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Abstract—The SIMD paradigm (Single Instruction on Multiple
Data) is implemented in almost all today’s processors in the
form of units with large registers and arithmetic execution units
operating on them. Traditional SIMD instruction sets like SSE,
AVX and AVX-512 on x86 architectures or NEON on Arm
architectures have fixed size register widths (or vector lengths):
128-bit for SSE and NEON, 256-bit for AVX, and 512-bit for
AVX-512. To vectorize a code, the easiest solution is to rely on
automatic vectorization provided by compilers. Porting a code to
a different SIMD unit only requires to recompile it. However, in
many cases, like the Seismic Spectral-Element kernel considered
in this study, compilers are not able to efficiently vectorize the
code and developers may consider using compiler intrinsics for
explicit vectorization. In this case, the developer has to rewrite
his code for each targeted SIMD instruction set, which hinders
maintainability and portability.

The Arm SVE (Scalable Vector Extension) SIMD instruction
set brings a different programming model called Vector-Length
Agnostic (VLA) to address these limitations. It allows to decouple
the vectorized code from the underlying SVE implementation. An
SVE implementation may have 128-bit or n×128-bit registers, up
to 2048-bit. The same SVE instruction may operate on a register
independently of its length. Thus the same code will run on all
SVE architectures without recompilation.

In this paper, we study the vectorization of a Seismic Spectral-
Element kernel using NEON and SVE intrinsics to illustrate the
differences and the difficulties of porting a code to the VLA
programming model. Several libraries address the problem of
portability between fixed-size SIMD instruction sets but depend
on the knowledge of the vector length at compile time and thus
do not support VLA instruction sets like SVE. We propose to use
the NSIMD library, which supports both paradigms, to create a
single vectorized code for both instruction sets.

Keywords—SIMD;NEON/SVE;SEM.

I. INTRODUCTION

SIMD units are available on almost all current processors
under several different names: SSE, AVX and AVX-512 on
x86 architecture, NEON and SVE [1] on Arm, VMX and
VSX on Power. Each of these units has different instruction
sets operating on different numbers of registers with different
vector lengths. SSE, NEON, VMX and VSX have 128-bit
registers, but SSE has only 16 registers on x86-64 (only
8 on 32-bit x86), NEON 32 registers on AARCH64 (only

16 on AARCH32), VMX 32 and VSX 64 registers. On the
same architecture, processors with a given SIMD instruction
set are backward compatible with previous SIMD instruction
sets. For example, a processor with AVX-512 also supports
SSE and AVX instruction sets. Thus, a binary compiled for
a given SIMD instruction set is not able to take advantage
of a more recent one. The SVE instruction set is designed
to solve this portability problem across Arm architectures.
The main idea is to decouple the instruction set from the
vector length. This approach is called VLA which stands
for Vector-Length Agnostic. Depending on the performance
requirement for a given platform, for example embedded or
HPC, it is possible to implement SVE with 128-bit registers,
or a multiple of 128 up to 2048-bit registers. The instruction
set and the number of registers (32 general + 16 predicate
registers) remains the same. Note that the vector length may be
also decoupled from the length of the execution units (ALUs
and FPUs). For example, a processor implementing a 512-bit
SVE unit will have 512-bit registers but may only have 128-bit
execution units operating sequentially on each quarter of the
register. Using 128-bit SIMD execution units, we may expect
a theoretical speedup of 4 when operating on 32-bit values
over a scalar code. Of course, to benefit the most from these
units, codes have to exhibit SIMD-friendly patterns and also
be compute bound.

To take advantage of these SIMD units without having to
deal with all the different flavors of SIMD units, the simplest
solution for the developer may be to rely on the compiler to
automatically vectorize his code. It is also possible to help
the compiler identify vectorization opportunities by adding
some OpenMP pragmas (since OpenMP 4.0) in front of loops.
However, in most cases compilers are not able to vectorize
or to efficiently vectorize codes. In [2], [3], we study some
codes like image processing algorithms, vector normalization,
nbody simulation, stencil computation and show that even if
some compilers are able to perform automatic vectorization,
the performance is below the one obtained from explicit
vectorization using intrinsics, which are specific functions
automatically translated to SIMD instructions by compilers.



Another highlighted problem is the lack of portability across
architectures: the same version of a compiler may be able to
vectorize a code for AVX but not for NEON. Thus, to ensure
the best performance level on each architecture, the best option
is to use intrinsics but at the price of losing portability and a
higher development effort.

