define a subwindow

Ti,�

(
� = {

1, 2 . . . , C′} , C′ = 2(C−b)
[b] + 1

)
with a step

size b (b > 1, an even number) where the two consecutive

windows have a overlap step size of [b/2] = [b]/2, i.e.,
Ti,� = 〈

Si+[b/2](�−1), Si+[b/2](�−1)+1, Si+[b/2](�−1)+2,

· · · , Si+[b/2](�−1)+(b−1)
〉
.

For each subwindow Ti,�, we define Norm NOR(Ti,�) ∈
R

n,the Euclidian length of vector Ti,� and difference of
norm DON(Ti,�) ∈ R

n, the difference between the norm
of window Ti,� and the norm of its previous window Ti−1,�

where n is the number of features (such as TPN, TS,...).
The j -the element (j ∈ {1, . . . , n}) of these two values
NORj (Ti,�) and DONj (Ti,�) are defined as follows:

NORj
(
Ti,�

) =
√(

s
j

i+[b/2](�−1)

)2+
(
s
j

i+[b/2](�−1)+1

)2+· · ·+
(
s
j

i+[b/2](�−1)+(b−1)

)2

DONj
(
Ti,�

) = NORj
(
Ti,�

) − NORj
(
Ti,�−1

)

Similarly and as shown in Fig. 3, a new time series
T ′

i is defined with another step window with a step size
f (f > 1, an even number) and whose overlap length
between two consecutive windows is [f/2] = [f ]/2. Then,
we define another window with the time series T ′′

i =

Fig. 2 Abnormal score of two aircrafts after injecting a spoofing attack



Fig. 3 Three steps of feature
expansion
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Finally, we define H ′
i,p ∈ R

edn by expanding and
vectorizing Hi,p, that is,
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The final window with the time series T ′′′
i is defined as

T ′′′
i =

〈
H ′

i,1, H
′
i,2, . . . , H

′
i,C′′

〉
.

The different steps of this expansion are illustrated in
Fig. 3.

For the two aircrafts above, we inject the same form
of anomaly data in the same location. It can be seen in
Fig. 4 that after deep extraction of features, the anomaly
is significantly magnified. It is worth noting that after the
deep feature extraction of the time series, the total length
of the sequence becomes about half of the original, and the
corresponding abnormal serial number also becomes half
(e.g., from [100, 110] to [48, 53]). At the same time, we also
added a detection threshold. The setting method is similar
to the previous one, and the value is 0.194989. Then, we
simulate more kinds of spoofing attacks.

6.2 Evaluation approach

To evaluate the performance of the learned model,
we injected various types of anomalies. Their detailed
description is listed below. As a matter of fact, when we alter
a given value, we do it consistently by considering possible
dependency with another one. The objective is not to mimic
an attack that would lead to an obvious detection.

– Theta deviation (THETA): anomalies are generated by
modifying THETA parameter. We modified the original
values of the THETA parameter by 45 degrees.

– RHO deviation (RHO): anomalies are generated by
modifying RHO parameter. We modified the original
values of the RHO parameter by 25 nautical miles.

– All parameters deviation (ALL): anomalies are gen-
erated by modifying all parameters (except the time



Fig. 4 Abnormal score of two aircrafts after injecting a spoofing attack (the second one after depth feature extraction)

parameter). We modified the original values of all
parameters by 10 percent.

– Random noise (RND): anomalies are generated by
introducing random noise. We multiplied the original
values of the message attributes of the Radar messages
with a randomly generated floating number between 0
and 2.

– Different route (ROUTE): anomalies are generated by
replacing a segment of the Radar messages of the tested
flight with a segment of messages from a different
(legitimate) route. In the experiment, we replaced the
test flight with 15 other flight messages.

– Gradual drift (DRIFT FL): anomalies are generated as
a gradual drift in the flight level feature. This is done
by modifying the flight level of a segment of messages
by continuously increasing/lowering the flight level by
an increasing multiplier of 400 feet (i.e., for the first
message in the anomalous segment, the flight level is
increased/decreased by 400 feet, the second message
is increased/decreased by 800 feet, and so on). We
generated two types of gradual drifts by raising the
altitude value and lowering the altitude value.

