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We use linear stability analysis and direct numerical simulations (DNS) to investigate
the coupling between centrifugal instabilities, solute transport and osmotic pressure in
a Taylor–Couette configuration that models rotating dynamic filtration devices. The
geometry consists of a Taylor–Couette cell with a superimposed radial throughflow of
solvent across two semi-permeable cylinders. Both cylinders totally reject the solute,
inducing the build-up of a concentration boundary layer. The solute retroacts on the
velocity field via the osmotic pressure associated with the concentration differences across
the semi-permeable cylinders. Our results show that the presence of osmotic pressure
strongly alters the dynamics of the centrifugal instabilities and substantially reduces
the critical conditions above which Taylor vortices are observed. It is also found that
this enhancement of the hydrodynamic instabilities eventually plateaus as the osmotic
pressure is further increased. We propose a mechanism to explain how osmosis and
instabilities cooperate and develop an analytical criterion to bound the parameter range
for which osmosis fosters the hydrodynamic instabilities.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

Reverse osmosis (RO) systems play a key role in the water-energy-climate nexus due to
their applications to seawater desalination and the treatment of municipal, agricultural
and industrial wastewaters. RO removes solutes from a feed solution by pressurizing
the feed and flowing it over a semi-permeable membrane sheet, as sketched in figure
1. The pressure difference across the membrane forces water through the membrane,
while solutes are mostly blocked. Though modern RO is usually far more efficient than
conventional distillation processes (Ghaffour et al. 2013), it remains an energy-intensive
process due to the large feed pressures (up to 80 bars) required to overcome the small
membrane permeability and the large osmotic pressure difference across the membrane.
To date, these energy demands have been primarily reduced by developing new membrane
materials and energy recovery devices (Wang et al. 2014). Further improvements must
address a phenomenon called concentration polarization, which is the accumulation of
filtered solutes adjacent to the membrane surface, forming a concentration boundary
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Figure 1. Sketch demonstrating concentration polarization in a plate-and-frame reverse
osmosis system.

layer, or “polarization layer”, as sketched in figure 1. This accumulation increases the
transmembrane osmotic pressure and reduces the fraction of water recovered from the
feed (Sablani et al. 2001). It also leads to mineral scaling, which is the precipitation of
salts onto the membrane surface. Mineral scaling reduces membrane life and increases
downtime and maintenance costs (Lyster et al. 2009). It also contributes to biofouling
by driving nutrients to the membrane surface (Mansouri et al. 2010). More broadly,
concentration polarization is a challenge in nearly all membrane filtration processes,
including ultrafiltration processes, where it leads to the formation of gel layers, and
thermally-driven membrane distillation processes (Lou et al. 2019, 2020) where it impedes
the treatment of high-concentration waste brine.

Current efforts to decrease concentration polarization often focus on the hydrodynamic
role of feed spacers (Ahmad & Lau 2006). Feed spacers are a mesh-like material placed
in the feed channel to support fragile membrane sheets and provide room for feed
flow tangential to the membrane. For sufficiently large feed flow rates, the filaments
of these spacers also generate unsteady vortical flow structures due to a wake instability
similar to the von Kármán vortex street. Experimental and numerical works suggest that
these vortical structures increase the transmembrane flow by stirring and attenuating
concentration boundary layers (refer to the works of Haidari et al. 2016, 2018a,b, for
reviews). Despite the considerable work to date, spacers are still primarily designed using
experience and trial-and-error. Due to their complicated geometry, our knowledge of
the flow regime in RO systems with feed spacers remains inadequate. Meanwhile, the
more fundamental question of how vortical structures might interact with concentration
polarization is itself poorly understood.

The present study investigates an aspect of this latter question by considering RO in the
Taylor-Couette cell sketched in figure 2(a). In the annular gap between two concentric
cylinders, a feed solution composed of a solvent and a solute is set in motion by the
rotation of the inner cylinder. There is no applied pressure gradient in the axial direction,
and contrary to traditional RO systems, there is no mean axial flow. Both cylinders are
semi-permeable membranes through which solvent can flow, while the solute is retained
in the annular gap. The inner membrane surrounds a cavity filled with pure solvent
maintained at a desired constant pressure Pin. The region outside the outer membrane
is similarly filled with solvent maintained at the constant pressure Pout. Note that figure
2(a) only shows the fluid in the annular gap. Applying a radial pressure difference ∆P =
Pin − Pout drives a radial throughflow of solvent across both cylindrical membranes and
the gap. The solute advected by the radial throughflow forms a concentration boundary
layer at the cylinder through which the solvent exits the gap.

We show that below a critical rotation rate of the inner cylinder, the flow fields in
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Figure 2. (a): Sketch of the base-state flow and concentration field in a Taylor-Couette
cell with two semi-permeable cylinders and a superimposed radial inflow. (b) Sketch of the
counter-rotating Taylor vortices (the blue online toröıdal streamtubes), the outward and inward
jets of which (the black arrows) advect the concentration boundary layer to form zones of
alternate accumulation and depletion of solute, shown in the planform above.

this set-up admit a simple steady analytical solution, as shown in figure 2(a). Beyond
that rotation rate, toröıdal Taylor vortices appear as sketched in figure 2(b). These
counter-rotating vortices form alternating outward and inward radial jets. These jets stir
the concentration boundary layer and form alternating regions of solute accumulation
and depletion on the membrane surface. Osmosis then acts to dilute regions of solute
accumulation and concentrate regions of solute depletion. This occurs by a reduction
of the outgoing transmembrane flow in regions of accumulation and an increase of the
transmembrane flow in regions of depletion. These variations of the transmembrane flow
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in turn likely retroact on the vortices. Assessing this mechanism is the goal of the present
work. More specifically, we focus on the question of whether concentration polarization
and osmotic pressure act in favor or against the formation of vortices. The subsequent
question of whether vortices increase or decrease the average transmembrane flow is left
for future work.

This Taylor–Couette configuration provides a unique “test-bed” with which we can
control, observe, and study the interactions between vortices, concentration polarization,
and osmotic pressure. First, the characteristics of the concentration polarization layer can
be controlled by imposing the radial flow, independently of the azimuthal flow driven by
the rotation of the inner cylinder. Second, the appearance of vortices due to a centrifugal
instability can be easily controlled by setting the rotation rate of the inner cylinder. These
centrifugal instabilities and their critical conditions are well studied and understood and
we show that our specific configuration also admits a simple analytical solution for the
base-state, which permits an analytical stability analysis and a parametric study of the
vortices. Finally, the straightforward geometry allows complementary Direct Numerical
Simulations using high-order spectral methods.

Our particular configuration is of limited practical use for filtration, because the
amount of solvent extracted through one cylinder is balanced by that entering through
the other. In industry, rotating filtration processes based on Taylor–Couette cells have
a stationary impermeable outer cylinder and a rotating semi-permeable inner cylinder.
Feed is pumped axially through the gap while solvent exits the inner cylinder. Though
this mode of filtration has niche applications in separating blood plasma from cells, its
poor membrane-surface to volume ratio and complicated moving parts make it unrealistic
for industrial RO (Hallström & Lopez-Leiva 1978; Margaritis & Wilke 1978; Kroner
& Nissinen 1988; Ohashi et al. 1988; Beaudoin & Jaffrin 1989; Belfort et al. 1993a,b;
Lueptow & Hajiloo 1995; Schwille et al. 2002).

Taylor–Couette flow and its various regimes have been widely studied experimentally,
numerically and analytically (see discussions and references in Taylor 1923; Coles 1965;
Cole 1976; Davey et al. 1968; Marcus 1984; Andereck et al. 1986; Koshmieder 1993;
Bilson & Bremhorst 2007; Ostilla-Monico et al. 2014, among many others). The current
work considers cases where the outer cylinder remains stationary. We also focus on the
initial transition from steady flow to toröıdal vortices, the stability of which is known to
be retrieved by linear stability analysis. The stability of a Taylor–Couette cell filled with
pure solvent, with a stationary outer cylinder and a superimposed radial flow through
both cylinders was first considered by Bahl (1970). For narrow gaps, linear stability
analyses (Min & Lueptow 1994; Martinand et al. 2017) and direct numerical simulations
(Serre et al. 2008) show that a radial inflow or strong radial outflow have a stabilizing
effect, while a small radial outflow has a slightly destabilizing effect for the first transition
from non-vortical to vortical flows. Extending the analysis to large gaps, Martinand
et al. (2017) found that a strong radial outflow can select pairs of counter-propagating
helical vortices, and a strong radial inflow tends to squeeze the vortices against the
inner cylinder and dramatically shrink their cross-section in a meridional plane. Weakly
non-linear analyses and numerical simulations (Martinand et al. 2017) also found that a
strong radial outflow or inflow modified the usual supercritical transition to a subcritical
transition, exhibiting a hysteresis cycle.

To date, the above analytical and numerical results have all been obtained by imposing
a prescribed radial velocity to the base flow, while simultaneously prescribing a no-
penetration condition, i.e. a zero radial velocity, to the instabilities. This assumption
neglects the potential for flow instabilities to penetrate into the permeable surfaces,
which has been shown to destabilize channel and boundary layer flows.
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The mixing and transport properties of Taylor vortices have been studied both from a
fundamental point of view (Akonur & Lueptow 2002; Nemri et al. 2013) and for practical
applications (Miyashita & Senna 1993; Giordano et al. 2000a,b; Aljishi et al. 2013).
Nevertheless, no studies to date have considered the boundary conditions associated
with the rejection of the solute at a membrane and the build-up of a concentration
boundary layer together with osmotic pressure. The coupling between transmembrane
flow and osmotic pressure has been modeled and studied in boundary layers or channel
flows (Haldenwang et al. 2010; Lopes et al. 2012; Bernales et al. 2017). But these works
have focused on laminar flows within the Prandtl approximation, thus excluding the
possibility of vortical flows.