Several higher level abstractions over intrinsics were de-
veloped, like Vc [4], VCL [5], Boost.SIMD [6], to provide
both performance and portability to vectorized codes. These
libraries are further detailed in the Related Work section.
While they enable support of various SIMD instruction sets on
different platforms, these abstractions require to set the vector
length when writing the code or at compile time. For SVE,
the vector length is only known at runtime which complexifies
the building of a common abstraction for all architectures.

In this paper, we study the explicit vectorization of a Seismic
Spectral-Element kernel, known not to be efficiently vectorized
by compilers, using NEON and SVE to evaluate the complex-
ity of both fixed length and VLA programming models. We
also consider a version based on the NSIMD library, which
provides a common abstraction for both paradigms, to validate
its approach and its efficiency compared with previous NEON
and SVE versions. Since SVE architectures are not currently
widely available, we compare the generated assembly codes
to determine the achieved level of performance.

II. RELATED WORK

Automatic vectorization is an active research domain since
the advent of the first vector processors in Cray computers and
the need to vectorize Fortran codes [7], [8]. Today, compilers
contain some optimization passes to automatically vectorize
codes by analyzing instructions and data access patterns.
For example, the Clang compiler contains two vectorizers:
the Loop Vectorizer and the SLP [9](Superword-Level Par-
allelism) Vectorizer. Loop vectorization works by analyzing
dependencies between iterations and fuse scalar instructions
into vector ones. It requires well formed loop structures and
a simple control flow. SLP vectorization is more general, in
that it is not limited to loops, and consequently more complex.
It analyzes instructions in the compiler’s intermediate repre-
sentation code and tries to gather them into vector ones. This
approach may work well on simple codes but strongly depends
on the way the code is written and is not able to scale as
the code complexity grows. Some improvements are proposed
to enhance loop and SLP vectorization [10], [11], often at
the price of increased compilation times. In [10], the authors
show that a speedup of two is achievable over the performance
of the Clang vectorizer, but on very few benchmarks, with a
geometric mean speedup of 1.06 on all benchmarks performed,
which may be not significant enough compared to performance
of hand-vectorized versions of the codes. Previous evaluation
of vectorizing compilers [12]–[14], on several benchmarks,
show that compilers are not able to bring as much performance
as hand-vectorized codes. In [2], on different benchmarks,
several architectures and up to date compilers, we also observe
the same results. More importantly, we observe that using the

same compiler version on different architectures may vectorize
some codes on one but not on the others and thus does not
guarantee portability of the vectorization.

Using SIMD intrinsics or even assembly codes may guaran-
tee the best level of vectorization but requires writing specific
codes for each targeted SIMD instruction set. Several highly
optimized libraries like OpenBLAS, FFTW, MKL, use this
approach. In [15], we already have used AVX2 and AVX-512
intrinsics to show the performance benefit of such an approach.
However, programming using SIMD intrinsics is tedious, not
portable, and the amount of code to maintain increases as
new SIMD instruction sets arise, thus motivating this present
work. Another aspect motivating our work is the impact of
vectorization on energy consumption. In [16], we show that
using NEON units on ARM cores demands more instantaneous
power, but this increase is not significant compared to the gain
obtained by reducing the execution time.

A common approach to alleviate the writing of hand-
vectorized codes is to hide the diversity of intrinsics dialects
inside an abstraction library providing a unique interface for
all SIMD instruction sets. Many SIMD abstraction libraries
are available, some of them are presented in table I. At the
time of writing this paper, the NSIMD library is the only one
to support the SVE instruction set when used in combination
with the GCC 10 or Armclang compilers which are the only
ones to provide access to SVE intrinsics. A limitation for the
Eigen, VCL, simdpp and T-SIMD libraries is the requirement
of setting the vector length explicitly when writing the code.
This model is not compatible with the VLA model promoted
by the SVE instruction set. However, the GCC compiler
allows to set the SVE vector length at compile time with
the flag -msve-vector-bits, but the generated code is
no more portable across SVE architectures with different
vector lengths. The main limitation for all these libraries is
that they are based on encapsulating low level vector types
(like __m128 for SSE registers containing float values) into
structures. The SVE vector types are indeed sizeless since their
length is not known at compile time, which is not permitted
by C and C++ standards but is supported as an extension by
the Armclang compiler. Thus, SVE vector types cannot be
used as structure or class members, except when using this
specific compiler. NSIMD is compatible with this extension
when compiling with Armclang or allows to set the length of
SVE vectors at compile time when using GCC.

