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ABSTRACT

Context. Stellar activity limits the radial velocity (RV) search and characterisation of exoplanets, as it introduces spurious noise (called
jitter) in the data sets and prevents the correct retrieval of a planetary signal. This is key for M dwarfs, considering that they manifest
high activity levels and are primary targets for present and future searches of habitable Earth-like planets. To perform precise RV
measurements, multi-line numerical techniques like cross-correlation and least-squares deconvolution (LSD) are typically employed.
Aims. Effective filtering of activity is crucial to achieving the sensitivity required for small planet detections. Here we analyse the
impact of selecting different line lists for LSD on the dispersion in our RV data sets, to identify the line list that most effectively
reduces the jitter.
Methods. We employ optical spectropolarimetric observations of the active M dwarf EV Lac collected with ESPaDOnS and NARVAL,
and study two line down-selection approaches: a parametric method based on line properties (depth, wavelength, magnetic sensitivity)
and a randomised algorithm that samples the line combination space. We test the latter further to find the line list that singles out the
activity signal from other sources of noise, and on AD Leo and DS Leo to examine its consistency at mitigating jitter for different
activity levels. The analysis is complemented with planetary injection tests.
Results. The parametric selection yields a RV RMS reduction of less than 10%, while the randomised selection yields a systematic
improvement (>50%) regardless of the activity level of the star examined. Furthermore, if activity is the dominant source of noise,
this approach allows the construction of lists containing mainly activity-sensitive lines, which could be used to enhance the rotational
modulation of the resulting data sets and determine the stellar rotation period more robustly. Finally, the output line lists allow the
recovery of a synthetic planet (0.3–0.6 MJup on a 10 d orbit) in the presence of both moderate (20 m s−1 semi-amplitude) and high
(200 m s−1) activity levels, without substantially affecting the planet signal (between 60 and 120 m s−1).
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1. Introduction

The principal scientific objective of exoplanetary sciences is to
find and characterise habitable Earth-like planets, and then to
scrutinise their atmospheres and search for potential biomarkers;
it is the main driver for current space-based missions such as
TESS and CHEOPS (Ricker et al. 2015; Benz et al. 2021), and
for future ones like JWST, PLATO, and ARIEL (Gardner et al.
2006; Rauer et al. 2014; Tinetti et al. 2018) and ground-based
facilities like ESO ELT (Marconi et al. 2021). Radial velocity
(RV) measurements are fundamental to infer physical properties
such as mass and density of the planets detected by the transit
method, therefore providing a deeper characterisation.

The success of velocimetric surveys relies on the instrumen-
tal precision and on the ability of numerical techniques to remove
the effects of stellar activity from the data sets. Considering

that modern instruments such as ESPRESSO (Pepe et al. 2013)
and EXPRES (Jurgenson et al. 2016) reach a precision of a few
dozen cm s−1, just above the precision required for a habitable
Earth-like planet around a Sun-like star, the remaining funda-
mental limitation is the activity-induced variability (Meunier
2021). Stellar activity produces surface inhomogeneities that dis-
tort the spectral line profiles and result in spurious Doppler shifts
that reach a few m s−1 in solar-like stars (Dumusque et al. 2021);
(Collier Cameron et al. 2021) and over 1 km s−1 for young
(∼1 Myr) T Tauri stars (Donati et al. 2016). The RV signal of
a habitable Earth-like planet is consequently drowned and its
detection severely hampered.

M dwarfs are attractive targets for low-mass planet detec-
tions: they outnumber the other stars in the solar neighbourhood,
have high occurrence rates of Earth-like planets (Kopparapu
2013; Gaidos et al. 2016), and have closer habitable zones
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(implying magnified RV reflex motion and higher transit prob-
ability). Furthermore, because the habitable zone of M dwarfs
is more compact, the orbital period of a habitable planet can-
not be mistaken with long-term evolution of the stellar magnetic
cycle, contrarily to active Sun-like stars (Meunier et al. 2010).
However, M dwarfs exhibit high levels of activity that persist
on gigayear (Gyr) timescales (West et al. 2008), hence robust
activity-filtering techniques are essential to ensure precise RV
measurements and reliable planet detections.

Radial velocity measurements are commonly performed
with numerical techniques such as cross-correlation (Baranne
et al. 1996; Pepe et al. 2002), least-squares deconvolution
(LSD, Donati et al. 1997; Kochukhov et al. 2010), and least-
squares template matching (e.g. Anglada-Escudé & Butler 2012;
Astudillo-Defru et al. 2015; Zechmeister et al. 2018). The last
technique gives precise results for M dwarfs because it makes
use of a master spectrum template with high signal-to-noise ratio
(S/N) and with a richer RV content than a synthetic spectrum
with a lower number of absorption lines. However, both cross-
correlation and LSD produce a high S/N line profile from which
we can compute the FWHM and bisector. These are known to
correlate with stellar activity (Queloz et al. 2001; Boisse et al.
2009; Queloz et al. 2009) and can therefore be used to dis-
entangle activity signatures from genuine planetary signals. A
comparison of the performance between cross-correlation and
LSD will be investigated in a forthcoming paper (Bellotti et al.,
in prep.).

Dumusque (2018) and Cretignier et al. (2020) employed
the fact that spectral lines have different sensitivites to activity
(e.g. Davis et al. 2017; Lisogorskyi et al. 2019), and designed
a line-by-line RV extraction method for α Cen B with which
the activity signal is either enhanced or mitigated by a factor
of two. The precision with which to robustly identify individual
lines is limited by blends and photon noise, however, an aspect
that becomes more relevant when considering cooler stars since
they are fainter and feature dense spectra. To date, no line-by-line
method has been applied to M dwarfs in the visible domain as its
extension is not straightforward.

In this paper we analyse different line selection approaches to
build synthetic line lists (hereafter called masks) for LSD, with
the intention of developing a new activity-mitigating procedure
tailored for active M dwarfs observed in the optical. Its exten-
sion to the near-infrared regime is also planned (Bellotti et al.,
in prep.). We test a parametric selection based on line properties
(depth, wavelength, and magnetic sensitivity) and a randomised
selection that samples the line combination space. We assess the
extracted subsets of lines by looking at the resulting dispersion of
the RV data sets in order to find a mask that reduces the activity
jitter. Overall, our approach benefits from the multi-line nature
of LSD since it produces a high S/N profile cleared from line
blends.

The paper is structured as follows. In Sect. 2 we describe
the spectropolarimetric data sets that are used in this study. Sec-
tions 3 and 4 are respectively dedicated to the description of
the parametric and randomised selection used to create the line
subsets, and in Sect. 5 we present our conclusions.

2. Data sets

The analysis presented here focuses mainly on EV Lac (GJ
873), an active M 4.0 star whose magnetic field properties
have been extensively studied (e.g. Morin et al. 2008; Shulyak
et al. 2019). This star has a rotation period of 4.38 days and is

Fig. 1. Numerical mask generated with a LTE model atmosphere from
VALD showing atomic lines for M dwarfs such as EV Lac.

notoriously active, with an X-ray-to-bolometric luminosity ratio
(log(LX/Lbol)) of −3.10 (Wright et al. 2011) and a CaII H&K
chromospheric activity index (log R′HK) of −3.75 (Boro Saikia
et al. 2018; Noyes et al. 1984). The high activity level of EV
Lac makes it an optimal target for our study because it is the
dominant source of noise in the RV data sets and it allows us to
compare the performance of different line selection approaches.

We use 57 spectropolarimetric observations in the visible
collected between 2005 and 2016 with the twin spectropolarime-
ters ESPaDOnS on the 3.6 m Canada–France–Hawaii Telescope
(CFHT) located atop Mauna Kea in Hawaii, and NARVAL on the
2 m Télescope Bernard Lyot (TBL) at the Pic du Midi Observa-
tory in France (Donati 2003). The continuum normalised spectra
were retrieved from PolarBase (Petit et al. 2014).

