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Measuring dependence among random variables can be an important aspect of empirical data analysis and, statistical modeling and inference. Our recent proposal of a generalization of well-known Pearson's correlation coefficient for measuring non-linear dependencies is reviewed.

We emphasize that if one wants to have a general measure of degree of dependence then, ideally, the conceptual definition of the Pearson's correlation coefficient should be followed. It is expressed as a ratio of dependence of interest to full linear dependence, in terms of Euclidean type distances among probability distributions/densities. A generalization of it should use a well-behaved distance among probability distributions/densities, such as a metric in the continuum of them, along with consideration of non-linear dependencies. We have proposed to use socalled Hellinger distance metric for the purpose. Along with some future research directions, we discuss some of the advantages of our proposed general measure. Here the discussion is without any mathematical details, thus reaching a wider readership. Our objective is to present some arguments of how to measure dependencies generally, and to make some remarks on our generalization, that may lead to new turns in the research directions of the dependence measures in the future.

INTRODUCTION

Measuring dependence or association among various random quantities (i.e., variables) is prime importance in the disciplines of statistics and numerous other subject domains such as biology, economics, etc. where various types of data analyses are done nowadays. These associations are often fundamental for more elaborate theories in respective fields, therefore accurate measuring of them is often needed. Note that we use the terms dependency, dependence, association and relationship interchangeably. As shown in [START_REF] Kinney | Equitability, Mutual Information, and Maximal Information Coefficient[END_REF], one of the basic yet unresolved problems in statistics is how to quantify any kind of association between two continuous random variables from finite data on them. When the dependencies are linear then the task is rather easy, due to the availability such measures as so-called Pearson's correlation co-efficient (r for short).

And another measure called Spearman's rank correlation coefficient is capable of measuring any monotonic dependence between two random variables. For binary variables, odd ratio and f-coefficient (that is r for the context) are the classical measures. And for any two ordinal random variables a measure called Cramer's V-statistic is widely used, whereas another measure that is called Tchuprow's T-statistic is less-known for the purpose, therefore less often used, as shown in Bergsma (2013). Furthermore, there are many other kinds of dependence measures and methods used in statistical literature, especially in applied statistical and data analyses. In statistical genetics for evaluation of linkage disequilibrium between genetic markers, [START_REF] Sabatti | Measuring dependency with volume tests[END_REF] uses volume tests that are discussed in [START_REF] Diaconis | Testing for independence in a two-way table: new interpretations of Chi-square statistics[END_REF] as a measure of dependence between ordinal variables with fixed margins. For massive datasets [START_REF] Sugiyama | Measuring Statistical Dependence via the Mutual Information Dimension[END_REF] use mutual information dimension that is defined in terms of information dimension descried in [START_REF] Renyi | Probability Theory[END_REF]. Another measure called mutual information that is based on wellknown Kullback-Leibler divergence (see [START_REF] Kullback | On information and sufficiency[END_REF] is popular among computer science community, however generally it does not act as a degree of dependence always, as shown in [START_REF] Studeny | The Multi-information Function as a Tool for Measuring Stochastic Dependence[END_REF]. In fact, there is a huge literature on dependence measures prior to the year 2000 and thereafter also, it is even accumulating at a faster rate. This means that there are a lot of measures available for the task of measuring dependence between random variables, but no perfect measure has been found so far, especially for measuring any type of non-linear dependence.