The article is organized as follows. Section 2 presents the geometry, governing equa-
tions, and base-state. Section 3 describes the linear stability analysis and the numerical
methods. Section 4 first demonstrates the impact of osmotic pressure on centrifugal
instabilities by presenting converging numerical and analytical results (§4.1) then quan-
titatively assesses over a relevant parameter space the magnitude of this impact on the
critical conditions (§4.2) and spatial structures (§4.3) of the instabilities. Section 5 further
explains how the semi-permeable membrane and the related velocity and concentration
boundary conditions generate this effect. Section 6 sums up our results by expressing
analytically the range of parameters over which osmosis impacts the instabilities and the
magnitude of this impact as a function of the radius ratio only. Section 7 discusses the
interest and limitations of the set-up and presents possible future works.

2. Geometry, governing equations, and base-state

We consider a Taylor–Couette cell with a stationary outer cylinder of radius r2, and a
concentric inner cylinder of radius r1. The inner cylinder rotates about its longitudinal
axis with constant angular velocity Ω, as sketched in figure 2. The flow of interest occurs
in the annular gap r1 6 r 6 r2, which is filled with an incompressible Newtonian solution
composed of a solvent (water) and solute. Hereinafter, we use cylindrical coordinates
x = (r, θ, z), in which the fluid velocity vector is denoted V = (U, V,W )

t
, where U , V

and W are the radial, azimuthal and axial components, respectively. The fluid pressure
is denoted P . The concentration is denoted C, and expressed in mol/m3.

The inner and outer cylinders are both semi-permeable membranes of thickness h,
through which only the solvent can flow. The inner membrane surrounds a cavity (r <
r1 − h) filled with solvent maintained at constant pressure Pin. Similarly, the region
beyond the outer membrane (r > r2 + h) is filled with solvent maintained at constant
pressure Pout. The pressure difference between these cavities,

∆P = Pin − Pout, (2.1)

drives radial flow through the annular gap. A positive ∆P drives flow in the positive
radial direction, with solvent entering the inner cylinder and leaving the outer cylinder.
This causes solute accumulation at the outer cylinder. A negative ∆P drives flow in the
negative radial direction, causing solutes to accumulate at the inner cylinder.

Both membrane surfaces satisfy the no-slip condition for the tangential velocity com-
ponents V and W

V
∣∣
r=r1

= Ωr1, W
∣∣
r=r1

= V
∣∣
r=r2

= W
∣∣
r=r2

= 0. (2.2)

Radial solvent flow through the inner membrane satisfies a boundary condition involving
the transmembrane pressure difference and transmembrane concentration difference in
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the form of an osmotic pressure given by van’t Hoff’s law:

U
∣∣
r=r1

= K
(
Pin − P

∣∣
r=r1

+RTC
∣∣
r=r1

)
, (2.3)

where K is the membrane permeance to water in the wall-normal direction, defined
as the transmembrane velocity of solvent per unit pressure difference, R is the ideal
gas constant, and T is the fluid temperature, assumed constant. Similarly, solvent flow
through the outer cylinder satisfies

U
∣∣
r=r2

= −K
(
Pout − P

∣∣
r=r2

+RTC
∣∣
r=r2

)
. (2.4)

Flows over permeable surfaces may have a non-zero tangential velocity at the surface
due to momentum transfer to the fluid within the porous material (see Beavers & Joseph
1967). This tangential velocity is important when a streamwise pressure gradient drives a
streamwise flow within the porous material. In filtration flow, the no-slip assumption (2.2)
is reasonable, because the permeability (or the permeance in our case) is very small, and
the membrane very thin. Consequently, the transmembrane pressure gradient, i. e. the
transmembrane pressure difference over the membrane thickness, necessary to drive even
a small transmembrane velocity is several orders-of-magnitude higher than any pressure
gradient tangent to the wall. For systems in which the no-slip assumption is invalid,
porous surfaces should be modeled using appropriate momentum transfer condition (see
Beavers & Joseph 1967), but to the best of our knowledge, such conditions have never
been numerically and/or analytically implemented and assessed in filtration set-ups.

The absence of any solute flux through the inner and outer cylinders requires radial
advection and diffusion of solutes to sum to zero at r1 and r2,[

UC −D∂C
∂r

]
r=r1

=

[
UC −D∂C

∂r

]
r=r2

= 0, (2.5)

where D is the solute molecular diffusivity. It is worth stressing here that the no-flux
boundary condition (2.5) has a non-linear term, UC.

There is no applied axial pressure gradient and, equivalently, no net axial fluid flow. As
a consequence, the mass flow rate entering the gap through one of the cylinders balances
that leaving through the other, leading to

r1 〈U〉r1 = r2 〈U〉r2 , (2.6)

where 〈U〉ri denote the radial velocities averaged over the inner (i = 1) and outer (i = 2)
cylinders. Due to this balance in radial mass flow rates, solute accumulation at one
cylinder is balanced by depletion at the other, such that the solute concentration C0

averaged over the full domain remains constant. This configuration allows us to control
all the physical mechanisms of interest in this study, i.e. the build up of a concentration
boundary layer, the coupling between the osmotic pressure and transmembrane flow, and
the driving of hydrodynamic instabilities.

2.1. Non-dimensional parameters and equations

Fluid flow and solute transport in the gap are governed by the incompressible con-
tinuity, Navier-Stokes and advection-diffusion equations. These are non-dimensionalized
using the gap width d = r2 − r1 for the characteristic length, ν/d for the characteristic
velocity, d2/ν for the characteristic time, ρν2/d2 for the characteristic pressure, and
the average concentration C0 for the characteristic concentration, where ρ is the fluid
density and ν its kinematic viscosity. Hereinafter, all expressions are non-dimensional,
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unless otherwise stated. The governing equations may be expressed as

∇ ·V = 0 ,

∂V

∂t
+ (V · ∇)V = −∇P +∇2V ,

∂C

∂t
+ V · ∇C =

1

Sc
∇2C ,

(2.7)

where Sc = ν/D is the Schmidt number. Boundary conditions are now expressed at the
non-dimensional inner and outer radii r1 = η/ (1− η) and r2 = 1/ (1− η), respectively.
The boundary conditions for the tangential velocity components can be expressed as

V
∣∣
r=r1

= Ta, W
∣∣
r=r1

= V
∣∣
r=r2

= W
∣∣
r=r2

= 0, (2.8)

where Ta = r1Ωd/ν is the Taylor number. The boundary conditions for U and C at the
cylinder are written as

U
∣∣
r=r1

= σ
(
Pin − P

∣∣
r=r1

)
+ χC

∣∣
r=r1

,

U
∣∣
r=r2

= −σ
(
Pout − P

∣∣
r=r2

)
− χC

∣∣
r=r2

,
(2.9a)

[
ScUC − ∂C

∂r

]
r=r1

=

[
ScUC − ∂C

∂r

]
r=r2

= 0. (2.9b)

The semi-permeable nature of the membrane and its permeance K manifest through two
independent non-dimensional coefficients in boundary conditions (2.9a): the velocity-
pressure coupling coefficient σ = Kρν/d and the velocity-concentration coupling coeffi-
cient χ = KRTdC0/ν. Lastly, the averaged transmembrane velocities are expressed in
terms of the Reynolds number

Re =
r1 〈U〉r1

ν
=
r2 〈U〉r2

ν
. (2.10)

Though this set-up is not commonly used in industrial RO or nanofiltration devices, we
nonetheless establish the ranges of the non-dimensional parameters that would prevail
in a RO Taylor–Couette cell with semi-permeable cylinders and filled with seawater.
In typical seawater plate-and-frame RO systems, the transmembrane velocity is of order
10−6 m/s for operating pressure ranging from 5 to 8 MPa, with the osmotic pressure being
around 3 MPa. The permeance K of these membranes is of order 10−13 to 10−12 m/s/Pa
(see Table 1 in van Wagner et al. 2009, for examples of commercial RO membranes).
Assuming arbitrarily the radii r1 and r2 are of order 10−2 to 10−1 m, and the gap width d
is of order 10−3 to 10−2 m, produces velocity-pressure coupling coefficients and Reynolds
numbers ranging between 10−14 < σ < 10−12 and 10−2 < Re < 10−1, respectively.
Assuming seawater at 25 ◦C, with an average salt concentration C0 ≈ 103 mol/m3,
produces velocity-concentration coupling coefficients ranging between 10−3 < χ < 10−1.
Considering that D for monovalent ions such as Na+ and Cl− is of order 10−9 m2/s,
the Schmidt number is of order 103. Typical transitional Taylor numbers Ta ∼ 100 then
correspond to rotation rates Ω ranging from 10−1 to 10 rad/s.