We derived Stokes I (unpolarised) and V (circularly
polarised) profiles via LSD. This numerical technique combines
the information from thousands of spectral lines to obtain a
mean high S/N line profile (Donati et al. 1997; Kochukhov et al.
2010). With LSD the spectrum is regarded as the convolution
between a mean profile and a line mask; the latter is basically
a weighted Dirac comb reproducing the arrangement of lines in
the stellar spectrum with the associated wavelengths, depths, and
Landé factors (i.e. sensitivities to the Zeeman effect at a given
wavelength). Compared to cross-correlation, LSD removes the
auto-correlation function of the mask to provide a cleaner mean
profile.

For stars like EV Lac, we employed the same line mask
used in Morin et al. (2008). It is generated using the Vienna
Atomic Line Database (VALD) with a local thermodynamic
equilibrium model (Gustafsson et al. 2008) and corresponds to
Teff = 3500 K, log g = 5.0 [cm s−2], and vmicro = 2 km s−1, and
contains 4216 atomic lines in the range 350–1080 nm (Fig. 1)
with depths greater than 40% of the continuum level. The num-
ber of lines in the range used for our observations is 3300.
This is referred to as ‘full mask’ and the extracted subsets as
‘sub-masks’. To extract precise radial velocities, we note that an
empirical mask with a rich content of spectral lines is generally
used, rather then a synthetic one.

To compute the RV values, we simultaneously fitted a Voigt
function and a linear continuum to each Stokes I profile within
a ±20 km s−1 velocity interval from the profile centre. The addi-
tional linear continuum fit is a precaution to prevent biases of the
RV measurement due to an imperfect spectrum normalisation. In
addition, we computed the longitudinal magnetic field as

Bl [G] =
−2.14 × 1011

λ0geffc

∫
vV(v)dv∫

(Ic − I)dv
, (1)
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Fig. 2. Generalised Lomb-Scargle periodogram of the longitudinal
magnetic field of EV Lac, for the 2010 data set (20 observations). The
data set is preliminarily detrended with a quadratic fit in order to remove
long-term variations. The normalisation of the periodogram power and
the false alarm probability (FAP) levels are computed with the prescrip-
tion in Zechmeister & Kürster (2009). We find a significant (FAP<
0.011%) peak at a rotation period of 4.36 ± 0.05 d, which is consistent
with previous studies.

where λ0 and geff are respectively the normalisation wavelength
and Landé factor of the LSD profiles, Ic is the continuum level,
v is the radial velocity associated with a point in the spectral line
profile in the star’s rest frame, and c the speed of light in vac-
uum (Donati et al. 1997). The Bl measurements were performed
within a velocity interval of ±30 km s−1 to include the absorption
ranges of both Stokes I and V profiles.

The quantity Bl is a known magnetic activity tracer as its
temporal variation is modulated at the stellar rotation period.
Both Folsom et al. (2016) and Hébrard et al. (2016) showed that
it performs better than RVs, for example, at retrieving the stel-
lar rotation period, especially because it is not expected to be
influenced by the presence of a planet. We therefore carried out
a preliminary period analysis on the Bl 2010 data set using the
generalised Lomb-Scargle (GLS) periodogram (Zechmeister &
Kürster 2009; Czesla et al. 2019), and find a significant peak at a
rotation period of 4.36 ± 0.05 d (Fig. 2) consistent with previous
studies (e.g. Wright et al. 2011; Morin et al. 2008). This value is
used in the following analysis.

In the following sections, the performance of the sub-masks
is quantified primarily by the dispersion of the associated data
sets (for RV and Bl). We use ‘stable’ and ‘unstable’ to identify
sub-masks leading respectively to an improvement and a degra-
dation in RMS relative to the full mask case, respectively. We
also performed contemporaneous Monte Carlo simulations to
determine the RV precision associated with each sub-mask and
used it as a metric to discern whether the line selection is pho-
ton noise limited. More precisely, for each time series examined
we performed the following: (1) selected the spectrum corre-
sponding to the Stokes I profile with S/N closest to the S/N of
the median Stokes I profile, (2) injected white noise into the
spectrum in the form N(0, σi) (with σi the error bar for each
data point of the chosen spectrum), (3) applied LSD with the
examined sub-mask, and (4) measured RV. The RV RMS of 100
iterations is representative of the photon noise level associated
with the sub-mask. Given that spectra are collected individually,
it is not surprising that some estimates of the photon noise are

lower than the stability of the instrument (30 m s−1, Moutou et al.
2007).

3. Parametric selection

For this first approach the full mask was cleaned of lines close
to Hα or belonging to telluric windows in the ranges [627,632],
[655.5,657], [686,697], [716,734], [759,770], [813,835], and
[895,986] nm; hence, we conservatively used 3240 lines in total.
The RV time series obtained using the full mask and all the
observations has a RMS dispersion of 165 m s−1 and a RV
precision of 8 m s−1.

The line selection consists in splitting the full mask based
on the following line parameters: depth (d), wavelength (λ), and
Landé factor (geff). The parametric threshold is set so that the
S/N distribution of the observed Stokes V profiles for the two
sub-masks is compatible; this way we ensure the same S/N and a
consistent comparison of the effects of different sub-masks. For
each sub-mask, we perform a three-parameter (semi-amplitude
K, phase correction, and offset) Levenberg-Marquardt least-
squares sinusoidal fit to both the RV and Bl data sets, assuming
the stellar rotation period obtained in Sect. 2. The inclusion of
higher order harmonics of the stellar rotation period (Boisse et al.
2011) does not lead to a substantial improvement in the results
throughout. The results are illustrated in Fig. 3 and summarised
in Table 1 for different parametric selections.

3.1. Depth case

We selected lines with depths lower than 0.6, between 0.6 and
0.8, and larger than 0.8, resulting in three sub-masks of 926,
1231, and 1058 lines, respectively. For RV the RMS dispersion
is decreased only in the d > 0.8 case by 6%, while it is dete-
riorated by up to 25% in the other cases. The semi-amplitude
follows a similar trend, but with a more moderate deterioration
in the d < 0.6 case. Depending on the sub-mask considered, the
RV data sets show systematic shifts up to 100 m s−1 relative
to the full-mask data set, likely due to a different line sensi-
tivity to convective motions and corresponding velocity fields
(Gray 2005; Morgenthaler et al. 2012; Beeck et al. 2013; Meunier
et al. 2017). Another reason could be instrumental systematics
affecting specific spectral lines (Cretignier et al. 2021).

For Bl, no significant improvement in either RMS or semi-
amplitude is observed. The d < 0.6 case yields the least precise
estimates, resulting in deviant magnetic field measurements
(with respect to the full mask) and a poorer sinusoidal fit
(increased χ2

ν). This suggests that deeper lines have a stabilising
effect on the time series (also given their higher effective S/N) in
agreement with Reiners et al. (2016) and Cretignier et al. (2020).

3.2. Wavelength case

Activity signatures induced by spots are strongly chromatic
(Reiners et al. 2010), hence a wavelength selection may help
locate spectral regions with reduced RV dispersion. We select
lines with wavelength above and below 550 nm, resulting in two
sub-masks of 314 and 2872 lines, respectively. The RV values
exhibit a loss of precision up to 3.6% for both sub-masks, and
the Bl values feature a negligible <4% improvement in RMS only
when using red lines (>550 nm). Likewise, the semi-amplitude
of the sinusoidal fit for both quantities shows either a degrada-
tion or marginal improvement. We note that despite the different
number of lines in the sub-masks (due to the higher S/N in the
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Fig. 3. Comparison of RV and Bl data sets obtained with a parametric selection of sub-masks. Top: RV (left) and Bl (right) data sets obtained with a
depth selection. Middle: same, but with a wavelength selection. Bottom: same, but with a Landé factor selection. In all panels the black data points
correspond to either the RV or the Bl values obtained with the full mask, whereas the continuous lines represent the sinusoidal fit of the associated
data set. The mean of the data set is subtracted to allow a simpler comparison. For RV estimates, the error bars are set to 30 m s−1, as derived from
the telluric line-based wavelength calibration of the spectra (Moutou et al. 2007), which is greater than the photon noise for each of these data sets.
For Bl the formal uncertainties are used. The displayed data sets are 3σ clipped to prevent outliers from affecting the results. For Bl the densest
epoch (2010) is displayed.

red part of the spectrum) the RV and Bl estimates are highly
compatible with the full mask values.