Currently massive data are common in many subject domains where dependence among random variables can be complex and varied. Then, the user may be interested in finding any type of relationships among variables too, not just linear ones. Addressing such needs, recently in [START_REF] Reshef | Detecting Novel Associations in Large Datasets[END_REF] a measure called Maximal Information Coefficient (MIC for short) is proposed and it is preliminary aimed at applying for data sets with large number of variables where many types of dependency patterns, whether linear or non-linear, are possible. Though some of the statistical researchers welcomed the measure, for e.g., in [START_REF] Speed | A Correlation for the 21st Century[END_REF], some of the others have criticized it for low statistical power, through some simulation studies, for e.g., in a personal communication by Simon and Tibshirani. Therein they have proposed so-called distance correlation that is defined in [START_REF] Szekely | Measuring and Testing Dependence by Correlation of Distances[END_REF] as a better measure for non-linear dependencies. And another criticism for MIC is found in [START_REF] Kinney | Equitability, Mutual Information, and Maximal Information Coefficient[END_REF] where it is shown that it has low statistical power compared to some information theoretic measures such as mutual information and it is shown that it possesses no "equitability" property that is emphasized in [START_REF] Reshef | Detecting Novel Associations in Large Datasets[END_REF]. However, many applied researchers have adopted the MIC in their research with high dimensional data. Some of the computational issues of evaluation of MIC is addressed in [START_REF] Zhang | A Novel Algorithm for the Precise Calculation of the Maximum Information Coefficient[END_REF].

The distance correlation is accepted more by the statistical community due to its attractive statistical properties. And in fact, in [START_REF] Szekely | Measuring and Testing Dependence by Correlation of Distances[END_REF] it is claimed that it is a "true" dependence measure analogous to r and it can be applied as an index of dependence between two variables. In this measure, it is used distance between two characteristic functions of the two joint probability distributions/densities of two random variables, one representing the dependence of interest between them and the other when their independence is assumed. As we see later, distances between probability distributions/densities or their characteristic functions is fundamental for defining accurate measures of dependence.

Extending the scope of distance correlation, it is used to measure autocorrelation in time series data in [START_REF] Zhou | Measuring Non-linear Dependence in Time Series, a Distance Correlation Approach[END_REF]. Unlike usual autocorrelation that is based on the r, distance correlation-based autocorrelation is zero if and only if the time series has only independent observations. Note that the r becomes zero when conditional mean of one of the variables is constant given the other, even if the conditional variances differ, or in general, conditional probability distributions differ. This is a basic observation in building time series volatility models such as general autoregressive heteroscedastic (GARCH) models.

It is interesting to note that, in [START_REF] Balakrishnan | A bias-correction for Cramer's V and Tschuprow's T[END_REF] it is said that "although it is customary in bivariate data analysis to compute a correlation measure of some sort, one number (or index) alone can never fully reveal the nature of dependence; hence a variety of measures are needed". Therein, it is also stated that "if (two variables are) not totally dependent, then it may be helpful to find some quantities that can measure the strength or degree of dependence between them". This shows that how the research on finding dependence measures has failed to come up with an accurate measure, at least until the year of publication of this reference, that can find the true degree of dependence of any type of bivariate dependence.

However recently in [START_REF] Wijayatunga | A Geometric View on Pearson's Correlation Coefficient and a Generalization of It to Non-linear Dependencies[END_REF], we have proposed a measure that can do this task to a greater extent. In the following we review this recent proposal that is a generalization of the Pearson's correlation coefficient r for any non-linear association between two discrete variables. In fact, our idea in this paper is to make clear about our arguments of building measures of dependence and to make some remarks on our proposal. This may lead to new turns in the research directions of the measures of statistical dependence. However, we avoid mathematical details on the subject, thus reaching a wider readership who are interested in using measures for evaluating dependencies among random variables.

GENERALIZATION OF PEARSON'S CORRELATION COEFFICIENT FOR DISCRETE VARIABLES

As said earlier, extending the discussion of finding accurate measures of dependence, recently in [START_REF] Wijayatunga | A Geometric View on Pearson's Correlation Coefficient and a Generalization of It to Non-linear Dependencies[END_REF] we have developed a measure that can indicate "the" degree or strength of association of any type between two discrete variables. Though it is only applicable for discrete variables it can also be used for continuous variables after discretization of them, whenever possible. However, any discretization can cause some information loss and furthermore, it is often not straightforward to perform a discretization. Note that one can perform a discretization by minimizing an appropriate cost/lost function or similar, depending on the context of the problem. However, nowadays discretization can be done fairly easily and efficiently due to some software facilities.

