
HAL Id: hal-03533712
https://hal.science/hal-03533712

Preprint submitted on 18 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic grading of cervical biopsies by combining full
and self-supervision

Melanie Lubrano Di Scandalea, Tristan Lazard, Guillaume Balezo, Yaëlle
Bellahsen-Harrar, Cécile Badoual, Sylvain Berlemont, Thomas Walter

To cite this version:
Melanie Lubrano Di Scandalea, Tristan Lazard, Guillaume Balezo, Yaëlle Bellahsen-Harrar, Cécile
Badoual, et al.. Automatic grading of cervical biopsies by combining full and self-supervision. 2022.
�hal-03533712�

https://hal.science/hal-03533712
https://hal.archives-ouvertes.fr


Automatic grading of cervical biopsies by combining full and
self-supervision
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Abstract

In computational pathology, the application of Deep Learning to the analysis of Whole
Slide Images (WSI) has provided results of unprecedented quality. Due to their enormous size,
WSIs have to be split into small images (tiles) which are first encoded and whose representa-
tions are then agglomerated in order to solve prediction tasks, such as prognosis or treatment
response. The choice of the encoding strategy plays a key role in such algorithms. Current
approaches include the use of encodings trained on unrelated data sources, full supervision
or self-supervision. In particular, self-supervised learning (SSL) offers a great opportunity to
exploit all the unlabelled data available. However, it often requires large computational re-
sources and can be challenging to train. On the other end of the spectrum, fully-supervised
methods make use of valuable prior knowledge about the data but involve a costly amount of
expert time.
This paper proposes a framework to reconcile SSL and full supervision and measures the trade-
off between long SSL training and annotation effort, showing that a combination of both has
the potential to substantially increase performance. On a recently organized challenge on grad-
ing Cervical Biopsies, we show that our mixed supervision scheme reaches high performance
(weighted accuracy (WA): 0.945), outperforming both SSL (WA: 0.927) and transfer learning
from ImageNet (WA: 0.877). We further provide insights and guidelines to train a clinically
impactful classifier with a limited expert and/or computational workload budget. We expect
that the combination of full and self-supervision is an interesting strategy for many tasks in
computational pathology and will be widely adopted by the field.
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1 Introduction

Recent advances in slide digitization have led to increased interest in Artificial Intelligence (AI)
applications for histopathology. The development of AI models could help reduce pathologists’
workloads, limit subjectivity and help contributing to medical discoveries. Deep learning models
can now match pathologist performance for many tasks: diagnostic, detection of mitoses [Veta et al.,
2015], prediction of gene mutations [Coudray et al., 2018, Kather et al., 2020] or genetic signatures
[Kather et al., 2020, Diao et al., 2021, Lazard et al., 2021], cancer subtyping [Coudray et al., 2018]
and more.
One of the applications, automated diagnosis from Whole Slide Images (WSIs), induces two main
challenges: first, WSIs are very high-resolution and, because of memory constraint, cannot be fed
directly into traditional neural networks. Second, expert annotations are laborious to attain, costly
and prone to subjectivity. The most popular methods today rely on Multiple Instance Learning
(MIL), which frames the problem as a bag classification task. WSIs are split into small workable
images (tiles), which are processed separately. Features from each of the individual tiles are ex-
tracted and then aggregated to classify the WSI.
The extraction of these tiles’ specific representation is crucial to the downstream WSI classification
task. One common approach consists of initializing the feature extractor with pre-trained weights
on ImageNet, a natural image dataset. This technique allows one to extract generic features that
are powerful, but that do not lie within the histopathological domain. Different strategies have been
developed to extract these tile encodings taking advantage of the available data and their respective
level of supervision.
A first strategy aims to learn tile features with full supervision [Ehteshami Bejnordi et al., 2017]. To
create a supervised dataset, one or several experts manually review tiles and sort them into mean-
ingful classes (preferably related to the downstream task of classifying the WSIs). Even though
experts’ annotations can bring powerful prior knowledge to the model, this technique often requires
large quantities of annotations.
A second strategy consists of learning tile representations through self-supervision. It leverages
the unannotated data by training a convolutional neural network on a pretext task. It has proven
its efficacy [Saillard et al., 2021, Lu et al., 2021] and even its superiority to the fully supervised
scheme [Dehaene et al., 2020]. However, this approach has a non-negligible computational cost, as
training necessitates around 1000 hours of computation on a standard GPU [Dehaene et al., 2020].
Moreover, it is not guaranteed that the obtained encodings are most relevant for the prediction task
we are trying to solve.
Techniques from both sides of the supervision spectrum have proven to bring important benefits
for relevant feature extraction. Combining them could allow us to benefit from the best of both
worlds. In this work, in addition to proposing a joint-optimization process mixing self, full and weak
supervision (Figure 1), we measure the trade-off in performance between the number of annota-
tions and the computational cost of training a self-supervised model. We thus provide guidelines to
train a clinically impactful classifier with a limited budget in expert and/or computational workload.
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Figure 1: Mixed Supervision Process: a)A self-supervised model (SimCLR) is trained on unla-
belled tiles extracted from the slides. Feature extractor and contrastive layer weights are transferred
to the joint-optimization architecture b) Joint-optimization model is trained on the labeled tiles of
the dataset. The feature extractor weights are transferred to the WS classification model. c) WS
classification model is trained on the 1015 whole slide images.