III. THE NSIMD LIBRARY

NSIMD is a vectorization library that abstracts SIMD
programming. It was designed to ease the programming of
SIMD units found in all commercial processors, but often
underutilized, and thus to bring better performance at a lower
development cost.

A. Towards zero-cost abstraction

To achieve maximum performance, NSIMD mainly relies on
the inline optimization pass of compilers which is activated by
default with optimization flags like -O2 and above. Therefore,



TABLE I: List of several SIMD abstraction libraries and their specificities.

General Information Instruction Set Data Type Features
Name License AVX-512 NEON SVE∗ Altivec Float Integer C++ Register

512-bit 128-bit 128-bit 64 32 16 64 32 16 8 Technique Size
Eigen [17] MPL2 Y Y N Y Y Y Y Y Y Y Y Op. Overload Explicit
MIPP [18] MIT Y Y N N Y Y N Y Y Y Y Op. Overload Implicit
VCL [5] Apache-2 Y N N N Y Y N Y Y Y Y Op. Overload Explicit

simdpp [19] Boost Y Y N Y Y Y N Y Y Y Y Exp. Template Explicit
T-SIMD [20] Open-Source N Y N N N Y N N Y Y Y Op. Overload Explicit

Vc [4] BSD-3-Clause N N N N Y Y N Y Y Y N Op. Overload Implicit
boost.SIMD [6] Boost P N N N Y Y N Y Y Y Y Exp. Template Implicit

bsimd [21] Non-free P Y N Y Y Y N Y Y Y Y Exp. Template Implicit
xsimd [22] BSD-3-Clause Y Y N N Y Y N Y Y N N Op. Overload Implicit

NSIMD [23] MIT Y Y Y Y Y Y Y Y Y Y Y Op. Overload Implicit
∗ 128-bit multiples up to 2048
† Implementation dependent

using any mainstream compiler such as GCC, Clang, MSVC,
XL C/C++, ICC and others with NSIMD gives a zero-cost
SIMD abstraction library. To allow inlining, most of the code
is placed into header files. Small functions such as addition,
multiplication, square root, etc, are all present in header files
whereas bigger functions such as I/O are put in source files
that are compiled as a dynamic library.

B. Programming APIs

NSIMD provides C89, C++98, C++11 and C++14 APIs.
These different APIs are proposed to ease the code modern-
ization of old industrial codes relying on previous C and C++
standards and compilers, as well as for developing modern
codes based on the latest standards and compilers. All APIs
allow writing generic code. For the C API this is achieved
through a thin layer of macros, while for the C++ APIs
it is achieved by using templates and function overloading.
The C++ API is split in two. The first part is a C-like API
with only function calls and direct type definitions for SIMD
types, while the second one is more advanced and provides
operator overloading, higher level type definitions that allows
unrolling. C++11, C++14 APIs add for instance templated type
definitions and templated constants. We show below the same
short code example, consisting in the addition of two vectors
of 8-bit integers, using the three APIs.

1) C API: The C API provides short aliases for all sup-
ported data types of the form {i,u,f}{8,16,32,64}(f8
is not a valid combination). It then provides aliases for all
corresponding SIMD registers by prepending a v to the type,
or vl if the register contains logical values. Functions take
the form nsimd_[Function]_[Extension]_[type].
This leads to the following code:

v i 8 r1 = n s i md l oa du a vx 2 i 8 ( &p1 [ i ] ) ;
r1 = ns imd add avx2 i8 ( r1 , r1 ) ;
n s i m d s t o r e u a v x 2 i 8 ( &p2 [ i ] , r1 ) ;

Note that, the SIMD extension and the type need to be
included in the function name since the C language prior C11
does not provide function overloading mechanism.

2) C++ API: The C++ API relies on C types, but uses
tag dispatching to simplify function calls. Functions take

the form nsimd::[Function]( [args] , type()
). The last parameter is used by the compiler to determine
which function to call. This leads to the following code:

v i 8 r1 = nsimd : : l o a d u ( &p1 [ i ] , i 8 ( ) ) ;
r1 = nsimd : : add ( r1 , r1 , i 8 ( ) ) ;
nsimd : : s t o r e u ( &p2 [ i ] , r1 , i 8 ( ) ) ;

The SIMD instruction set is defined at compile time by a
specific flag.