– Gradual drift (DRIFT CGS): the same way as modify-
ing flight levels. Specifically, for the first message in the
anomalous segment the speed is increased/decreased by

10 knt, the second message is increased/decreased by
20 knt, and so on). We also generated two types of grad-
ual drifts by raising the altitude value and lowering the
altitude value.

6.3 Metrics

We evaluate the accuracy of anomaly detection methods by
precision, recall and F1-Score, which are defined as follows:

– Precision: precision is the ratio of correctly predicted
positive observations to the total predicted positive
observations;

– Recall (Sensitivity): recall is the ratio of correctly
predicted positive observations to all observations in the
actual class;

– F1 score: F1 Score is the weighted average of Precision
and Recall.

TP, FP, and FN are referred to as true positive, false
positive, and false negative, respectively. We might fail to
detect potential anomalies if we only pay attention to the
precision. However, some false positives might be received
when we only focus on the recall. F1-Score builds up the
accuracy and recall, is therefore used as the main evaluation
metric in our experiments.



Fig. 5 Abnormal scores of modified characteristics from an attacked aircraft

Table 3 Overall experimental results focuses on the timestamp

Method Evaluation THETA RHO ALL RND ROUTE FL(+) FL(-) CGS(+) CGS(-) MEAN

OC-SVM Precision 0.6657 0.6627 0.6810 0.6900 0.6634 0.6503 0.6200 0.6655 0.6637 0.6625

Recall 0.4962 0.4876 0.5496 0.5890 0.4875 0.4654 0.3879 0.4968 0.4879 0.4942

F1 score 0.5319 0.5258 0.5715 0.6017 0.5276 0.5024 0.4259 0.5303 0.5211 0.5265

IF Precision 0.1572 0.1274 0.7567 0.7584 0.7582 0.1347 0.1137 0.4419 0.1449 0.3770

Recall 0.0680 0.0598 0.4752 0.4927 0.4712 0.0534 0.0537 0.1345 0.0801 0.2098

F1 score 0.0737 0.0625 0.5573 0.5700 0.5567 0.0567 0.0575 0.1629 0.0821 0.2422

LOF Precision 0.4125 0.5064 0.7337 0.7454 0.7884 0.4544 0.4579 0.4558 0.4540 0.5565

Recall 0.2859 0.3663 0.5103 0.5138 0.5446 0.3288 0.3317 0.3276 0.3279 0.3930

F1 score 0.8944 0.9991 0.9014 0.8585 0.8141 0.9118 0.9983 0.8169 0.8293 0.8915

LSTM Precision 0.9074 0.9983 0.8884 0.8970 0.9220 0.9339 0.9972 0.7741 0.7782 0.8996

Recall 0.2872 0.3333 0.3044 0.4635 0.2458 0.1501 0.1667 0.1680 0.1756 0.2550

F1 score 0.4336 0.4998 0.4417 0.5728 0.3774 0.2581 0.2856 0.2585 0.2648 0.3769

Autoencoder Precision 0.8789 0.8893 0.8885 0.8852 0.8887 0.8082 0.8299 0.8151 0.8248 0.8565

Recall 0.7514 0.8833 0.8690 0.8179 0.8606 0.4123 0.4326 0.4313 0.4558 0.6571

F1 score 0.7914 0.8762 0.8669 0.8307 0.8619 0.5243 0.5447 0.5416 0.5663 0.7116



Table 4 Experimental results focuses on the number of attacks

Method Evaluation THETA RHO ALL RND ROUTE FL(+) FL(-) CGS(+) CGS(-) MEAN

LSTM Precision 0.9074 0.9983 0.8884 0.8915 0.9220 0.9339 0.9972 0.7741 0.7782 0.8990

Recall 0.8884 1.0000 0.9587 0.8760 0.7833 0.9008 1.0000 0.9669 0.9959 0.9300

F1 score 0.8944 0.9991 0.9014 0.8585 0.8141 0.9118 0.9983 0.8169 0.8293 0.8915

Autoencoder Precision 0.8789 0.8893 0.8885 0.8870 0.8887 0.8116 0.8337 0.8199 0.8290 0.8585

Recall 0.9835 0.9959 0.9959 0.9669 0.9958 0.9669 0.9835 0.9793 0.9876 0.9839

F1 score 0.9101 0.9288 0.9286 0.9108 0.9289 0.8574 0.8792 0.8730 0.8788 0.8995

6.4 Experimental result

Figure 5 visually represents an example of an aircraft
injecting anomalies during the cruise phase. After tests on
different stages of more than 100 individual aircraft, the
results are presented in Table 3.

