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Abstract. The Support-Minors (SM) method has opened new routes
to attack multivariate schemes with rank properties that were previously
impossible to exploit, as shown by the recent attacks of [35] and [7] on
the NIST candidates GeMSS and Rainbow respectively. In this paper, we
study this SM approach more in depth, which allows us first to propose
a greatly improved attack on GeMSS and also to define a more realis-
tic cost model to evaluate the memory complexity of an XL strategy on
the SM system using the Block-Wiedemann algorithm. Our new attack
on GeMSS makes it completely unfeasible to repair the scheme by sim-
ply increasing the size of its parameters or even applying the projection
technique from [31], as the signing time would be increased in a con-
siderable way. Also, in our refined cost model, the rectangular MinRank
attack from [7] does indeed reduce the security of all Round 3 Rainbow
parameter sets below their targeted security strengths.

Keywords: Support-Minors, GeMSS, Rainbow, multivariate cryptography

1 Introduction

The MinRank problem 1 introduced in [9] has shown to be essential in estab-
lishing the security of several post-quantum cryptosystems, in particular mul-
tivariate schemes (MPKCs). Many MPKCs are indeed either directly based on
the hardness of MinRank [16] or strongly related to it, such as [32,34,19].

Problem 1 (MinRank problem) Given d ∈ N, N matrices M1, . . . ,MN ∈
Fnr×nc
q , find field elements x1, x2, . . . , xN ∈ Fq, not all zero, such that

rank

(
N∑
i=1

xiM i

)
≤ d.



The currently most high profile application of MinRank is the cryptanalysis
of Rainbow [18], which was selected as a finalist to the NIST post-quantum
standardization process. Rainbow is a multilayer variant of the well-known UOV
signature scheme, and a key-recovery attack on the scheme can be performed by
solving one of several particular MinRank instances [8,24,7]. This problem also
shows up in the analysis of other types of MPKCs, namely those relying on the
so-called big-field construction by using a field extension Fqn over Fq. This is the
case of the historical proposals C* [29] and HFE [32], but also more recently of
the HFEv- schemes [33] GeMSS [10] and Gui [17]. In this context, a difference
with the original formulation from Problem 1 is that the coefficients xi’s or the
entries of the M i’s may belong to the extension field Fqn .

Support-Minors is a method proposed by Bardet et al. [3] to reduce the Min-
Rank problem to the problem of solving a system of bilinear equations. This
algebraic modeling is in particular the crux of the recent attacks on MPKCs and
rank-based cryptosystems [3,7,2,35]. When the corresponding MinRank instance
has a unique solution, which was the case in rank-based cryptography or Rain-
bow [3,7], this system can be solved using a variant of the XL algorithm [15].
In particular, this approach benefits from the extreme sparsity of the resulting
linear system as one can use the Block-Wiedemann algorithm [14]. However, the
situation is quite different for big-field schemes, since there are naturally n solu-
tions coming from the big-field structure. In particular, using the XL algorithm
proposed in [3] neither directly yields a solution nor reduces the problem to a
simpler one. Of course, it is still possible to use a general purpose Gröbner basis
algorithm, but this approach can be inefficient and one faces the challenging
task of establishing the solving degree to precisely estimate its complexity. In
particular, the authors of [35] conjectured from experiments that the first degree
fall dff of their Support-Minors attack on GeMSS was equal to 3. Then, based
on the common heuristic that the solving degree is close to dff , they derive
the complexity given in Column “support minors modeling” from [35, Table 1].
However, one may wonder if such a small value for dff is not only due to the
small scale of their experiments. Moreover, the assumption that dff coincides
with the solving degree remains a conjecture. It is known this is not true in
general, see for example [4], and if this solving degree were higher than 3 in the
case of GeMSS, the complexity of the attack in [35] would dramatically change.

Also, even when there is justification for the time complexity of an attack,
there remains the question of how to measure the complexity of memory inten-
sive cryptanalytic attacks, an issue which has been a major point of discussion
throughout the NIST PQC competition. In an effort to obtain more efficient
parameters while still claiming high security, a number of submitters [5,1,12,28]
have introduced cost models which treat memory intensive attacks as being more
expensive than indicated by time complexity estimates using the more common
Random Access Machine model. The question of the effect of memory access
on the cost of MinRank attacks in particular, has been brought to the fore re-
cently. In response to the rectangular MinRank attack [7], the Rainbow team
put forward a statement [36] arguing that even though this attack reduces the
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security of Rainbow relative to prior cryptanalysis, it does not bring any of the
third round Rainbow parameters below their targeted security levels if mem-
ory costs are properly accounted for. This argument in particular states that,
although the rectangular MinRank attack can use the Wiedemann algorithm
and therefore does not require as much memory as attacks requiring Gröbner
basis algorithms like F4 [22] and F5 [23], its complexity is dominated by a large
number of random access queries to a memory, which is nonetheless fairly large.

Table 1. Time complexity of our attack (Improved SM, log2(#gates)) in comparison
to [35].

Scheme Minors [35] SM (conjectural) [35] Improved SM

GeMSS128 139 118 72
BlueGeMSS128 119 99 65
RedGeMSS128 86 72 49

GeMSS192 154 120 75
BlueGeMSS192 132 101 67
RedGeMSS192 95 75 51

GeMSS256 166 121 75
BlueGeMSS256 141 103 68
RedGeMSS256 101 76 52

Contributions. As a first contribution, we provide solid ground to understand
the Gröbner basis computation on the Support-Minors system for HFEv- and
we significantly speed up the attack in [35] which used minors modeling [21]. We
provide a necessary and sufficient condition for solving the SM system at degree
2, under mild assumptions. In the case of GeMSS, we show that it can always be
solved at degree 2. This material allows us to give a precise complexity formula
for the Support-Minors attack on GeMSS, which is also considerably smaller
than the conjectured one in [35], which relied on the aforementioned degree fall
assumption (see Column “SM (conjectural) [35]” in Table 1). In particular, with
our attack we can also clearly break the proposed parameters for pHFEv-, which
were an attempt by [31] to repair GeMSS in the aftermath of the attacks from
[35]. Also, it makes it completely unfeasible to repair GeMSS by simply increas-
ing the size of its parameters or even applying the projection technique without
becoming impractical. These improvements come from some technical observa-
tions which are described more thoroughly throughout the paper. We show that
by direct linearization on the Support-Minors equations, one can already obtain
linear equations. Then, one can derive a quadratic system in only n−1 variables
by substitution of these linear polynomials in the original system, and our attack
is by solving this second system. For the sake of completeness, we also provide
an estimate for the memory complexity. All in all, since the time complexity of
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our attack on GeMSS is much reduced, the memory access cost also remains
limited and it is not an obstacle to perform the attack.

As a second major contribution, we propose and analyse a strategy to obviate
much of the memory access cost in implementing the Wiedemann algorithm as
a subroutine for XL. We exemplify the strategy on the rectangular MinRank
attack on Rainbow [7] and we determine the cost on average of memory accesses
in this case. While the memory access cost of the Wiedemann algorithm when
applied to a Macaulay matrix of size V and row weight w over Fq was estimated
by [36] to require remotely accessing 3wV 2 log2 V bits within a memory of size
V , we conjecture that by organizing memory locally, this figure can be reduced
to the equivalent of 3V 2 log2 q bits worth of remote access to memory, saving a
factor of w log2 V/ log2 q. We also provide a concrete strategy for coming close
to this figure, assuming the cost of memory access scales with either the square
root or the cube root of the size of memory. Our concrete analysis shows that,
even assuming the same cost for remote memory access as [36], the memory
access cost can be reduced by a factor ranging from 212 to 216 relative to the
costs estimated there, and the rectangular MinRank attack does indeed reduce
the security of all round 3 Rainbow parameter sets below their targeted security
strengths.

Along with this paper, we also provide a SageMath notebook [39], where the
reader may verify our results for the GeMSS attack.

2 Preliminaries

2.1 Notation

Row vectors and matrices will be written in bold. We denote by vi the i-th
component of a vector v, and the entries of a matrix M of size nr × nc will
be denoted by M i,j , where i (resp. j) is an integer in {1..nr} (resp. {1..nc}).
The support Supp(v) := {i | vi ̸= 0} of a vector v is the set of indices of its
non-zero coordinates. For I ⊂ {1..nr} and J ⊂ {1..nc}, we use the notation
M I,J for the submatrix of M formed by its rows (resp. columns) with indexes
in I (resp. J), and we adopt the shorthand notation M∗,J = M{1..nr},J and
M I,∗ = M I,{1..nc}. We use #I to denote the number of elements of the set I.

A field with q elements is denoted by Fq. The big field schemes take their
name from a field extension Fqn of degree n over Fq, and in the following we
consider ϕ an isomorphism Fqn → Fn

q between vector spaces. For j ∈ Z≥0 and

v = (v1, . . . , vk) ∈ Fk
qn , we define

v[j] := (vq
j

1 , . . . , v
qj

k ).

This corresponds to applying the Frobenius automorphism x 7→ xq j times on
each coordinate of v. Note that this field automorphism is the identity on Fq.