3.3. Landé factor case

An additional line parameter to examine is the Landé factor, con-
sidering that Johns-Krull & Valenti (1996) reported measurable
Zeeman broadening in magnetic-sensitive optical lines for EV
Lac. We selected lines with geff above and below 1.2, result-
ing in two sub-masks of 1649 and 1495 lines, respectively. The
RV dispersion (semi-amplitude) shows a <10% (16%) improve-
ment when using magnetically insensitive lines and a 20% (21%)
degradation with the opposite sub-mask; the results for Bl are
similar to the full mask with a slight deterioration for both sub-
masks, and the values are reasonably consistent within the error
bars. We also tried using the product λ0 ·geff as selection criterion
to have a more accurate measure of the magnetic susceptibility,
but the result did not change.

3.4. Summary of parametric selection results

We also extended the initial mask to contain lines as shallow
as 10%. With 9470 lines in total, we applied similar parametric
thresholds (the depth case was modified to ensure same S/N) to
investigate any benefit of the substantial increase in the number
of lines. We found similar trends to the previous analysis, with
a general degradation of the precision and of Bl reliability, con-
firming that very shallow lines should be rejected when defining
line masks.

From the results of this first approach, we conclude that
building a sub-mask using a direct selection based on the line
parameters does not significantly reduce the effect of activity jit-
ter on RV measurements. A comparison between RV RMS and
precision indeed confirms that the dominant source of RV varia-
tion in the data sets is the activity jitter, which is unchanged and
one order of magnitude larger than photon noise regardless of
the line selection (see Table 1). The presence of RV shifts when
using different sub-masks emphasises the importance of always
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Table 1. Summary of the RV and Bl data set characteristics.

Selection nlines RMS Precision K χ2
ν RMSres

Radial velocity
[m s−1] [m s−1] [m s−1] [m s−1]

Full 3240 167 5 124± 26 23.2 140
d < 0.6 1058 208 22 147± 32 36.6 176

0.6< d < 0.8 926 183 10 141± 28 27.1 152
d > 0.8 1231 157 8 107± 25 22.0 136

λ> 550 nm 314 168 8 125± 26 23.6 141
λ< 550 nm 2872 173 7 121± 27 26.2 149
geff > 1.2 1649 199 8 149± 31 32.9 167
geff < 1.2 1495 151 7 104± 24 20.0 130

Longitudinal magnetic field
[G] [G] [G] [G]

Full 3240 133 . . . 158± 15 10.6 48
d < 0.6 1058 200 . . . 222± 26 30.9 82

0.6< d < 0.8 926 129 . . . 149± 16 12.7 53
d > 0.8 1231 152 . . . 190± 15 10.1 46

λ> 550 nm 314 128 . . . 148± 15 10.4 48
λ< 550 nm 2872 146 . . . 184± 15 11.6 50
geff > 1.2 1649 137 . . . 157± 17 14.8 55
geff < 1.2 1495 138 . . . 170± 14 8.9 51

Notes. The columns are: (1) parametric criteria used, (2) number of lines in the sub-mask, (3) RMS of the data set, (4) RV precision from the
MC simulations, (5) semi-amplitude of the sinusoidal fit to the data set, (6) reduced χ2 (three fit parameters and 57 observations for RV and 20
observations for Bl), and (7) RMS of the fit residuals. The reported values for Bl refer to the epoch with the most observations (2010), which was
used in Sect. 2, but the results are also analogous for 2007 (the second densest data set).

using the same mask for a RV time series (i.e. always excluding
lines that for some observations are blended with telluric lines
or fall outside the echelle order). Finally, this analysis confirms
the robustness of Bl because the measurements show a clear rota-
tional modulation and are all reasonably consistent, provided that
the mask contains deep lines.

4. Randomised selection

4.1. Basic principle

For the second selection approach, we applied a randomised
algorithm to extract the sub-mask minimising the RV disper-
sion, which is inspired by the line-by-line method developed in
Dumusque (2018). We cannot follow the same exact prescrip-
tion because a RV measurement on individual lines implies an
increase in photon noise, which becomes relevant in the optical
especially for M dwarfs. At the same time, the high density of
lines in the blue part of the spectrum makes their identification
more challenging.

The idea is to build sub-masks with a randomly sampled
number of lines (nsample) from the full mask, apply LSD, and
derive the RV time series. Because the number of line combina-
tions (i.e. sub-masks) is very large, we stop the iteration when
each line in the full mask has been drawn at least a certain
amount of times (nstop). An optimised exploration of the sub-
mask space is performed using nsample = 50 and nstop = 100 (see
Appendix A for more details), since ∼9000 sub-masks are exam-
ined on average and a lower nsample would inevitably deteriorate
the performance (Fig. A.1).

The RV dispersion associated with each sub-mask is the
criterion used to discriminate between stable and unstable

sub-masks (Fig. 4). From the RV RMS distribution, we isolate
three groups of stable sub-masks: those with RMS lower than
the 10th, 5th, and 1st percentile. For each group, we find the
maximum number of draws and we build a sub-mask with lines
drawn at least one-third of this maximum number ( fselect = 0.33,
see Appendix A). Finally, we obtain the RV time series from
these three sub-masks and determine the best according to the
associated RMS.

Overall, two caveats stem from the randomised nature of the
approach: each complete run corresponds to sampling a different
region of the sub-mask (i.e. line combination) space, and it is not
possible to predict exactly which of the three percentile-selected
sub-masks gives the lowest RMS. In our analysis we train the
best sub-mask on the data set from 2010 since it has the largest
number of observations (20), and because the activity signal is
expected to lose coherency over timescales longer than months.
Moreover, we do not remove lines in telluric windows from
the full mask, as in Sect. 3, to further check the reliability of
the extracted best sub-mask. The starting number of lines is
then 3300. The summary of the results for the analyses in the
following sections can be found in Table 2.

4.2. Training for stable lines

Figure 5 illustrates the output for an example run. The full mask
is associated with a RV RMS of 182 m s−1 and a semi-amplitude
of 175 m s−1 (after performing a sinusoidal fit similarly to
Sect. 3). The best sub-mask in this case is composed of 198
lines, none of which fall in the telluric windows, and yields a
∼63% reduction in the RV dispersion. Considering that a >50%
RMS improvement is consistently achieved for multiple runs, we
inspected the union of the output best sub-masks; in this case
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Table 2. Summary of all tests and simulations outlined in Sect. 4.

Case nlines RMS Precision K χ2
ν RMSres

[m s−1] [m s−1] [m s−1] [m s−1]

EV Lac

Full mask on 2010 3300 182 4 175 23.7 134
Example run 10th percentile on 2010 666 79 11 105 1.2 30
Example run 5th percentile on 2010 636 79 19 104 1.3 31
Example run 1st percentile on 2010 198 67 14 93 1.2 30
Union of best sub-masks on 2010 721 68 8 86 1.4 32
Full mask on 2007 3300 225 5 129 60 204
2010-trained best sub-mask on 2007 198 118 17 142 6.2 66
2007-trained best sub-mask on 2007 26 82 16 77 5.7 64
Full mask on 2006 3300 249 4 282 42.6 147
2006-trained best sub-mask on 2010 7 259 24 140 78.4 244
Full mask on all epochs 3300 242 5 101 62.7 231
Union of 2010-trained sub-masks on all epochs 721 69 7 96 15.2 113
2010-trained worst RMS-based sub-mask on 2010 83 13342 44 12718 1.3 × 105 10041
Full mask on 2010 (T) 3240 133 5 172 3.3 50
2010-trained worst RMS-based sub-mask on 2010 (T) 2117 255 28 326 26.7 142
2010-trained worst K-based sub-mask on 2010 (T) 2209 246 19 373 7.6 76

AD Leo

Full mask on 2008 3300 110 2 80 14.2 100
2008-trained best sub-mask on 2008 524 26 5 42 0.3 13
Union of EVLac-2010-trained best sub-masks on 2008 721 31 4 37 0.7 21

