
HAL Id: hal-03533455
https://hal.science/hal-03533455v2

Submitted on 8 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Improving Support-Minors rank attacks: applications to
GeMSS and Rainbow

John Baena, Pierre Briaud, Daniel Cabarcas, Ray Perlner, Daniel Smith-Tone,
Javier Verbel

To cite this version:
John Baena, Pierre Briaud, Daniel Cabarcas, Ray Perlner, Daniel Smith-Tone, et al.. Improving
Support-Minors rank attacks: applications to GeMSS and Rainbow. CRYPTO 2022 - 42nd Annual
International Cryptology Conference, Aug 2022, Santa Barbara (CA), United States. pp.376–405,
�10.1007/978-3-031-15982-4_13�. �hal-03533455v2�

https://hal.science/hal-03533455v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Improving Support-Minors rank attacks:
applications to GeMSS and Rainbow

John Baena1, Pierre Briaud2,3, Daniel Cabarcas1, Ray Perlner4, Daniel
Smith-Tone4,5 and Javier Verbel6

1 Universidad Nacional de Colombia, Colombia
2 Sorbonne Universités, UPMC Univ Paris 06

3 Inria, Team COSMIQ, Paris, France
pierre.briaud@inria.fr

4 National Institute of Standards and Technology, USA
5 University of Louisville, USA

6 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE

Abstract. The Support-Minors (SM) method has opened new routes
to attack multivariate schemes with rank properties that were previ-
ously impossible to exploit, as shown by the recent attacks of [40] and
[9] on the Round 3 NIST candidates GeMSS and Rainbow respectively.
In this paper, we study this SM approach more in depth and we pro-
pose a greatly improved attack on GeMSS based on this Support-Minors
method. Even though GeMSS was already affected by [40], our attack
affects it even more and makes it completely unfeasible to repair the
scheme by simply increasing the size of its parameters or even applying
the recent projection technique from [36] whose purpose was to make
GeMSS immune to [40]. For instance, our attack on the GeMSS128 pa-
rameter set has estimated time complexity 272, and repairing the scheme
by applying [36] would result in a signature with slower signing time by
an impractical factor of 214. Another contribution is to suggest optimiza-
tions that can reduce memory access costs for an XL strategy on a large
SM system using the Block-Wiedemann algorithm as subroutine when
these costs are a concern. In a memory cost model based on [7], we show
that the rectangular MinRank attack from [9] may indeed reduce the
security for all Round 3 Rainbow parameter sets below their targeted
security strengths, contradicting the lower bound claimed by [41] using
the same memory cost model.

Keywords: Support-Minors, GeMSS, Rainbow, multivariate cryptography

1 Introduction

The MinRank problem 1 introduced in [12] has shown to be essential in estab-
lishing the security of several post-quantum cryptosystems, in particular mul-
tivariate schemes (MPKCs). Many MPKCs are indeed either directly based on
the hardness of MinRank [20] or strongly related to it, such as [37,39,23].

Problem 1 (MinRank problem) Given d ∈ N, N matrices M1, . . . ,MN ∈
Fnr×nc
q , find field elements x1, x2, . . . , xN ∈ Fq, not all zero, such that

rank

(
N∑
i=1

xiM i

)
≤ d.

The currently most high profile application of MinRank is the cryptanalysis
of Rainbow [22], which was selected as a finalist to the NIST post-quantum
standardization process. Rainbow is a multilayer variant of the well-known UOV
signature scheme, and a key-recovery attack on the scheme can be performed by
solving one of several particular MinRank instances [10,28,9]. This problem also
shows up in the analysis of other types of MPKCs, namely those relying on the
so-called big-field construction by using a field extension Fqn over Fq. This is the
case of the historical proposals C* [33] and HFE [37], but also more recently of
the HFEv- schemes [38] GeMSS [13] and Gui [21]. In this context, a difference
with the original formulation from Problem 1 is that the coefficients xi’s or the
entries of the M i’s may belong to the extension field Fqn .