We will adopt the same notation for matrices, namely the matrix M [j] is the
matrix obtained from M by raising all its entries to the power qj .
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Polynomial Systems and Coding Theory. We use x = (x1, . . . , xN ) to
denote a vector of variables, and Fq[x] denotes the ring of polynomials in the
variables x and coefficients in Fq. When q is an odd prime power, and g a
quadratic form in Fq[x], we denote byG the symmetric matrix defined by g(x) =
xGxT and g′(x,y) = g(x + y) − g(x) − g(y) + g(0) the polar form associated
to g. The evaluation of a polynomial system P = (p1, . . . , pm) at s ∈ Fn

q is

the vector P(s) := (p1(s), . . . , pm(s)), and we denote by Ph = (ph1 , . . . , p
h
m) the

homogeneous sequence such that phi is the homogeneous part of highest degree
in pi for 1 ≤ i ≤ m. We also consider the Macaulay matrix M(P) ∈ Fm×nM

q

whose columns are indexed by the monomials in P and such that the entries in
the i-th row correspond to the coefficients of pi for 1 ≤ i ≤ m. If this matrix is
full rank, then the rowspace is an m-dimensional Fq-subspace of FnM

q which can
be viewed as a linear code M of parameters [nM,m]q. A generating matrix is
precisely given by M(P), and the dual is the [nM, nM −m]q-linear code M⊥

defined by

M⊥ :=
{
h ∈ FnM

q | ∀c ∈ M, chT = 0
}
,

which coincides with the right kernel of this matrix. Finally, the puncturing
and shortening operations are classical ways to construct new linear codes from
existing ones, and we use them in Section 5.1.

Definition 1 (Punctured code). Let C ⊂ Fn
q be a code of parameters [n,K]q

and let I ⊂ {1..n}. The puncturing PI(C) ⊂ Fn−#I
q of C at I is the [n−#I,K ′ ≤

K]q-code defined by:
PI(C) :=

{
c{1..n}\I | c ∈ C

}
.

Definition 2 (Shortened code). Let C ⊂ Fn
q be a code of parameters [n,K]q

and let I ⊂ {1..n}. The shortening SI(C) ⊂ Fn−#I
q of C at I is the [n−#I,K ′ ≥

K −#I]q-code defined by:

SI(C) :=
{
c{1..n}\I | c ∈ C, cI = 0I

}
.

The shortening operation is in some sense dual to puncturing, namely one
has SI(C⊥) = PI(C)⊥ and SI(C)⊥ = PI(C⊥).

2.2 Relevant Material for the Attack on GeMSS

GeMSS [10] is a specific instance of HFEv- which was selected as an alternative
candidate in the third round of the NIST PQC standardization process.

HFEv-. The HFEv- signature scheme is a variant of HFE [32] that includes both
the Minus and the Vinegar modifiers. The secret polynomial f : Fqn ×Fv

q → Fqn

is of the form

f(X,yv) =
∑
i,j∈N

qi+qj≤D

αi,jX
qi+qj +

∑
i∈N
qi≤D

βi(yv)X
qi + γ(yv),
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where yv = (y1, . . . , yv) are the vinegar variables, αi,j ∈ Fqn , the βi’s are linear
maps Fv

q → Fqn and γ is a quadratic map Fv
q → Fqn . The special shape of such

an f gives rise to a quadratic central map over the base field F = ϕ ◦ f ◦ ψ :
Fn+v
q → Fn

q , where

ψ : Fn
q × Fv

q −→ Fqn × Fv
q

(x, y) 7−→ (ϕ−1(x), y).

The public key is then given by a quadratic map P = T ◦ F ◦ S, where S :
Fn+v
q → Fn+v

q and T : Fn
q → Fn−a

q are secret affine maps of maximal rank. For
simplification, we assume in the rest of the paper that S (resp. T ) is a linear
map described by a matrix S ∈ F(n+v)×(n+v)

q (resp. T ∈ Fn×(n−a)
q ), so that the

components of P = (p1, . . . , pn−a) are homogeneous polynomials in N = n + v
variables x = (x1, . . . , xn+v). When q is an odd prime power, we recall that P i

is the symmetric matrix associated to pi by pi(x) = xP ix
T for 1 ≤ i ≤ n− a.

MinRank Attack on HFEv- from [35]. Tao et al. recently proposed in [35]
the most efficient key recovery attack on HFEv- so far. To describe this attack,
we assume that q is an odd prime power, but the results can be extended to
the even characteristic, see for instance Appendix A. Let (θ1, . . . , θn) be a basis
of the vector space Fqn over Fq, let H ∈ Fn×n

qn be the associated Moore matrix

defined by H := [θq
j

i+1]
n−1
i,j=0 and let H̃ :=

(
H 0
0 Iv

)
. The main step of the attack

is by solving the following MinRank problem to recover the first n rows of the
invertible matrix U defined by

U := H̃
−1

S−1 ∈ F(n+v)×(n+v)
qn . (1)

Problem 2 (Underlying MinRank problem) Let d :=
⌈
logq (D)

⌉
and let

u ∈ Fn+v
qn be the first row of U . Let P 1, . . . ,P n−a ∈ F(n+v)×(n+v)

q denote the
symmetric matrices associated with the HFEv- public key and let (e1, . . . , en+v)
be the canonical basis for Fn+v

q . For 1 ≤ i ≤ n + v, we define the matrix M i ∈
F(n−a)×(n+v)
q by

M i := eiP ∗ :=

 eiP 1

...
eiP n−a

 .

Then, the vector u := (u1, . . . , un+v) is a solution to the MinRank instance
described by the M i’s with target rank d.

Indeed, the first n rows of U are the Frobenius iterates of u, more precisely
we have

U =


u
...

u[n−1]

R

 ,
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where the block R ∈ Fv×(n+v)
q is full rank, see [35, Alg. 1, 4.]. Then, it is shown

in [35, §4.3] how one can efficiently derive an equivalent key and finish the attack.
Finally, to keep the same notation as in [35, Thm. 2], we set

Z :=

n+v∑
i=1

uiM i ∈ Fq[u]
(n−a)×(n+v). (2)

Fact 1 (On the number of solutions) Let u ∈ Fn+v
qn be a solution to the

MinRank problem 2. Then, for any λ ∈ F∗
qn , the vector λu := (λu1, . . . , λun+v)

is another solution. Moreover, for any 0 ≤ j ≤ n − 1, the same goes for the

vector u[j] := (uq
j

1 , . . . , u
qj

n+v) with corresponding rank d matrix Z [j].

This fact is inherent to the big-field structure used in HFEv- and was already
observed in the previous rank attacks on big-field MPKC [27,25,6,37].

Projection Modifier. The projection modification was introduced in [11] in
order to repair the previously broken SFLASH signature scheme [20] and devise
the new PFLASH signature scheme. In reaction to the attack on GeMSS from
[35], the authors of [31] also applied this modifier to HFEv-, leading to pHFEv-.
The proposed parameters for the scheme are secure against this former attack,
and the point of projecting is that it appears to be more efficient than simply
increasing the degree D of f to obtain the same security. The projection modifier
consists in replacing the map S : Fn+v

q → Fn+v
q by S = L ◦ S′ : Fn+v−p

q → Fn+v
q ,

where S′ : Fn+v−p
q → Fn+v−p

q is full rank and L : Fn+v−p
q → Fn+v

q is full rank

represented by a matrix

(
Λ 0
0 Iv

)
∈ F(n+v−p)×(n+v)

q . The authors of [31] have

studied the effect of projection on the rank of the HFEv- central map. When
p > 0, the rank of Z from Equation (2) is bounded by d′ := d + p instead
of d (cf. [31, Prop. 2]), and this bound is believed to be tight from practical
experiments. Moreover, the number of solutions to the corresponding MinRank
problem is expected to be unchanged compared to plain HFEv-. In Table 2, we
give the current GeMSS parameter sets as well as those of pHFEv- . In [31], a
secure pHFEv- parameter set is constructed from a given GeMSS parameter set
by choosing the least value of p such that the minors attack from [35] is just
above the security level.

2.3 Relevant Material on Rainbow for Section 7.3

Rainbow is a third round finalist of the NIST PQC standardization process for
digital signatures. In this paper, we are mainly interested in the recent rectan-
gular MinRank attack from [7, §7] on this scheme.

Rainbow. For clarity, we adopt the simplified description from [7]. The version
of Rainbow submitted to the NIST PQC project is a 2-layered variant of the
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Table 2. GeMSS and pHFEv- parameter sets.

Scheme q n v D a p from [31]

GeMSS128 2 174 12 513 12 0
BlueGeMSS128 2 175 14 129 13 1
RedGeMSS128 2 177 15 17 15 4

GeMSS192 2 265 20 513 22 5
BlueGeMSS192 2 265 23 129 22 7
RedGeMSS192 2 266 25 17 23 10

GeMSS256 2 354 33 513 30 10
BlueGeMSS256 2 358 32 129 34 11
RedGeMSS256 2 358 35 17 34 14

well-know UOV signature scheme: the trapdoor consists of 3 Fq-subspaces O2 ⊂
O1 ⊂ Fn

q and W ⊂ Fm
q of dimension o2, m and o2 respectively, and the public

system P contains m quadratic equations in n variables such that P(z) ∈ W
for all z ∈ O1 and P ′(x,y) ∈ W for all x ∈ Fn

q and y ∈ O2, where P ′ is the
system of polar forms associated to P. To perform a key-recovery on Rainbow,
it had already been noted that the hardest part is to recover the space O2: once
O2 is found, it is then easy to recover both W and O1. Thus, the rectangular
MinRank attack from [7] targets secret vectors y ∈ O2.

Rectangular MinRank attack. The rectangular MinRank attack by [7] is
currently the best key-recovery attack on Rainbow so far. For y ∈ Fn

q , let

Ly :=

P ′(e1,y)
...

