

Multiple Fabric Assessment: Exploring the Forms of a Metropolitan Area.

Giovanni FUSCO, Alessandro ARALDI Université Côte d'Azur, CNRS, ESPACE, France

+ 1

The "revenge" of urban form

Functionalist urban planning overlooked the role of urban form in shaping urban phenomena.

Spatial analysis of cities followed the same route, focalizing on function localization.

Last 30 years new emphasis on urban form in geoprocessing:

The form of urban networks

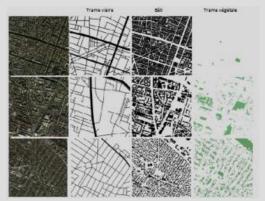
- Configurational approaches (Space Syntax: Hillier, Peponis)
- Multiple centrality assessment (Porta et al., Svetsuk)
- Streets and patterns (Marshall)

The form of built-up space

- Density (Newman and Kennworthy)
- Space Matrix (Bergauser Pont and Haupt)
- Fractal analysis (Batty and Longley, Frankhauser)

... a more traditional comprehensive approach to urban form: urban fabrics

Urban Fabric


The finest scale of analysis of urban form (city block, neighborhood).

Classical schools of urban morphology (Italy, France, UK): typical relations between elements of urban form revealing an urban culture

Focus of traditional urban morphology:

- 1. identification of urban fabric components (streets, buildings, parcels)
- 2. their geometrical description
- 3. analysis of their spatial relationships
- 4. study of the historic process behind the observed forms

A manual, expert-based procedure on a small part of urban space.

Emphasis on urban form analyzed on plan.

What if we want to analyze the vast extent of a metropolitan area as **observed from pedestrians**?

Goals of Multiple Fabric Assessment

- From manual calculations \rightarrow to a computational geoprocessing
- From expert-based detection \rightarrow to a bottom-up procedure
- From planner's point of view \rightarrow to pedestrian point of view
- From Small scale \rightarrow to a Large scale

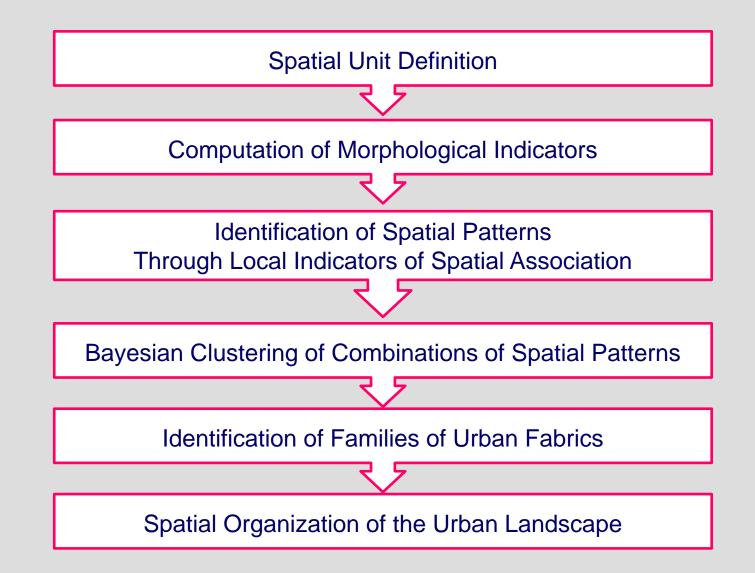
.. historical processes lie outside of MFA.

Coastal conurbation of the French Riviera

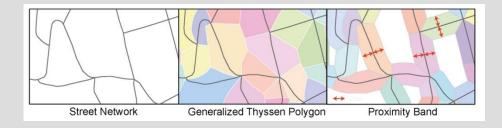
1510 km2

1.1 million inhabitants

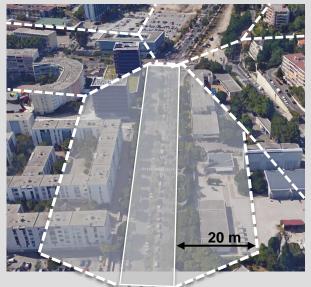
101 municipalities



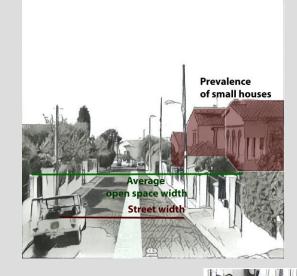
Questions: what are the typical fabrics on the French Riviera? How are they organized in space?