2.2. Steady base-state

Equations (2.7)–(2.9) admit a steady, axially and azimuthaly invariant base-state
[Vb(r), Pb(r), Cb(r) ], the expression of which is given in Appendix A. These velocity
and pressure fields are parameterized by Ta and Re solely. Positive values of Re produce
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Figure 3. (a): Radial velocity of the base-state Ub(r) for radius ratio η = 0.85 and radial inflow
Re = −0.1. (b): Concentration field of the base-state Cb(r) for radius ratio η = 0.85 a radial
inflow with Péclet number Pe = Re Sc = −20 (light grey, green online) and Pe = Re Sc = −100
(dark grey, blue online). The vertical dashed (blue online) line materializes the polarization layer
thickness δ as computed from (2.15) for Pe = −100.

a radial velocity Ub > 0 flowing outwards, while Re < 0 produces radial velocities Ub < 0
flowing inwards, as seen in figure 3(a) for Re = −0.1. By writing the base-state in
this form, we apply the Reynolds number Re directly, and then compute the necessary
operating pressure (2.1) from boundary conditions (2.9a),

∆P = Pb(r1)− Pb(r2) +
χ

σ

[
Cb(r2)− Cb(r1)

]
+

1

σ

[
Ub(r2) + Ub(r1)

]
. (2.11)

To further interpret the concentration boundary layer, the base-state Cb in equation
(A 4) can be re-expressed in terms of the radius ratio η = r1/r2 and the Péclet number
associated with the radial transmembrane flow Pe = Re Sc

Cb(r) =
Pe + 2

2

1− η2

1− ηPe+2
(1− η)

Pe
rPe for Pe 6= −2. (2.12)

Figure 3(b) shows two examples of Cb when η = 0.85 with Péclet numbers Pe = −20
(light grey, green online) and Pe = −100 (dark grey, blue online). As Pe increases
in absolute value, whether by increasing the Reynolds or the Schmidt numbers, the
solute accumulates in an increasingly thin boundary layer near the inner membrane.
Simultaneously, pure solvent entering through the outer cylinder depletes the solute
concentration outside the polarization layer. To characterize the base-state polarization
layer, we first compute the maximum concentration Cb,max (shown as dots in figure 3),
which occurs on the membrane surface. We then define the polarization layer thickness
δ as the radial distance from the membrane where the concentration is 0.05Cb,max.
Depending on the direction of the radial flow, Cb,max is obtained from (2.12) as

Cb,max =


Cb(r1) =

−(Pe + 2)

2

1− η2

1− η−(Pe+2)

1

η2
for Pe < 0

Cb(r2) =
Pe + 2

2

1− η2

1− ηPe+2
for Pe > 0

(2.13)

and, combined to (2.12), leads to

δ =


(

0.051/Pe − 1
) η

1− η
for Pe < 0(

1− 0.051/Pe
) 1

1− η
for Pe > 0.

(2.14)

For large Péclet numbers (in absolute value), the boundary layer thickness can be
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Figure 4. (a): Maximum of the concentration field Cb,max (in log scale) as a function of the
radius ratio η and Péclet number Pe = Re Sc (in log scale). (b): Boundary layer thickness δ (in
log scale) as a function of the radius ratio η and Péclet number Pe = Re Sc (in log scale). Note
the uncommon Pe-axis merging negative and positive values of this parameter to account for
radial in- and outflows, and the resulting discontinuities of the surfaces. Note also the reversed
η-axes in both figures.

approximated by

δ ≈


log(20)

−Pe

η

1− η
for Pe < 0

log(20)

Pe

1

1− η
for Pe > 0,

(2.15)

and is inversely proportional to the Péclet number. Figure 4 shows Cb,max and δ as
functions of the radius ratio η and Péclet number Pe, where Pe < 0 represents radial
inflow and Pe > 0 represents radial outflow. Maximum non-dimensional concentrations
beyond 103 are not depicted, because these would likely trigger solute precipitation and
call the governing equations into question. Non-dimensional boundary layer thicknesses
above 1 are not shown because this would correspond to layers larger than the gap.
For δ > 1, one can assume that no boundary layer forms. As expected, increasing the
magnitude of the Péclet number reduces the boundary layer thickness δ and increases
the maximum concentration Cb,max. Decreasing the radius ratio η, by reducing the radii
r1 and r2, increases the magnitude of the velocities Ub(r1) and Ub(r2) for a prescribed
Péclet number. It thus reduces the boundary layer thickness δ and increases the maximum
concentration Cb,max. Note that for a given Péclet number, the magnitude of the radial
velocity through the inner cylinder always exceeds that through the outer, because
Ub(r1) = Ub(r2)/η. Consequently, in figure 4(a), the solute concentration on the inner
cylinder is greater than that on the outer cylinder. Accordingly, in figure 4(b), the
boundary layer at the inner cylinder is thinner than that on the outer cylinder.

The base-state (A 1–A 4) does not present any dependence on the velocity-
concentration coupling coefficient χ and velocity pressure coupling-coefficient σ, as
these parameters only affect the operating pressure (2.11). This operating pressure is
of major practical importance because it imposes the non-dimensional power per unit
axial length needed to drive the fluid across the Taylor–Couette cell: P = 2πRe∆P .
The impact of system design and operating conditions on ∆P can be understood by
investigating each term in expression (2.11), repeated below for convenience

∆P = Pb(r1)− Pb(r2) +
χ

σ

[
Cb(r2)− Cb(r1)

]
+

1

σ

[
Ub(r2) + Ub(r1)

]
. (2.16)
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Figure 5. Reduced operating pressure σ∆P/Re as a function of χ Sc and Pe = Re Sc, for (a):
η = 0.85 and (b): η = 0.25. All quantities are in log scale and note the uncommon Pe-axis
merging positive and negative values of this parameter to account for out- and inflows and the
resulting discontinuities of the surfaces.

The first term Pb(r1)−Pb(r2) is due to hydrodynamics and combines a contribution due
to the curvature of the azimuthal flow, scaling with Ta2, and a contribution due to the
radial flow, scaling with Re2, both up to multiplicative functions of η. The next term

χ

σ

[
Cb(r2)− Cb(r1)

]
=
χ (Pe + 2)

2σ

1− η2

1− ηPe+2

(
1− ηPe

)
, (2.17)

is due to the osmotic pressure. For large Péclet numbers (in absolute value), it mostly
scales with χPeσ−1 = χRe Scσ−1, up to a multiplicative function of η. The last term

1

σ

[
Ub(r2) + Ub(r1)

]
=

Re

σ

1− η2

η
, (2.18)

is due to the transmembrane flow of solvent and scales with Reσ−1, up to a multiplicative
function of η. Typical membrane filtration conditions present very small σ, such that the
hydrodynamic term in the operating pressure (2.11) is negligible compared to the two
next terms, i. e. the operating pressure is mostly imposed by the membrane permeance
and osmotic pressure. Neglecting the hydrodynamic terms leads to the approximation

σ∆P

Re
≈ 1− η2

η

(
1 +

χSc (Pe + 2)

2Pe
η

1− ηPe

1− ηPe+2

)
, (2.19)

depicted in figure 5 for narrow (η = 0.85) and wide (η = 0.25) gaps. For narrow gaps,
this operating pressure is almost independent of the Péclet number. For wide gaps, the
operating pressure becomes substantially stronger for inflows than for outflows, due to
the strong discrepancy between the transmembrane velocities at the inner and outer
cylinders.

3. Analytical and numerical methods

We explore the appearance of vortical flow structures and their coupling with concen-
tration polarization by performing a linear stability analysis of the base-state. We also
perform complementary direct numerical simulations of the complete flow fields.
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3.1. Linear stability analysis

The stability analysis decomposes the flow fields into the sum of the base-state
[Vb, Pb, Cb ] and small perturbations [Vp(x, t), Pp(x, t), Cp(x, t) ]. Linearizing equations
(2.7) about the base-state produces the following evolution equations for the small
perturbation,

∇ ·Vp = 0 ,

∂Vp

∂t
+ Vb · ∇Vp + Vp · ∇Vb = −∇Pp +∇2Vp ,

∂Cp
∂t

+ Vb · ∇Cp + Vp · ∇Cb =
1

Sc
∇2Cp.

(3.1)

The linearization of boundary conditions (2.9) produces

Vp

∣∣∣
r=ri

= Wp

∣∣∣
r=ri

= 0, (3.2a)

Up

∣∣∣
r=ri

= ∓
[
σPp − χCp

]
r=ri

, (3.2b)

[
UpCb + UbCp −

1

Sc

∂Cp
∂r

]
r=ri

= 0, (3.2c)

where ri = r1 or r2, and the negative (positive) sign in condition (3.2b) is used when
r = r1 (r = r2). Note that the terms UpCb and UbCp in the no-flux condition (3.2c) arise
from the linearization of the solute advection term UC in condition (2.5).

Our stability analysis considers perturbations of the form

[Vp(x, t), Pp(x, t), Cp(x, t) ] = [vp(r), pp(r), cp(r) ] exp(ikz + inθ + st), (3.3)

where k and n are the axial and azimuthal wavenumbers, respectively, s is the growth rate,
and [vp(r), pp(r), cp(r) ] are radial profiles, describing the variation of the perturbation
structures in the radial direction. Substituting form (3.3) into the linearized equations
(3.1)–(3.2) produces a generalized eigenvalue problem

A[vp, pp, cp ] = −sB[vp, pp, cp ], (3.4)

for which s and [vp, pp, cp ] are the eigenvalues and eigenvectors, respectively. The
differential operators A and B are given in Appendix B. The radial profiles satisfy the
boundary conditions

vp(ri) = wp(ri) = 0, (3.5a)

up(ri) = ∓
[
σpp (ri)− χcp (ri)

]
, (3.5b)

up(ri)Cb(ri) + Ub(ri)cp(ri)−
1

Sc

dcp
dr

(ri) = 0, (3.5c)

where, again, ri = r1 or r2, and the negative sign in condition (3.5b) is used when r = r1.