P ′(en,y)

 ,

where (e1, . . . , en) is the canonical basis of Fn
q . The attack heavily exploits the

fact that P ′(x,y) ∈ W for any x ∈ Fn
q and y ∈ O2. Indeed, when y ∈ O2, the

rows of Ly lie in W, so that the rank of this matrix is at most dimW := o2. Also
Ly =

∑n
i=1 yiLei

by linearity, and therefore a solution to the MinRank instance
described by the Lei

’s with target rank o2 is very likely to reveal a vector y in
O2. Finally, as noted in [7], it is possible to fix o2 − 1 entries in y at random in
order to obtain a 1-dimensional solution space. The resulting MinRank instance
is then solved by relying on the recent Support-Minors modeling [3], see Section
3. Moreover, [7] suggests to also use the fact that P(y) = 0, which allows to
consider a system with more equations while keeping the same variables as in
the Support-Minors system. The concrete improvement of this trick compared
to the plain MinRank attack remains modest, see [7, Table 6].
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3 Support-Minors Modeling (SM)

Support-Minors is an efficient method to model and solve the MinRank prob-
lem [3]. It has been used to cryptanalyze MPKC and rank-based cryptosystems
[2,3,7]. The idea is to factor the secret matrix M ∈ Knr×nc of rank ≤ d as

M :=

N∑
i=1

uiM i := DC, (3)

where D ∈ Knr×d and C ∈ Kd×nc are unknown matrices. For 1 ≤ j ≤ nr, one
then considers the matrix

Cj :=

(
rj
C

)
,

where rj := M{j},∗ is the j-th row of M whose components are linear forms in
the so-called linear variables ui’s. The rank of Cj is at most d, and equations
are obtained by setting all (d+1)× (d+1) minors of this matrix to zero, namely
Qj,J := |Cj |∗,J for J ⊂ {1..nc}, #J = d+ 1. The Support-Minors system then

contains a total of nr
(

nc

d+1

)
polynomials by considering 1 ≤ j ≤ nr. Moreover,

by using Laplace expansion along the first row of Cj , one notices that these
equations are bilinear in the ui variables and in the so-called minor variables
cT := |C|∗,T , where T ⊂ {1..nc}, #T = d. The following fact will be used several
times in the paper.

Fact 2 (Structure of the SM system) Each SM equation contains at most
N(d + 1) bilinear monomials. More precisely, given J ⊂ {1..nc}, #J = d + 1
and 1 ≤ j ≤ nr, the monomials of Qj,J belong to a set of N(d + 1) elements
which only depends on J .

Proof. Let J := {j1 < · · · < jd+1} and 1 ≤ j ≤ nr. By Laplace expansion along
the first row of (Cj)∗,J , one has that the monomials in Qj,J are in the set

AJ :=
{
uicJ\ju : 1 ≤ u ≤ d+ 1, 1 ≤ i ≤ N

}
.

This set contains N(d+ 1) elements which are independent from j. ⊓⊔

Solving the SM System. When the corresponding MinRank problem has
a unique solution, [3] proposes a dedicated XL approach by multiplying the
SM equations by monomials in the linear variables. This is typically the case
for Rainbow [7] or rank-based cryptography [3,2]. The attack constructs the
Macaulay matrix M(Qb), where Qb is the system of all degree b+1 polynomials
of the form µuf , where µu is a monomial of degree b−1 in the linear variables and
f is a SM equation. Note that direct linearization corresponds to b = 1 withQ1 =
Q. The value of b is chosen such that the rank of M(Qb) is equal to the number
of columns minus one. In this case, the linear system M(Qb)x

T = 0 has a non-
trivial solution, and this solution easily yields a solution to the initial MinRank
problem. The situation is quite different when there are N ′ > 1 solutions to
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this original MinRank instance, e.g. HFE, see Fact 1, but the approach can be
adapted. There still exists a value of b for which the kernel of M(Qb) is non-
trivial and can be computed, but the dimension N ′′ of this kernel is expected
to be > 1. In particular, the second step to solve the initial MinRank problem
from arbitrary kernel vectors is no longer straightforward. By finding a basis of
that kernel one can at least reduce the initial MinRank problem to a new one
with N ′′ matrices with the same dimensions and the same target rank d, but
this secondary MinRank instance has no reason to be much easier to solve.

The linear systemM(Qb)x
T = 0 is usually sparse, especially when b > 1, and

in this case it is often advantageous to use the Wiedemann algorithm. Another
idea to reduce the cost of linear algebra is to start from a Macaulay matrix of
smaller size by selecting only n′ ≤ nc columns in M (for example the first n′

ones), which yields a SM system with nr
(

n′

d+1

)
equations and N

(
n′

d

)
monomials

uicT , where this time T ⊂ {1..n′}.

4 Improved Attack on GeMSS Using Support-Minors

In this section, we describe our approach to solve the MinRank instance 2 arising
from HFEv- using Support-Minors. As noted in Fact 1, this problem is expected
to have several solutions which are triggered by the big-field structure, hence
we cannot directly apply the XL techniques from [3]. Two remarks are in order
before we describe the attack. From the definition of Z in Equation (2) and the
fact that the M i’s are over the small field, it is important to notice that the
coefficients of the SM system are in Fq, whereas the solutions may belong to
the extension field Fqn . Also, as discussed in [3], we will consider a subset of the

SM equations coming from a submatrix of ZT ∈ Fq[u]
(n+v)×(n−a) obtained by

selecting a subset J of n′ ∈ [d′, n− a] columns.

4.1 Fixing Variables in the Support-Minors System

Up to relabelling of the linear variables, one can fix un+v = 1 as in [35]. In this
case, one expects to obtain n solutions which correspond to the first n rows of
U , namely u,u[1], . . . ,u[n−1]. Also, since we can choose an arbitrary submatrix
ZT

∗,J of ZT with #J = n′, we can make sure that this submatrix is full rank on
its first d columns. Therefore, we will fix the minor variable c{1...d} to 1.

Modeling 1 (Support-Minors modeling on ZT) Let Z be as defined in Equa-
tion (2). We consider the SM equations obtained by choosing n′ ≤ n−a columns
in ZT, with coefficients in Fq and solutions in Fqn . Moreover, we fix un+v = 1
and c{1...d} = 1.

The system from Modeling 1 contains (n+v)
(

n′

d+1

)
affine bilinear equations in

(n+v)
(
n′

d

)
monomials, and (n+v−1)(

(
n′

d

)
−1) of them are bilinear monomials.

Also, one can choose a number of columns n′ ≤ n − a that yields a sub-system
with more equations than monomials. Indeed, this will be the case when (n +

10



v)
(

n′

d+1

)
≥ (n + v)

(
n′

d

)
, and this condition is equivalent to n′ ≥ 2d + 1. Finally,

in GeMSS the value of n− a is much higher than 2d+1, which allows to choose
n′ ∈ [2d+ 1, n− a].

4.2 Solving via Gröbner Bases when n′ ≥ 2d + 1

In the case when n′ ≥ 2d + 1, there are more equations than monomials in the
SM system, but once again it is not possible to solve by direct linearization
because the resulting linear system has a large kernel. More precisely, since we
expect the system to have n solutions and since these solutions correspond to
n linearly independent vectors {v,v[1], . . . ,v[n−1]} such that the first n+ v − 1
components of v are u1, . . . , un+v−1, its dimension should be at least n. For
large enough n, in every single instance we have tested, the linearization process
triggers no spurious solutions, thus the dimension of the solution space is equal
to n. Therefore, we adopt the following Assumption 1 in the rest of the analysis.

Assumption 1 Let n′ ≥ 2d + 1. Then, the number of linearly independent
equations in Modeling 1 is equal to

N1 := (n+ v)
(
n′

d

)
− n.

Our attack works in two steps. First, by forming linear combinations between
the equations from Modeling 1, we are able to produce a system L of degree 1
polynomials (Step 1). Then, using L to substitute some of the variables, we get
a quadratic system in nu = n − 1 of the linear variables. Finally (Step 2) we
solve this second system.

Step 1: Linear Polynomials Produced at b = 1. Here we explain how the
system L is obtained at Step 1. We start by proving

Fact 3 Under Assumption 1, by linear algebra on the affine SM equations, one
can generate NL linearly independent degree 1 polynomials, where

NL ≥
(
n′

d

)
+ v − 1. (4)

Proof. By Assumption 1, the system given in Modeling 1 contains N1 := (n +

v)
(
n′

d

)
− n linearly independent equations. Moreover, one has

N1 ≥ (n+ v − 1)
((

n′

d

)
− 1
)
,

so that the number of linearly independent affine bilinear equations is greater
than the number of bilinear monomials. In particular, there are non-trivial linear
combinations between the bilinear parts of the equations that are zero. This
means that by performing linear algebra operations on the equations in Modeling
1, one can generate at least(

(n+ v)
(
n′

d

)
− n

)
︸ ︷︷ ︸

N1

− (n+ v − 1)
((

n′

d

)
− 1
)

︸ ︷︷ ︸
#bilinear monomials

=
(
n′

d

)
+ v − 1

11



linearly independent affine degree 1 polynomials in the ui’s and in the cT vari-
ables. ⊓⊔

These linear equations are often referred to in the literature as degree falls
from degree 2 to degree 1. Since producing a higher number of independent
degree 1 equations would be even more beneficial for our attack, we assume the
worst case scenario, namely

Assumption 2 There are exactly

NL =
(
n′

d

)
+ v − 1.

linearly independent degree 1 polynomials in the span of Modeling 1.

We consider the Macaulay matrix M(L) of these NL linear polynomials,

and here we choose to eliminate all the ncT :=
(
n′

d

)
− 1 minor variables first by

considering an ordering on the columns such that cT > un+v−1 > · · · > u1 >
un+v = 1. We also denote by M(Lh) the Macaulay matrix of the system which
consists of the homogeneous degree 1 parts, which is obtained from M(L) by
removing the last column.