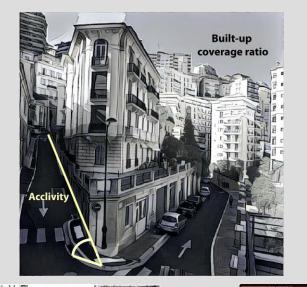

MFA Methodology

Spatial Unit Definition

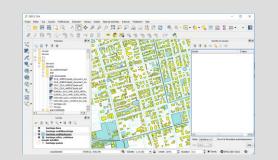

Street proximity bands: the pedestrian point of view of urban fabric.

Partition of the planar urban space into regions based on closeness to each network segment within a certain distance from the segment (10 m, 20 m, 50 m)





100 000 street segments



Morphological indicators for pedestrians

+ PM

Computation of morphological indicators through automated geoprocessing

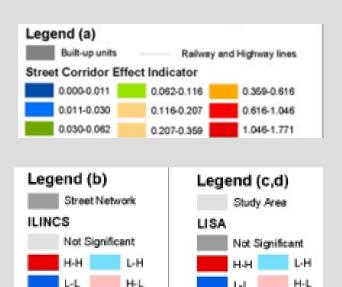
	Urban Fabric Component	Indicator	Definition
	Network Morphology	Street Length	Network length of the street segments between two intersections [m]
		Linearity/ Windingness	Ratio between Euclidean distance and segment length
		Local connectivity	Average presence nodes of degree 1
			Average presence nodes of degree 4 Average presence nodes of degree 3, 5 or more
	Built-up Morphology	Prevalence of Building type	Ratio between 0-125 m2 building surf. and total built-up surf. in 50 m PB
			Ratio betw. 125-250 m2 building surf. and total built-up surf. in 50 m PB
			Ratio betw. 250-1000 m2 building surf. and total built-up surf. in 50 m PB
			Ratio betw. 1000-4000 m2 building surf. and total built-up surf. in 50 m PB
			Ratio between >4000 m2 building surf. and total built-up surf. in 50 m PB
		Proximity band coverage ratio	Building coverage ratio on the 50 m proximity band
		Building Contiguity	Weighted average of buildings frequency on built-up units
		Specialization of Building Types	Ratio between specialized building footprint and 50m PB surf.
	Network- Building Relationship	Street corridor effect	Ratio between parallel façades and street length in 10 m PB
		Proximity band building height	Ratio between building vol. and surf. inside 20 m proximity band
		Open Space Width	Ratio between open space within 20m PB and street length
		Height/Width Ratio	Ration between average building height and average open space width within the 20m PB
		Building frequency along street network	Ratio between number of buildings in 20m PB and street length
	Network-Parcels Relationship	Plot fragmentation along street network	Ratio between number of parcels in 20m PB and street length
	Site Morphology	Surface slope	Ratio between high sloped ($S>30^\circ$) and total space-unit in 50m PB
+ 191	Network-Site Relationship	Street acclivity	Computed as segment average of arctan(slope)

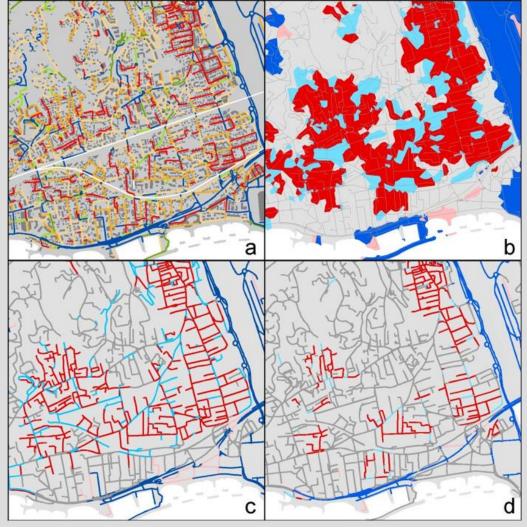
Looking for Spatial Patterns: LISA vs. LINCS