2 Related Work

Mixed Supervision Medical data is often limited. For this reason, one might want to take ad-
vantage of all the available data even if annotations might not be homogeneous and even though
they might be difficult to exploit because multiple levels of supervision are available. For instance,
whole slide images are often associated with one global label (weak supervision), they can contain
millions of unlabelled tiles (no supervision), but, as a pathologist reviews the slides and performs a
diagnostic, it is almost effortless for them to mark the region of interest that signs the corresponding
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diagnostic (strong supervision). AI applications have usually been dichotomized between supervised
and unsupervised methods, spoiling the potential of combining several types of annotations. For
this reason, mixing supervision for medical images analysis has gained interest in past years [Huang
et al., 2020, Li et al., 2018, 2021].
For instance, in [Mlynarski et al., 2019] the author showed that combining global labels and local
annotations by training in a multi-task setting, the capacities of the model to segment brain tumors
on Magnetic Resonance Images were improved.
In [Tourniaire et al., 2021], the author introduced a mixed supervision framework for metastasis
detection building on the CLAM [Lu et al., 2021] architecture. CLAM is a variant of the popular
attention based MIL [Ilse et al., 2018] with 2 extensions: first, in order to make the method applica-
ble in a multi-class setting, class-specific attention scores are learned and applied. Second, the last
layer of the tile encoding network is trained to also predict the top and bottom attention scores, thus
mimicking tile-level annotations. In [Tourniaire et al., 2021], the authors highlight the limitations
of this instance-classification approach and propose to leverage a low number of fully annotated
slides to train the attention mechanism. In a second step, they propose to turn to a standard MIL
training (using only slide-level annotations). Even with few annotated slides, this approach allows
to boost classification performance. However, there are also some limitations. First, the method
relies on exhaustive annotation of selected slides: for the annotated slides, all the key regions are
annotated pixel-wise. Second, due to the CLAM architecture, the approach only fine-tunes a single
dense layer downstream the pre-trained feature extractor. Third, the algorithm has been designed
for an application case in which the slide and tile labels coincide (tumour presence). This however is
not always the case: when predicting genetic signatures, grades or treatment responses, it is unclear
how tile and slide level annotations relate to each other. In this article, we propose to overcome
these limitations. We propose to combine self-supervised learning with supervision prior to training
the MIL network. We thus start from more powerful encodings, that are not only capable of solving
the pretext task of self-supervised learning, but also the medical classification task that comes with
the annotated tiles. Consequently, this method does not require full-slide annotations, optimizes
the full tile encoding network and does not come with any constraint regarding the relationship
between tile and slide level annotations.