We consider three non-deep learning-based baselines—
One-Class Support Vector Machines (OC-SVM, a linear
transformation-based method), Local Outlier Factor (LOF,
a distance-based method)and Isolation Forest (IF, an
integration-based method). These methods are state-of-the-
art unsupervised anomaly detection algorithms that can
be used for time series data or continuous data. They
are implemented through the Scikit-learn library. However,
these methods only use the feature information of the
current point, and do not consider the target motion

information of the current point in the adjacent time, so
the detection effect is not as good as autoencoder. In our
previous research [8], we have used the LSTM neural
network (a non-linear transformation-based method) to
predict the time series and compare the predicted value
with the received value to detect abnormal data, so we also
performed the same experiment. The overall results show
that the autoencoder model based on deep learning can
achieve the best detection results in most of cases.

Further, we get higher metrics values if we calculate
the recall by the number of attacks (our detection target
is to detect two attacks located at two specific sequence
segments). We can do this as the data are in the form of
a window when entering the LSTM unit. If the abnormal
score of a point exceeds the threshold, the entire window
sequence where this point is located can lead to an

Fig. 6 Anomaly detection
applied to other datasets

(a) ECG (b) Gesture

(c) Respiration (d) Space



abnormality. Table 4 shows the latest statistical results for
LSTM and autoencoder. It shows that both methods have
satisfactory detection results.

We also considered the effect of the length of the sliding
window, for the results (average of various attack types) of
using different sliding windows during feature enrichment.
In general, the length of the sliding window has little effect
on the results, on average we have a precision of 0.84682,
a recall of 0.91568 and a F1 score of 0.8575. As the length
of the window increases, the detection effect gradually
deteriorates. The reason is that large windows mask the
temporal changes during a short time, which adversely
affects accuracy.

7 Opening

We conducted a preliminary test on several other ICS
datasets (publicly available predictable time series data
[16]) such as ECG, Gesture, Respiration, and Space Shuttle,
to verify that the proposed method can be applied in a
different context and to test the performance of our method.
Among them, the ECG and Gesture data used in this paper
are two-dimensional data. After the features enrichment
process, the dimensions become 32 dimensions, and the
total length becomes half of the original (b = 4, f = 2).
Respiration and Space Shuttle are one-dimensional data,
which becomes 16-dimensional after feature enrichment,
and the total length also becomes half of the original. When
testing the ECG dataset, we found that anomalies can be
detected without enriching the features. However, to verify
that feature enrichment does not impair on the detection
effect, we have tested these datasets still under the condition
of feature enrichment. We illustrate the results obtained with
these datasets in Fig. 6. The red area is a potential abnormal
area and it can be seen that the method used in this paper
has a good detection effect. These results are promising
and show that the method proposed can be applied to a
different context. An extended publication will be dedicated
to present these results.

8 Conclusion and future work

Based on the autoencoder model embedded in LSTM
units, this paper performs anomaly detection on the
parameters commonly used in radar data by comparing
the reconstruction error of radar series. We first detect the
anomalous data (suspicious data) that may exist in the radar
dataset itself. Then, we enrich the radar time series to further
detect various types of spoofing attacks and the results are
satisfied.

Points for potential improvements of this work are:

– The modified granularity needs to be further refined;
– The time range of the training and the test dataset need

to be further expanded, from one radar to different
radars;

– Suspicious data in the dataset has not been removed,
and the dataset needs further purification.

In future work, we expect to collect suspicious data from
the radar dataset and work with air traffic controllers to
determine the properties of such data; further purify the
dataset to achieve more accurate results, and deal with more
complex attacks.
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