From surface-based to network-based geostatistical analysis

LISA - Local Indicators of Spatial Association : $I_i = Z_i \sum_j W_{ij} Z_j$ Local Moran's I *(Anselin 1995)* $z_i = \frac{x_i - x}{SD_x}$

Patterns of urban form features from a pedestrian point of view

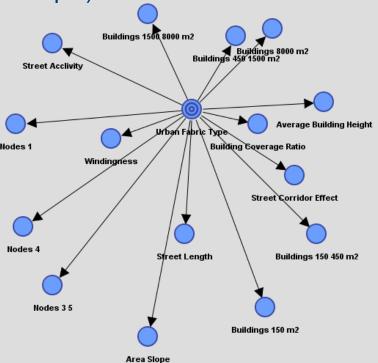



Morphological Indicators within the street proximity band : <u>bidimentional</u> space with a <u>network</u> configuration

From LISA to **LINCS - Local Indicators of Network-Constrained Clustering** (Yamada and Thill 2007, 2010) Spatial associations identified among connected elements (at a given depth)

Spatial Patterns of Street Corridor Effect (Araldi and Fusco 2016)

From indicators calculated for every street segment to spatial patterns of statistically significant (p=0.05) higher or lower values.


Bayesian Clustering

21 different **spatial patterns** for the 21 indicators, differently structuring the 100k spatial units: **how to summarize this information?**

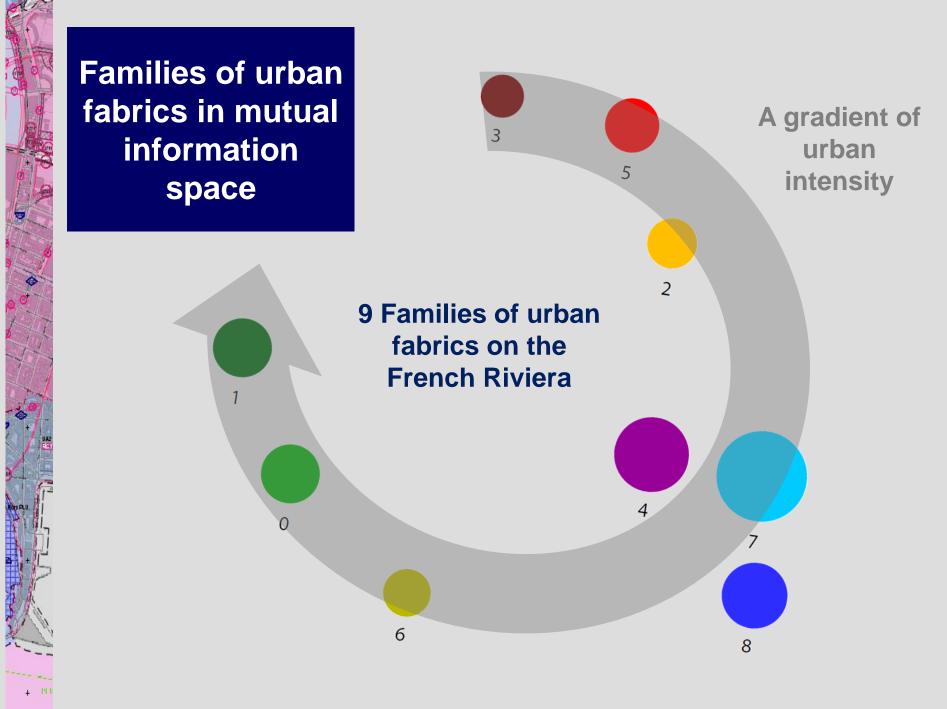
Bayesian Clustering Solution (powerful AI technique).

Advantages:

- Use the categorical values of geostatistical analysis (HH, LL, HL, LH, NS)
- Clusters defined through the identification of common values on a subset of indicators (K-means or NN clustering would look for homogeneity).
- **Probability** that a given spatial unit belongs to a given cluster.