3 Materials and Method

3.1 Dataset and Problem Setting

The Tissue Net Challenge [DrivenData] organized in 2020, the Société Française de Pathologie
(SFP) and the Health Data Hub aimed at developing methods to automatically grade lesions of the
uterine cervix in four classes according to their severity. The training dataset for the challenge was
made up of biopsy samples from female uterine cervix, focusing on squamous lesions (Figure 2).
These lesions are often benign but can also be qualified as low grade or high grade depending on the
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risk of invasion of the underlying conjunctive tissue and evolution into carcinomas. The grade of
the lesions depends on the proportion of squamous epithelium affected by dysplastic criteria. Low-
grade squamous intraepithelial lesions (LSIL) are defined as having a dysplastic criteria involving
less than one third of the thickness of the epithelium. High-grade squamous intraepithelial lesions
(HSIL) indicate a greater proportion of the epithelium composed of undifferentiated basal cells
with abnormalities. Carcinoma is diagnosed when abnormal epithelial cells invade the underlying
conjunctive tissue. The class of a WSI was determined by the highest lesion’s grade present on it.

3.2 Fully Supervised Dataset

5926 annotated Regions of Interest (ROIs) of fixed size 300x300 micrometers were provided. Each
ROI had roughly the same size as a tile at 10x magnification and were labeled by the severity of
the lesion it contained: “Normal” (0) if tissue was normal, (1) LSIL or (2) HSIL if it presented
precancerous lesions that could have malignant potential and (3) invasive squamous carcinoma
(Table 1).

Classes Number of Slides Number of Tiles
0 (Normal) 270 1923

1 (Low Grade) 288 1405
2 (High Grade) 238 1368
3 (Carcinoma) 219 1230

Total 1015 5926

Table 1: Dataset Summary

3.3 Weakly Supervised Dataset

The dataset was composed of 1015 WSIs acquired from 20 different centers in France at an average
resolution of 0.234 +/- 0.0086 mpp (40X). The slide resolution varied slightly due to the multicentric

Figure 2: Illustration of Uterine cervix dysplasia - [National Cancer Institute, 2011]
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provenance of the data. The class of the WSI corresponded to the class of the most severe lesions it
contained (grade from 0 to 3 also). All the native WSI formats were converted to pyramidal TIFF
(Tagged Image File Format). Both the WSI-level and tile-level labels have been attributed by a
consortium of expert pathologists (Table 1).

3.4 Misclassification Costs

Misclassification errors do not lead to equally serious consequences (i.e predicting a benign lesion if
it is cancerous is more serious than predicting a LSIL instead of a HSIL). Accordingly, a panel of
pathologists established a grading of each of these errors i.e they attributed to each pair of possible
outcome (i, j) ∈ {0, 1, 2, 3}2 a severity score 0 6 Ci,j 6 1 (Table 2)
The metric used in the challenge to evaluate and rank the submissions is computed from the average
of these misclassification costs.
More precisely, if we name P (S) the prediction of a slide S labelled l(S), the challenge metric MWA

is:

MWA =
1

N

∑
S

(1− Cl(S),P (S)) (1)

with N the number of samples.
The problem is thus framed as a cost-sensitive classification problem, and, to our knowledge, all
the winning solutions took awareness of this cost in their training procedure.

Ground Truth Benign (pred) Low-grade (pred) High-grade (pred) Carcinoma (pred)

Benign 0.0 0.1 0.7 1.0
Low-grade 0.1 0.0 0.3 0.7
High-grade 0.7 0.3 0.0 0.3
Carcinoma 1.0 0.7 0.3 0.0

Table 2: Weighted Accuracy Error Table - Error table to ponderate misclassification according to
their gap with the ground truth

4 Proposed Architecture

4.1 Multiple Instance Learning and Attention

In Multiple Instance Learning, we are given sets of samples Bk = {xi|i = 1 . . . Nk}, also called bags.
The annotation yk we are given refers only to the bags and not the individual samples. We assume
however, that such tile-level labels exist in principle, but that we just do not have access to them.
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The strategy is to first map each tile xi to its encoding zi, which is then mapped to a scalar
value ai, often referred to as attention score. The tile representations zi and attention scores ai are
then agglomerated to build the slide representation sk which is then further processed by a neural
network. The agglomeration can be based on tile selection [Campanella et al., 2019, Courtiol et al.,
2020], or on an attention mechanism [Ilse et al., 2018], which is today the most widely used strategy.