DS Leo

Full mask on 2008 3300 37 2 23 1.5 34
2008-trained best sub-mask on 2008 571 20 3 18 0.35 16
2008-trained worst RMS-based sub-mask on 2008 800 143 6 51 24.4 138
2008-trained worst K-based sub-mask on 2008 845 59 3 20 4.2 57
Full mask without worst RMS-based sub-mask on 2008 2500 29 2 29 0.64 22

Notes. The columns are: (1) specific (sub-)mask and epoch considered, (2) number of lines in the sub-mask, (3) RMS of the data set, (4) RV
precision from the MC simulations, (5) semi-amplitude of the sinusoidal fit to the data set, (6) reduced χ2, and (7) RMS of the fit residuals. The
symbol ‘T’ indicates that telluric windows are removed from the full mask. The number of observations for EV Lac are 20 in 2010, 15 in 2007, 7
in 2006; for AD Leo 14 in 2008; and for DS Leo 26 in 2008.
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Fig. 4. Distribution of the RV RMS associated with 9281 sub-masks of
an example run with nsample = 50 and nstop = 100. Each RMS value is
obtained after a 3σ clipping of the RV data set, which prevents out-
liers from contaminating the distinction between stable and unstable
sub-masks. The RMS values are sorted in ascending order and trun-
cated at 1 km s−1 for visualisation purposes (the maximum can reach up
to 100 km s−1). Shown are the 1st (black solid line) and 10th (dashed
black line) percentiles of the distribution.

the S/N of the computed Stokes profile would benefit from an
increased number of lines. We find that uniting two sub-masks
(721 lines in total) reduces the RMS by the same amount as the

individual sub-masks, and that only 4 lines (out of 60) within
the telluric windows are present in the sub-mask. Furthermore,
the semi-amplitude is decreased by 51%, as shown in Fig. 6,
reducing the RV modulation occurring at the stellar rotation
period, and the RV precision remains around 5 m s−1 despite the
smaller number of lines than the full mask. A visual comparison
of the depth, wavelength, and geff distributions between the full
mask and the best one does not reveal any particular trend (see
Appendix B). Therefore, no line feature can be used to single out
the best sub-mask directly, in agreement with the conclusions of
Sect. 3.

The purpose of the randomised approach is to train the best
sub-mask on the year with the largest number of observations,
and subsequently use it to reduce the RV dispersion of the time
series from other the epochs. We performed tests of the sub-
mask portability by using the 2010-trained sub-masks on the
2007 data set (detailed in Appendix A), and concluded that there
is approximately the same benefit as when applied to the 2010
data set.

We now compare the effects of using the 2007-trained best
sub-mask on the 2007 data set with respect to the 2010-trained
one. Starting from an initial 225 m s−1 dispersion, the two cases
yield a 64 and 48% reduction, respectively, indicating that the
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Fig. 5. Output from an example run of the randomised selection. Shown
are the 3σ clipped RV data sets computed using the full mask (black)
and the sub-masks associated with the 10th (light blue), 5th (dark blue),
and 1st (green) percentiles of the RV RMS distribution.
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Fig. 6. Phase-folded plot of the RV time series computed with the union
of two best sub-masks (721 lines). The RV RMS of the data set is
reduced by 63%, and the RV semi-amplitude by 51% relative to the
full mask case. The decreased residual scatter around the fit should be
noted.

benefit of the randomised approach is maximised when the data
set examined coincides with the training data set. Even so, apply-
ing the 2010-trained best sub-mask on the 2007 data leads to a
substantial improvement.

When the training is applied to a less-than-ideal data set
(i.e. with few and sparse observations), the portability of our
approach is compromised. We indeed tested the randomised
algorithm on the 2006 observations (seven in total), and obtained
a sub-mask yielding an impressive 73% improvement of the
dispersion (from 249 to 67 m s−1). However, when the same
sub-mask was applied to the 2010 data set, we observed a severe
degradation (42%) of the RV RMS. At the same time, using this
sub-mask is no longer relevant, as it contained only seven lines.
The photon noise in this case is increased by six times relative
to the full mask. Finally, when all epochs were considered, the
application of the 2010-trained best sub-mask led to a consistent
RMS improvement of 45% (from 242 to 134 m s−1).

Overall, because the RMS is blind to the source of dis-
persion, its systematic improvement does not imply that the
stable lines extracted by our randomised approach are restricted
to those insensitive to activity. Telluric windows, instrumental
errors (e.g. bad spectral orders), possible errors in the line list,
or specific combinations of lines all introduce scatter to some
degree, and are thus filtered out with our algorithm. This is
noticeable when all observations are considered. In this case the
activity signal has lost coherency; thus, if the algorithm removes
activity-sensitive lines only, using our sub-mask would be less
beneficial.
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Fig. 7. Comparison of the GLS periodograms when using two differ-
ent masks. Top: GLS periodogram of the EV Lac 2010 RV data set
obtained with the full mask. Bottom: same, but using the 2010-trained
best sub-mask. The significance of the peak at the stellar rotation period
decreases in the latter case, confirming the mitigating benefit of using
the sub-mask derived from the randomised selection. There is a peak at
30 d showing an increase in power when the best sub-mask is applied.
A period analysis of the window function (VanderPlas 2018) reveals
that the peak is most likely due to the observing span (∼2 months) and
cadence of the 2010 data set.

An additional way to show the mitigating effect of the
2010-trained best sub-mask is to inspect its impact on the GLS
periodogram of the RV data sets, as illustrated in Fig. 7. We
note that the power (i.e. significance) of the peak associated
with the stellar rotation period decreases of ∼0.1, implying that
the corresponding activity signal is reduced. This feature occurs
systematically also in the 2007 and full data sets when the
2010-trained best sub-mask is employed.

4.3. Training for unstable lines

We implement the randomised algorithm to work in the oppo-
site direction, i.e. to isolate spectral lines that are susceptible
to dispersive sources. If activity-sensitive lines are selected,
the output data set could feature an enhanced modulation of
the activity signal, therefore providing a more precise measure-
ment of the stellar rotation period (useful for stellar physics and
gyrochronology) and the possibility to model and filter the jitter
efficiently.
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The difference with respect to the previous training is that the
sub-masks are generated considering the 90th, 95th, and 99th
percentile of the RV RMS distribution. Because the sub-mask
exploration given by the choice (nsample, nstop) = (50,100) also
leads to line combinations with extreme RV RMS values (i.e. on
>km s−1 levels, see Fig. 4), the three sub-masks associated with
these percentiles will inevitably contain a low number of lines
(<10) if built using fselect = 0.33, as for the stable lines. There-
fore, we require that the number of draws to keep the line is at
least one-tenth of the maximum number of draws for the per-
centile ( fselect = 0.1). Finally, from each of the three sub-masks
we remove the lines that are shared with the sub-masks obtained
from the 10th, 5th, and 1st percentiles to additionally deteriorate
the resulting RV dispersion.

The result is illustrated in Fig. 8. The worst sub-mask has
83 lines and the associated RV dispersion is increased from
182 to 13342 m s−1 (i.e. by 73 times). The measurements do
not manifest an evident rotational modulation and span extreme
values between −40 and 9 km s−1, resulting in an artificially
high RV semi-amplitude. Likewise, the union of the worst sub-
masks from different runs of the algorithm does not yield useful
insights.

We repeated the test, but cleaning the full mask of lines
falling within telluric windows, similarly to the procedure
described in Sect. 3. In this case the algorithm produces a sub-
mask of 2117 lines and with a corresponding RMS of 255 m s−1

(Fig. 8), 1.9 times larger than the initial value without telluric
windows (133 m s−1). The photon noise level is nine times lower
than the RV RMS and seven times larger than when using the full
mask, which could be due to a poorer modelling of the Stokes
I profile when distorted and unstable lines are searched. Com-
pared to the full mask, no evident trend is displayed in the depth,
wavelength, and geff distributions (see Appendix B). Contrary to
when the telluric windows are present, the RV data set shows
a clearer rotational modulation, meaning that the worst sub-
mask may contain more activity-sensitive lines. This indicates
the severe additional contamination that lines in telluric windows
(or residuals from telluric correction) introduce when coexisting
with the activity jitter as dispersion sources. In that scenario our
algorithm does not precisely identify the most activity-impacted
lines.