Bayesian Clustering

Score optimization (log-likelihood + penalization for number of clusters... in order to avoid overfitting).


Random walk in solution space under constraints :

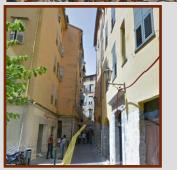
- Min % of street segments in each cluster (1%)
- Max number of clusters (20)
- Minimum average cluster purity (90%)
- Pseudo-random initialization with given seed

Different search parametrizations → different clustering results Sensitivity analysis to parametrization: always the same 9 cluster solution

Final result: 9 clusters

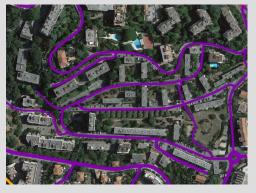
(contingency table fit score of 59,4%)

Old constrained urban fabrics of town-houses


Traditional urban fabrics of the plain with adjoining buildings

3

Discontinuous and irregular urban fabrics with houses and buildings



Modern discontinuous urban fabrics with big and medium-sized buildings

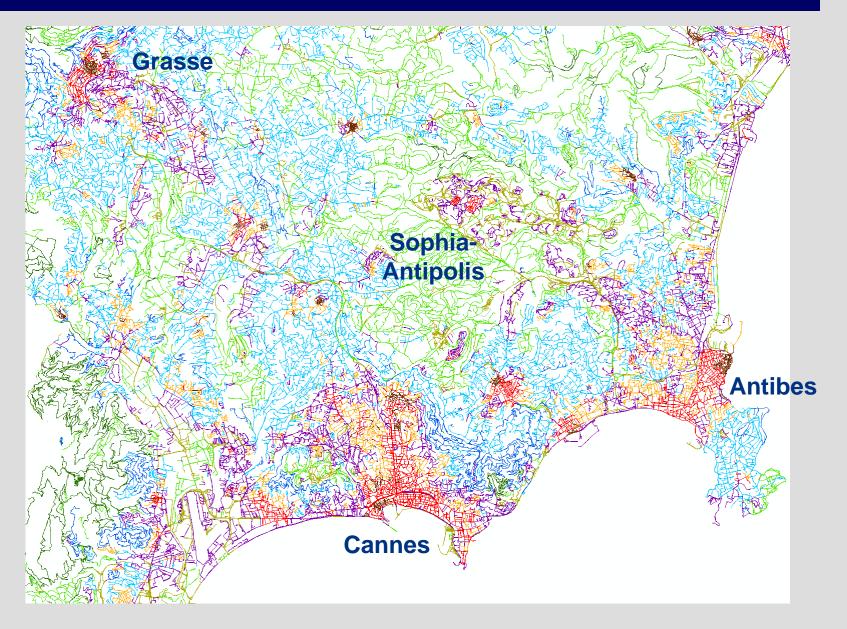
Suburban residential fabrics in hills or plain