Lemma 1 Under Assumption 1, the reduced row echelon form of M(Lh) is of
the form

L =

(
IncT

∗
0 K

)
∈ FNL×(ncT

+n+v−1)
q , (5)

where K ∈ Fv×(n+v−1)
q is row reduced.

Proof. Let U ∈ F(n+v)×(n+v)
qn be the invertible matrix defined in Equation (1),

and let u := (u1, . . . , un+v) ∈ Fn+v
qn be its first row. This vector is a solution to

the MinRank problem, so that there exists v ∈ FncT
qn such that

M(L) · (v, un+v−1, . . . , u1, un+v)
T = 0.

By Assumption 1, the matrix M(Lh) is full rank. We proceed by contradic-
tion by assuming that the echelon form L of M(Lh) is not in systematic form
on its first ncT rows. On that hypothesis, there is a set of v0 ≥ v + 1 linearly
independent vectors in the row space of L which have zero in their leftmost ncT
entries. This yields v0 linearly independent vectors h1, . . .hv0 ∈ Fn+v

q such that

for all i, uhT
i = 0. Then, by applying the Frobenius isomorphism and using

the fact that it is the identity on Fq, it follows that u[j]hT
i = 0 for all i and

0 ≤ j ≤ n− 1. Therefore, the matrix

U{1..n},∗ =

 u
...

u[n−1]

 ∈ Fn×(n+v)
qn ,

is not full rank, which is a contradiction since U is invertible. ⊓⊔
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By Lemma 1, it is possible to express all the minor variables as well as v linear
variables in terms of the remaining n−1 linear variables. Moreover, by reordering
the linear variables if necessary, we may further assume that the remaining ones
are u1, . . . , un−1. In this case, the matrix L of Lemma 1 is of the form

L :=

(
IncT

0 Y

0 Iv W

)
∈ FNL×(ncT

+n+v−1)
q , (6)

where Y ∈ FncT
×nu

q , W ∈ Fv×nu
q and nu := n− 1. Finally, let L be the affine

system obtained by performing the same linear operations on the initial NL

equations as the ones to produce the echelon form L starting from M(Lh).

Step 2: Solving the Resulting Quadratic System. By using the linear
equations from L to substitute variables in Modeling 1, we obtain the following

Modeling 2 (Quadratic system) We consider the quadratic system in nu =
n − 1 linear variables u1, . . . , un−1 obtained by plugging the linear polynomials
of L into the equations from Modeling 1.

We now focus on the task of solving this quadratic system using Gröbner bases,
and in Proposition 1 we prove at which degree the computation terminates. The
proof relies on Assumption 1, Assumption 2 and the following Assumption 3 on
the echelon form L from Equation (6).

Assumption 3 The matrix Y ∈ FncT
×nu

q in Equation (6) is full rank.

Note that this assumption should hold with high probability if Y behaves as a
random matrix. Also, we have performed different simulations to experimentally
verify Assumptions 1, 2 and 3. According to the results obtained for different sets
of parameters (q, n, v,D, a), it seems that if n′ is chosen such that n′ ≥ 2d + 1
and ncT ≥ nu, then all 3 assumptions are satisfied almost 100% of the times. The
reader might find helpful to experimentally explore these 3 assumptions using
the SageMath notebook [39].

Proposition 1. Under Assumptions 1, 2 and 3, if ncT ≥ nu, a Gröbner basis
of the system from Modeling 2 can be obtained by Gaussian elimination on the
initial equations, i.e. it is found at degree 2. When ncT < nu, this Gröbner basis
is found at degree 3.

Proof. By Assumption 1 and Assumption 2, the number of degree 2 affine
equations which remain after the linear algebra step in Modeling 1 is equal

to N1 −NL = (n+ v − 1)
((

n′

d

)
− 1
)
. As we cannot construct extra degree falls

between them, this implies that the linear span of these equations contains an
equation with leading monomial uicT for any T, #T = d, T ̸= {1..d} and any
1 ≤ i ≤ nu + v. Let

L :=

(
IncT

0 Y

0 Iv W

)
∈ FNL×(ncT

+n+v−1)
q ,

13



where Y ∈ FncT
×nu

q , W ∈ Fv×nu
q and nu := n − 1 as defined in Equation (6).

We also denote by c ∈ FncT
qn the row vector whose components are the minor

variables and (u1, . . . , un+v−1) := (u+,u−), where u+ ∈ Fnu
qn (remaining linear

variables) and u− ∈ Fv
qn (removed linear variables). Then, there is vector of

constants α ∈ FncT
q such that

cT = −Y uT
+ − αT. (7)

Since Y is full rank by Assumption 3, the linear system given by Equation (7)
can be inverted when ncT ≥ nu, and therefore all the

(
nu+1

2

)
quadratic leading

monomials will be found in the span of Modeling 2. The second part of the proof,
which discusses the case ncT < nu, can be found in Appendix B. ⊓⊔

Finally, note that the content of the current Section 4 also applies to pHFEv-
with rank equal to d′ = d + p, since what really matters in the analysis is the
number of solutions to the MinRank problem. We simply have to replace the
condition n′ ≥ 2d+ 1 by n′ ≥ 2d′ + 1.

5 Complexity of the Attack

This section analyses the cost of our attack on GeMSS. In Sections 5.1 and 5.2,
we estimate the time complexity. This complexity comes down to two major
steps, first generating Modeling 2 from Modeling 1 (Step 1) and then solving
Modeling 2 via Gröbner bases (Step 2). Then, in Section 5.3, we evaluate the
corresponding memory complexity.

First, note that choosing n′ = 2d + 1 already ensures ncT ≥ nu for all the
GeMSS and pHFEv- parameters, see Table 2. In particular, Proposition 1 implies
that the system in Modeling 2 will be solved at degree 2. In the following, we
then adopt n′ = 2d+ 1 and we will also consider that v = o(n).

5.1 Time Complexity of Step 1

This first step can be performed by echelonizing the equations from Modeling 1
using Strassen’s algorithm. The complexity in this case is

O

(
(n+ v)

(
2d+ 1

d

)(
(n+ v)

(
2d+ 1

d

))ω−1
)

= O
(
nωcT n

ω
u

)
(8)

Fq-operations, where nu = n − 1, ncT =
(
2d+1

d

)
− 1 and ω is the linear algebra

constant.
An alternative path is to use Coppersmith’s Block-Wiedemann algorithm

(BW). Let M be the rowspace of the Macaulay matrix M(Q) of the SM system.
By Assumption 1, it can be seen as a linear code of length (n+ v)

(
2d+1

d

)
and

dimension N1 = (n+ v)
(
2d+1

d

)
− n, so that we expect the right kernel of M(Q)

to be of dimension n. In particular, by running BW roughly n times, we hope to
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obtain a basis for this kernel which corresponds to the dual code C := M⊥. Let
I be the subset of positions of M corresponding to the bilinear monomials. We
then puncture C at I to obtain PI(C). Since the dual of the punctured code is
the shortening of the dual, we have that PI(C)⊥ = SI(M), and the dimension of
this code corresponds to the number of independent linear equations NL given
by Fact 3. Moreover, by Assumption 2 we have that NL =

(
2d+1

d

)
+ v − 1.

Also, the cost of obtaining the shortened code SI(M) from PI(C) is negligible
compared to the BW step to obtain PI(C). Finally, by Fact 2, there are at most
(d + 1)(n + v) monomials in one SM equation, so that the overall complexity
using the Wiedemann algorithm n times to find a basis of C is

O

(
n× (n+ v)(d+ 1)

(
(n+ v)

(
2d+ 1

d

))2
)

= O
(
dn2

cT n
4
u

)
. (9)

5.2 Time Complexity of Step 2

As the choice n′ = 2d + 1 ensures nu ≤ ncT for all the parameters of GeMSS
and pHFEv-, the system given by Modeling 2 can be solved at degree 2 by
Proposition 1. Thus, the cost of this second step is simply the cost of row reducing
the Macaulay matrix of this quadratic system. The number of columns is the
number of initial monomials which is equal to 1 + nu +

(
nu+1

2

)
and there are

more equations than monomials, so that the complexity of the second step is

O

(
ncT (n+ v − 1)×

(
1 + nu +

(
nu + 1

2

))ω−1
)

= O
(
ncT n

2ω−1
u

)
(10)

Fq-operations. Note that Step 1 is expected to be more costly since nu ≤ ncT .

5.3 Memory Cost

In this section, we estimate the space complexity of the attack on GeMSS, which
is dominated by the space complexity of Step 1 as the system from Modeling 2 is
much smaller. We choose q = 2 to be in accordance with the GeMSS parameters,
so that one element in Fq occupies one bit in memory. We start by describing
two approaches to store the Macaulay matrix M(Q) associated with the system
Q from Modeling 1 when used within the Block-Wiedemann algorithm.

Standard Approach. This approach uses the sparsity of the matrix M(Q)
in a naive way. Recall from Fact 2 that every SM equation contains at most
(n+ v)(d+1) nonzero monomials. Thus, one way to store a single row of M(Q)
is by storing the indexes corresponding to nonzero positions. Hence we must
store at most (n+ v)(d+1) column indexes per row. Since the Macaulay matrix
has (n + v)

(
2d+1

d

)
columns and assuming that several rows can be dropped to

get a square matrix, the space complexity is given by(
2d+1

d

)
(d+ 1)(n+ v)2 log2

((
2d+1

d

)
(n+ v)

)
= O

(
dn2uncT log2(ncT )

)
. (11)
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Optimized Approach. Here we adapt to the SM equations the strategy used
by Niederhagen for a generic Macaulay matrix [30, §4.5.3]. Contrary to [30], we
cannot exploit the fact that several rows of our Macaulay matrix correspond to
the same equation multiplied by distinct monomials as we consider the plain SM
system at b = 1. Instead, we take advantage of the structure of the SM equations
as described in Fact 2. Our approach is detailed in Appendix C, and we obtain
a space complexity of

(
2d+1

d

)
(n+ v)(d+ 1) log2

((
2d+1

d

)
(n+ v)

)
= O (dnuncT log2(ncT )) . (12)

Note that this approach saves a factor of order n + v compared to the naive
approach, see Equation (11).