The eigenvalue problem is solved using a standard spectral collocation method with a
typical resolution of 72 Chebyshev polynomials in the radial direction. Newton–Raphson
methods previously explained in Martinand et al. (2009) are used to determine the critical
conditions of the most unstable mode. This yields the critical Taylor number Tacrit above
which the real part of a first eigenvalue s, associated with the eigenmode [vcrit

p , pcritp , ccritp ]

with axial wavenumber kcrit and azimuthal wavenumber ncrit, becomes positive.
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3.2. Direct numerical simulations

We perform axisymmetric Direct Numerical Simulations (DNS) of equations (2.7)–(2.9)
using an in-house pseudo-spectral code previously detailed in Tilton et al. (2014). The
code has been successfully used to simulate tubular membrane filtration systems (Tilton
et al. 2012), and steady (Tilton et al. 2010) and unsteady (Tilton & Martinand 2018)
flows in Taylor–Couette–Poiseuille cells with permeable inner cylinders and pure solvant,
and has been modified to include the resolution of the scalar equation and boundary
conditions (2.9). The code discretizes the radial and axial directions using Chebyshev
polynomials, and uses a second-order semi-implicit temporal scheme suggested by Vanel
et al. (1986). The pressure solver is based on the projection method introduced in
Raspo et al. (2002) and extended in Tilton et al. (2014) to satisfy the velocity-pressure
and velocity-concentration couplings on the semi-permeable membranes. We simulate a
domain of non-dimensional axial length L = 20 with 36 and 148 collocation points in the
radial and axial directions, respectively. Spatial convergence is confirmed by monitoring
the Chebyshev expansion coefficients. The base flow Vb(r) in Appendix A is imposed at
both axial ends of the domain, so that no net axial flow exists and the conservation
of the total radial flux (2.10) is satisfied. Moreover, the concentration field satisfies
vanishing Neumann boundary conditions at those two axial ends, so that the average
concentration in the domain is conserved. The initial conditions are composed of a
small disturbance added to the analytical base-state (A 1–A 4). To reduce the simulation
time, the initial disturbance takes the form of the analytically computed marginal mode
[Vcrit

p , P crit
p , Ccrit

p ] with an arbitrarily small amplitude. This was implemented after
first verifying that disturbances in this form or in the form of white noise on the axial
velocity led to the same final flow. For the supercritical Taylor numbers considered, we
found that perturbation growth eventually saturated such that all simulations settled to
steady-states.

4. Taylor vortices and osmotic pressure

Using linear stability analysis and DNS, the dynamics of Taylor vortices is now
addressed. More specifically, we focus on the impact of osmosis on the critical conditions
above which the vortices develop, and on the velocity and concentration fields of the
perturbation.

4.1. Numerical and analytical results at η = 0.85, Pe = 100 and χ = 10−3

Figure 6 shows the steady radial velocity U(r, z) and concentration field C(r, z)
obtained by DNS for a radial inflow of Re = −0.1, velocity-pressure coupling coefficient
σ = 10−10, Schmidt number Sc = 1000, and velocity-concentration coupling coefficient
χ = 10−3, in a narrow-gap cell with η = 0.85 at Ta = 90. A full analysis of the
numerical flow fields [Vnum, P num, Cnum ] shows that these fields are composed of the
base-state and a perturbation in the form of toröıdal counter-rotating vortices with an
axial wavelength λ ≈ 2.5. These vortices present a non-zero radial velocity at the inner
cylinder. The order of magnitude of this transmembrane velocity is comparable to the
order of magnitude of the radial velocity of the vortices observed in the bulk of the flow.
Together with these vortices, the concentration field exhibits substantial fluctuations
with the same aforementioned axial wavelength. These fluctuations are mostly observed
within the polarization layer, whose width δ = 0.171 is computed from (2.15), and
located between the inner cylinder and the superimposed dashed curve in figure 6(b). A
similar DNS at Taylor number Ta = 78 (not shown here) retrieved the base-state, free
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Figure 6. (a): Radial velocity field Unum and (b): concentration field Cnum as functions of r and
z, obtained by Direct Numerical Simulations for η = 0.85, Re = −0.1, σ = 10−10, Sc = 1000 and
χ = 10−3, at Ta = 90. The black superimposed curves highlight the fluctuations of radial velocity
and concentration at the membrane. The dark grey (blue online) frames on both surfaces are a
reminder of the base-state Ub and Cb and the dark grey (blue online) dashed curve superimposed
to the concentration field bounds the polarization layer, the thickness of which δ is given by
(2.15). Note that for the sake of clarity, the r-axis has been reversed between both surfaces.

of any vortex. For this set of parameters (η = 0.85, Re = −0.1, σ = 10−10, χ = 10−3),
the linear stability analysis predicts Tacrit = 79.1 and λcrit = 2.26, in good agreement
with the DNS. The non-zero critical Taylor number means that the centrifugal force
remains the necessary ingredient to the development of the vortices. If we remove osmotic
pressure effects by setting χ = 0 (by assuming, for instance, that the reference physical
concentration C0 tends to 0), the stability analysis predicts for Taylor vortices slightly
modified by the radial inflow Tacrit = 106.9 and λcrit = 2.04: the presence of osmotic
pressure dramatically decreases the critical Taylor number, together with increasing the
wavelength of the vortices.



14 R. BEN DHIA, N. TILTON, D. MARTINAND

To compare the numerical and analytical results for the perturbation velocity and
concentration, the DNS hereinafter is performed closer to critical conditions at Ta = 80,
and considered at a time before the steady state, shown in Figure 6, is reached, so that the
growth of the instability is still in its linear dynamic. Figure 7 first shows the velocity and
concentration fields of the perturbation in a meridional plane, in the form of the numerical
velocity and concentration fields,

(
Unum
p (r, z),W num

p (r, z)
)

and Cnum
p (r, z), obtained by

removing the base-state [Vb, Pb, Cb ] from the complete DNS fields [Vnum, P num, Cnum ]
(panel a), together with the analytical fields,

(
U crit
p (r, z),W crit

p (r, z)
)

and Ccrit
p (r, z)

(panel b). The focus being on the linear dynamic of the instabilities, the amplitudes of
the perturbations are reset so that the maxima of the analytical and numerical azimuthal
velocity components are both normalized to 1.

The numerical and analytical fields compare favorably and further ascertain the validity
of both approaches. Figure 7 also sheds light on the coupling between the vortices,
concentration boundary layer, and osmotic pressure. The non-zero boundary condition
at the inner cylinder for the radial velocity of the perturbation is obvious, and extra
extraction of fluid at the inner cylinder (related to the perturbation, in addition to the
radial mean flow) is found to coincide with the inward jets of the vortices in the bulk.
Symmetrically, extra injection of fluid at the inner cylinder is found to coincide with the
outward jets of the vortices in the bulk. Moreover, it can be seen that injections/outward
jets occur at the axial locations where the perturbation develops an excess of solute,
whereas extractions/inward jets occur at the axial locations where the perturbation
depletes the solute. From these observations, a mechanism by which osmotic pressure
retroacts on the vortices can be proposed. The regions of excess of solute act via osmotic
pressure to add extra injection of pure solvent in the bulk through the inner cylinder,
thus reinforcing the outward jets of the vortices. Similarly, regions of depleted solute
add extra extraction of pure solvent from the bulk, thus reinforcing the inward jets of
the vortices. As far as the perturbation [Vp, Pp, Cp ] is concerned, vortices and osmosis
are found to work in a cooperative fashion, and osmotic pressure hence reduces the
critical conditions for centrifugal instabilities. Moreover, owing to the non-zero boundary
condition for the radial velocity, the vortices “penetrate” into the inner cylinder, and
the increased perceived radial characteristic size of a vortex induces an increased axial
one to conserve a “round” cross-section, explaining the observed increase of the axial
wavelength.

A finer comparison between our numerical and analytical results is obtained by
assessing the radial profiles of the perturbation structures. The solid curves (green online)
in figures 7(c), (d), (e) and (f ) show the analytical results for the critical eigenmode
[vcrit
p , ccritp ]. The dashed curves (blue online) show the corresponding DNS results for

[Vnum −Vb, C
num − Cb ], at Ta = 80 and the axial location zoutward of an outward jet

(and between two neighbouring outward and inward jets for for the axial component
wp(r)). Beyond the nearly identical radial profiles, the membrane boundary conditions
(3.2b) and (3.2c) are accurately captured by both the DNS and linear analysis, but a
minute discrepancy, that could not be explained so far, is observed between the two
approaches.

4.2. Parametric study by linear stability analysis

The case shown in §4.1 demonstrates that transmembrane flow, concentration polar-
ization and osmotic pressure can substantially decrease the critical Taylor number for
the appearance of vortices. The next question is to evaluate whether these phenomena
always favor the development of the centrifugal instabilities, and to what extent they
impact the critical Taylor number. For that purpose, we use the analytic approach
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Figure 7. Velocity fields of the vortices Vp,merid. = (Up,Wp) and concentration perturbation
Cp in a meridional plane (r, z), for η = 0.85, Re = −0.1, Sc = 1000, σ = 10−10 and χ = 10−3,
obtained numerically at Ta = 80 (a) and analytically at critical conditions Tacrit = 78.4 (b).
Corresponding radial profiles of the radial (c), azimuthal (d) and axial (e) components of the
velocity and concentration (f ) perturbations, obtained by linear stability analysis (light grey,
green online, solid curves) and DNS (dark grey, blue online, dashed curves).
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Figure 8. Analytically obtained critical Taylor number Tacrit (a) and axial wavenumber kcrit

(b), in the presence of radial inflow with Re = −0.1, for η = 0.85, Sc = 103 and χ = 10−3,
as functions of the velocity-pressure coupling coefficient σ, in log scale. The dashed horizontal
lines correspond to the case where σ = 0 in boundary conditions (3.2b). Analytically obtained
radial profiles of the radial component of the velocity (c) and concentration (d) for Re = −0.1,
η = 0.85, Sc = 103 χ = 10−3, and σ = 0 (dashed, blue online, curve), σ = 10−3 (light grey,
green online, solid curve) and σ = 10−2 (dark grey, red online, solid curve).

presented in §3.1 to perform a parametric study considering wide to narrow gap cases
with radius ratios varying in the range 0.25 6 η 6 0.95, radial Reynolds numbers varying
in the range −1 6 Re 6 1, Schmidt numbers varying in the range 0 6 Sc 6 20000,
and velocity-concentration coupling coefficients (scaling the magnitude of the osmotic
pressure) varying in the range 10−6 6 χ 6 1. In addition to tracking the critical Taylor
number, we explore the effects of osmotic pressure on the geometrical features of the
vortices, in terms of wavenumber and radial profiles.