We tested whether a different sub-mask selection criterion
can improve the extraction of activity-sensitive lines. Instead of
using the RV RMS, which does not distinguish random noise
from a coherent signal, we select based on the semi-amplitude
of the sinusoidal fit of the RV data set, exploiting the modulated
nature of the activity signal. In this case, the two-step algo-
rithm performs a Levenberg-Marquardt least-squares sinusoidal
fit for the RV data set corresponding to a generated sub-mask.
The output sub-mask is then based on the distribution of K and
should contain lines that are more sensitive to stellar activity
than other dispersive sources. The output RV data set features
a semi-amplitude increase from 172 to 373 m s−1, a visible rota-
tional modulation and a reduced scatter around the sinusoidal
fit (Fig. 8), and a photon noise 13 times lower than the RMS,
suggesting that the algorithm most likely isolates lines that are
mainly sensitive to activity.

Lastly, shallow or low S/N lines at the bluest and reddest
boundaries of the full mask may represent a possible source of
confusion as they might bias the selection of the sub-mask and
pollute the resulting RV dispersion measurement. We therefore
discarded lines with effective S/N (i.e. S/N multiplied by nor-
malised depth) lower than ten and repeated the test: no improve-
ment was recorded for the identification of the worst sub-mask,
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Fig. 8. Phase-folded plot of the 2010 RV time series of EV Lac
computed with: the worst RMS-based sub-mask including telluric win-
dows (top), the worst RMS-based sub-mask discarding telluric windows
(middle), and the worst K-based sub-mask discarding telluric win-
dows (bottom). The symbol “T” indicates that the telluric windows are
removed from the start. The first case demonstrates how lines falling
in telluric windows severely contaminate the RV measurements and
thus prevent a precise selection of the worst sub-mask. The second
case illustrates the improvement in finding the worst sub-mask contain-
ing activity-sensitive lines, providing a clear rotational modulation of
the data set. The third case shows how selecting the sub-masks based
on the RV semi-amplitude, i.e. a feature that is directly connected to
activity, yields the most precise selection of activity-sensitive lines. The
sinusoidal fit in each panel is computed analogously to Fig. 6.

and the resulting RV dispersion increased even further. This is
explained considering that the bluest lines (∼400 nm) are deep,
and thus less likely to be affected by velocity fields (as we dis-
cussed in Sect. 3.1). In this sense, their presence stabilises the
results as indicated by a lower RV RMS of the data set. The
presence (or absence) of the reddest lines (∼1000 nm) has no
significant impact on the results since their number is negligible
(<20).

4.4. Training on other stars

We examine the efficiency and consistency of the randomised
approach on the active M3 dwarf AD Leo (GJ 388) and the
moderately active M1 dwarf DS Leo (GJ 410). AD Leo has a
reported rotation period of 2.24 days (Morin et al. 2008), approx-
imately half of the EV Lac period, and is slightly less active,
with LX/Lbol = −3.62 (0.5 dex less; Wright et al. 2011) and
log R′HK = −4.00 (0.25 dex less; Boro Saikia et al. 2018). AD
Leo is seen almost pole-on, and therefore the activity jitter is
more moderate than for EV Lac. Instead, DS Leo is a slower
rotator, with a period of 13.83 days (Hébrard et al. 2016), and
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Fig. 9. Phase-folded plot of the 2008 RV time series (26 observa-
tions) of DS Leo computed with (from top to bottom) the full mask
including telluric windows, the 2008-trained best sub-mask, the worst
RMS-based sub-mask, and the worst K-based sub-mask. A stellar rota-
tion period of 13.57 ± 0.04 d was used, computed via GLS periodogram,
as described in Sect. 2. Second panel: remarkable reduction of both
the RV dispersion and semi-amplitude, reaching the instrumental lim-
itation of NARVAL (∼30 m s−1). The third and fourth panels display
an RMS-based selection that is affected by different sources of disper-
sion (telluric contamination in particular) and an ineffective K-based
selection following the low level of activity of the star, respectively.

is the least active: LX/Lbol = −3.80 (0.7 dex less than EV Lac)
and log R′HK = −4.16 (0.41 dex less than EV Lac). Therefore,
activity is not the dominant source of variability for DS Leo. For
the AD Leo and DS Leo analyses we did not remove the telluric
windows from the initial mask.

For AD Leo we trained the best sub-mask on 14 optical
observations collected in 2008. The RV dispersion of the data
set computed with the full mask is 110 m s−1, while our approach
allows us to reach 26 m s−1 (76% improvement), which is close to
the instrumental stability of NARVAL (∼30 m s−1, Moutou et al.
2007). In comparison, applying the 2010-trained best sub-mask
obtained for EV Lac results in a 66% decrease in RMS, which
extends the portability of the sub-mask trained for EV Lac to
other active stars, and suggests that stars with similar properties
(e.g. comparable spectral type, activity level) and atmospheres
have similar stable lines. When searching for the maximum

benefit overall, the sub-mask training should be performed on
the densest data set of each star separately.

For DS Leo we applied the randomised approach on 26 opti-
cal observations collected in early 2008 (Fig. 9). Starting from a
RV dispersion of 37 m s−1 and semi-amplitude of 23 m s−1 asso-
ciated with the full mask, the 2008-trained best sub-mask yields
a 46 and 22% reduction, respectively, reaching again the instru-
mental stability of NARVAL. This confirms that our approach
is able to mitigate dispersion also on moderately active stars,
where the contribution of telluric-affected lines is more impor-
tant than EV Lac and AD Leo. In comparison to Hébrard et al.
(2016), who employed HARPS-pol observations and Doppler
mapping as the activity-filtering technique, our values of 20 and
18 m s−1 for dispersion and semi-amplitude are a factor of 2.5
and 1.2 higher, respectively. The possibility of combining our
randomised line selection with Doppler mapping represents an
appealing perspective (Bellotti et al., in prep.).

We also attempted to isolate activity-sensitive lines using
both an RMS and a semi-amplitude selection criterion. As DS
Leo is less active than EV Lac, the randomised algorithm should
in principle be less confused by the coexistence of different
sources of noise. The results of the RMS-based selection are
analogous although less extreme than EV Lac: the RV disper-
sion is amplified by a factor of 3.9 and there is no clear rotational
modulation. The K-based selection increases the RMS by 1.5
and does not affect the semi-amplitude of the fit, as expected
given the lower activity level. Moreover, an inspection of the
RMS-based worst sub-mask content reveals that about 20 lines
fall within telluric windows, at least ten lines more than when
the randomised approach is applied on EV Lac. This further
demonstrates that the randomised algorithm is capable of bet-
ter discerning the sources of RV noise. Finally, we removed the
800 lines of the worst RMS-based sub-mask from the full mask
(using 2500 lines in total), and note a 24% improvement in RV
dispersion and a degradation of 30% in semi-amplitude, indicat-
ing that the best sub-mask training alone is already optimal, and
yields a substantial improvement.

4.5. Training with injected planets

We now investigate the application of the randomised algorithm
when a synthetic planetary signal is included in the RV data sets.
We carried out planetary recovery tests for both EV Lac and DS
Leo in order to study the detectability over two different activity
regimes.

The planet injection was applied to all the collected spectra
using

RVp = Kp sin
(
2π

(
t − T0

Porb

)
+ φ

)
, (2)

where we fixed T0 = 2 450 000, φ= 0.0, Porb = 10 d, and we
assumed circular orbits. This value of orbital period is chosen
since it is different enough from the rotation period of the stars,
and short enough to be clearly detected in all data sets. We
considered three planets separately with a 2σNARVAL, 3σNARVAL,
and 4σNARVAL signal (1σNARVAL= 30 m s−1, i.e. the intrinsic
stability of NARVAL), and corresponding to 0.3–0.6 MJup and
0.4–0.9 MJup planets for EV Lac and DS Leo, respectively.
We note that the telluric contamination is not represented
realistically in these simulations as the whole wavelength axis
is coherently shifted during injection. However, this limitation
is only marginal considering the negligible planet-induced shift
compared to the displacement of telluric lines with respect to
stellar lines throughout a year.
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Table 3. Results of the planetary injection tests for EV Lac and DS Leo.