Support-Minors is a method proposed by Bardet et al. [5] to reduce the Min-
Rank problem to the problem of solving a system of bilinear equations. This
algebraic modeling is in particular the crux of the recent attacks on MPKCs and
rank-based cryptosystems [5,9,4,40]. When the corresponding MinRank instance
has a unique solution, which was the case in rank-based cryptography or Rain-
bow [5,9], this system can be solved using a variant of the XL algorithm [19].
In particular, this approach benefits from the extreme sparsity of the resulting
linear system as one can use the Block-Wiedemann algorithm [17]. However, the
situation is quite different for big-field schemes, since there are naturally n solu-
tions coming from the big-field structure. In particular, using the XL algorithm
proposed in [5] neither directly yields a solution nor reduces the problem to a
simpler one. Of course, it is still possible to use a general purpose Gröbner basis
algorithm, but this approach can be inefficient and one faces the challenging
task of establishing the solving degree to precisely estimate its complexity. In
particular, the authors of [40] conjectured from experiments that the first degree
fall dff of their Support-Minors attack on GeMSS was equal to 3. Then, based
on the common heuristic that the solving degree is close to dff , they derive
the complexity given in Column “support minors modeling” from [40, Table 1].
However, one may wonder if such a small value for dff is not only due to the
small scale of their experiments. Moreover, the assumption that dff coincides
with the solving degree remains a conjecture. It is known this is not true in
general, see for example [6], and if this solving degree were higher than 3 in the
case of GeMSS, the complexity of the attack in [40] would dramatically change.

Also, even when there is justification for the time complexity of an attack,
there remains the question of how to measure the complexity of memory inten-
sive cryptanalytic attacks, an issue which has been a major point of discussion
throughout the NIST PQC competition. In an effort to obtain more efficient
parameters while still claiming high security, a number of submitters [7,1,15,32]
have introduced cost models which treat memory intensive attacks as being more

2

expensive than indicated by time complexity estimates using the more common
Random Access Machine model. The question of the effect of memory access
on the cost of MinRank attacks in particular, has been brought to the fore re-
cently. In response to the rectangular MinRank attack [9], the Rainbow team
put forward a statement [41] arguing that even though this attack reduces the
security of Rainbow relative to prior cryptanalysis, it does not bring any of the
third round Rainbow parameters below their targeted security levels if mem-
ory costs are properly accounted for. This argument in particular states that,
although the rectangular MinRank attack can use the Wiedemann algorithm
and therefore does not require as much memory as attacks requiring Gröbner
basis algorithms like F4 [26] and F5 [27], its complexity is dominated by a large
number of random access queries to a memory, which is nonetheless fairly large.

Table 1. Time complexity of our attack (Improved SM, log2(#gates)) in comparison
to [40].

Scheme Minors [40] SM (conjectural) [40] Improved SM

GeMSS128 139 118 72
BlueGeMSS128 119 99 65
RedGeMSS128 86 72 49

GeMSS192 154 120 75
BlueGeMSS192 132 101 67
RedGeMSS192 95 75 51

GeMSS256 166 121 75
BlueGeMSS256 141 103 68
RedGeMSS256 101 76 52

Contributions. As a first contribution, we provide solid ground to understand
the Gröbner basis computation on the Support-Minors system for HFEv- and
we significantly speed up the attack in [40] which used minors modeling [25].
We provide a necessary and sufficient condition for solving the SM system at
degree 2, under mild assumptions. In the case of GeMSS, we show that it can
always be solved at degree 2. This material allows us to give a precise complex-
ity formula for the Support-Minors attack on GeMSS, which is also considerably
smaller than the conjectured one in [40], which relied on the aforementioned
degree fall assumption (see Column “SM (conjectural) [40]” in Table 1). In par-
ticular, with our attack we can also clearly break the proposed parameters for
pHFEv-, which were an attempt by [36] to repair GeMSS in the aftermath of
the attacks from [40]. Also, it makes it completely unfeasible to repair GeMSS
by simply increasing the size of its parameters or even applying the projection
technique without becoming impractical. These improvements come from some
technical observations which are described more thoroughly throughout the pa-
per. We show that by direct linearization on the Support-Minors equations, one

3

can already obtain linear equations. Then, one can derive a quadratic system in
only n − 1 variables by substitution of these linear polynomials in the original
system, and our attack proceeds by solving this second system. For the sake of
completeness, we also provide an estimate for the memory complexity. All in
all, since the time complexity of our attack on GeMSS is much reduced, the
memory access cost also remains limited and it is not an obstacle to perform the
attack. In particular, we have been able to perform experiments in the Magma
Computer Algebra System [11] for the main step of our attack —linearization
on the SM equations— on parameters which are not too far from those of the
smallest GeMSS instances. Apart from GeMSS which is the focus of this work
in light of the current situation, the efficiency of our approach also suggests that
it might be feasible to use rank attacks in order to solve the 24 year old HFE
Challenge 2 [37]. Until now, note that previous unsuccessful attempts [18,34] are
direct attacks and not MinRank attacks. More generally, we demonstrate that
the Support-Minors method may be used to tackle any MinRank instance with
multiple solutions belonging to an extension field as long as one can benefit from
this extension field structure and from a quite specific parameter range.