Table 3. Memory (log2(#bytes)) needed to store the Macaulay matrix M(Q) from
Step 1 to be used in BW or Strassen’s algorithm.

Scheme
BW

Standard
BW

Optimized
Strassen

GeMSS128 38.665 34.553 48.935
BlueGeMSS128 34.332 30.258 41.263
RedGeMSS128 27.645 23.729 29.873

GeMSS192 39.930 35.213 50.166
BlueGeMSS192 35.586 30.917 42.478
RedGeMSS192 28.897 24.410 31.073

GeMSS256 40.836 35.686 51.049
BlueGeMSS256 36.488 31.389 43.353
RedGeMSS256 29.800 24.905 31.940

Table 3 shows the space complexity of the first step of our attack. Keep in
mind that the memory demand for the Block-Wiedemann algorithm will not
be much more than the one to fully store the Macaulay matrix. It can even be
significantly lower, if rows are generated on-demand, but this would increase
the time complexity. In contrast, the space complexity of Strassen’s algorithm
is dominated by the memory demand to store a square dense matrix of size(
2d+1

d

)
(n+ v), see Column “Strassen”.

As we can see in Table 3, the Optimized storage requires only a few GigaBytes
of shared memory to execute Step 1 with BW on any of the proposed parameters
for GeMSS, whereas for the Standard approach requires up to a few TeraBytes.
To perform this step with Strassen’s algorithm, one would need up to more than
two Petabytes. To sum up, the amount of memory required by BW is small
enough to be allocated even in a shared memory device, especially if one uses
the Optimized storage.
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6 Application to GeMSS and pHFEv- Parameter Sets.

In this section, we use the results developed in Section 5 to determine the effect
of our attack on the security of the GeMSS and pHFEv- signature schemes.

In Table 4, we give the time complexity of our attack on the current GeMSS
parameters. We use Equation (8) or Equation (9) for Step 1 (Strassen or BW)
and Equation (10) for Step 2. We use ω = 2.81 and a conservative constant of
7 for the concrete complexity of Strassen’s algorithm [38], while a constant of 3
for the concrete complexity of BW [26, Theorem 2]. One can check that for the
specific parameters proposed by the GeMSS team, the value n′ = 2d+ 1 is high
enough to ensure to solve at degree 2 in Step 2, i.e. nu ≤ ncT . Similarly, the
behavior of our attack on pHFEv- is given in Table 5. We adopt the parameters
from [31, Table 2] using ω = 2.81. In this paper, the value of p was chosen
such that the minors attack from [35] is just above the security level. On these
parameters, one notices that our attack always succeeds in solving at degree 2
with n′ = 2d′ + 1 = 2(d + p) + 1. As before, for those parameters the values of
d′ are indeed high enough to guarantee nu ≤ ncT .

Table 4. Complexity of our attack (log2(#gates)) versus known attacks from [35] for
the GeMSS parameters.

Scheme Minors [35] SM [35]
SM Step 1 SM Step 2

n′
(Strassen/BW) (Strassen)

GeMSS128 139 118 76/72 54 21
BlueGeMSS128 119 99 65/65 51 17
RedGeMSS128 86 72 49/53 45 11

GeMSS192 154 120 78/75 57 21
BlueGeMSS192 132 101 67/67 53 17
RedGeMSS192 95 75 51/55 48 11

GeMSS256 166 121 79/77 59 21
BlueGeMSS256 141 103 68/69 55 17
RedGeMSS256 101 76 52/57 50 11

The nature of our approach, although in theory similar to the one used
in [35], allows us to reduce significantly the complexity of the Support-Minors
attack performed by Tao et al. against GeMSS. This is important since this im-
provement makes it completely infeasible to repair GeMSS by simply increasing
the size of its parameters without turning it into an impractical scheme. The
dominant cost of our attack is the initial linear algebra step (dense or sparse)
on the Support-Minors equations, whereas in [35] an attacker needs to multi-
ply these equations by linear and/or minor variables to solve the system. This
explains why we obtain a much smaller cost than the one presented in column
“SM [35]”. Another noticeable difference between our work and the one in [35]
is that their complexity estimate is conjectural, whereas ours is proven under
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mild assumptions in comparison. The results from Table 5 also suggest that the
projection modifier on HFEv- will not be sufficient to repair the scheme as we
have significantly broken the parameters given in [31]. To meet the new security
levels, the value of p should be increased by a consequential amount, making
the scheme inefficient. For example, to achieve security level 128 with the former
GeMSS128 parameters, one should take p = 14, increasing the signing time by
a factor q14, which is considerable.

Table 5. Complexity of our attack (log2(#gates)) versus known attacks from [35]
for pHFEv-. The pHFEv- parameter set for level x consists of (q, n, v,D, a, p), where
(q, n, v,D, a) is taken from GeMSSx and p ≥ 0 is the smallest value such that the cost
of the minors attack [35] is just above x.

Scheme p Minors [35,31]
SM Step 1 SM Step 2

n′
(Strassen/BW) (Strassen)

GeMSS128 0 139 76/72 54 21
BlueGeMSS128 1 128 71/69 53 19
RedGeMSS128 4 128 71/69 53 19

GeMSS192 5 201 105/95 67 31
BlueGeMSS192 7 201 105/95 67 31
RedGeMSS192 10 205 105/95 67 31

GeMSS256 10 256 134/117 79 41
BlueGeMSS256 11 256 129/113 77 39
RedGeMSS256 14 263 129/113 77 39

7 Memory Management Strategy for the Support-Minors
Equations within Block Wiedemann

It is generally acknowledged that the cost of the Wiedemann algorithm is dom-
inated by the combined cost of a large number of matrix-vector multiplications,
where the matrix is a fixed, full-rank, square submatrix M(P)′ of the initial
Macaulay matrix M(P). This matrix-vector product occurs approximately 3V
times, where V is the dimension of the vector v being multiplied. While the
cost of these multiplications is often expressed in terms of the number of field
operations involved, it is likely that for cryptographically-interesting instances,
this cost is dominated instead by random-access queries to a large memory. In
[36], the cost of a random access memory query is estimated by the formula

C2 log2 V
√
V log2 q, (13)

where C2 > 0 is a constant, and it is asserted that such a random access must
occur every time a field multiplication is performed in the Wiedemann algo-
rithm. Here, [36] follows [5] in estimating the cost of moving a bit in a memory
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of size V log2 q – the size of v – as C2

√
V log2 q. The additional factor of log2 V

in Equation (13) appears to be included on the assumption that each field mul-
tiplication requires not just the transmission of a field element but a log2 V -bit
address for that field element. Here, note that it is not necessary to store the
Macaulay matrix, since, at least for cryptographically large systems, the neces-
sary matrix elements can be generated on-the-fly algorithmically with negligible
cost compared to the cost of random access queries to memory. However, we do
not see any way to avoid storing v while the value of the matrix-vector product
is being written to memory. In our analysis, we will therefore take the size of the
memory to be 2V log2 q instead of V log2 q.

More importantly, we challenge the assertion of [36] that log2 V bits must be
moved long distance in memory for every field multiplication for the Support-
Minors system, namely when P := Qb for some b ≥ 1. To this end, we propose
a simple hashing strategy to obviate much of this memory access cost. In this
methodology, the cost of the matrix-vector products that dominate the cost of
the Wiedemann algorithm approaches one long distance memory access to a
field element per active row of M(Qb)

′ per matrix-vector multiplication, and
moreover memory accesses are blocked so that the cost of transmitting memory
addresses is negligible. Assuming the same cost formula for generic RAM access
as [36], this implies that the cost of the Wiedemann algorithm should be quite
close to

3V 2 log2 q · C2

√
2V log2 q. (14)

As the matrix-vector product involves w field multiplications for each row of
M(Qb)

′, where w is the number of nonzero elements in the row, this ideal-
ized complexity value would represent a memory-access cost savings factor of
w log2 V/ log2 q in comparison to the model of [36]. It should be noted that the
memory cost formulae of [5] and [36] are based on an assumed 2-dimensional
arrangement of memory units. If we instead assume a 3-dimensional memory
model, we closely approximate a similar formula for the cost with (2V log2 q)

1/3

substituted for
√
2V log2 q and a different constant. For brevity, we will derive

our formulae in terms of the 2-dimensional memory model with the understand-
ing that it is a trivial matter to adjust them to the 3-dimensional model.

7.1 Hashing on the main memory

Each coordinate of a matrix-vector product performed within the Wiedemann
algorithm is obtained from a vector-vector product of the form

rvT =
∑

i∈Supp(r)

rivi,

where r is a row of the Macaulay matrix with support Supp(r) of size w, whose
elements can be cheaply computed on the fly. The cost estimates in [36] effectively
assign a cost of w random access queries in a memory of size V to perform
this vector-vector product. This would be accurate if the corresponding sum is
computed by a central processor which first computes the nonzero elements ri,
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then fetches vi for i ∈ Supp(r) from memory, and finally multiplies each ri by
the corresponding vi and sums the products.