Case nlines RMS K χ2
ν RMSres Kres χ2

ν,res GLS power
[m s−1] [m s−1] [m s−1] [m s−1]

EV Lac

Full mask with 2σNARVAL planet 3300 244 96± 45 64.7 234 90± 41 59.2 0.08
Full mask with 2σNARVAL planet (T) 3240 169 120± 27 24.8 145 53± 28 23.2 0.07
10th percentile with 2σNARVAL planet 1133 139 99± 23 16.7 119 42± 22 15.6 0.06
5th percentile with 2σNARVAL planet 385 131 88± 21 15.4 114 44± 22 14.3 0.08
1st percentile with 2σNARVAL planet 58 121 77± 22 13.9 108 37± 22 13.1 0.05
Full mask with 3σNARVAL planet 3300 248 95± 46 66.9 238 108± 41 59.1 0.12
Full mask with 3σNARVAL planet (T) 3240 174 117± 28 27.0 151 82± 28 23.1 0.14
10th percentile with 3σNARVAL planet 1133 144 97± 23 15.6 125 71± 23 15.6 0.16
5th percentile with 3σNARVAL planet 385 136 85± 22 17.3 121 73± 23 14.2 0.18
1st percentile with 3σNARVAL planet 58 126 67± 22 16.0 116 59± 23 14.0 0.13
Full mask with 4σNARVAL planet 3300 253 92± 47 70.1 244 131± 41 59.0 0.16
Full mask with 4σNARVAL planet (T) 3240 180 115± 30 30.1 160 111± 28 23.1 0.23
10th percentile with 4σNARVAL planet 1133 151 94± 23 21.4 134 101± 25 15.6 0.27
5th percentile with 4σNARVAL planet 385 144 82± 22 20.2 131 102± 25 14.2 0.29
1st percentile with 4σNARVAL planet 58 134 62± 22 18.9 126 88± 26 14.3 0.24

DS Leo

Full mask with 2σNARVAL planet 3300 75 26± 11 6.1 73 52± 9 4.4 0.27
Full mask with 2σNARVAL planet (T) 3240 57 20± 8 3.6 55 58± 6 1.5 0.59
10th percentile with 2σNARVAL planet 631 55 19± 8 3.3 53 53± 5 1.5 0.55
5th percentile with 2σNARVAL planet 396 54 19± 8 3.2 52 51± 5 1.5 0.52
1st percentile with 2σNARVAL planet 566 50 18± 7 2.7 48 44± 5 1.4 0.47
Full mask with 3σNARVAL planet 3300 149 30± 22 25.3 148 105± 18 18.5 0.27
Full mask with 3σNARVAL planet (T) 3240 76 27± 11 6.3 74 86± 5 1.6 0.74
10th percentile with 3σNARVAL planet 631 73 26± 10 5.8 71 81± 5 1.6 0.72
5th percentile with 3σNARVAL planet 396 72 26± 10 5.6 69 79± 5 1.7 0.71
1st percentile with 3σNARVAL planet 566 67 23± 10 4.9 65 72± 5 1.6 0.68
Full mask with 4σNARVAL planet 3300 106 41± 15 12.1 102 108± 9 4.8 0.60
Full mask with 4σNARVAL planet (T) 3240 97 35± 14 10.1 93 114± 6 1.8 0.82
10th percentile with 4σNARVAL planet 631 93 34± 13 9.3 90 109± 6 1.8 0.80
5th percentile with 4σNARVAL planet 396 92 34± 13 9.1 88 106± 6 1.9 0.72
1st percentile with 4σNARVAL planet 566 85 28± 13 8.0 83 99± 6 1.7 0.79

Notes. The columns are: (1) specific (sub-)mask considered, (2) number of lines in the sub-mask, (3) RMS of the data set, (4) semi-amplitude
of the sinusoidal fit to the data set (phased at the stellar rotation period), (5) reduced χ2, (6) RMS of the fit residuals, (7) semi-amplitude of the
residuals (phased at the injected orbital period), (8) reduced χ2 of the residual sinusoidal fit, and (9) power of the injected Porb peak when a GLS
is applied on the residual data set. We consider a 2σNARVAL, 3σNARVAL, and 4σNARVAL circular planet on a 10 d orbit separately and train the best
sub-masks on the densest epochs. The sub-masks are then used on the full time series for both stars. The symbol ‘T’ indicates that the telluric
windows are removed from the full mask. Formal uncertainties for the semi-amplitude are reported.

The training of the best sub-masks is performed on the
injected spectra of the densest year for the two stars, analogously
to the previous sections. The three percentile best sub-masks are
then applied to the full time series comprising 57 and 93 obser-
vations spanning 2005–2016 and 2006–2014 for EV Lac and DS
Leo, respectively. Using the full time series allows us to have
a time span that is more representative of a RV planet search,
with an expected loss of coherency of the activity signal, but the
sampling is not optimal, therefore hindering our planetary signal
retrieval. The results for the two stars are summarised in Table 3;
the RV precision is not reported since in all cases it is compatible
with the values in Table 2 for each star.

For EV Lac, the dispersion of the RV data set computed with
the full mask is 8σNARVAL, hence no injected planetary signal
is detectable. The application of the three percentile best sub-
masks enables the signal to emerge instead. Compared to the full
mask, for which there is more variability, the sub-mask cases

feature a >43% decrease in RMS, translating in a more con-
strained model (sinusoidal fit at the stellar rotation period), and
therefore cleaner RV residuals. This is confirmed by the system-
atic reduction in χ2

ν , even though its absolute estimate suggests
that our method does not account entirely for the random activity.
We also apply a GLS periodogram to the residuals and find that
the power of the 10 d period peak increases (more significantly
in the 4σNARVAL case) when the sub-masks are used (Fig. 10).
By re-phasing the RV residuals with Porb, we indeed reveal the
expected planetary modulation (Fig. 11) and we extract a semi-
amplitude, which is lower but consistent with the injected value
within the uncertainties. Moreover, we observe that the best (i.e.
lowest RMS) of the three percentile sub-mask is also the one that
removes the planetary signal the most (with K residuals reduced
by at least 30%). This indicates a possible trade-off in the choice
of the percentile sub-mask, which should be considered on a
case-by-case basis.
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Fig. 10. GLS periodograms of the full RV time series for EV Lac.
Top: periodogram of the data set obtained with the full mask and a
2σNARVAL injected planet. Middle: periodograms of the residuals (of a
sinusoidal fit at the stellar rotation period) obtained with the three 2010-
trained percentile sub-masks and a 2σNARVAL injected planet. Bottom:
Periodograms of the residuals (of a sinusoidal fit at the stellar rotation
period) obtained with the three 2010-trained percentile sub-masks and
a 4σNARVAL injected planet. In each panel the stellar rotation period and
injected planetary period are indicated by a dotted and solid red line,
respectively. When the 2010-trained sub-masks are used a systematic
quench of the peak is observed at the stellar rotation period and the rise
in the peak is seen at the injected orbital period as the mass of the planet
increases. In the 2σNARVAL case the planetary peak is not distinguishable
because the dispersion is still twice as large while in the 4σNARVAL case
the peak becomes the highest one (with FAP> 1%).

For DS Leo, the results are analogous and complementary
to EV Lac since we recover all planetary signals within the
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Fig. 11. Phase-folded RV data sets of EV Lac when using the full mask
and the 10th, 5th, and 1st percentile sub-masks on all the epochs with
a 2σNARVAL synthetic planet (red dashed line). The raw RV data sets
phased at the stellar rotation period (upper panel) and the residuals
to the sinusoidal fit phased at the planet orbital period (bottom panel)
are illustrated. The planetary signal is clearly recovered when using
the three percentile sub-masks, whereas the variability of the data set
associated with the full mask does not enable a reliable recovery.
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Fig. 12. Same as Fig. 11, but for DS Leo. No substantial difference is
observed between using the full mask or the three percentile sub-masks,
meaning that the planetary signal is recovered with the same confidence.

error bars (Fig. 12). With a lower activity level the improve-
ment represented by using the three percentile sub-masks is
only marginal, and the semi-amplitude of the corresponding RV
residuals is consistent with the estimate of the full mask (less
than 24% in all cases). This reinforces our finding that the ran-
domised line down-selection does not significantly suppress the
planetary signal with respect to the full mask. Similarly to EV
Lac, we also observe that the lowest-RMS percentile sub-mask
underestimates the retrieved semi-amplitude.