It might be surprising that the velocity-pressure coupling coefficient σ is disregarded
in the parametric study. Recall, however, that the base-state [Vb, Pb, Cb ] computed
in §2.2 does not depend on σ, because this latter only affects the operating pressure
∆P . In the linear stability problem, σ thus only appears in boundary conditions (3.2b).
Figure 8 shows that for Re = −0.1,Sc = 103, χ = 10−1 and η = 0.85, the critical
Taylor number Tacrit and axial wavenumber kcrit together with the radial profiles of
the critical perturbation ucritp (r) and ccritp (r) are barely affected by a non-zero velocity-
pressure coupling coefficient, up to σ ∼ 10−3. More specifically in figures 8(a) and (b),
removing the pressure term in boundary conditions (3.5b), i. e. setting σ = 0, leads to
Tacrit = 79.1 and kcrit = 2.26 (the asymptotic dashed lines), whereas σ = 10−3 (the light
grey, green online, circles) leads to Tacrit = 78.4 and kcrit = 2.24. In figures 8(c) and (d),
the radial profiles of the radial velocity component and concentration of the perturbation
(the dark grey, blue online, dashed curves for σ = 0 and the light grey, green online, solid
curves for σ = 10−3) are barely distinguishable. Beyond 10−3, σ noticeably impacts the
critical conditions and perturbation. With σ = 10−2 (the dark grey, red online, circles in
figures 8(a) and (b)), Tacrit = 73.0, kcrit = 2.02 and the velocity-pressure coupling at the
membranes also clearly affects the radial profiles (the dark grey, red online, solid curves
in figures 8(c) and (d)). For very weak values of σ typical of RO, the pressure term in
boundary conditions (3.2b) can be ignored. As its boundary condition (3.5b) reduces then
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Figure 9. Critical Taylor number as a function of the Schmidt number Sc and coupling
coefficient χ, in log scale, for η = 0.85 and Re = −0.1 (a) and Re = 0.1 (b). The dark grey (blue
online) solid curves correspond to the locus of the boundary condition criterion on the inner
cylinder χ1 (5.7) and the light grey (green online) ones to the boundary condition criterion on
the outer cylinder χ2 (5.11).

to

up(ri) = ±χcp(ri), (4.1)

the stability analysis is now completely independent of σ. We stress, however, that the
membrane permeance K also enters the velocity-concentration coupling coefficient χ. Our
approximation consequently amounts to neglecting the hydrodynamic pressure compared
to the osmotic pressure in the transmembrane flow of the perturbation. Our DNS, though,
implements the complete boundary conditions (2.9a).

For the full range of parameters considered, the linear critical modes of instability
were always in the form of counter-rotating toröıdal vortices, i. e. ncrit ≡ 0, as depicted
in figure 6. To reduce the CPU time, we consequently limit our DNS to axisymmetric
computations.

To explore the effect of the osmotic pressure induced by concentration polarization, we
begin by considering the impact of the Schmidt number Sc and the coupling coefficient χ,
at fixed values of the radius ratio η and radial Reynolds number Re. The salient features
are summarized in figure 9, showing Tacrit as a function of the Sc and χ for η = 0.85
and Re = −0.1 (panel a) and Re = 0.1 (panel b). As Sc and/or χ are increased, the
critical Taylor number Tacrit first substantially decreases, before eventually leveling off.
Starting from its value obtained in the case of pure solvent Tacritpure, the critical Taylor
number tends towards a limit value in conditions where osmosis performs its maximum
effect to favor the instabilities. This smooth decrease of Tacrit, and the fact that it never
vanishes, support the fact that these instabilities remain driven by the centrifugal force
and take the form of altered Taylor vortices, favored by osmotic pressure.

This reinforcement is observed when polarization occurs at the inner cylinder (Re =
−0.1 in panel a), or at the outer cylinder (Re = 0.1 in panel b), but it is more pronounced
in the former. Though the critical Taylor number asymptotically tends towards a limit
value, we will assume that this limit is almost reached at the minimum of the critical
Taylor number Tacritmin in the parameter range of this study, i. e. for Sc < 2000 and χ < 1.
The overall decrease of Tacrit can be quantified by introducing the ratio ε:

ε = 1− Tacritmin

Tacritpure

. (4.2)
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Figure 10. Critical Taylor number as a function of the Schmidt number Sc and coupling
coefficient χ, in log scale, for η = 0.85 and Re = −1 (a) and Re = −0.01 (b). The dark
grey (blue online) solid curves correspond to the locus of the boundary condition criterion on
the inner cylinder χ1 (5.7) and the light grey (green online) ones to the boundary condition
criterion on the outer cylinder χ2 (5.11).

Quantitatively, for η = 0.85 and radial inflow Re = −0.1, the critical Taylor number
decreases up to Tacritmin = Tacrit

∣∣
Sc=2000,χ=1

= 67.6, compared to Tacritpure = 108.4,

corresponding to ε ≈ 0.37. For η = 0.85 and radial outflow Re = 0.1, the critical Taylor
number decreases up to Tacritmin = Tacrit

∣∣
Sc=2000,χ=1

= 79.0, compared to Tacritpure = 108.2,

corresponding to ε = 0.27. Section 5 elaborates further on the mechanism by which
osmotic pressure, molecular diffusion and Taylor vortices couple and explain in a more
detailed fashion the variations of Tacrit with χ.

Figure 10 demonstrates the impact of the magnitude of the imposed radial flow,
quantified by the radial Reynolds number Re. Panel (a) shows the critical Taylor number
obtained for η = 0.85 and a strong radial inflow Re = −1. The Schmidt number ranges
from 0 to 200 and the coupling coefficient χ ranges from 10−4 to 10. Panel (b) shows
the corresponding results for a weak radial inflow Re = −0.01, with Schmidt number
ranging from 0 to 20000 and coupling coefficient χ ranging from 10−6 to 10−1 (panel b).
The surfaces shown in figures 9(a), 10(a) and 10(b) clearly collapse under the rescalling
(Re,Sc, χ)→

(
a−1 Re, aSc, a−1 χ

)
, with a an arbitrary constant. The critical conditions

thus depend on combinations (Re Sc, χSc) rather than parameters (Re,Sc, χ).

Figures 11 demonstrates the influence of the radius ratio η on the critical conditions
of the vortices. Panel 11(a) shows Tacrit as a function of the Schmidt number Sc and
coupling coefficient χ, for a radial inflow Re = −0.1, in a narrow gap η = 0.95. Panel (b)
shows the corresponding results in a medium gap η = 0.55. Variations of η are known
to induce large changes in the critical Taylor number in the case of pure solvent. We see
these changes are also observed as solute and osmosis are present. In the medium gap
(η = 0.55 in panel b), Taylor vortices appear above Tacrit = 40.1 for Sc = 2000 and χ = 1,
compared to Tacritpure = 69.6 for pure solvent, corresponding to ε = 0.42. In the narrow
gap (η = 0.95 in panel a), the critical Taylor number exhibits a novel feature. At fixed
Schmidt number, as the coupling coefficient χ is increased, Tacrit first decreases under
the effect of osmotic pressure, but eventually increases to recover the value obtained for
pure solvent. In this narrow gap, the minimum critical Taylor number is reached for
χ = 0.023 instead of χ = 1 for the other cases. The critical Taylor number decreased up
to Tacritmin = 131.0, compared to Tacritpure = 185.1, corresponding to ε = 0.29.
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Figure 11. Critical Taylor number as a function of the Schmidt number Sc and coupling
coefficient χ, in log scale, for Re = −0.1 and η = 0.95 (a) and η = 0.55 (b). The dark grey (blue
online) solid curves correspond to the locus of the boundary condition criterion on the inner
cylinder χ1 (5.7) and the light grey (green online) ones to the boundary condition criterion on
the outer cylinder χ2 (5.11).
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Figure 12. Wavelength at critical conditions λcrit, as a function of the Schmidt number Sc and
coupling coefficient χ in log scale, for Re = −0.1 and η = 0.95 (a) and η = 0.55 (b). Note the
axes orientation differing from figure 11.

4.3. Velocity and concentration fields of the centrifugal instabilities

Above Tacrit, the centrifugal instabilities take the form of counter-rotating toröıdal
vortices, with ncrit = 0. To investigate how osmotic pressure modifies the structure
of these centrifugal instabilities, figure 12 shows the critical axial wavelength λcrit =
2π/kcrit, as a function of Sc and χ for η = 0.95 (panel a) and η = 0.55 (panel b). By
comparing figures 11 and 12, conditions for which the critical Taylor number is affected
by osmosis are readily found to also increase the characteristic size of the vortices along
the axial direction. Similarly, when the effect of osmosis plateaus and the critical Taylor
number tends to its limit Tacritosm, so does the axial wavelength. At its maximum, the axial
wavelength λcrit is increased by almost 50%, in relation with a decreasing critical axial
wavenumber kcrit.

We further explore the structure of the vortices by considering the perturbation fields
Vcrit
p and Ccrit

p , obtained analytically at Tacrit. In addition to figure 7(b) showing those
fields in a meridional plane for η = 0.85, α = −0.1, χ = 10−2, and Sc = 1000, figure



20 R. BEN DHIA, N. TILTON, D. MARTINAND

(b)

Vcrit
p,merid.(r, z)

r

5.8

6.0

6.2

6.4

6.6

z
0 1 2 3 4 5 6

1

Ccrit
p (r, z)

r

5.8

6.0

6.2

6.4

6.6 200

0

−200

(a)

Vnum
p,merid.(r, z)

r

5.8

6.0

6.2

6.4

6.6

z
0 1 2 3 4 5 6

1

Cnum
p (r, z)

r

5.8

6.0

6.2

6.4

6.6 100

0

−100

Figure 13. Velocity fields of the vortices Vp,merid. = (Up,Wp) and concentration perturbation
Cp in a meridional plane (r, z), for η = 0.85, Re = −0.1, χ = 10−3 and Sc = 500 (a) and
Sc = 2000 (b), obtained analytically at critical conditions. The dark grey (blue online) dashed
lines above the inner cylinder bound the polarization layer, the thickness of which is given by
(2.15).