3) C++ Advanced API: The C++ API introduces the
pack type, which takes the form nsimd::pack<[Type]>.
Template type deduction allows functions to be completely
transparent (except for loading data). The pack implements
operator overloading to further simplify development. This
leads to the following code:

nsimd : : pack<i n t 8 t > r1 = nsimd : : loadu<
nsimd : : pack<i n t 8 t >>( &p1 [ i ] ) ;

r1 = r1 + r1 ;
nsimd : : s t o r e u ( &p2 [ i ] , r1 ) ;

In addition, the pack also allows for auto-
matic loop unrolling. When declaring it as
nsimd::Pack<[Type],[Factor]>, it will
automatically unroll loops by Factor.

IV. SEISMIC WAVE NUMERICAL KERNEL

Physics-based three-dimensional numerical simulations are
becoming more predictive and have already become essential
in geosciences. In geophysics, simulations at scale with a very
fine resolution, including uncertainty quantification procedures
are crucial to provide the relevant physical parameters for
forward modeling of seismic wave propagation. The forward
wave propagation problem is governed by the elastodynamic
equations of motion:

ρüi = fi + τij,j , (1)

where ρ is the material density; üi is the i-th component
of the second time-derivative of the displacement ui; τij,j is
the spatial derivative of the stress tensor component τij with
respect to xj ; fi is the i-th component of the body force.
From the numerical point of view, several methods have been



successfully used for the simulation of elastic wave propaga-
tion in three-dimensional domains. Finite-difference methods
(FDM), classical or spectral finite-element methods (FEM and
SEM) have been introduced last few years for this class of
problems. Interested readers could refer to [24] for further
details on these approaches. Due to its numerical efficiency,
the spectral finite-element method (SEM) is routinely used for
seismic simulations ( [25]). As an example, SPECFEM3D is a
major software package dedicated to seismic wave modeling.
The code implements the SEM leading to breakthroughs in
computational geophysics on multi-petascale systems ( [26]).
The weak form of eq. 1 is expressed in eq. 2, and is solved
in its discretized form by using this method.∫
Ω

ρvT ·ü dΩ =

∫
Ω

ε(v)T : τ dΩ−
∫
Ω

vT ·f dΩ−
∫
Γ

vT ·T dΓ

(2)
where Ω and Γ are the volume and the surface area of
the domain under study, respectively; ε is the virtual strain
tensor related to the virtual displacement vector v; f is the
body force vector and T is the traction vector acting on Γ.
Superscript T denotes the transpose, and a colon denotes the
contracted tensor product.
As reported in [26]–[28], explicit parallel elastodynamics
application usually exhibits very good weak and strong
scaling up to several tens of thousands of cores. But if we
focus on SIMD-level optimizations, the compiler performance
plays a major role and recent studies have underlined the
limited impact of automatic vectorization [3], [29]. Most of
the time, the complexity of the computational workflows limit
the efficacy of automatic optimization mechanisms. For the
Spectral-element method, it is admitted that the summation
of the element contributions (assembly phase) represents a
major bottleneck. This is coming both from the shared values
between neighboring elements and the inherent indirection
for data accesses induced by this approach.
The complexity of the internal loop might also be a blocker
for the compiler. Despite representing as much as 80% of
the total elapsed time, only hand-tuned implementations have
been able to fully vectorize the computation of internal forces.

V. VECTORIZATION

In this section, we first present the scalar version of our
kernel. Then, we describe the approach we use to vectorize
the code independently of the targeted SIMD instruction set.
We give details on our NEON and SVE implementations using
intrinsics and discuss the differences between them. Finally,
we present our implementation based on the NSIMD library.

A. Scalar version

The kernel is composed of four loop levels. The outermost
one iterates over elements. For each element, we perform the
three following steps: 1) gathering points of the element, 2)
computing internal forces, 3) assembly step: element contri-
bution is updated. Each of these steps consists of three nested
loops to iterate along the three directions of each element.