4.2 Self-Supervised Learning

Self-supervised learning provides a framework to train neural networks without human supervision.
The main goal of self-supervised learning is to learn to extract efficient features with inputs and
labels derived from the data itself using a pretext task. Many self-supervised approaches are based
on contrastive learning in the feature space. SimCLR, a simple framework relying on data aug-
mentation was introduced in [Chen et al., 2020]. Powerful feature representations are learned by
maximizing agreement between differently augmented views of the same data point via a contrastive
loss applied in the feature space.

An image is transformed through random data augmentations into two new images. They are
then embedded using the feature extractor. The two features vectors (zi and zj) are mapped with
a projection head (dense layers) to obtain final vectors hi and hj . The feature extractor and
projection head are trained to maximize agreement using the contrastive loss. Positive pairs consist
of the two augmented views of the same image, the other 2(n − 1) views play the role of negative
samples. The loss function (NT-Xent) for a positive pair (i, j) is defined as:

LSSL = −log exp(sim(hi, hj)/τ∑2n
k=1 1k 6=iexp(sim(hi, hj) τ

(2)

Where sim(u, v) = uT v
||u||·||v|| , the cosine similarity, 1k 6=i∈(0,1) determines if k 6= i and τ is a

parameter. After convergence, the projection head is discarded and the pretrained feature extractor
can be used for subsequent tasks.

4.3 Cost-Sensitive Training

Instead of the traditional cross-entropy loss we used a cost-aware classification loss, the Smooth-
One-Sided Regression Loss LSOSR. First introduced to train SVMs in [Tu and Lin, 2010], this
objective function was smoothed and adapted for backpropagation in deep networks in [Chung
et al., 2016]. When using this loss, the network is trained to predict the class-specific risk rather
than a posterior probability; the decision function chooses the class minimizing this risk.
The SOSR loss is defined as follows:

LSOSR =
∑
i

∑
j

ln(1 + exp(2i,j · (ĉi − Ci,j))) (3)
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With 2i,j = −1i6=j + 1i=j , ĉi the i-th coordinate of the network output and C the error table.

4.4 Mixed Supervision

To be tractable, training of attention-MIL architectures requires freezing the feature extractor
weights. While SSL allows the feature extractor to build meaningful representations [Saillard et al.,
2021, Dehaene et al., 2020], they are not specialized to the actual classification problems we try
to solve. Several studies have shown that such SSL models benefit from fine-tuning specific to the
downstream task [Chen et al., 2020]
We therefore added a training step to leverage the tile-level annotation and fine-tune the self-
supervised model. However, as the final WSI classification task is not identical to the tile classi-
fication task, we suspect that fine-tuning solely on the tile classification task may over-specialize
the feature extractor and thus sacrifice the generalizability of SSL (and for this reason ultimately
also degrading the WSI classification performances). To avoid this, we developed a training process
that optimizes the self-supervised and tile-classification objectives jointly.

Two different heads, plugged before the final classification layer, are used to compute both loss
functions LSSL and LSOSR The final objective L is then:

L = βLSSL + (1− β)LSOSR (4)

where β is a hyperparameter that has to be tuned. Here, we found β = 0.3 (see Supplementary).

5 Understanding the Feature Extractor with Activation

Maximization

To further understand the features learned by the different pre-training policies (ImageNet, super-
vised, SSL and mixed), we used Activation Maximization (AM) to visualize extracted features and
provide an explicit illustration of the specificity learned.
Methods to generate pseudo-images maximizing a feature activation have been introduced in [Er-
han et al., 2009]. This technique consists in synthesizing the images that will maximize one feature
activation. It is summarized as follow [Nguyen et al., 2019]:
If we consider a trained classifier with set of parameters θ that map an input image x ∈ Rh×w×c, (h
and w are the height and width and c the number of channels) to a probability distribution over
the classes, we can formulate the following optimization problem:

x∗ = arg max
x

(σl
i(θ, x)) (5)

where σl
i(θ, x) is the activation of the neuron i in a given layer l of the classifier. This formulation

being a non-convex problem, local maximum can be found by gradient ascent, using the following
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update step:

xt+1 = xt + ε
∂σl

i(θ, x)