13 shows them for Sc = 500 (panel a) and Sc = 2000 (panel b). Whereas the vortices
are only marginally impacted as molecular diffusion is decreased, the patches of solute
accumulation and depletion are found to get thinner along the radial direction, following
the similar evolution of the boundary layer thickness δ, as shown in figure 4.

Figure 14 shows the perturbation for η = 0.85, α = −0.1 and Sc = 1000, at χ = 5×10−5

(panel a) and χ = 10−1 (panel b) As osmosis is weak in figure 14(a), the vortices
are almost identical to Taylor vortices, and the radial transmembrane flow associated
with boundary condition (3.2c) is barely observed. The advection of the concentration
boundary layer by the vortices generates patches of solute depletion and accumulation,
but these only weakly retro-act on the vortices. As osmosis kicks in in figure 7(b),
boundary condition (2.9a) now drives a noticeable extra radial transmembrane flow.
This causes the axial wavelength of the vortices to increase. Though five full vortices are
observed in figure 14(a), only four are observed along the same axial length in figures 7(b)
and 14(b). As the effect of osmosis is further increased between figures 7(b) and 14(b),
we also observe a modification of the patches of solute depletion and accumulation,
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Figure 14. Velocity fields of the vortices (Up,Wp) and concentration perturbation Cp in a
meridional plane for η = 0.85, Re = −0.1, Sc = 1000, and χ = 5× 10−5 (a) and χ = 10−1 (b),
obtained analytically at critical conditions.

such that the local extrema of these patches detach from the inner cylinder. Together
with these detached extrema, the radial transmembrane flow does not further increase.
The evolution of the perturbation of concentration and radial velocity fields is further
addressed in the next section.

5. How solute rejection favors (or not) the vortices

Here, we further investigate the perturbation flow fields to clarify the mechanism by
which the advection of the polarization layer and the related fluctuations of osmotic
pressure act on the dynamics of Taylor vortices. This mechanism explains why increasing
osmosis first decreases the critical Taylor number, and why this decrease eventually
plateaus. In the process, we find an algebraic criterion producing the range of parameters
for which osmosis acts on the instability and effectively reduces the critical Taylor
number.

For the sake of clarity, we focus on cases of radial inflow Re < 0, with polarization
occuring at the inner cylinder. From the numerical results observed in figure 6, we
surmised that in the outward (inward) jets, osmosis favors the Taylor vortices by injecting
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(extracting) solvent through the inner cylinder. To put this assumption on firmer grounds,
we need to identify the mechanism(s) affecting the radial velocity perturbation at the
inner cylinder, up(r1). Moreover, we now focus on the axial locations zoutward of the radial
outward jets where, as in figure 7, the radial velocity perturbation Up(r, zoutward) and
concentration perturbation Cp(r, zoutward) are positive and identify to their respective
radial profiles up(r) and cp(r).

We first recall that in the boundary condition (3.5b) for the radial velocity perturba-
tion, the pressure term is usually weak compared to that due to concentration, such that
we can simplify this condition to (4.1), repeated below for convenience

up (ri) = ±χ cp (ri) , (5.1)

where ri = r1 or r2, and the positive sign is used when r = r1. In addition to the
above, cp(r) also satisfies the scalar transport equation linearized about the base-state.
At critical conditions for which the growth rate s vanishes, this equation reads:

−ScUb(r)
dcp
dr︸ ︷︷ ︸

¬

+∆cp(r)︸ ︷︷ ︸


−Scup(r)
dCb
dr︸ ︷︷ ︸

®

= Sc s cp(r) = 0, (5.2)

with ∆ = d2r + 1
rdr − k

2 and dr = d/dr. Considering (5.2) as the governing equation
for cp(r), term ¬ represents advection of the scalar by the base flow, term  represents
molecular diffusion and term ® is a source term due to advection of the base-state
boundary layer by the Taylor vortices. The concentration perturbation also satisfies the
solute rejection condition (3.5c) at both cylinders. Injecting boundary condition (5.1) in
the solute rejection condition (3.5c) at the inner cylinder produces the following Robin
boundary condition

Sc
[
Ub (ri)± χCb (ri)

]
cp (ri)−

dcp
dr

(ri) = 0, (5.3)

where ri = r1 or r2, and the positive sign is used when r = r1. This condition
represents the balance between molecular diffusion and advection of cp by an effective
transmembrane flow Ub (r1)± χCb (r1).

5.1. Coupling in the polarization layer

Figure 15 shows how the increase of the coupling coefficient χ affects the Taylor
vortices, the concentration perturbation, and its dynamics. To compare the perturbations
[vp(r), cp(r) ] at different χ, they are normalized by the maximum of their azimuthal
velocity component vp(r), which is found to be barely affected by osmosis. First, figure
15(a) is a reminder that Tacrit decreases as χ increases, at specific conditions Sc = 1000
and Re = −0.1, in the case of a narrow gap (η = 0.85). In these conditions, the
thickness of the base-state polarization layer is δ ≈ 0.171. Figures 15(b) and (c) show
how the increase of the coupling coefficient impacts the radial velocity perturbation
up(r) and concentration perturbation cp(r), respectively. Figures 15(d) and (e) show how
advection terms in the scalar transport equation (5.2), −Scup(r)drCb and −ScUb(r)drcp,
respectively, evolve with the coupling coefficient.

In the case of no osmotic pressure, χ = 0 (the dashed horizontal black line in figure
15(a) and black solid curves in figures 15(b) to (e)), the solute has no impact on the
centrifugal instabilities, which take the form of the classical Taylor vortices, with no
velocity at the inner cylinder up (r1) = 0. More specifically, figure 15(b) shows that the
radial velocity of these vortices vanishes at the inner cylinder. Due to this boundary
condition, the base-state polarization layer and the radial velocity of the vortices barely
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Figure 15. (a): Critical Taylor number Tacrit as a function of the coupling coefficient χ in
log scale, for η = 0.85, Re = −0.1 and Sc = 1000. (b): Radial velocity perturbation up, (c):
Concentration perturbation cp, the dashed black vertical line bounding the polarization layer,
the thickness of which δ is given by (2.15), (d): advection of the bases-state concentration by the
radial velocity perturbation (term ® of equation 5.2) and (e): advection of the concentration
perturbation by the base-state radial flow (term ¬ of equation 5.2), as functions of r, obtained
analytically at χ = 0 (solid black curves), 10−4 (dotted curves, magenta online), 10−3 (dashed
curves, blue online), 10−2 (dashed-dotted curves, red online) and 10−1 (solid light grey curves,
green online), the circles in (a) corresponding to the four last cases, whilst the black horizontal
dashed line corresponds to the osmosis-free χ = 0 case. The dashed vertical (blue online) line in
(a) corresponds to the limit value χ1 inferred from (5.7).

overlap, such that the source term ® in equation (5.2), shown as a black curve in figure
15(d), is nearly zero. The transport of the concentration perturbation is thus mostly a
balance between its advection by the base-flow Ub(r) and molecular diffusion. For χ = 0,
the solute rejection condition (5.3) further reduces to

dcp
dr

(r1) = ScUb (r1) cp (r1) . (5.4)

Axial diffusion being much weaker than radial diffusion in term , the concentration
perturbation satisfies the same equation and boundary conditions as the base-state
concentration, and cp(r) is similar, up to a scaling factor, to Cb(r). This can be seen in
figure 15(c). Though weak, the positive source term −Scup drCb triggers the coincidence
of the radial outward jet with an excess of concentration, or equivalently, a positive radial
perturbation velocity up(r) (the black curve in figure 15(b)) corresponds to a positive
concentration perturbation cp(r) (the black curve in figure 15(c)).

As χ departs from zero, the radial velocity perturbation no longer vanishes at the
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inner cylinder and boundary condition (5.1) implies up(r1) > 0. This is illustrated
in figure 15(b), where the dotted (magenta online) curve is obtained at χ = 10−4.
Osmosis, via this injection of fluid at the inner cylinder, fosters the Taylor vortices and
the critical Taylor number decreases accordingly, as reminded in figure 15(a). As the
radial velocity perturbation up(r) and the base-state concentration Cb(r) now overlap,
source term ® acts in the polarization layer (the dotted, magenta online, curve in
figure 15(d)). The concentration perturbation in the polarization layer is also affected
by the modification of the solute rejection condition (5.3), where the negative effective
transmembrane flow [Ub (r1) + χCb (r1)] increases. Outside the polarization layer, the
concentration perturbation remains unaffected by osmosis, and similar to the case with
χ = 0. Matching the concentration perturbation inside and outside the polarization layer
forces cp(r1) to decrease and drcp(r1) to increase as χ increases, as seen in figure 15(c).

For large values of χ, the perturbation tends to a limit solution for which the radial
profiles and the critical Taylor number are no longer χ-dependent. This is demonstrated
by the asymptotic regime for large values of χ in figure 15(a), and the dash-dotted
(red online) and solid light grey (green online) curves in figure 15(b) and (c), obtained
at χ = 10−2 and χ = 10−1, respectively. As χ increases, figure 15(b) shows that up(r1)
tends to a limit value u∞p (r1), and figure 15(c) shows that cp(r) now presents a maximum
concentration detached from the inner cylinder, while cp(r1) tends to 0. Outside the
polarization layer, cp(r) remains unaffected by osmosis.

To explain this limit regime, first note that at large χ, the solute rejection condition
at the inner cylinder (5.3) simplifies to

dcp
dr

(r1) ≈ χScCb(r1) cp(r1), (5.5)

and drcp(r1) is now positive. Matching boundary condition (5.5) to the concentration
perturbation outside the polarization layer forces cp(r) to reach its maximum in the
polarization layer instead of at the inner cylinder. Furthermore, as χ increases, the solute
rejection condition (5.5) forces the concentration perturbation at the inner cylinder cp(r1)
to decrease and tend to 0, to avoid up(r1) to diverge. The concentration perturbation
cp(r) is now a solution of the transport equation (5.2) with boundary conditions (5.1)
and (5.3) rewritten as

cp(r1) =
1

χ
u∞p (r1) and

dcp
dr

(r1) = ScCb(r1)u∞p (r1), (5.6)

respectively. The small value of cp(r1) excepted, these solutions are independent of χ.
The extra injection of pure solvent at the inner cylinder up(r1) levels off, and no further
decrease of Tacrit is observed as χ increases, as seen in figure 15(a).