As a second major contribution, we propose and analyze a strategy to obviate
much of the memory access cost in implementing the Wiedemann algorithm as
a subroutine for XL. We exemplify the strategy on the rectangular MinRank
attack on Rainbow [9] and we determine the cost on average of memory accesses
in this case. While the memory access cost of the Wiedemann algorithm when
applied to a Macaulay matrix of size V and row weight w over Fq was estimated
by [41] to require remotely accessing 3wV 2 log2 V bits within a memory of size
V , we conjecture that by organizing memory locally, this figure can be reduced
to the equivalent of 3V 2 log2 q bits worth of remote access to memory, saving
a factor of w log2 V/ log2 q. Our strategy precisely aims at coming close to this
figure, still under the assumption that the cost of memory access scales with
either the square root or the cube root of the size of memory. Our concrete
analysis shows that, even assuming the same cost for remote memory access
as [41], the rectangular MinRank attack does indeed reduce the security of all
round 3 Rainbow parameter sets below their targeted security strengths. To
evaluate this memory access cost, we provide a theoretical analysis of both the
memory savings and the extra costs which are associated to our strategy. We
also examined various costs which were suggested to be possibly significant by
[41] such as parallelization costs, and the cost of generating Macaulay matrix
coefficients “on the fly”, finding that incorporating these costs in our cost model
does not affect our conclusion at least in the case of Rainbow. Finally, we want
to insist on the fact that our methodology is limited to theoretical arguments.
Of course real benchmarks would be greatly appreciated to support our claims,
but it is probable that software implementations would not be a good indicator
for these memory costs. Indeed, the estimates from [7,41] aim to give relative
costs in an ASIC implementation which may be used by an adversary with
significant resources. In particular, we believe that providing such an involved
implementation is far beyond the scope of this paper.

4

Along with this paper, we also provide a SageMath notebook [2], where the
reader may verify our results for the GeMSS attack.

2 Preliminaries

2.1 Notation

Row vectors and matrices will be written in bold. We denote by vi the i-th
component of a vector v, and the entries of a matrix M of size nr × nc will
be denoted by M i,j , where i (resp. j) is an integer in {1..nr} (resp. {1..nc}).
The support Supp(v) := {i | vi ̸= 0} of a vector v is the set of indices of its
non-zero coordinates. For I ⊂ {1..nr} and J ⊂ {1..nc}, we use the notation
M I,J for the submatrix of M formed by its rows (resp. columns) with indexes
in I (resp. J), and we adopt the shorthand notation M∗,J = M{1..nr},J and
M I,∗ = M I,{1..nc}. We also denote by |M | (resp. |M |∗,J) the determinant of
M (resp. M∗,J). Finally, we use #I to denote the number of elements of a set
I.

A field with q elements is denoted by Fq. The big field schemes take their
name from a field extension Fqn of degree n over Fq, and in the following we
consider ϕ an isomorphism Fqn → Fn

q between vector spaces. For j ∈ Z≥0 and

v = (v1, . . . , vk) ∈ Fk
qn , we define

v[j] := (vq
j

1 , . . . , v
qj

k).

This corresponds to applying the Frobenius automorphism x 7→ xq j times on
each coordinate of v. Note that this field automorphism is the identity on Fq.

We will adopt the same notation for matrices, namely the matrix M [j] is the
matrix obtained from M by raising all its entries to the power qj .