Gathering points for each element consists in copying values
from a global array to a local array following an indirection
array. These indirections are required since element borders
overlap: one point may be shared by up to eight elements
(corners). Points are not replicated in order to reduce memory
footprint and avoid multiple updates at step 3. The local array
is relatively small and is likely to fit and stay into the L1 cache
along the two other steps. For example, at order 4, the element
consists of a block of 5x5x5 points, each point containing three
floating point values, thus a total of 1.5kB per element.

Internal forces are computed by traversing the element along
the three directions, multiplying point values by Lagrangian
coefficients and accumulating the results. Thus, it essentially
consists of additions and multiplications which are likely to
be merged into FMA (Fused Multiply Add) instructions.

Finally, results are to be stored back to the global array with
the same indirection pattern as for the gathering step.

B. Vectorization approach

A common approach suited for vectorizing most algorithms
is to vectorize the innermost loop. For our kernel, the number
of iterations for the three inner loops depends on the consid-
ered order. At order 4, the innermost loop only performs five
iterations, which is enough to feed 128-bit NEON units, but
not enough to feed larger 512-bit SVE units. It is possible to
fuse the inner loops to bring more vectorization opportunities.
However, this approach has several drawbacks:

1) it does not exactly match the register length in the
general case and thus still requires some scalar (NEON)
or masked (SVE) instructions

2) it requires irregular accesses to data since data in the
same register may not be contiguous following the
element structure

3) it breaks the code organization making it harder for the
developer to read/modify/maintain

4) it is not possible to write a single generic code indepen-
dent from the considered order and from the SIMD unit
(SVE) width

A much simpler approach consists of vectorizing the outer-
most loop, thus applying the same computation over several
elements at the same time. It allows us to solve the above
problems. The SIMD unit width determines the number of
elements considered at the same time. With the 128-bit NEON
instruction set, we can store four single precision floating
point values into a single register, thus we can process four
elements at the same time. With the vector length agnostic
SVE instruction set, we can process len elements, where
len is known dynamically and may be a multiple of 4
between 4 (128-bit) and 64 (2048-bit). Only a few remaining
elements may be computed the scalar way with NEON (up
to three), thus requiring to keep a scalar version of the code
after the vectorized one. With masked instructions provided
by SVE, the remaining elements are processed with the same
code. Another advantage of this approach is that the code
organization stays the same. Instead of considering scalar
floating point values, we consider vectors of floating point



values, and arithmetic instructions are exactly the same but
are applied on these vectors.

This approach is implemented using NEON and SVE as
described hereafter. However, these two instructions sets rely
on two different programming models which leads to two very
different implementations.

C. Implementation using NEON intrinsics

Following our approach, porting the kernel to NEON is
relatively straightforward. First, we replace the float data
type by the float32x4_t one for the definition of the local
array. For the outer loop, we compute four elements at the
same time, thus we increment the iterator by four instead
of one. Since no gather instruction is available in NEON
for gathering a vector of data from the global array and the
indirection array, the gathering step just consists of filling the
local array using scalar loads but for four times more elements.
The vectorization of the computation of internal forces is
quite straightforward thanks to the automatic type inference
provided by the C++ auto keyword and to the overload of
arithmetic operators for NEON data types. Thus, the code
organization for the NEON version is almost identical to the
scalar version minus few modifications described hereafter.

1) Local variables: The float type of local variables
needs to be replaced by the float32x4_t type, for example
the local array definition at order 4:

f l o a t r l d i s p l a c e m e n t g l l [ 1 2 5 * 3 ]

becomes:

f l o a t 3 2 x 4 t r l d i s p l a c e m e n t g l l [ 1 2 5 * 3 ] ;

Most local variables are used to store temporary results, so we
can use the auto keyword to infer their types.

2) Gather/scatter: Non-contiguous loads required by the
vectorization and the data storage pattern have to be replaced
by four scalar loads, for example:

f l o a t 3 2 x 4 t dx idx ;
dx idx [ 0 ] = r g h e x a g l l d x i d x [ i d 0 ] ;
dx idx [ 1 ] = r g h e x a g l l d x i d x [ i d 1 ] ;
dx idx [ 2 ] = r g h e x a g l l d x i d x [ i d 2 ] ;
dx idx [ 3 ] = r g h e x a g l l d x i d x [ i d 3 ] ;

3) Broadcast: When the same coefficient has to be applied
to all the values in the vector, we use the vdupq_n_f32
intrinsics to explicitly duplicate the coefficient. For example,
the following scalar code:

a u t o t a u x x = t r a c e t a u +2 .0 f * rh ov s2 * duxdx ;

is replaced by:

a u t o t a u x x = t r a c e t a u
+vdupq n f32 ( 2 . 0 f )* rh ov s2 * duxdx ;

Arithmetic operators between vectors are overloaded by com-
pilers but not between vectors and scalar values.