Removing the telluric windows from the start has a bene-
ficial effect for the full mask (see Table 3) since the overall
dispersion of the data set is decreased. In comparison, the out-
put percentile sub-masks lead to both a lower dispersion and a
more constrained sinusoidal fit of the RV residuals, quantified
by a lower χ2

ν value (especially for EV Lac). We also observe
similar periodogram powers at the injected Porb, both with the
telluric-removed full mask and with the three sub-masks, further
indicating the our method discerns planetary signals.
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We performed a similar analysis considering only the two
densest epochs for each star (2007 and 2010 for EV Lac, and
2008 and 2010 for DS Leo). The idea was to exploit the increased
coherence of the activity signal and obtain two separate and
improved sinusoidal fits at the stellar rotation period. We com-
bined the respective residuals into a single data set and examined
its periodic content analogously to the full time series case (GLS
periodogram and re-phasing at Porb). For EV Lac, the results
with the sub-masks show no substantial change, while for DS
Leo we underestimate the retrieved planetary semi-amplitude in
a systematic way, probably following the low activity level of the
star and thus the absence of a dominant signal to filter out.

The overall positive outcome of the planetary injection tests
demonstrates that our randomised approach is capable of finding
the least dispersive lines without prior information on telluric
windows, while preserving the planetary signal. This is espe-
cially important in view of near-infrared RV planet searches,
as an accurate telluric correction in this domain is notoriously
challenging (Artigau et al. 2014).

5. Conclusions

We carried out a study of the effects of different line masks for
least-squares deconvolution on the dispersion of RV data sets
with the intent to build a mask that mitigates the effects of activ-
ity jitter. This is of particular importance for M dwarfs, given
their notoriously high activity levels, and their key role in future
small planet searches. Our method benefits from the multi-line
nature of LSD since it results in a high S/N profile cleaned from
line blends, and it is designed for highly dense spectra, for which
the identification of individual activity-sensitive lines is more
complicated.

We analysed two distinct line selection approaches for the
active M dwarf EV Lac: a parametric method and a randomised
method. With the parametric selection we chose spectral lines
directly based on their depth, wavelength, or magnetic sen-
sitivity, while for the randomised selection we employed an
algorithm that examines several combinations of lines and iden-
tifies those that minimise the RV dispersion. We also tested
whether the algorithm works in the opposite direction, whether
it can identify sub-masks containing lines affected by activ-
ity, telluric lines, and other dispersive sources. The algorithm
was applied to another active star (AD Leo) and a moderately
active star (DS Leo) to validate its portability to different tar-
gets. Finally, the analysis was completed with planetary signal
recovery tests for EV Lac and DS Leo. Our conclusions are
summarised as follows:
1. A straightforward parametric selection is not sufficient to

build a sub-mask to mitigate activity, as we report no signif-
icant reduction in the RV RMS of the resulting data sets. At
the same time, regardless of the parametric selections exam-
ined, the estimates of the longitudinal magnetic field are
retrieved consistently, demonstrating its reliability as mag-
netic activity tracer and the benefit of extracting information
from circularly polarised starlight. We note that the full
width at half maximum of high-geff lines can still be used to
monitor the activity modulation on very active stars (Klein
et al. 2021).

2. The randomised approach allows us to generate a sub-mask
with an associated 63% decrease in RV RMS. The sub-mask
is trained on 2010 (the densest data set), but provides system-
atic RV RMS reduction when applied to 2007 (48%) and the
full time series (45%). The added benefit is the absence of

lines falling within telluric windows (without imposing a pri-
ori information) and leading to excessive dispersion, which
will be particularly helpful to compensate telluric correction
in the near-infrared.

3. The improvement of the 2010-trained best sub-mask of EV
Lac can be transferred directly to another active star such
as AD Leo, therefore extending the portability and possibly
suggesting the definition of generally stable sub-mask. This
is likely the consequence of similar properties between the
stars (e.g. activity level, chemical composition, and spectral
type). At the same time, a remarkable and efficient reduction
in RV dispersion (and semi-amplitude) is achieved when the
sub-mask training is applied directly on the star of interest,
demonstrating the consistency of our randomised approach.

4. The coexistence of multiple sources of noise such as high
activity and telluric residuals impedes the randomised algo-
rithm from robustly identifying unstable sub-masks contain-
ing activity-sensitive lines only, which can potentially be
used to model and filter out the activity jitter. The situation
improves when lines within telluric windows are removed
from the start or when a RV semi-amplitude selection cri-
terion is employed since an evident rotational modulation at
the stellar rotation period (typical of the activity signal) is
present in both cases.

5. The planetary injection tests are successful for both EV
Lac and DS Leo activity regimes. In the case of a high
activity level, the sub-masks built with the randomised algo-
rithm allow the RV variability to be reduced, and therefore
simplify the planetary signal recovery, while there is no sub-
stantial difference between using the trained sub-masks and
the full mask for lower activity levels. In either case, the
algorithm is capable of preserving the planetary signal, with
only a marginal degradation in semi-amplitude.

The main goal of our activity-mitigating method is to increase
the sensitivity toward the detection of small planets in the hab-
itable zone of M dwarfs. In a forthcoming paper (Bellotti et al.,
in prep.) we will extend the analysis to the near-infrared regime
and investigate the integration of the sub-mask optimal extrac-
tion with previous modelling and filtering techniques such as
Doppler imaging, Zeeman-Doppler imaging, and Gaussian pro-
cess regression (Donati et al. 2016; Hébrard et al. 2016; Yu et al.
2017; Haywood et al. 2014).
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Appendix A: Control variables of the randomised
approach

In this section we investigate the optimal control variables of
the randomised approach, namely the number of sampled lines
(nsample) and the number of times each line has to be drawn for
the algorithm to stop (nstop). The purpose is to find a sweet spot
between the achievable reduction of RV dispersion and the num-
ber of lines in the sub-mask (nlines) and still obtain a moderate
S/N improvement in the final LSD profile.

We consider a grid of (nsample, nstop) combinations for the
following cases: nsample=[20, 50, 100, 200, 500, 1000, 2000]
and nstop=[10, 20, 50, 100]. For each value of nsample we apply
the randomised approach with nstop=100 to obtain the largest
sample of sub-masks or, equivalently, to explore the largest
region of line combination space. Then, because the nstop=100
run contains the lower nstop cases by construction, we simply
extract the corresponding sub-masks. This procedure enables us
to save computational time and ensure consistency when com-
paring results given a certain nsample. The number of sub-masks
examined for the grid are reported in Table A.1.

Given that our randomised algorithm examines the 1st, 5th,
and 10th percentiles of the RV RMS distribution to build the
final sub-masks (see Sect. 4), the output of the simulation grid
is threefold, as illustrated in Fig. A.1. In all cases, the number
of lines in the sub-mask decreases systematically with a smaller
number of samples (i.e. lower nsample), while it is not affected by
nstop. The RV RMS correlates mainly with the number of sam-
pled lines, reaching a minimum at nsample=50 and rising again
for nsample=20, presumably due to the photon noise contribution
when a small number of lines is used. The RMS also improves
with increasing nstop until it stabilises between nstop = 50 and
100. Combining these features, we are able to locate the opti-
mised control variables at (nsample, nstop) = (50, 100), ensuring a
dense and statistically robust exploration of the sub-mask space.
A visual inspection of the Stokes I profiles resulting from the
best sub-masks of the grid reveals that our algorithm identifies
deep and sharp lines reliably when nsample is decreased, which
further validates our optimisation. From Fig. A.1 we note that the
output of our randomised algorithm can be strategically adapted
according to the S/N tolerance of the observations: the best sub-
mask is chosen based on the number of lines (hence, S/N) and
on achievable RV precision.