Polynomial Systems and Coding Theory. We use x = (x1, . . . , xN) to
denote a vector of variables, and Fq[x] denotes the ring of polynomials in the
variables x and coefficients in Fq. When q is an odd prime power, and g a
quadratic form in Fq[x], we denote byG the symmetric matrix defined by g(x) =
xGxT and g′(x,y) = g(x + y) − g(x) − g(y) + g(0) the polar form associated
to g. The evaluation of a polynomial system P = (p1, . . . , pm) at s ∈ Fn

q is

the vector P(s) := (p1(s), . . . , pm(s)), and we denote by Ph = (ph1 , . . . , p
h
m) the

homogeneous sequence such that phi is the homogeneous part of highest degree
in pi for 1 ≤ i ≤ m. We also consider the Macaulay matrix M(P) ∈ Fm×nM

q

whose columns are indexed by the monomials in P and such that the entries in
the i-th row correspond to the coefficients of pi for 1 ≤ i ≤ m. If this matrix is
full rank, then the rowspace is an m-dimensional Fq-subspace of FnM

q which can
be viewed as a linear code M of parameters [nM,m]q. A generating matrix is
precisely given by M(P), and the dual is the [nM, nM −m]q-linear code M⊥

defined by

M⊥ :=
{
h ∈ FnM

q | ∀c ∈ M, chT = 0
}
,

5

which coincides with the right kernel of this matrix. Finally, the puncturing
and shortening operations are classical ways to construct new linear codes from
existing ones, and we use them in Section 5.1.

Definition 1 (Punctured code). Let C ⊂ Fn
q be a code of parameters [n,K]q

and let I ⊂ {1..n}. The puncturing PI(C) ⊂ Fn−#I
q of C at I is the [n−#I,K ′ ≤

K]q-code defined by:

PI(C) :=
{
c{1..n}\I | c ∈ C

}
.

Definition 2 (Shortened code). Let C ⊂ Fn
q be a code of parameters [n,K]q

and let I ⊂ {1..n}. The shortening SI(C) ⊂ Fn−#I
q of C at I is the [n−#I,K ′ ≥

K −#I]q-code defined by:

SI(C) :=
{
c{1..n}\I | c ∈ C, cI = 0I

}
.

The shortening operation is in some sense dual to puncturing, namely one
has SI(C⊥) = PI(C)⊥ and SI(C)⊥ = PI(C⊥).

2.2 Relevant Material for the Attack on GeMSS

GeMSS [13] is a specific instance of HFEv- which was selected as an alternative
candidate in the third round of the NIST PQC standardization process.

HFEv-. The HFEv- signature scheme is a variant of HFE [37] that includes
both the Minus and the Vinegar modifiers. In this description we consider that
q is an odd prime power. The secret polynomial f : Fqn × Fv

q → Fqn is of the
form

f(X,yv) =
∑
i,j∈N

qi+qj≤D

αi,jX
qi+qj +

∑
i∈N
qi≤D

βi(yv)X
qi + γ(yv),

where yv = (y1, . . . , yv) are the vinegar variables, αi,j ∈ Fqn , the βi’s are linear
maps Fv

q → Fqn and γ is a quadratic map Fv
q → Fqn . The special shape of such

an f gives rise to a quadratic central map over the base field F = ϕ ◦ f ◦ ψ :
Fn+v
q → Fn

q , where

ψ : Fn
q × Fv

q −→ Fqn × Fv
q

(x, y) 7−→ (ϕ−1(x), y).

The public key is then given by a quadratic map P = T ◦ F ◦ S, where S :
Fn+v
q → Fn+v

q and T : Fn
q → Fn−a

q are secret affine maps of maximal rank. For
simplification, we assume in the rest of the paper that S (resp. T) is a linear
map described by a matrix S ∈ F(n+v)×(n+v)

q (resp. T ∈ Fn×(n−a)
q), so that the

components of P = (p1, . . . , pn−a) are homogeneous polynomials in N = n + v
variables x = (x1, . . . , xn+v). When q is an odd prime power, we recall that P i

is the symmetric matrix associated to pi by pi(x) = xP ix
T for 1 ≤ i ≤ n− a.