∂xt
(6)

The optimization process starts with a randomly initialized image. After a few steps, it generates
an image which can help to understand what information is being captured by the feature. As we
try to visualize meaningful representations of the features, some regularization steps are applied to
the random noise input (random crop and rotations to generate more stable visualization, details
can be found in Supplementary Materials). To generate filter visualization within the HE space,
we transformed the RGB random image to HE input thanks to color deconvolution [Ruifrok and
Johnston, 2001]. This preprocessing allowed to generate images with histology-like colors when
converted back to the RGB space.
To select the most meaningful features for each class, we trained a Lasso classifier without bias to
classify the extracted feature vectors into the four classes of the dataset for the four pre-training
policies. The feature vectors for each tile were first normalized and divided element-wise by the
vector of features’ standard deviation across all the tiles. The L1 regularization factor λ was set to
0.01. Details about Lasso training can be found in Supplementary Materials. Contribution scores for
each feature were therefore derived from the weights of the Lasso linear classifier: negative weights
were removed and remaining positive weights were divided by their sum to obtain contribution scores
[0, 1]. By filtering out the negative weights, the contribution score corresponds to the proportion of
attribution among the features positively correlated to a class, and allows to select feature capturing
semantic information related to the class, leaving out those containing information for other classes.

6 Experimental Setting

6.1 WSI Preprocessing

Preprocessing on a downsampled version of the WSIs was applied to select only tissue area and
non-overlapping tiles of 224x224 pixels were extracted at a resolution of 1 mpp. (Details in Supple-
mentary Materials)

6.2 Data Splits for Cross-Validation

To measure the performances of our models we performed 3-fold cross-validation for all our training
settings. Because the annotated tiles used in our joint-optimization step were directly extracted from
the slides themselves, we carefully split the tiles such that tiles in different folds were guaranteed to
originate from different slides. The split divided the slides and tiles into a training set, a validation
set and a test set.
All subsequent performance results are then reported as the average and standard deviation of the
performance results on each of these 3 test folds.
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6.3 Feature Extractor Pre-Training

The feature extractor is initialized with pre-trained weights obtained with three distinct supervision
policies: fully supervised, self-supervised or a mix of supervision. These three policies rely on the
fine-tuning of a DenseNet121 [Huang et al., 2016], pretrained on ImageNet. The fully-supervised
archicture is fine-tuned solely on the tile classification task. The SSL architecture is derived from
SimCLR framework and is trained on an unlabeled dataset of 1 million tiles extracted from the
slides. Finally for the mixed-supervised architecture, a supervised branch is added to the previous
SSL network and trained using the mixed objective function (see Fig. 1 and Eq. 4) on the fully su-
pervised dataset. Technical details of these three training settings are available in the supplementary
material.

6.4 Whole Slide Classification

After tiling the slides, the frozen feature extractor (DenseNet121) was applied to extract meaningful
representations from the tiles. This feature extractor was initialized sequentially with the pre-trained
weights mentioned above and generated as many sets of features. These bags of features were
then used to train the Attention-MIL model with SOSR loss applied slide-wise. (Supplementary
Materials).

6.5 Feature Visualization

To select the most relevant features, we trained an unbiased linear model on the feature vectors
extracted from the annotated tiles. The feature vectors were standardised. The weights of the
linear model were used to determine which features were the most impactful for each class. Feature
visualizations were generated for the selected features and for each set of pre-trained weights. We
extracted the tiles expressing the most of these features by selecting the feature vectors with the
higher activation for the concerned feature. Implementation details are provided in Supplementary
Materials.