The strategy we propose, however, will partition the main memory in which
the vi’s are stored, so that for each row r, the vi’s with i ∈ Supp(r) will be
clustered into a small number of groups such that the vi’s in each group are
all in the same memory partition. This allows a distributed approach where a
processor assigned to each memory partition Π computes the nonzero ri’s for
vi ∈ Π and then computes the partial sum

∑
vi∈Π rivi. This partial sum is

then transmitted by each such processing cluster to that cluster among them
located in the section of memory where the total sum is to be written. Thus,
most of the arithmetic is performed locally, within each partition, with “remote”
communication only between the small number of relevant processing clusters.

To establish this partition, we observe that each pair of memory addresses—
a read address for a coordinate of the vector v and a write address for the same
coordinate of the product M(Qb)

′vT— corresponds to a fixed bi-degree (b, 1)
monomial. Also, any row r is associated to an equation of Qb of the form µQi,J ,
where J is a collection of d+1 columns of the support matrix M . The thing each
monomial in such an equation has in common is that the minor variable present
corresponds to a subset of J of size d; that is, it belongs to the set {cJ\{j}, j ∈ J}.
We may thus define an h-bit hash H for each monomial, whose value represents
the inclusion or exclusion of the first h columns of the support matrix from the
minor corresponding to this minor variable. Since there is significant overlap in
which columns are present in a minor corresponding to a minor variable within
each equation, we expect each row r to involve relatively few possible hash
values, thereby minimizing “remote” communication.

We may assume, as in [36] and [13], that the cost of distributing the MinRank
instance and a seed for a PRNG to generate the same square submatrix of the
Macaulay matrix to the 2h processing clusters arising from our hashing strategy
is insignificant in comparison to the cost of running the Wiedemann algorithm.
Thus, the hashing strategy has the potential to produce a significant savings in
memory access cost by making the vast majority of the multiplications in the
Wiedemann algorithm local.

7.2 Memory savings from our approach

The rationale behind our strategy is the specific structure of the SM system, see
Fact 2. First, note that rows of the full Macaulay matrix M(Qb) can be grouped
in blocks of size nr of the form {µQi,J , 1 ≤ i ≤ nr}, where J is a collection
of d+ 1 columns of the support matrix M and where µ is a fixed monomial of
degree b− 1 in the linear variables. While not all of these nr rows of M(Qb) are
present in the square submatrix M(Qb)

′ input into the Wiedemann algorithm,
on average

n′r =
rank(M(Qb))

#blocks
≈ #cols(M(Qb))

#blocks
=

(
N+b−1

b

)(
nc

d

)(
N+b−2
b−1

)(
nc

d+1

)
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such equations are included from each block. Fact 2 states that these equations
have potential nonzero coefficients for N(d+1) monomials all involving the same
set of minor variables, and thus memory access patterns arising from vector-
vector products involving these rows will be the same.

In our approach, each of these equations is considered by a given processing
cluster in function of the presence or absence of the first h columns of M in the
calculation of that equation. Note that the total number of choices of d + 1 of
the nc ≥ h columns can be written(

nc
d+ 1

)
︸ ︷︷ ︸

#All patterns

=

h∑
i=d+h+1−nc

(
h

i

)(
nc − h

d+ 1− i

)
,

where we have partitioned the choices by the hash value, and where binomial
coefficients with a negative second argument, if they occur, are interpreted as
zero. Therefore, for each hash value of Hamming weight i, there are

(
nc−h
d+1−i

)
choices of d+1 among the nc columns of M including exactly that hash specified
choice of i of these first h columns.

Memory access cost of one field element within a partition. The por-
tion of memory required by the processing cluster corresponding to a hash H
of Hamming weight i is of size 2Vi := 2

(
nc−h
d+1−i

)(
N+b−1

b

)
. This quantity includes

all Vi memory locations associated with bidegree (b, 1) monomials µukcT , where
ukcT is a bilinear monomial from the initial SM system and such that Hj = 1
if and only if j ∈ {1..h} ∩ T , as well as an equal amount of memory for writ-
ing output values. The total cost of reading every value of v within such a
partition, that is, exactly half of the partition’s values, is the product of the
number of such values, the square root of memory size in bits and the commu-
nication cost for transmitting a field element and an address. This product is

(2 log2 q)
1/2(log2 q + log2(2Vi log2 q))V

3/2
i . Thus, summing this quantity across

all
(
h
i

)
hashes H of Hamming weight i for all values of i and dividing by the total

size, 2V = 2
(
N+b−1

b

)(
nc

d

)
, of memory, we find that the average memory access

cost of a field element within some memory partition is given by

ψ1 =
C2(log2 q)

1/2

21/2V

h∑
i=d+h+1−nc

(
h

i

)
(log2 q + log2(2Vi log2 q))V

3/2
i . (15)

Additional costs due to the hashing strategy. Still, our hash-based man-
agement scheme creates overhead that must be taken into account in the final
cost. For any given row of the Macaulay matrix, there is a (d+1)/nc probability
that the i-th column of M is used. Therefore, we expect the average vector-
vector product to require h(d+1)/nc processing clusters to locally add products
and then transmit to the designated accumulator. We further note that all of the
processing clusters can transmit all of their partial sums of size log2 q for every
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equation to the designated accumulator in a canonical order, removing the need
for the transmission of an address of size log2(2V ) between the processing cluster
and the accumulator for every equation. Therefore, dividing by N(d+1), which
is the number of monomials in any equation, we compute the average overhead
incurred by using the hash strategy per multiplication to be

ψ2 = C2
h log2 q

ncN

√
2V log2 q, (16)

where C2 is the constant from the two-dimensional model as in Equation (13).

Total cost per Fq-multiplication. Putting these pieces together, we compute
the memory access cost per multiplication for solving a generic SM system with
the Wiedemann algorithm as follows. Since each equation belongs to a set of, on
average, n′r equations having the exact same N(d + 1) monomials, and noting
that even for very large SM systems the quantity N(d+ 1) log2 q is small, each
processing cluster may retrieve these values only once and store them in its local
cache while computing each of the n′r partial sums. Thus, each field element is
accessed ρ := 1/n′r times on average per multiplication by a processing cluster.
Multiplying this average number of accesses by the average access cost ψ1 within
that partition and adding the above computed overhead ψ2, we obtain

Total Memory Cost Per Multiplication = ρψ1 + ψ2. (17)

Recall that the validity of Equations (15) and (16) depends on the acceptance
of a two-dimensional nearest-neighbor topology being optimal for large scale
memory. If we prefer a three-dimensional nearest-neighbor topology of a similar
nature, the above formulae still work when each exponent of 1/2 is replaced by
1/3, 3/2 is replaced by 4/3 and C2 is replaced by a new constant C3.

Computing Addresses in Canonical Order. In order to avoid sending an
address between the processing clusters and the designated accumulator with
each partial sum, note that the cluster and accumulator must locally compute a
canonical order for the rows of M(Qb)

′, which may represent an additional cost.
However, this cost is not taken into account in Equation (17). Indeed, by using
an appropriate canonicalization method one can ensure that it is negligible for
all current parameter sets from GeMSS and Rainbow. We provide an example
of such canonicalization in Appendix D.

7.3 Memory cost for GeMSS and Rainbow

It was already clear from Section 5.3 that memory is not much of a concern
in attacking GeMSS; however, the hashing strategy still offers a significant im-
provement in the two-dimensional nearest neighbor model. The formula of [36]
would imply that every multiplication for GeMSS128 should have a cost of 212.68,
whereas with our hash methodology, calculation shows that the average memory
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access cost for a multiplication is only 20.58; thus, memory costs for GeMSS are
insignificant.

The cost of memory access for Rainbow, however, is much more significant.
Recall that the “MinRank + P = 0” version of the rectangular MinRank attack
of [7] considers the hybrid systemH which combines the SM equationsQ with the
m public equations P(y) = 0 which are quadratic in the linear variables present
in Q. In this case, the Macaulay matrix M(Hb) in bi-degree (b, 1) is obtained by
taking the rows ofM(Qb) together with these bi-degree (2, 0) public equations pi
for 1 ≤ i ≤ mmultiplied by all degree (b−2, 1) monomials ν. The effect of adding
P = 0 to SM is that for a fixed number of columns nc of M , the resulting hybrid
system may be solved at a smaller degree b than the initial Support-Minors one.
To be convinced of this, note that since the MinRank instance described in [7]
and Section 2.3 has a unique solution, the system H can be solved in degree (b, 1)
with any subset of the SM and P = 0 equations of rank V =

(
N+b−1

b

)(
nc

d

)
− 1.

In particular, since both b and nc are parameters of the SM equations, it is
possible to construct an augmented SM system s.t. rank (M(Qb)) < V while
rank (M(Hb)) = V . Note that the rank RSM,b of M(Qb) is given by [3, Eq.
(20)] when this quantity is smaller than V , and therefore M(Hb) will be of full
rank if there exist at least V −RSM,b linearly independent equations in bi-degree
(b, 1) derived from P = 0. In practice, as is found in [7, Table 6], optimization
of this attack often occurs at a lower value of nc and a higher value of b than
when considering the SM system alone.

Adapting the approach to the P = 0 equations. To take these augmented
P = 0 equations into account in our hashing methodology, a first remark is that
they trivially come in groups of size m the form {νpi, 1 ≤ i ≤ m} with the same
monomial content, a set of

(
N+1
2

)
monomials all involving the unique minor

variable which divides ν, where we set N := n − o2 + 1 and d := o2 to stick
to the notation from Section 3. This structure implies that any vector-vector
product rvT where r corresponds to a P = 0 equation can be computed by a
single processing cluster under the strategy we outlined in Section 7.1. Having
at most one processing cluster required to compute the vector-vector product
and having at most one long distance transmission of the sum to the designated
processor that writes the value in memory, the P = 0 equations are much more
efficient than the SM equations, even if they contain many more monomials per
equation, as

(
N+1
2

)
> N(d+ 1) for most parameters.