Appendix A.1. Portability to other epochs

The simulated grid of sub-masks enables us to test their porta-
bility to other epochs in which the star has been observed. In
particular, we examine whether the RV RMS improvement asso-
ciated with each sub-mask can be transferred to the 2007 time
series (15 observations) by performing LSD on this data set with
the 2010-trained sub-masks of the grid. We then compute the
RMS improvement ratio between 2007 and 2010, as shown in
Fig. A.2. Except for a few outliers, indicating sub-masks with
a predominant benefit for a certain year, we observe a general
ratio close to 1.0, demonstrating that the RMS improvement is
the same for both years. Furthermore, we note the absence of
outliers when nstop is large, confirming our previous choice of
nstop=100.

Appendix A.2. Selection of the best sub-masks

In our randomised algorithm, the stable sub-masks are isolated
based on the 10th, 5th, and 1st percentiles of the RV RMS

Table A.1. Number of sub-masks examined for each (nsample,
nstop) combination of the simulation grid.

nsample 20 50 100 200 500 1000 2000
nstop
10 3918 1689 857 394 161 72 34
20 6448 2504 1389 715 244 116 54
50 13464 5295 2588 1342 521 233 108
100 23208 9281 4549 2345 880 447 200

distribution. Then the three final sub-masks (one for each per-
centile) are built including lines that are drawn at least a fraction
(fselect) of the maximum number of draws for the specific per-
centile. The variable fselect is therefore an additional value to
be optimised, as it determines the number of lines in the best
sub-mask and affects the achievable RV precision.

The simulation tests for (nsample, nstop) were performed
with fselect=0.5. Here, we start from the optimised (nsample,
nstop)=(50,100) run and compare the results using fselect=0.25,
0.33, and 0.5. From Fig. A.3, we realise that fselect=0.5 is a
strong constraint, given that we obtain a similar RV RMS for
the other two cases, but with a smaller number of lines. Instead,
the fselect=0.25 is a weak constraint, yielding a deterioration
in both RMS and semi-amplitude; this is evident with addi-
tional runs of the randomised algorithm. We therefore conclude
that fselect=0.33 is the appropriate value to obtain a substan-
tial improvement in RMS while maintaining a moderately large
number of lines in the final sub-masks.

Selecting lines for the three percentile sub-masks based on
a fraction of the maximum number of draws (for that per-
centile) may lead to a lower number of lines, for example in
the 5th percentile relative to the 1st. In fact, if only a few sub-
masks fall below the 1st percentile of the RV RMS distribution,
the maximum number of draws will inevitably be small, and
consequently more lines will be selected in the corresponding
percentile sub-mask.

Finally, we tested an alternative method of building the three
percentile sub-masks and using them in LSD. Instead of reject-
ing lines that do not satisfy the constraint imposed by fselect,
we kept all the lines of the sub-masks within one percentile
and employed the number of draws as an additional weight in
the LSD computation. More precisely, to compute the Stokes
I profile, each line in the mask is weighted based on depth
(Kochukhov et al. 2010)

wI =
d
dn
, (A.1)

where dn is the normalisation depth (used to ensure wI = 1).
We therefore updated Eq.A.1 by multiplying it by the number
of draws. We found a systematic deterioration in both RMS and
semi-amplitude for all three percentile sub-masks, relative to the
fselect=0.33 case, of about 20-30%.
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Fig. A.1. Optimisation of the randomised algorithm control variables. The simulation grid for each (nsample, nstop) combination is shown, with data
points coded by colour and size according to the RV RMS and number of lines within the sub-mask, respectively. The optimised (nsample, nstop) pair
is (50, 100), ensuring both a precise RV data set and a dense exploration of the sub-mask space. The panels from left to right illustrate the 10th,
5th, and 1st percentile case.

Fig. A.2. Testing the portability of the 2010-trained sub-masks to the 2007 data set of EV Lac, for the simulated grid of (nsample, nstop) combinations.
Almost all the sub-masks yield the same RV RMS improvement for both 2007 and 2010 (i.e. the improvement ratio is close to 1), demonstrating
the portability of the randomised approach output beyond the training year. In a few cases the improvement ratio is either greater or lower than
one, meaning that the benefit of the sub-mask is greater for 2007 or 2010, respectively. The panels from left to right illustrate the 10th, 5th, and 1st
percentile case.
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Fig. A.3. Test of the fselect variable in the randomised algorithm, i.e.
the fraction determining the number of draws each line must have to be
included in the three percentile sub-masks. From top to bottom: Using
the full mask, fselect=0.5 sub-mask, fselect=0.33, and fselect=0.25. All the
fselect cases refer to the 1st percentile sub-mask, as the other percentiles
show deteriorated but analogous features. In each panel the solid line
indicates the sinusoidal fit at the period found in Sect. 2. We observe
that fselect=0.33 is the best trade-off between number of lines included
and achievable RV RMS.
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Appendix B: Properties of the trained masks

We compare the distributions of the line parameters for three
different masks: the full mask without telluric windows a pri-
ori (3240 lines), the 2010-trained union of best sub-masks (721
lines), and the 2010-trained worst RMS-based sub-mask without
telluric windows a priori (2117 lines). The training refers to the
2010 data set of EV Lac with the randomised approach.

Figure B.1 illustrates the distributions of line depth, wave-
length, and Landé factor for the three masks. The depth distri-
bution for the full mask spans between 0.4 and 1.0 times the con-
tinuum intensity, with one-third of the lines are deeper than 0.9
and with a mean of 0.73. The wavelength distribution features
an almost exponential decay from 350 to 1080 nm and a mean of
433.1 nm, while the geff distribution ranges between 0.0 and 3.4,
with a mean of 1.25 and two peaks at 1.0 and 1.5.

Apart from the different number of lines in the bins due
to our randomised down-selection approach, the other two sub-
masks do not feature particular trends or quantitative differences
in the statistics, implying that it is not possible to straightfor-
wardly build stable or unstable sub-masks with a selection based
on these parameters.

Despite the absence of a particular feature in the distribu-
tions, the effects on Stokes I profiles of these masks are striking.
From Fig. B.2 we observe how the union of the best sub-masks
leads to deeper and narrower profiles than the full mask, which
would result in a more precise RV estimate. On the contrary, the
application of the worst sub-mask yields shallow and distorted
profiles, therefore increasing the dispersion of the associated RV
data set. These features help us demonstrate further the capabil-
ity of our algorithm to discern stable and unstable lines.

Fig. B.1. Distributions of the line parameters for three examined masks: the full mask without telluric windows a priori (top row), union of best
sub-masks (central row), and 2010-trained worst RMS-based sub-mask without telluric windows a priori (bottom row). The parameters shown
are (from left to right) depth, wavelength, and Landé factor. The statistics (mean, median, and standard deviation) of the depth distributions is
(µ=0.73, µ̃=0.74, σ=0.19), (µ=0.72, µ̃=0.72, σ=0.18), and (µ=0.71, µ̃=0.71, σ=0.19) for the three masks, respectively. Analogously, the wavelength
distribution statistics (in nm) is (µ=433.1, µ̃=401.2, σ=97.9), (µ=454.6, µ̃=424.3, σ=88.9), and (µ=435.9, µ̃=412.3, σ=75.8) and the geff statistics is
(µ=1.25, µ̃=1.21, σ=0.41), (µ=1.27, µ̃=1.24, σ=0.42), and (µ=1.26, µ̃=1.22, σ=0.41).
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Fig. B.2. Time series of the Stokes I profiles for the 2010 observations of EV Lac computed with (Left) the full mask without telluric window a
priori, (Middle) union of the 2010-trained best sub-masks, and (Right) the 2010-trained worst RMS-based sub-mask without telluric windows a
priori. The Stokes profiles are shifted vertically for visibility, and sorted by ascending observation date. An increased sharpness can be observed
when the union of best sub-masks is used, and a broad, distorted profile when the worst sub-mask is used, implying the presence of stable and
unstable lines in the sub-masks, respectively.
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