6

MinRank Attack on HFEv- from [40]. Tao et al. recently proposed in [40]
the most efficient key recovery attack on HFEv- so far. To describe this attack,
we assume that q is an odd prime power, but the results can be extended to
the even characteristic. Let (θ1, . . . , θn) be a basis of the vector space Fqn over

Fq, let H ∈ Fn×n
qn be the associated Moore matrix defined by H := [θq

j

i+1]
n−1
i,j=0

and let H̃ :=

(
H 0
0 Iv

)
. The main step of the attack is by solving the following

MinRank problem to recover the first n rows of the invertible matrix U defined
by

U := H̃
−1

S−1 ∈ F(n+v)×(n+v)
qn , (1)

Problem 2 (Underlying MinRank problem) Let d :=
⌈
logq (D)

⌉
and let

u ∈ Fn+v
qn be the first row of U . Let P 1, . . . ,P n−a ∈ F(n+v)×(n+v)

q denote the
symmetric matrices associated with the HFEv- public key and let (e1, . . . , en+v)
be the canonical basis for Fn+v

q . For 1 ≤ i ≤ n + v, we define the matrix M i ∈
F(n−a)×(n+v)
q by

M i := eiP ∗ :=

 eiP 1

...
eiP n−a

 .

Then, the vector u := (u1, . . . , un+v) is a solution to the MinRank instance
described by the M i’s with target rank d.

We refer to [40, Theorem 2] for extra details. Also, note that the first n rows
of U are the Frobenius iterates of u, more precisely we have

U =

u
...

u[n−1]

R

 ,

where the block R ∈ Fv×(n+v)
q is full rank, see [40, Alg. 1, 4.]. Then, it is shown

in [40, §4.3] how one can efficiently derive an equivalent key and finish the attack.
Finally, to keep the same notation as in [40, Thm. 2], we set

Z :=

n+v∑
i=1

uiM i ∈ Fq[u]
(n−a)×(n+v). (2)

Fact 1 (On the number of solutions) Let u ∈ Fn+v
qn be a solution to the

MinRank problem 2. Then, for any λ ∈ F∗
qn , the vector λu := (λu1, . . . , λun+v)

is another solution. Moreover, for any 0 ≤ j ≤ n − 1, the same goes for the

vector u[j] := (uq
j

1 , . . . , u
qj

n+v) with corresponding rank d matrix Z [j].

This fact is inherent to the big-field structure used in HFEv- and was already
observed in the previous rank attacks on big-field MPKC [31,29,8,42].

7

Projection Modifier. The projection modification was introduced in [14] in
order to repair the previously broken SFLASH signature scheme [24] and devise
the new PFLASH signature scheme. In reaction to the attack on GeMSS from
[40], the authors of [36] also applied this modifier to HFEv-, leading to pHFEv-.
The proposed parameters for the scheme are secure against this former attack,
and the point of projecting is that it appears to be more efficient than simply
increasing the degree D of f to obtain the same security. The projection modifier
consists in replacing the map S : Fn+v

q → Fn+v
q by S = L ◦ S′ : Fn+v−p

q → Fn+v
q ,

where S′ : Fn+v−p
q → Fn+v−p

q is full rank and L : Fn+v−p
q → Fn+v

q is full rank

represented by a matrix

(
Λ 0
0 Iv

)
∈ F(n+v−p)×(n+v)

q . The authors of [36] have

studied the effect of projection on the rank of the HFEv- central map. When
p > 0, the rank of Z from Equation (2) is bounded by d′ := d + p instead
of d (cf. [36, Prop. 2]), and this bound is believed to be tight from practical
experiments. Moreover, the number of solutions to the corresponding MinRank
problem is expected to be unchanged compared to plain HFEv-. In Table 2, we
give the current GeMSS parameter sets as well as those of pHFEv- . In [36], a
secure pHFEv- parameter set is constructed from a given GeMSS parameter set
by choosing the least value of p such that the minors attack from [40] is just
above the security level.

Table 2. GeMSS and pHFEv- parameter sets.

Scheme q n v D a p from [36]

GeMSS128 2 174 12 513 12 0
BlueGeMSS128 2 175 14 129 13 1
RedGeMSS128 2 177 15 17 15 4

GeMSS192 2 265 20 513 22 5
BlueGeMSS192 2 265 23 129 22 7
RedGeMSS192 2 266 25 17 23 10

GeMSS256 2 354 33 513 30 10
BlueGeMSS256 2 358 32 129 34 11
RedGeMSS256 2 358 35 17 34 14

2.3 Relevant Material on Rainbow for Section 8.3

Rainbow is a third round finalist of the NIST PQC standardization process for
digital signatures. In this paper, we are mainly interested in the recent rectan-
gular MinRank attack from [9, §7] on this scheme.