Another important remark is that any basis of the rowspace of M(Hb) can
be made to contain all of the P = 0 equations. An informal justification for this
claim is that for all practical parameters, the first fall degree of the polynomial
system P— which was extensively tested in direct attacks on UOV/Rainbow —
is significantly higher than the solving degree of the SM system using the (b, 1)
XL strategy. Thus, the collection of RP,b = m

(
N+b−3
b−2

)(
nc

d

)
equations derived

from P = 0 are already linearly independent for values of b relevant to our case.
Therefore, we may take advantage of the efficiency of the P = 0 equations by
including them all in M(Hb)

′ and randomly adding a subset of size V − RP,b
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among the SM equations to produce the square submatrix given as input to
Wiedemann.

Overall costs. Naturally, using fewer of the SM equations requires a recalcula-
tion of the average number n′r of equations included in the system from among
each block of equations with the exact same monomial content. With the above
strategy, we have

n′r =
V −RP,b

#blocks
,

and the value of ψ1 from Equation (15) is adjusted accordingly. Thus we may
compute the total cost of the hybrid attack against Rainbow. Let σSM denote
the ratio (V −RP,b)/V of SM equations to total equations in the hybrid system
corresponding to M(Hb)

′ and let σP = RP,b/V represent the ratio of P = 0
equations. Then, the total cost under the same assumptions on memory cost of
[36] and using the method described in Section 7.1 is given by

3(ρψ1 + ψ2)V
2σSMN(d+ 1)

+ 3

(
ψ1

m
+ C2 log2 q(2V log2 q)

1/2

)
V 2σP

(
N + 1

2

)
,

where we recall that N = n− o2 + 1 and where ψ1 is defined in Equation (15).
Since RP,b is significantly smaller than V − RP,b and the P = 0 equations are
much more memory efficient than the SM equations, we find that the contribu-
tion of the P = 0 equations in complexity ends up being a negligible fraction of
the total cost for all the parameters we consider. Finally, we present the total cost
of the rectangular MinRank attack using the hash method in the 2-dimensional
case in Table 6, and we compare it to the conjectured formula given by (14).

Table 6. Optimal hash size (h) and total attack cost for the MinRank (SM) and
“MinRank + P = 0” (SM+P) attacks in the 2D nearest-neighbor topology model for
Rainbow variants compared with the conjectured bound (2D Conj.) of Formula (14)
and the required security level. The modeling is done with the constant C = 2−5.

Scheme
(q, n,m, d)

2D
SM

2D
SM+P

2D
Conj.

Security
Level

Rainbow-I
(16, 100, 64, 32)

cost
(hash)

2145.39

(h = 18)
2138.89

(h = 11)
2135.76 2143

Rainbow-III
(256, 148, 80, 48)

cost
(hash)

2206.11

(h = 23)
2201.09

(h = 19)
2197.39 2207

Rainbow-V
(256, 196, 100, 64)

cost
(hash)

2272.78

(h = 30)
2260.76

(h = 22)
2256.89 2272
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8 Conclusion

The Support-Minors modeling of the MinRank problem [3] has changed our
perspective of the applicability of rank methods in cryptanalysis. This new tech-
nique has changed the complexity of many MinRank instances by a significant
amount in the exponent. In addition, this advance has opened up new avenues
for cryptanalysis by making newly discovered attacks that exploit rank viable,
e.g. [7,35].

Some recent work has suggested that it may be possible to avoid the wrath
of Support-Minors. In particular, [31] and [36] claim to support protection from
the Support-Minors method, the former by a modification of GeMSS, and the
latter by considering memory costs.

In this work, we have shown that Support-Minors still renders these schemes
insecure. By demonstrating a technique for solving a Support-Minors MinRank
instance with solutions in an extension field, we have shown that both GeMSS
and pHFEv- remain insecure for all practical parameters. Even considering the
cost of memory access, we have shown that these schemes as well as the Round
3 parameters of Rainbow fail to achieve the proper security level.
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of Pure and Applied Algebra 139, 61–88 (1999)

23. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
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[35] did not really make this part very explicit. For a quadratic form Q : V → K,
we use the polar form B(x,y) = Q(x+ y)−Q(x)−Q(y) instead of

B′(x,y) =
Q(x+ y)−Q(x)−Q(y)

2
,

which does not make sense in characteristic 2. For simplicity, we consider plain
HFE and the central map

f(X) =
∑
i,j∈N

qi+qj≤D

αi,jX
qi+qj , αi,j ∈ Fqn ,

which is seen as a quadratic form in (X, . . . ,Xqn−1

). For 0 ≤ j ≤ n−1, let F ∗(j)

be the matrix representing the polar form of fq
j

and let F := F ∗(0).

Former MinRank attacks. The attack from [6] looks for a rank ≤ d linear
combination between the public matrices P i over Fqn . Keeping the notation
from their paper, a solution is given by

n∑
k=1

γkP k = WF ∗(0)W T = WFW T,

where W := SM and where (γ1, . . . , γn) is the first column of T−1M ∈ Fn×n
qn .

Another solution is clearly given by (γq1 , . . . , γ
q
n), since

n∑
k=1

γqkP k = WF ∗(1)W T.

When the characteristic is equal to 2 and (λ, µ) ∈ F2
qn , the only non-zero block in

the matrix λF ∗(0)+µF ∗(1) is skew-symmetric of size (d+1)×(d+1) with zeroes
on the diagonal. If d is even, then d + 1 is odd and the rank of this block is at
most d, so that λ(γ1, . . . , γn)+µ(γq1 , . . . , γ

q
n) gives another solution to MinRank

which does not occur in odd characteristic. This type of solution does not lead
to an equivalent key, and in [6, §6.3] it is explained how to deal with this issue.
If d is odd however, we still have n solutions to the MinRank problem. Finally,
note that the discussion is similar for the folklore MinRank attack from [27].

MinRank by Tao et al. However, the situation is not the same for the new
MinRank attack from [35] and a fortiori for our attack. A noticeable difference
compared to [6,27] is that the matrices M i’s from the MinRank problem 2
are not skew-symmetric anymore, even if the P i’s are. In particular, using the
notation from Equation (2), one has that Z and Z [1] have the same rank ≤ d,

but there is no reason why it should be the case for the sum Z + Z [1] or any
linear combination of this kind, even when d is even. Here we see that in a way
the low rank matrix Z “involves” all the Frobenius iterates of the central map
f , see for instance the proof of [35, Prop. 4], whereas a low rank matrix in [6,27]

is typically of the form WF ∗(i)W T.
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B Solving Modeling 2 at degree 3 when ncT < nu.

In this section, we show how a Gröbner basis for Modeling 2 can be found in
degree 3 when ncT < nu. As already mentioned, we can mostly ensure that
ncT ≥ nu with the parameters of GeMSS, so the proof is essentially for the sake
of completeness.

We keep the notation from the proof of Proposition 1. Recall that the linear
system defined in Equation (7) expresses the minor variables cT in terms of
the remaining nu = n − 1 linear variables u1, . . . , un−1, and it is full rank by
Assumption 3. When ncT < nu, there exists a set (γi)

ncT
i=1 of linear variables which

can be expressed in terms of these minor variables, and the nu − ncT remaining
ones are denoted by (δj)j . This means that

(nu−ncT
+1

2

)
quadratic monomials

will be missing at degree 2, namely the ones of the form δiδj . Moreover, as

Modeling 2 initially contains a lot more equations than
(
nu+1

2

)
−
(nu−ncT

+1
2

)
which is the possible number of leading monomials of the form γiγj or γiδj , we
hope to construct an independent set of equations (fµ)µ, where for each possible
leading monomial µ we have

fµ = µ+ ℓµ,

and where ℓµ is a degree 1 polynomial. Now let us show how the missing quadratic
monomials δiδj are found at degree 3, which will conclude the proof. For the sake
of clarity, we do the reasoning for δ21 . For 1 ≤ i ≤ cT , let µi,1 := γiδ1 and let
µi,2 := γiδ2. Then, the S-polynomial

S(fµi,1
, fµi,2

) = δ2ℓµi,1
− δ1ℓµi,2

is a polynomial of degree 2 found in degree 3 during the Gröbner basis compu-
tation. It will typically contain δ21 for at least one 1 ≤ i ≤ cT .

C Optimized approach to store the Macaulay matrix of
Modeling 1.

In the Optimized approach, we aim at storing the Macaulay matrix in a more
efficient way by taking advantage of the structure of the SM system. To present
the approach, we consider a MinRank instance with N matrices in Fnr×nc

2 and
target rank ≤ d matrix

Z :=

N∑
i=1

uiM i ∈ F2[u]
nr×nc .

The core idea is to divide the Macaulay matrix into
(

nc

d+1

)
blocks SJ labelled by

the subsets J ⊂ {1..nc}, #J = d+1 such that SJ contains the nr SM equations
Qi,J for 1 ≤ i ≤ nr. We have seen in Fact 2 that all these equations have the
same monomials, so that the set of columns potentially allocating nonzero entries
are the same for each row in the block. This is the key fact to get a more efficient
storage of M(Q). This approach then splits the storage of the M(Q) into four
arrays, named V1, V2, V3, and V4:
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V1: This stores the coefficients of the linear forms which are the entries of
Z ∈ F2[u]

nr×nc . For this we require Nnrnc bits of memory, and for simplic-
ity we assume that these coefficients are stored as a 2-dimensional array of
dimensions nr × (Nnc), where the entry in V1 in position (i, j) stores the
coefficient of x(j mod N)+1 in the linear form Zi,⌈(j−1)/N⌉+1.