4

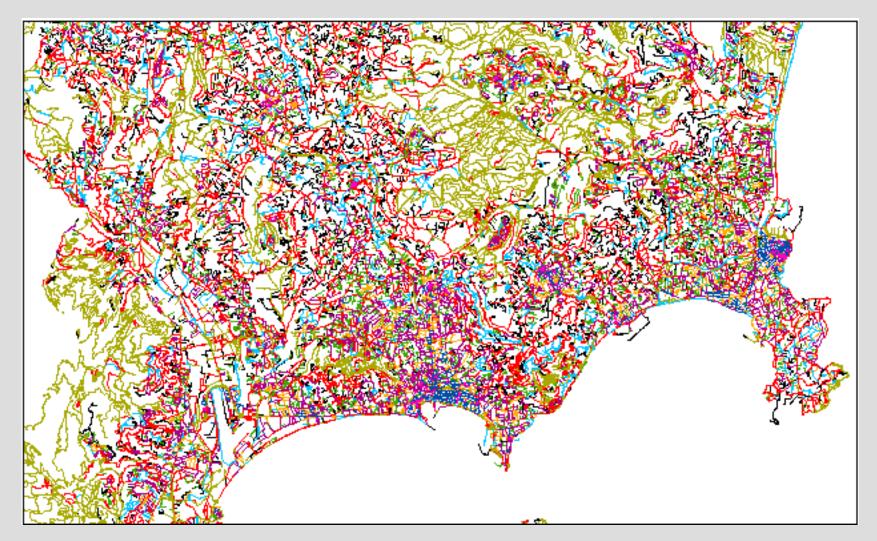


Small house constrained suburban fabrics

8



6

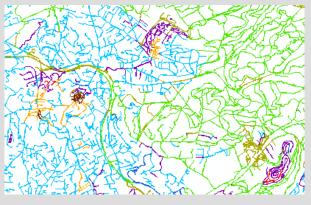


Connective artificial fabrics with sparse specialized big buildings

Projection in Geographic Space (West)

An Impossible Result without our Methodology

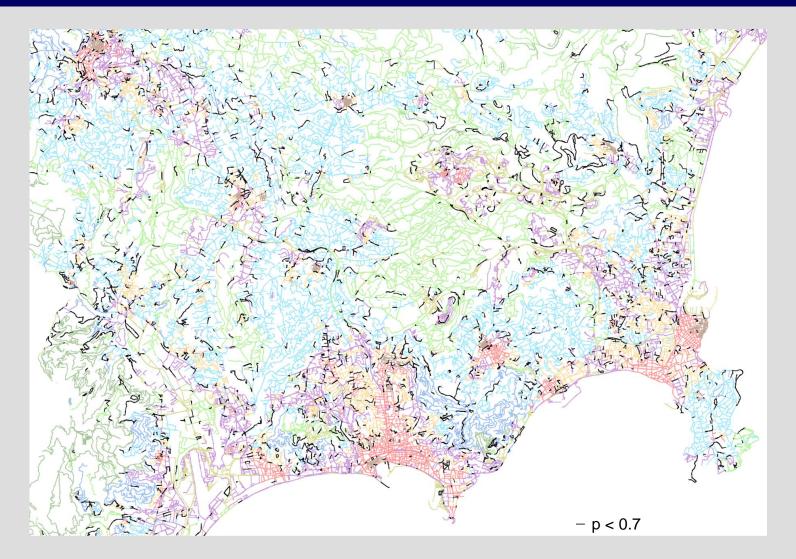
Bayesian clustering of the 100k spatial units using indicator values instead of LINCS values: 9 clusters and still a much messier picture.


Homogeneous morphological regions

Morphological regions defined by mixtures of urban fabrics

Cannes

Nice



Sophia-Antipolis

Mougins

Projecting Uncertainties

Probabilistic uncertainties reveal border zones of overlapping characteristics opposed to archetypical cores.

Archetypical structure of the urban landscape in the cities of the French Riviera

- Consistent spatial logics
- Trans-scalar self-similarity in the spatial arrangements of morphological regions.

MFA - Conclusions

- An multi-step geoprocessing approach to identify urban fabrics:
 - Morphological Indicators
 - Network-Constrained Geostatistics
 - Bayesian Clustering
- LINCS produce a necessary filter of individual characteristics of spatial unit to focus on meso-scale patterns
- Bayesian Clustering can identify clusters based on a few shared characteristics (instead of forcing homogeneity)
- Method proved successful in identifying urban fabrics in a realworld metropolitan area...

MFA reveals complexity of metropolitan area

- 9 families of urban fabrics
- Homogeneous vs. Mixed morphological regions

Cores of morphological regions vs.
borders of overlapping characteristics

 Self-similarity and modularity of metropolitan area

Future Developments

- Integrate more specific indicators of visibility analysis
- Link identification of urban fabrics with knowledge of historical processes behind observed morphologies.
- Interest of comparative analysis with other metropolitan contexts (urban fabrics are linked to urban cultures)
- Study the relation between forms and urban functioning / human behaviors (linked to perception of urban form like retail activity, neighborhood satisfaction, crime, health, etc.)

Thanks for your attention

Credits :

G. Fusco – <u>giovanni.fusco@unice.fr</u> A. Araldi – <u>alessandro.araldi@unice.fr</u>