7 Results

7.1 Self-Supervised Fine-Tuning

We saved the checkpoints of the self-supervised feature extraction model at each epoch of training,
allowing us to investigate the amount of time needed to reach good WSI classification performances.
We computed the embeddings of the whole dataset with each of the checkpoints and trained a WSI
classifier from them. Figure 3 reports the performances of WSI classification models for each of
these checkpoints. SSL training led to a higher Weighted Accuracy than using ImageNet weights
after 3 epochs and resulted in a gain of +4.8% after 100 epochs. Interestingly, as little as 6 epochs
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of training are enough to gain 4% of Weighted Accuracy: a significant boost in performance is
possible with 50 GPU-hours of training. We then observe a small increase in performance until the
100th epochs.

Figure 3: Weighted Accuracy evolution - Weighted Accuracy evolution on WS classification
task with respect to the number of epochs of SSL training

7.2 Pre-Training Policy Comparison

To compare the weights obtained with the various supervision levels, we ran a 3-fold cross-validation
on the WS classification task and summarized the results in table 3. The results indicate that the
SSL pre-training substantially improves the WSI classification performance. In contrast, we see
that initializing the feature extractor with fully-supervised weights gives an equivalent or poorer
performance than any other initialization. SSL pre-training allows us to extract rich features that
are generic, yet still relevant to the dataset (unlike ImageNet). On the other hand, fully supervised
features are probably too specific and seem to not represent the full diversity of the image data.
The joint-optimization process manages to balance out generic and specialized features without
neutralizing them: mixing the supervision levels brings significant improvements (+2%) to the
performance, leading to a Weighted Accuracy of 0.945.
We additionally compared the benefits introduced by the cost-sensitive loss (Eq. 3) with the cross-
entropy loss. Our results show that with ImageNet weights the SOSR loss improves the Weighted
Accuracy by 1% and the accuracy by 3%.
In conclusion, the combination of the SSL pre-trained model, its fully supervised fine-tuning, and
the cost-sensitive loss leads to a notable improvement of 8 Weighted Accuracy points over the
baseline MIL-imagenet model.
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Accuracy SFP metric
imagenet+ce 0.758 +/- 0.034 0.865 +/- 0.023

imagenet+sors 0.787 +/- 0.032 0.877 +/- 0.029
supervised+sors 0.772 +/- 0.055 0.874 +/- 0.027

ssl+sors 0.803 +/- 0.016 0.925 +/- 0.006
mixed+sors 0.845 +/- 0.028 0.945 +/- 0.005

Table 3: Pre-training policies - Performances summary

7.3 Number of Annotations vs Number of Epochs

We have seen that both SSL and supervised pre-training bring together an improvement in the WSI
classification task. To further investigate the relationship between these two supervision regimes,
we trained models with only some of the fully supervised annotations (15, 65, 100%) on top of
intermediate SSL checkpoints. Results are reported in table 4.
It appears that without SSL pre-training (or with too few epochs of training), the supervised fine-
tuning does not bring additional improvement in WSI classification. This is in line with the work
of Chen et al. (Chen, Kornblith, Swersky, et al. 2020) that showed that an SSL model is up to 10x
more label efficient than a supervised one.
However, for the 100-epoch checkpoint, we observe an improvement of 2 points of the Weighted
Accuracy when using 100% of the tile annotations. Moreover, fine-tuning the models by mixed su-
pervision with too few annotations (15%) leads to a slight drop in WSI classification performances.
Finally, we see a diminution of the standard deviations across splits for the different pre-training
policies, showing better stability for longer SSL training and more annotations.

We draw different conclusions from these observations:

• In this context, it is always better to pre-train the feature extractor with SSL rather than
only invest in annotations.

• The supervised fine-tuning needs enough annotations to bring an improvement to the WSI
classification task. We can note however that even when considering the 100% annotation
settings, the supervised dataset (approx. 5000 images) is still rather small in comparison to
traditional image datasets.

• A full SSL training is mandatory to leverage this small amount of supervised data.