4) Arithmetic instructions: In most cases, arithmetic ex-
pressions are not modified, for example, the expression:

a u t o duxdx = duxdx i * dx idx
+ d ux de t * d e t d x
+duxdze * dzedx ;

is automatically converted by the compiler to its vectorized
version since variables are vectors instead of floats and arith-
metic operators are overloaded by default. It is also possible
to overload operators between scalars and vectors to remove
explicit calls to the vdupq_n_f32 intrinsics. Note that,
Fused Multiply Add (FMA) intrinsics are available in NEON
but it is not mandatory to explicitly use them since compilers
are able to generate them by analyzing arithmetic expressions.
This allows to keep the syntax of the vectorized code as close
as possible to the original one.

D. SVE implementation

The SVE approach for vectorization is quite different since
the vector length is not known at compile time but available
at runtime through the use of the svcntw intrinsics which
returns the number of 32-bit words in one SVE register.
It has the advantage of generating a vector length agnostic
code which does not require to recompile it for different
SVE architectures. Other advantages over NEON are the
availability of gather/scatter instructions and of masked load/-
store instructions with a supplemental mask parameter which
allows to partially fill/store vectors. However, implementing
the SVE version is not as straightforward as expected for the
following reasons: 1) it is not possible to create local arrays
of vectors since their size is not known at compile time,
2) arithmetic operators are not overloaded by default since
intrinsics require a mask, thus increasing the code verbosity.
Our SVE implementation requires to modify our scalar code
as described below.

1) Local variables and arrays: The definition of the local
array becomes:

f l o a t r l d i s p l a c e m e n t g l l [125*3* svcntw ( ) ]

where the svnctw intrinsics returns the number of float values
in SVE vectors. Indeed, both Armclang and GCC compilers
do not support defining an array of vectors of type svfloat32 t
on the stack since the size of this type is not known at compile
time. It is possible to specify the vector length with a specific
flag for the GCC compiler but it limits the code portability.

2) Loop management: The main loop increment depends
on the vector length:

f o r ( i e l = e l t s t a r t ; . . . ; i e l += svcntw ( ) )

Since the number of elements may not be a multiple of the
SVE vector length, we need to use a mask to enable only
active lanes.

3) Masking: We define the mask for SVE intrinsics accord-
ing to the number of elements for each iteration as:

a u t o mask= s v w h i l e l t b 3 2 u 3 2 ( i e l , end ) ;



In our case, the mask enables all the vector lanes for all
iterations except the last one if the number of elements is
not a multiple of the vector length. Note that, in our case,
the mask is only mandatory for gather/scatter intrinsics to
avoid segmentation faults caused by out of bound memory
accesses. Arithmetic intrinsics may operate on all vector lanes
since values in each lane are computed independently i.e.
computation on one lane does not require to access values
from other lanes. Thus, for these intrinsics we have the choice
between passing the mask we previously defined or using the
svptrue_b32() intrinsics which enables all lanes.

4) Gather/scatter: Unlike NEON, SVE provides a set of
gather/scatter intrinsics to retrieve indexed data. For the gath-
ering step of our kernel, we first need to gather indices of
the first point of each element considered. At order 4, each
element is composed of 125 points. If we consider the first
elements processed at the first iteration, the index of the first
point of the first element is at position 0, the one for the second
element is at position 125, for the third element at position 250
and so on. SVE provides the svindex_u32() intrinsics to
fill a vector with multiples of a given value. In our case, we
use the following code:

a u t o v s t r i d e s = sv index u32 (0 u , 125u ) ;

At iteration i, the first element of the vector is at position
i*svcntw()*125 and we need to duplicate it and add the
vstrides values to obtain the indices of the first point of
each element in the vector:

a u t o base = svadd z ( mask ,
v s t r i d e s ,
i e l *125 u ) ) ;

The indices in this resulting vector will serve as the base for
accessing the following 124 points of these elements.