V2: This stores the indexes of the nonzero values of M(Q) for each block
SJ , J = {j1, . . . , jd+1}. As seen in Fact 2, the potential nonzero coefficients of
a given SM equationQj,J correspond to the monomials xicJ\ju for 1 ≤ i ≤ N
and 1 ≤ u ≤ d + 1, and in particular they only depend on J . Thus, V2
can be implemented as an array of length

(
nc

d+1

)
, where each coordinate is

enumerated by a set J and stores the N(d + 1) potential nonzero indexes.
Hence, we need (

nc
d+ 1

)
·N(d+ 1) · log2

((
nc
d

)
N

)
(18)

bits of memory to store V2.

V3: This indicates the columns of V1 from which the nonzero coefficients of a
given SM equation should be taken. Notice that these indexes are the same
for all the equations in one block SJ since they correspond to the elements
of J . Thus, to store such indexes we would need

(
nc

d+1

)
·N(d+1) · log2 (Nnc))

bits of memory. So far, the only information missing to be able to read the
values of the nonzero coefficients of a given SM equation is the index of the
row of V1 from which they must be read. This is stored in V4.

V4: Since we drop several rows of the initial Macaulay matrix so that we
end up with a square matrix, we have to keep track of the row of Z from
which a given SM equation comes from. Therefore, V4 stores the indexes of
the corresponding row in Z for the N

(
nc

d

)
SM equations chosen to construct

this square Macaulay matrix. This requires
(
nc

d

)
N · log2(nr) bits of memory.

Now we explain how the allocations of the vectors V1, . . . , V4 fully store the
Macaulay matrix. Basically, for a given row of the Macaulay matrix, we show
how to get the coordinates and values of the potential nonzero entries by just
accessing the memory allocated in V1, V2, V3, and V4. For the seek of clarity, let
us assume that the coordinates of the vector V4 are enumerated by elements of
the set {

(a, b) : 0 ≤ a ≤
(

nc
d+ 1

)
and 1 ≤ b ≤ nr

}
.

Then, for a given row (a0, b0) we know:

1. The indexes of the coordinates containing the potential nonzero positions by
reading the bits in V2[a0].
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2. The values (which are either 0 or 1) corresponding to indexes given in the
previous item by reading the positions given by V3[a0] in the vector V1[b0].

Finally, we apply this approach to Modeling 1 with N = n + v, nr = n + v
and nc = 2d+1. In this case, one notices that the dominant cost is provided by
Equation (18), which reads(

2d+1
d+1

)
(n+ v)(d+ 1) log2

((
2d+1

d

)
(n+ v)

)
= O (dnuncT log2(ncT )) ,

where nu = n− 1 ≤ ncT =
(
2d+1

d

)
. This leads to the memory storage claimed in

Equation (12).

D Canonicalization method for submatrix M(Qb)
′.

Let Nb denote the number of rows in the Macaulay matrix M(Qb), where Q is
the Support-Minors system. An easy way of canonically ordering these Nb rows
is to associate to any equation µQi,J the triple (µ, i, J) and then to adopt a
lexical order on these triples. We may then refer to such a triple by an index s
taking values between 0 and Nb − 1. The challenging part is actually determin-
istically computing a pseudorandom subset of these equations to be included in
the submatrix M(Qb)

′.
This task can be accomplished in a distributed manner by simply sharing a

seed for a PRF among all of the processing clusters from our memory model and
having all processing clusters keep a running count of νs, the number of rows of
index < s that have been chosen to be included in M(Qb)

′. These processing
clusters then use the PRF to determine with probability V−νs

Nb−s whether to include

row s in M(Qb)
′. The same rows are generated from the same seed in the same

way every time a matrix vector multiplication is performed. Note that even
with 2h processing clusters each running a PRF costing as much as AES-128
(about 215 bit-operations) a total of 3V ×Nb times, the extra cost of this simple
canonicalization method is only a small percentage of the cost of the total attack
for any of the parameter sets we are considering. For example, in the rectangular
MinRank attack on Rainbow-I, the cost added by canonicalization with the
above method is 2136.1, which would only increase the complexity of the attack
from 2138.9 to 2139.1. Thus, even the most obvious method of canonicalization
is effective. Still, this section aims at providing a way of making this extra cost
truly negligible.

Proposed canonicalization. The idea in our approach is that only the des-
ignated accumulator really needs to keep a running count of the number νs of
rows that have been chosen to be included in M(Qb)

′. For row s, each processing
cluster may then send partial sums with a different acceptance probability ps
that does not depend on νs. As long as this acceptance probability is greater
than V−νs

Nb−s for all s with probability 1 − o(1), the designated accumulator can,
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with probability 1− o(1), correct the probability of the full sum at row s being
computed down to V−νs

Nb−s for all rows via rejection. In this procedure, only the
designated accumulator needs to keep track of νs by computing a PRF for each
s value. The other processing clusters will only need to compute the PRF for s
values corresponding to rows where the processing cluster in question may need
to compute a partial sum, depending on the PRF output. Recall that computing
a full sum for a row of the Macaulay matrix requires on average hd+1

nc
partial

sums from processing clusters. Therefore, for each matrix-vector product, the
PRF will be computed, on average, 1 + hd+1

nc
times for each of the Nb rows of

M(Qb). The only thing remaining is to determine a suitable value of ps and
to determine the added cost of the PRF evaluations and the extra partial sums
being sent to the accumulator. We provide a suitable answer to the first ques-
tion in Lemma 2 and the answer to the second question immediately follows, see
Lemma 3.

For 0 ≤ i ≤ Nb−1, let Xi be the binary random variable modeling the choice
of row i to be included in M(Qb)

′, so that νs =
∑s−1

i=0 Xi. By construction we
have

E(Xs|νs) =
V − νs
Nb − s

, (19)

and one can prove that νs follows the hypergeometric law with parameters
Nb (population size), V (number of successes) and s (number of trials), say
νs ∼ H(s, V/Nb, Nb). By symmetries in the probability density function of a
hypergeometric random variable, one also has V − νs ∼ H(Nb − s, V/Nb, Nb).

Lemma 2 For 0 < ε < 1, the inequality ps,ε >
V − νs
Nb − s

holds for all s ∈
{0, . . . , Nb − 1} with probability ≥ 1− ε, where

ps,ε := min

(
1,
V

Nb
+

αs,ε

Nb − s

)
,

and

αs,ε :=

√
(Nb − s) ln(Nb/ε)

2
. (20)

Proof. We do the proof for an s such that V/Nb + αs,ε/(Nb − s) < 1, otherwise
ps,ε = 1 and the result is clear. Let YNb−s = V − νs. We may provide a lower

bound for P
(
ps,ε >

YNb−s

Nb − s

)
by providing an upper bound for

P
(
ps,ε ≤

YNb−s

Nb − s

)
= P (YNb−s ≥ E[YNb−s] + αs,ε) .

Using the näıve tail bound P (Y ≥ pn+ tn) ≤ e−2t2n for Y ∼ H(N, p, n) and
t > 0, here with Y = YNb−s, we obtain:

P (YNb−s ≥ E[YNb−s] + (Nb − s)t) ≤ e−2t2(Nb−s).
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Finally, taking t =
αs,ε

Nb − s
and using Equation (20), we get

P
(
ps,ε >

YNb−s

Nb − s

)
≤ e

−2
α2
s,ε

Nb−s =
ε

Nb
.

We can now apply the union bound to show

P
(
∀s ∈ {0, . . . , Nb − 1}, ps,ε >

YNb−s

Nb − s

)
≤

Nb−1∑
s=0

P
(
ps,ε >

YNb−s

Nb − s

)
≤ ε.

⊓⊔

Lemma 3 For 0 < ε < 1 and 0 ≤ s ≤ Nb − 1, let ps,ε as defined in Lemma 2
and let µε denote the average value of ps,ε − V/Nb over all values of s. We have

0 < µε ≤

√
2 ln(Nb/ε)

Nb
. (21)

Proof. We have

µε =
1

Nb

Nb−1∑
s=0

αs,ε

Nb − s
=

1

Nb

Nb∑
s=1

αNb−s,ε

s
=

√
ln(Nb/ε)√
2Nb

Nb∑
s=1

1√
s
.

Therefore µε ≤
√
ln(Nb/ε)√
2Nb

∫ Nb

0

1√
s
ds =

√
2 ln(Nb/ε)

Nb
. ⊓⊔

Using Lemma 3 instantiated with ε = N−1
b , we thus expect an average prob-

ability of no more than V
Nb

+ 2
√

lnNb

Nb
that a partial sum is transmitted. We

therefore conclude that the overhead from sending extra partial sums is no more

than a factor of
(
1 + 2

√
Nb lnNb

V

)
. This is clearly negligible for all of the Rain-

bow parameter sets under consideration, for example in the SM+P hybrid attack
on Rainbow-I, this factor is approximately 1 + 2−23. Finally, with the proposed

canonicalization the PRF only needs to be performed 3V ×Nb

(
1 + hd+1

nc

)
times.

For instance, the overall cost associated to this canonicalization is only 2128.1

bit operations compared to 2136.1 for the naive method in the SM+P hybrid
attack on Rainbow-I. Note also that for the GeMSS parameters we analyze, it is
possible to use ps,ε = 1 with very little overhead. This is because we use b = 1
in all cases, and when b = 1 the optimal choices of attack parameters give V/Nb

very close to 1. For other attack parameters, though, there may be significant
benefit from choosing a more optimized formula for ps,ε.
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