7.4 Features Visualisations

We generated the pseudo-images of the most important features for each class and each pre-training
policy and extracted the related tiles. The Figure 5 displays the most important features along with
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0 Annot.
∼1 Annot. / slide

(1015 tiles)
∼4 Annot. / slide

(3901 tiles)
∼6 Annot. / slide

(5926 tiles)
ImageNet (no SSL) 0,877 +/- 0.029 0.872 +/- 0.024 0.872 +/- 0.023 0,874 +/-0.027

SSL-epoch10 0,912 +/- 0.019 0,907+/- 0.024 0,903 +/- 0.029 0,916 +/- 0.019
SSL-epoch50 0,915 +/- 0.014 0,913 +/- 0.024 0,916 +/- 0.014 0,914 +/- 0.022
SLL-epoch100 0,925 +/- 0.006 0,916 +/- 0.010 0,921 +/- 0.010 0,945 +/- 0.005

Table 4: Relationship between self-supervision and full-supervision - Study on the perfor-
mance improvement on WS classification for different proportion of labelled data versus different
training time of SSL

the tiles activating each feature the most for the class “Normal” (0). Although interpretation of
such pseudo images must be treated carefully, we notice that the features obtained with SSL,
supervised and mixed training are indubitably more specialized to histological data than those ob-
tained with ImageNet. Some histological patterns, such as nuclei, squamous cells or basal layers
are clearly identifiable in the generated images. The extracted tiles are strongly correlated with
class-specific biomarkers. Feature e represents a normal squamous maturation, i.e. a layer of uni-
form and rounded basal cells, with slightly larger and bluer nuclei than mature cells. We can also
observe several layers of mature cells with small nuclei and moderately abundant cytoplasm (pink
halo around), equidistant from each other. Features c and d highlight clouds of small regular and
rounded nuclei (benign cytological signs). Feature g and h are characteristic of squamous cells
(polygonal shapes, stratified organization lying on a straight basal layer). Interestingly, features
extracted with the supervised method (g, h) manage to sketch a normal epithelium with high re-
semblance, the features are more precise. On the other hand, features extracted with SSL (c, d)
highlight true benign criteria but do not entirely summarize a normal epithelium (no basal matura-
tion). The mixed model displays both, suggesting that mixed supervision highlights pathologically
relevant patterns to a larger extent than the other regimes [WHO, 2020].
We can also note by looking at the real tiles that while features from ImageNet (a, b), SSL (c, d)
and the supervised model (g, h) focus on the upper half of the cervix epithelium, it appears that
features from the mixed supervision model (e, f) are focusing on the lower half which is known to
be the relevant region for discrimination between class Normal (0) and Low Grade (1) (abnormal
cells are constricted to the lower third of the epithelium).
In Figure 4 we can further identify class-related biomarkers for dysplasia and carcinoma grade. Tiles
with visible koilocytes (cells with a white halo around the nucleus) have been extracted from the top
features for Low Grade class. Koilocytes are symptomatic of infection by Human Papillomavirus
and are a key element for this diagnosis (almost always responsible for precancerous lesions in the
cervix, [WHO, 2020]). High Grade (2) generated image represents disorganised cells with a high
nuclear-to-cytoplasmic ratio, marked variations in size and shape and loss of polarity. For the class
“Carcinoma” (3), we observe irregular clusters of cohesive cells with very atypical nuclei, separated
by a fibrous texture that can be identified as stroma reaction. All these criteria have been identified
in [WHO, 2020] as key elements for diagnosis of dysplasia and invasive carcinoma.
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In Figure 6, we observe that features extracted from ImageNet and SSL models are diverse, in par-
ticular, features extracted from SSL reflect rich tissue phenotypes which correlates to their generic
capacities of image representations. On the other hand, features extracted with supervised and
mixed methods are more redundant. We additionally observe in Figure 6 that feature visualisation
from the mixed model picture realistic histopathological patterns specific to the class. Visualisation
for other classes are available in Supplementary Materials.