Figure 15 thus highlights two obvious regimes of coupling between osmosis and Taylor
vortices. For small χ, drcp(r1) is negative, cp(r1) is large and up(r1) increases with χ.
For large χ, drcp(r1) is positive, cp(r1) is almost zero and up(r1) is independent of
χ. The distinction between these two regimes is imposed by the sign of the effective
transmembrane velocity Ub(r1) + χCb(r1) in the solute rejection boundary condition
(5.3). This velocity is negative for small values of χ, and becomes positive when χ > χ1,
where

χ1 =

∣∣∣∣Ub(r1)

Cb(r1)

∣∣∣∣ =

∣∣∣∣∣2Re (1− η)
(
1− η−Re Sc−2)

(Re Sc + 2) (η−2 − 1) η

∣∣∣∣∣ . (5.7)

This limit value χ1 is inferred from the base-state alone. It is shown as a dashed vertical
(blue online) line at χ1 ≈ 9.38 × 10−4 in figure 15(a) for η = 0.85, Re = −0.1 and
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Figure 16. (a): Critical Taylor number Tacrit as a function of the coupling coefficient χ, in
log scale, for η = 0.95, Re = −0.1 and Sc = 1000. (b) Radial velocity perturbation up(r) and
(c): concentration perturbation cp(r) , obtained analytically at χ = 10−4 (solid curves, green
online), 10−2 (dashed curves, blue online) and 5× 10−1 (dashed-dotted curves, red online), the
circles in (a) corresponding to these three cases.

Sc = 1000. This limit almost corresponds to the dashed, blue online, curves in figures
15(b) to (e) at χ = 10−3. For χ < χ1, osmosis favors vortices by injecting pure solvent in
the outward jets and extracting pure solvent from the inward jets. In this regime, Tacrit

decreases as χ increases. For χ > χ1, this mechanism subsides, such that Tacrit plateaus
to its limit minimal value. The limit value χ1 has been added as dark grey (blue online)
curves on figures 9 to 11. For sufficiently large Péclet numbers, it indeed coincides, for
cases with a radial inflow base-state, to the value of χ beyond which Tacrit is no longer
affected by increasing the coupling coefficient.

5.2. Coupling on the depleted side

The solute rejection boundary condition explains another feature of the impact of χ
on Tacrit, observed in figures 11(a) and 16(a). For η = 0.95, Re = −0.1 and Sc = 1000,
Tacrit is found to be a decreasing then increasing function of χ. Concerning the base-state,
η = 0.95 yields a thicker polarization layer δ ≈ 0.57 than for η = 0.85. Accordingly, the
solute is less depleted at the outer cylinder for η = 0.95 than for η = 0.85. As explained
above, in the case of no osmotic pressure, cp(r) recovers the base-state concentration
Cb(r) up to a multiplicative constant and cp(r2) noticeably departs from zero for cases
with thick polarization layers.

As χ remains limited, the radial velocity perturbation up(r) and concentration pertur-
bation cp(r) and their evolution with χ at η = 0.95 are similar to the case η = 0.85, and
governed by osmosis and the advection of the polarization layer at the inner cylinder.
This is demonstrated in figures 16(b) and (c), where the solid (green online) curves are
obtained at χ = 10−4 and dashed (blue online) curves at χ = 10−2. As χ is further
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increased, the radial velocity perturbation at the outer cylinder, up(r2), substantially
departs from 0, to be negative. This is illustrated in figure 16(b) where the dash-dotted
(red online) curve is obtained at χ = 5×10−1. This counter-flow acts against the outward
jet and explains the increase of the critical Taylor number, as reminded in figure 16(a).
This counter-flow is induced by the boundary condition for up(r) at the outer cylinder

up (r2) = −χcp (r2) . (5.8)

Moreover, as the source term ® in the transport equation (5.2) vanishes outside the
polarization layer, drcp(r2) must be independent of χ. In the solute rejection condition
at the outer cylinder

Sc
[
Ub (r2)− χCb (r2)

]
cp (r2)− dcp

dr
(r2) = 0, (5.9)

the (negative) effective transmembrane velocity Ub (r2)−χCb(r2) decreases with χ, and
forces cp(r2) to tend to zero as χ increases.

For large values of χ, the solute rejection condition further reduces to

dcp
dr

(r2) ≈ −χScCb (r2) cp(r2), (5.10)

and forces up(r2) = −χ cp(r2) to tend to a negative limit value u∞p (r2). The limit regime
at the outer cylinder occurs as χ exceeds

χ2 =

∣∣∣∣Ub(r2)

Cb(r2)

∣∣∣∣ =

∣∣∣∣∣2Re (1− η)
(
1− ηRe Sc+2

)
(Re Sc + 2) (η2 − 1)

∣∣∣∣∣ , (5.11)

and −χCb (r2) becomes dominant over Ub (r2) in boundary condition (5.9). The limit
value (5.11) has been added as light grey (green online) curves in figures 9 to 11. It
roughly coincides, for cases with a radial inflow bases-state, to the value of χ beyond
which the decrease of Tacrit due to osmosis at the inner cylinder is no longer observed.

6. Range of parameters where osmosis favors the vortices

The parametric study in §4.2 has shown that the critical conditions Tacrit of the
centrifugal instabilities eventually depend on three parameters: the Péclet number Pe =
Re Sc, the velocity-concentration coupling coefficient renormalized by the Schmidt num-
ber χSc, and the radius ratio η. More specifically, combining the limit values (5.7) and
(5.11) found in §5, osmosis is found to impact the centrifugal instabilities and decreases
Tacrit for χSc in the range

2Pe
(
1− η−Pe−2

)
η

(Pe + 2) (1 + η)︸ ︷︷ ︸
χ1 Sc

< χSc <
2Pe

(
ηPe+2 − 1

)
(Pe + 2) (1 + η)︸ ︷︷ ︸

χ2 Sc

for Pe < 0, (6.1)

in terms of (negative) Péclet number, for radial inflow base-states, and η. For cases
with radial outflow base-states, as in figure 9(b), the inner and outer cylinders exchange
their roles. For χSc > ScUb(r2)/Cb(r2), osmotic pressure at the outer cylinder no longer
further favors the outward and inward jets of the vortices and Tacrit tends to its limit
minimal value. For χSc > ScUb(r1)/Cb(r1), osmotic pressure at the inner cylinder
hampers the outward and inward jets of the vortices, and Tacrit increases with χ. Osmosis
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Figure 17. Limit values χ1 Sc and χ2 Sc, bounding the χ Sc range where osmosis lessens the
critical Taylor number, as functions of η and Pe, shown for (a): radial inflows (Pe < 0) and (b):
radial outflows (Pe > 0).

consequently decreases Tacrit for χSc in the range

2Pe
(
1− ηPe+2

)
(Pe + 2) (1 + η)︸ ︷︷ ︸

χ2 Sc

< χSc <
2Pe

(
η−Pe−2 − 1

)
η

(Pe + 2) (1 + η)︸ ︷︷ ︸
χ1 Sc

for Pe > 0, (6.2)

in terms of (positive) Péclet numbers and η.
Figure 17 shows χSc-ranges (6.1) (panel a) and (6.2) (panel b), between the two

surfaces χ1 Sc and χ2 Sc as functions of η and Pe. In configurations with (Pe, η, χ Sc)
between the two surfaces, instabilities are affected by osmosis. The larger this χSc-
range between the two surfaces is, the more the enhancement of the vortices by osmosis
accommodates variations of χ due, for instance, to variations of the mean concentration
C0. Figure 17 shows that a higher Péclet number enlarges the χSc-range. Figure 17 also
shows that a narrow gap (large η) presents a limited χSc-range compared to a wide gap
(small η). For osmosis to enhance the Taylor vortices over a substantial χSc-range, a
higher Péclet number must therefore be reached in a narrow gap than in a wide gap.

The dependence of critical conditions with Pe, χSc and η is eventually recast into a
simpler but cruder form. Within the χSc-ranges (6.1) and (6.2) as shown in figure 17,
the critical Taylor number Tacrit is approximated by its asymptotic value for large χSc
and Pe, Tacritmin, as defined in §4.2. Outside these ranges, Tacrit is approximated by the
critical Taylor number for Taylor vortices in pure solvent Tacritpure. Both Tacritmin and Tacritpure

are functions of the radius ratio η only. Figure 18 shows Tacritpure (the dashed curves in

panels a and b) and Tacritmin (the solid curves in panels a and b), as functions of η, in the
case of a radial inflow (panel a) and radial outflow (panel b). Figures 18(c) and (d) show
the corresponding ratio ε as defined in (4.2). As figure 11 showed that Tacrit reached a
minimum at Sc = 2000 and χ = 0.023 for η = 0.95 and Re = −0.1, we approximate the
asymptotic critical Taylor number as Tacritmin ≈ Tacrit

∣∣
|Pe|=200,χ Sc=46

. For both in- and

outflows, variations of Tacritmin are found to mostly follow those of Tacritpure. The absolute

difference Tacritpure − Tacritmin is fairly constant and larger for inflows than for outflows,
due to the fact that a radial inflow develops a steeper concentration boundary layer at
the inner cylinder than the corresponding radial outflow does at the outer cylinder. In
terms of relative difference, the ratio ε is thus substantially larger for the inflow than
for the outflow. Moreover, a maximum value εmax = 0.271 is reached for a narrow gap
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Figure 18. Asymptotic critical Taylor number Tacrit
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number Tacrit
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at Péclet number |Pe| = 200 and coupling coefficient χSc = 46

(solid curves) and critical Taylor number for pure solvent Tacrit
pure (dashed curves), as functions

of the radius ratio η, for radial outflows (a) and inflows (b). Bottom row: corresponding ratio
ε = 1− Tacrit

min/Tacrit
pure.

at η = 0.78 in the cases of outflows. In the cases of inflows, ε is found to increase as
η decreases over almost the whole covered range 0.25 > η > 0.95, and a maximum
εmax = 0.457 is reached for a wide gap at η = 0.265.