Our measure can be seen as a generalization of the Pearson's correlation coefficient r using a suitable distance metric among the joint probability distributions, instead of simple Euclidean-type distances that are used in the Pearson's correlation coefficient. Given the joint probability distribution of two discrete variables X and Y, say, 𝑃(𝑋, 𝑌) the degree or strength or index of dependence between them is expressed as normalized distance between the joint probability distribution of them and that of when the independence of the two variables is assumed, i.e., 𝑃 ' (𝑋, 𝑌) = 𝑃(𝑋)𝑃(𝑌) where 𝑃(𝑋) and 𝑃(𝑌) are the marginal probability distributions of X and Y respectively.

The associated normalizing constant is geometric mean of distances between the latter and all possible joint probability distributions where full dependence between the two variables is assumed while retaining marginal distribution of each variable at a time. These latter distances are in fact maximal distances since we obtain them by assuming full dependence. Note that one needs deduce all possible maximal dependencies empirically or similarly from the observed dependence.

Let 𝑃 ) (𝑋, 𝑌) and 𝑃 * (𝑋, 𝑌) be the joint probability distributions of X of Y when the marginal probability of X and Y are preserved respectively, and let 𝐻(𝑃, 𝑄) be a distance metric between two probability distributions P and Q, such as Hellinger distance metric, then the degree of dependence between X and Y, say, 𝐷𝐷(𝑋, 𝑌) is defined as 𝐷𝐷(𝑋, 𝑌) = 𝐻(𝑃 ' (𝑋, 𝑌), 𝑃(𝑋, 𝑌)) {𝐻(𝑃 ' (𝑋, 𝑌), 𝑃 ) (𝑋, 𝑌))} 0/23 {𝐻(𝑃 ' (𝑋, 𝑌), 𝑃 * (𝑋, 𝑌))} 0/24 where a is the number of distinct joint probability distributions of X and Y representing maximal dependence between them, when marginal distribution of X is preserved, and b is that of Y. Note that this definition is slightly different from that is presented in [START_REF] Wijayatunga | A Geometric View on Pearson's Correlation Coefficient and a Generalization of It to Non-linear Dependencies[END_REF]. And normalizing constant is selected following the conceptual definition of the r. In fact, we have shown that the r is a normalized, a Euclidean-type distance between the probability distribution representing the dependence of interest and that when independence between the two random variables concerned are assumed. The normalizing constant is the geometric mean of the two maximal distances, each between a maximal linear dependence and the independence. Note that there exist at most two maximal linear dependencies between two random variables; each one is when the marginal distribution of one variable is replaced by that of the other. And we have shown that such Euclidean-type distances are only capable of measuring linear dependences accurately. Therefore, we have argued that, if a suitable distance measure, ideally a distance metric in the simplex/continuum of the joint probability distributions/densities of two variables is used then one may be able to measure "the degree" of dependence of any type between the two variables. In fact, distances between probability distributions/densities have been used for measuring dependences previously in [START_REF] Wijayatunga | Appraisal of Companies with Bayesian Networks[END_REF] and also in [START_REF] Granger | A Dependence Metric for Possibly Nonlinear Processes[END_REF] independently, but without any normalization, therefore not giving an index of dependence. And our proposal was to use a distance metric such as socalled Hellinger distance that can "identify" any type of non-linear dependence.

SOME REMARKS ON THE MEASURE AND FUTURE

RESEARCH

The measure has few advantages that are discussed here shortly. Some of the ideas presented here are our current research and each of them needs empirical evaluations or theoretical proofs or both depending on the nature of it.