5) Arithmetic instructions: Since the mask parameter is
not optional for arithmetic intrinsics, there is no overloaded
operator available by default, which increases the code ver-
bosity. In our case, we have the choice between using the mask
computed at each iteration and already used for gather/scatter
instructions or we can use the svptrue_b32() intrinsics
which activates all vector lanes.

E. NSIMD implementation

Deriving the kernel for NSIMD is quite straightforward
from NEON and SVE intrinsics versions.

1) Retrieving vector length: Since the VLA paradigm
imposes to obtain the vector length at runtime, we need
to explicitly use the nsimd::len function which in turn
calls the svcntw intrinsics to dynamically retrieve the vector
length. When compiled for a fixed length vector architecture,
the call is replaced by the vector length at compile time.
The vector length is then used to allocate local arrays and
determine the increment for the loop iterating over elements.

2) Gather/scatter: NSIMD gather and scatter functions
take the same arguments as the corresponding SVE intrinsics
and basically wrap them. Note that this is also the case

for their AVX-512 equivalents. When compiled for a fixed
size architecture which does not support these intrinsics, like
NEON, calls are replaced by scalar loads and stores.

3) Arithmetic operators: NSIMD provides overloaded op-
erators for logical and arithmetic instructions. Since SVE
instructions require a mask parameter, it is set by default to
svptrue_b32(), for instructions operating on 32-bit data
types, to apply instructions on all the vector lanes.

4) Compiler limitations/future improvements: The main
limitation to improve the abstraction and further simplify
the writing of NSIMD codes is the missing support for
creating local arrays of SVE vectors in current compilers. The
following declaration is indeed not valid:

s v f l o a t 3 2 t a r r a y [ 1 0 ] ;

and must be replaced by:

f l o a t a r r a y [10* svcntw ( ) ] ;

This prevent the use of the = operator for transparently
loading/storing vectors from/to memory. When using the =
operator with fixed length instruction sets, we observe that
compilers are able to automatically generate both load and
store instructions. We believe that this limitation will be
removed in future compilers since the first declaration may be
automatically replaced by the second one. The GCC compiler
allows to set the SVE vector length at compile time, thus
allowing to use the first declaration, but requires the code to be
recompiled in order to run on different SVE vector lengths. If
developers target a specific SVE vector length this is currently
the only option to further simplify the NSIMD version.

VI. EXPERIMENTAL RESULTS

In this section, we discuss the following versions of our ker-
nel: 1) scalar with autovectorization, 2) intrinsics NEON and
SVE, 3) NSIMD. Note that, since SVE architectures are not
widely available, we are only able to discuss the performance
of NEON versions. For SVE versions, we propose to evaluate
the ratio of vectorized instructions between the autovectorized,
the intrinsics and the NSIMD versions. To verify that NSIMD
offers similar performance as using intrinsics, we propose to
compare the generated assembly codes.

A. Experimental setup

For these experiments, we use GCC (v10.0.1) and Armclang
(v20.0) LLVM-based compilers. We use the -O3 optimization
flag which enables automatic vectorization. Targeted archi-
tectures are using the Arm AARCH64 instruction set which
includes the NEON instruction set by default. To generate SVE
versions, we need to explicitly activate its support with the
-march=armv8.2-a+sve flag. Results presented in this
section have been obtained on two Arm-based platforms:

• a Marvell ThunderX2 dual-socket with 2x32 cores,
• a 64-cores AWS Graviton2 processor.

Processor characteristics are detailed in table II. Our kernel
runs on a single core to study the effect of vectorization



TABLE II: Details of architectures.

ThunderX2 Graviton2
architecture Broadcom Vulcan Arm Neoverse N1
ISA ARMv8.1 ARMv8.2
frequencies 2.2-2.5Ghz 2.5Ghz
cache(L1/L2/L3) 32kB/256kB/32MB 64kB/1MB/32MB
memory 8x DDR4-2667 8x DDR4-3200

exclusively. Additionally, we consider dynamic binary instru-
mentation and the Arm Instruction Emulator tool to validate
SVE-based implementations and to further analyze instruc-
tions breakdown. Note that, using NSIMD has no measurable
impact on the compilation time compared to using intrinsics.