7. Conclusions and outlook

This study has shown by linear stability analyses and DNS that the coupling of Taylor
vortices with the osmotic pressure associated with concentration polarization near a semi-
permeable membrane tends to reduce the critical Taylor number above which vortices
appear by up to 40%. The reduction of Tacrit matches the increase of the effective size
of the vortices and they are both outcomes of the non-zero boundary condition for the
perturbation of transmembrane velocity (3.2a). By injections and extractions of fluid
coinciding with outward and inward jets of the vortices, respectively in the case of a mean
radial inflow, this condition promotes the hydrodynamic instabilities. This condition also
allows vortices to “penetrate” the permeable boundary (as seen in figure 14) and increase
their effective radial extension. To limit their viscous dissipation, the vortices also increase
their axial extension, and the decrease of Tacrit observed in figure 11 thus corresponds to
the increase of λcrit in figure 12. These instabilities remain driven by centrifugal forces,
but are fostered by osmotic pressure. It has never been found so far that osmosis alone
could sustain the growth of instabilities.

Besides the Taylor number, this mechanism is eventually governed by three physical
parameters: the radial Péclet number Pe = Re Sc = U

∣∣
r=r1

r1/D governing the steepness

of concentration polarization, a coupling coefficient χSc = KRTdC0/D scaling the
retroaction of the osmotic pressure on the transmembrane velocity with respect to the
damping effects of molecular diffusion, and the radius ratio η = r1/r2. Based on these
three physical parameters, the reduction of Tacrit is observed in a χSc-range, given by
equations (6.1–6.2), and function of Pe and η. Within this range, Tacrit plateaus at a
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limit value Tacritmin, shown in figure 18 as a function of η. At this point, it remains unclear,
though, if Tacritmin is truely independent of Pe or a slowly varying function of this parameter.

Despite the Reynolds number Re = U
∣∣
r1
r1/ν being introduced as one of the physical

parameters to conform with previous studies, the imposed radial flow remains limited
in this study, in consistency with the weak transmembrane velocities observed in real
RO (|Re| ∼ 10−2–10−1). In itself, this radial flow has a very limited effect on the
hydrodynamic instabilities. Larger radial Reynolds numbers, though, are known to
directly alter these instabilities (see Martinand et al. 2017) and addressing set-ups
with larger radial through-flow should reconsider the Reynolds number as a relevant
parameter. The velocity-pressure coupling coefficient σ = Kρν/d has also been found to
be of limited impact for typical RO set-ups where it is very weak (σ ∼ 10−12–10−13).
Beyond such cases with very weak permeance K, the effect of σ on the hydrodynamic
instabilities has been found, for η = 0.85, to be negligeable up to σ ∼ 10−3, a value
hardly reached in any filtration set-up.

The capacity of the hydrodynamic instabilities to reduce the osmotic counter-pressure
and improve the performance of filtration devices is the key point of dynamic filtration,
and assessing this capacity is the next step of our work. More precisely, dynamic filtration
assumes that for a given mean transmembrane flow, hydrodynamic instabilities abate the
mean concentration boundary layer, thus reducing the related osmotic pressure and power
required to drive solvent across the membrane. The question can be equivalently refor-
mulated to determine if, at given working pressure ∆P , the mean transmembrane flow
increases in the presence of instabilities. Analytically, this question cannot be addressed
by linear stability analysis, as the sinusöıdal axial variations of the transmembrane flow
perturbation lead to a zero mean value for this extra transmembrane flow. The non-linear
retroaction of the instabilities on the base-state must therefore be considered. Our set-up
and approach offers two ways to address the question. First, DNS have been found to
work well and can be used to explore the non-linear dynamics of the flow, including the
extra transmembrane flow. A closer look at figures 6(a) and (b) already reveals some
aspects of this non-linearity, even though the DNS at Ta = 90 only slightly departs from
the critical conditions (Tacrit = 79.1). The radial component of the velocity Unum and
the concentration Cnum exhibit an unbalance between the crests and troughs, the latter
being more pronounced. Moreover, averaging these fields along the axial direction shows
that the presence of the vortices decreases the mean concentration at the membrane and
increases (in absolute value) the mean radial fluid flux across the cell accordingly, by
∼ 50% with respect to the corresponding base state (the dark grey, blue online, frames).
This test case hence supports the hypothesis that vortices improve filtration. Next,
a weakly non-linear stability analysis, by including a modification of the mean radial
flow, could also help explain how transmembrane flow is affected by the instabilities. A
parametric study based on this weakly non-linear stability analysis could hence provide a
framework for optimizing the configuration of filtration devices. We are currently working
along both lines.

Extending the study of the coupling between concentration polarization, osmotic
pressure and hydrodynamic instabilities to more realistic geometries is another outlook.
First, a configuration in which a net flux of solvent is extracted requires the addition
of a mean axial flow and complicates the stability analysis. The development of global
modes of instability in such an open system has been addressed for pure solvent flows in
Tilton & Martinand (2018). Whereas no direct extension of this theoretical analysis to
cases with solutes and osmosis has been found so far, due to a lack of analytical base-
state, we are currently working to adapt the DNS to take into account a mean axial flow.
Next, the coupling between osmosis and vortices described here does not seem specific to
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centrifugal instabilities, and other types of flows and instabilities, such as Dean vortices,
Görtler vortices, boundary layers, and Tollmien–Schlichting waves, could be addressed,
as they are more relevant to industrial filtration devices.

The base-state computed in this Taylor–Couette set-up shows that the maximum
concentration in the boundary layer grows with the Péclet number Pe, and rapidly
experiences an increase over several orders of magnitude (see figure 4). Moreover, on top of
the bases-state, hydrodynamic instabilities generate supplemental peaks of concentration
(see figure 6). This study has solely focused on the effect of concentration polarization
on osmotic pressure. Nevertheless, concentration polarization causes several other phe-
nomena. Changes in the base state and in the critical conditions of the instabilites are
induced by the concentration-related variations of the physical properties of the solution
(see Nayar et al. 2018, for seawater). Doubling the solubility from 35 g/kg of typical
seawater to 70 g/kg increases its dynamic viscosity µ by ∼ 8 % and its density ρ by
∼ 3 % so the Taylor number Ta decreases by ∼ 5 %. Simultaneously, assuming the
Stokes–Einstein relation Dµ = cste, the molecular diffusivity D decreases by ∼ 8 % so
both the Péclet number Pe and χSc increase by ∼ 8 %. Furthermore, the increase of
the concentration above the maximum solubility induces the precipitation of the solute,
which can form a gel layer changing the rheology of the fluid. In seawater, whereas sodium
chloride does not precipitate for total solubilities up 350 g/kg, magnesium hydroxide is
already in the form of a suspension at 35 g/kg. Moreover, high concentrations also impact
the properties of the membrane by adsorption of the solute or clogging by precipitates.
This generally decreases the membrane permeance K and rejection rate, which has been
assumed to be 1 in this study.

Sorting out the relative importance of all these mechanisms would require careful
experiments. By its precise controls of the concentration polarization and hydrodynamic
instabilities, the present Taylor–Couette set-up could prove useful, albeit requiring extra
cares to handle the radial flow and large operating pressures, together with the rotating
cylindrical, usually opaque, membranes.
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Appendix A. Base state

Solving equations (2.7) with boundary conditions (2.9) produces the following steady,
axially and azimuthally invariant, base-flow [Vb(r), Pb(r), Cb(r) ]:

Wb(r) = 0 and Ub(r) =
Re

r
, (A 1)

Vb(r) =


Ta r1
r

1− (r/r2)Re+2

1− ηRe+2
for Re 6= −2

Ta r1
r

log (r/r2)

log (η)
for Re = −2,

(A 2)
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Pb(r) =
Ta2 r21

r2 (1− ηRe+2)
2

(
(r/r2)2(Re+2)

2Re + 2
− 2(r/r2)Re+2

Re
− 1

2

)
− Re2

2r2
+ cste for Re 6= −2

Ta2 r21
2r2 log2 (η)

(
− log2 (r/r2)− log (r/r2)− 1

2

)
− 2

r2
+ cste for Re = −2,

(A 3)

Cb(r) =


(Re Sc + 2)(r22 − r21)

2(rRe Sc+2
2 − rRe Sc+2

1 )
rRe Sc for Re Sc 6= −2

r22 − r21
2 log(r2/r1)

r−2 for Re Sc = −2.

(A 4)

Appendix B. Stability operator

The linear stability analysis in the form of the generalized eigenproblem (3.4) uses the
operators

A =

Ubdr +
inVb
r

+drUb

−∆− 1

r2

−2
Vb
r

0 dr 0

drVb +
Vb
r

Ubdr +
inVb
r

+
Ub
r

−∆− 1

r2

0
in

r
0

0 0
Ubdr +

inVb
r

−∆
ik 0

dr +
1

r

in

r
ik 0 0

Sc drCb 0 0 0
Sc

(
Ubdr +

inVb
r

)
−∆


where ∆ = d2r + 1

rdr − k
2 − n2

r2 and dr = d/dr, and

B =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 Sc


Recall that the coupling between the velocity and concentration fields occurs through
boundary conditions (3.5b) and (3.5c). Though these boundary conditions do not appear
in operators A and B, they are nonetheless part of the linear stability eigenproblem (3.4).
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