Since our measure is a generalization of r, essentially it is having a direct relationship with the latter. Note that this aspect is emphasized in literature as one of the axioms of the measures of dependence. One important concept that is trivial in r is that if one wants to have an index of dependence for a certain desired dependence then ideally it should be expressed relative to the corresponding maximal dependence. In r it is the full linear dependence that is considered as the maximal dependence. Therein, the dependences are quantified in terms of certain Euclidean type distances where there are at most two maximal linear dependencies between two random variables, in terms of their joint probability distributions. So, if one wants to consider any non-linear dependence then it needs to count all possible maximal dependencies each preserving either of the marginal distributions. Note that any such maximal dependency should be ideally deduced empirically, perhaps with some subjective knowledge on the application domain. Due to such deductions the numerical evaluation of the measure can be computational.

And the second advantage is that the user has the flexibility of selection of desired distance metric for defining the dependence measure. In fact, any dependence measure can be dependent on the metric that is used to define it, meaning that there may not be any absolute measures. Note that, for e.g., an exception where we have no distance measures for defining the dependence measure is the case of odds ratio for binary variables. And it is yet to prove that if there exists a one-to-one relationship between any given two measures that are based on two different distance metrics. Ideally this should hold for at least for selected distance metrics. And furthermore, in the case of the linear dependencies it is interesting to see that which metric gives the closest measure to r, at least numerically.

And thirdly, the user can have freedom to select the number of maximal dependencies, so that the numerical estimate of the measure is a sufficient approximation. For e.g., one may eliminate highly improbable maximal dependencies perhaps based on some subjective knowledge of the application domain. Furthermore, if one wants to have maximum of one maximal dependence that preserves the respective marginal distribution, but there exists few of them with different likelihoods, then weighted average of all those maximal distances can be used, such that the weights representing likelihoods of them.

However, numerical evaluation of our measure is not always easy manually, even in case of basic definition of it. Therefore, currently we are planning to provide software implementations of the measure for different data contexts, that can be used relatively easily. Of course, if one needs to have some flexibility for numerical evaluation of the measure for any data context of interest then it requires software implementations that select appropriate choices.

And most important aspect of our measure is that it can be used for dynamically arising data such as streaming or online data, by some updating mechanism that combines new observations with old ones on the two variables. That is, when new data are available on the two variables one does not need to re-calculate measure for the whole set of data once again, but update the numerical estimate that is obtained from the old data, for the new data. This rather easy since our measure is defined in terms of probability distributions, so value of the measure for both old and new observations can be evaluated when probability distributions obtained for old observations are updated for new observation. However, such updating schemes should be based on appropriate weighting of observations, subjective or objective. Our current research is based on these extensions and development of related statistical theory.

CONCLUSION

We have discussed a measure of degree of dependence, proposed in [START_REF] Wijayatunga | A Geometric View on Pearson's Correlation Coefficient and a Generalization of It to Non-linear Dependencies[END_REF], for measuring any type of dependence between two discrete random variables, that is a generalization of the Pearson's correlation coefficient r for any non-linear dependency between them.

Currently, application of it for continuous variables requires discretization of them first. If one wants to have a measure degree of dependence for any non-linear dependency then ideally it can be defined as a ratio between current dependency of interest and the assumed maximal dependency, in terms of certain well-behaved distance among the probability distributions/densities. This is exactly following the conceptual definition of the Pearson's correlation coefficient r where Euclidean-type distances among probability distributions are used. It is limited to measuring linear dependencies since the nature of the distances used and also the considered maximal dependency is only linear. So, a generalization of it can be done if a general distance among probability distributions/densities such as a distance metric is used, along with consideration of non-linear dependencies. However, derived measure can be dependent on the distance metric that is used. In fact, it seems that there does not exit absolute measures of dependences but they are dependent on the distances among probability distributions/densities being used. One exception of this is the odds ratio for two binary variables.

Importantly, we have shown some advantages of our proposed measure. We believe that our arguments and remarks presented here lead to new turns in the research directions of the measures of dependence in the future. The idea of the paper to communicate these ideas to a wider audience, therefore we have avoided any mathematical details on the subject, which are beyond the scope of this paper. Reader is referred to [START_REF] Wijayatunga | A Geometric View on Pearson's Correlation Coefficient and a Generalization of It to Non-linear Dependencies[END_REF] for mathematical details.