B. NEON performance

Figure 1 shows the timing results. As expected, we observe
the impact of using intrinsics to enable vectorization with a
two-fold speedup on the ThunderX2 (2.26x). With the 128-
bit NEON unit, the theoretical maximum speedup is four
in this case (single precision). However, with the irregular
memory access pattern in our code we are clearly in a memory
bound scenario. On the Graviton2 architecture, the situation is
rather different since the scalar implementation of the kernel
is significantly faster compared with the same benchmark on
the ThunderX2 processor (2.8x). These results are due in part
to the slightly higher bandwidth but mainly to the improved
micro-architecture, since it is more recent. To confirm this,
we have tested the binary obtained for the ThunderX2 on the
Graviton2 and we observe the same speedup. Unfortunately,
the usage of intrinsics does not bring the same level of
acceleration on this second platform (1.4x). These encouraging
results are still under investigation, but may be explained
by the memory bandwidth which is theoretically only 20%
higher on the Graviton2 thanks to a higher frequency (see
table II). Thus, the micro-architecture improvement may put
more pressure on the memory subsystem.

Regarding the NSIMD results, we obtain the same level
of performance than the intrinsics version when using both
compilers, on both platforms. Assembly codes for both ver-
sions are similar, we only observe small differences, mostly
instructions not organized in the same order. Results show that
it slightly impacts performance, and depends on the compiler.
On the ThunderX2, the NSIMD version with GCC is around
10% slower than the intrinsics one, but on the Graviton2
the NSIMD version with Armclang is 14% faster. Note that,
these differences are not significant if we consider the speedup
brought by explicit vectorization over autovectorized versions.

C. SVE: NSIMD vs intrinsics

We compare the number of SVE instructions produced
by using intrinsics and NSIMD when using both GCC and
Armclang with a 512-bit vector length, provided in table III.
We observe that the total number of instructions are very
different between each versions, especially those compiled
with Armclang. By analyzing the assembly codes, we observe
very important differences. It is not the case for the NEON
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Fig. 1: Timing results on various architectures (automatic vs
explicit vectorization for a Spectral Finite-element kernel)

TABLE III: Ratio SVE/total # of instructions (millions)

intr.+GCC intr.+Armclang NSIMD+GCC NSIMD+Armclang
174/258=67% 209/373=56% 179/256=70% 169/284=60%

versions but we believe that this is due to a higher maturity of
the NEON support in current compilers. We need to further
investigate these differences. We expect to reach the same level
of performance between intrinsics and NSIMD versions with
GCC since the total number of instructions (around 256M) and
the ratio of vectorized instructions (around 70%) are similar. In
this case, we may expect very good performance compared to
autovectorized versions on SVE platforms. We now consider
analysing the evolution of this ratio for the NSIMD version
with GCC, depending on the vector length.

D. SVE intrinsics analysis

We use ArmIE which translates unsupported SVE instruc-
tions, to evaluate the impact of the Scalable Vector Extension.
Consequently, we can validate and further analyze SVE-based
implementations. The analysis of the dynamic instruction
execution traces at each SVE vector length (from 128 to
1024 bits) are represented in figure 2. The Region-of-interest
feature (start and stop macros added in the source code) is
implemented to capture the behavior of key loops and limit
the amount of runtime data collected.

First of all, we can visually see the portion of the SVE
instructions generated (blue bars). This ratio is close to 70%
for all our experiments and re-emphases the inherent vector-
length agnostic characteristic of our optimized implementa-
tion. Secondly, this plot also underlines the linear decrease
of the SVE instructions count with the theoretical size of the
vector. This was expected due to the design of the underlying
algorithm but this comes with an additional benefit. In our
case, we also observe a decrease of the native AArch64 oper-
ations (orange bars) mainly related to the control flow (bcond,
orr, ubfm instructions are dominant).

VII. CONCLUSION

Our contributions are twofold: 1) we show that explicit
vectorization is mandatory to take further advantage of SIMD
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Fig. 2: Instructions count for the SVE instrinsics version with
GCC. Varying vector lengths are considered with the Arm
Instruction Emulator.

units present in all commercial processors today, 2) while us-
ing intrinsics is tedious and not portable, we demonstrate that
it is possible to build high level abstractions, like NSIMD, for
both fixed-length and VLA programming models, and reach
the same level of performance for NEON with both Armclang
and GCC compilers. We expect the same results for SVE
architectures but we still need to evaluate the performance
on upcoming SVE architectures like the Fujitsu A64FX to
confirm our hypothesis. Further work also includes optimizing
the memory access pattern of our kernel to reduce the stress
on the memory subsystem.
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