Normal
(0)

Low Grade
(1)

High Grade
(2)

Carcinoma
(3)

Figure 4: Feature comparison per class - The top row displays the top filter for the Mixed
Supervised model for each class. The bottom row displays the tile expressing the feature the most
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Figure 5: Feature Visualization - Top Features for class ”Normal” (0) and associated tiles
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Figure 6: Feature Diversity for the class ”Carcinoma” (3) (top 5 features) - Class ”Normal”
(0) and top 10 features in Supplementary Materials

8 Discussion

In pathology , expert annotations are usually hard to obtain. However, we are often in a situation
where a small proportion of labeled annotation exists but not in sufficient quantities to support
fully supervised techniques. Yet, even in small quantities, expert annotations carry meaningful
information that one could use to enforce biological context to deep learning models and make sure
that networks learn appropriate patterns. On the other hand, self-supervised methods have proven
their efficacy to extract generic features in the histopathological domain and their usefulness for
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downstream supervision tasks, even in the absence of massive ground truth data. Methods capable
of reconciling self-supervision with strong supervision can therefore be useful and open the door to
better performances.

In this paper, we presented a way to inject the fine-grained tile level information by fine-tuning
the feature extractor with a joint optimization process. This process allowed to mix self-supervised
learning features with tile classification ones and helped the downstream WSI classification task.

We applied our method to the TissueNet Challenge, a challenge for the automatic grading of
cervix cancer, that provided annotations at the slide and tile level, thus representing an appropriate
use case to validate our method of mixed supervision. We also propose in this study insights and
guidelines for the training of a WSI classifier in the presence of tile annotations.

First, we showed that SSL is always beneficial to our downstream WSI classification tasks.
Fine-tuning pre-trained weights with SSL for only 50 hours brings a 4% improvement over WSI
classification weighted accuracy, and near to 5% when fine-tuning for longer (100 epochs).

Second, a small set of annotated tiles can bring benefit to the WSI classification task, up to 2%
of weighted accuracy for a supervised dataset of around 5000 images.
Such a set of tiles can be obtained easily by asking the pathologist to select a few ROIs that guided
his decision while labeling the WSIs, which can be achieved without a strong time commitment.
However this boost in performance can be reached only if the feature extractor is pre-trained with
SSL, and for sufficiently long: SSL unlocks the supervised fine-tuning benefits.

To further understand the differences between the range of supervision used to extract tile fea-
tures, we conducted qualitative analysis on features visualizations by activation maximization and
observed that features obtained from SSL, supervised or mixed trainings were more relevant for
histological tasks and that class-discriminative patterns were indeed identified by the model. We
also observed that supervised training on the tiles alone led to much less diversity in the features
extracted by the model than the ones obtained with SSL.

The scope of this study contains by design three limitations. First, SSL models were trained by
fine-tuning already pre-trained weights on imagenet. This may explain the rapid convergence and
boost in performance observed; however it may also underestimate this boost if the SSL models
were trained from scratch. We did not compare SSL trained from scratch and fine-tuned SSL, and
left it to future work.

Second, all the conclusions reached are conditioned by the fact that we do not fine-tune the
feature extractor network during the WSI classification training. Keeping these weights frozen, and
even pre-computing the tiles representations brings a large computational benefit (both in memory
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and speed of computations), but prevents the feature extractor from specializing during the WSI
classification training.

Third, the tendency observed in table 4 of better performances correlated with larger numbers
of annotations is modest and would require more annotations to validate it.

Finally, our method can be improved in several ways. First, SimCLR, was a pioneer method
in self-supervised learning architecture and has proven to be efficient but it suffers from high per-
formance drop when decreasing the batch size [Chen et al., 2020]. Other SSL models have been
developed to alleviate this limitation. MoCo [He et al., 2020] actually propose a momentum mecha-
nism allowing optimal performances even without large batch size and therefore, numerous available
parallel GPUs. Other models like VICReg [Bardes et al., 2021] proposed techniques to maximize
the variance between the features and therefore limit their redundancies. It will be interesting
to benchmark these SSL variants with respect to their impact on WSI classification accuracy and
feature interpretability.

To conclude, we present a method that provides an interesting alternative to using full supervi-
sion, pre-training on unrelated data sets or self-supervision. We convincingly show that the learned
feature representations are both leading to higher performance and providing more intermediate
features that are more adapted to the problem and point to relevant cell and tissue phenotypes.
We expect that the mixed supervision will be adopted by the field and lead to better models.
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