Rainbow. For clarity, we adopt the simplified description from [9]. The version
of Rainbow submitted to the NIST PQC project is a 2-layered variant of the

8

well-know UOV signature scheme: the trapdoor consists of 3 Fq-subspaces O2 ⊂
O1 ⊂ Fn

q and W ⊂ Fm
q of dimension o2, m and o2 respectively, and the public

system P contains m quadratic equations in n variables such that P(z) ∈ W
for all z ∈ O1 and P ′(x,y) ∈ W for all x ∈ Fn

q and y ∈ O2, where P ′ is the
system of polar forms associated to P. To perform a key-recovery on Rainbow,
it had already been noted that the hardest part is to recover the space O2: once
O2 is found, it is then easy to recover both W and O1. Thus, the rectangular
MinRank attack from [9] targets secret vectors y ∈ O2.

Rectangular MinRank attack. The rectangular MinRank attack by [9] is
currently the best key-recovery attack on Rainbow so far. For y ∈ Fn

q , let

Ly :=

P ′(e1,y)
...

P ′(en,y)

 ,

where (e1, . . . , en) is the canonical basis of Fn
q . The attack heavily exploits the

fact that P ′(x,y) ∈ W for any x ∈ Fn
q and y ∈ O2. Indeed, when y ∈ O2, the

rows of Ly lie in W, so that the rank of this matrix is at most dimW := o2. Also
Ly =

∑n
i=1 yiLei by linearity, and therefore a solution to the MinRank instance

described by the Lei ’s with target rank o2 is very likely to reveal a vector y in
O2. Finally, as noted in [9], it is possible to fix o2 − 1 entries in y at random in
order to obtain a 1-dimensional solution space. The resulting MinRank instance
is then solved by relying on the recent Support-Minors modeling [5], see Section
3. Moreover, [9] suggests to also use the fact that P(y) = 0, which allows to
consider a system with more equations while keeping the same variables as in
the Support-Minors system. The concrete improvement of this trick compared
to the plain MinRank attack remains modest, see [9, Table 6].

3 Support-Minors Modeling (SM)

Support-Minors is an efficient method to model and solve the MinRank prob-
lem [5]. It has been used to cryptanalyze MPKC and rank-based cryptosystems
[4,5,9]. The idea is to factor the secret matrix M ∈ Knr×nc of rank ≤ d as

M :=

N∑
i=1

uiM i := DC, (3)

where D ∈ Knr×d and the support matrix C ∈ Kd×nc are unknown matrices.
For 1 ≤ j ≤ nr, one then considers the matrix

Cj :=

(
rj
C

)
,

where rj := M{j},∗ is the j-th row of M whose components are linear forms in
the so-called linear variables ui’s. The rank of Cj is at most d, and equations

9

are obtained by setting all (d+1)× (d+1) minors of this matrix to zero, namely
Qj,J := |Cj |∗,J for J ⊂ {1..nc}, #J = d+ 1. The Support-Minors system then

contains a total of nr
(

nc

d+1

)
polynomials by considering 1 ≤ j ≤ nr. Moreover,

by using Laplace expansion along the first row of Cj , one notices that these
equations are bilinear in the ui variables and in the so-called minor variables
cT := |C|∗,T , where T ⊂ {1..nc}, #T = d. The following fact will be used several
times in the paper.

Fact 2 (Structure of the SM system) Each SM equation contains at most
N(d + 1) bilinear monomials. More precisely, given J ⊂ {1..nc}, #J = d + 1
and 1 ≤ j ≤ nr, the monomials of Qj,J belong to a set of N(d + 1) elements
which only depends on J .

Proof. Let J := {j1 < · · · < jd+1} and 1 ≤ j ≤ nr. By Laplace expansion along
the first row of (Cj)∗,J , one has that the monomials in Qj,J are in the set

AJ :=
{
uicJ\ju : 1 ≤ u ≤ d+ 1, 1 ≤ i ≤ N

}
.

This set contains N(d+ 1) elements which are independent from j. ⊓⊔

Solving the SM System. When the corresponding MinRank problem has
a unique solution, [5] proposes a dedicated XL approach by multiplying the
SM equations by monomials in the linear variables. This is typically the case
for Rainbow [9] or rank-based cryptography [5,4]. The attack constructs the
Macaulay matrix M(Qb), where Qb is the system of all degree b+1 polynomials
of the form µuf , where µu is a monomial of degree b−1 in the linear variables and
f is a SM equation. Note that direct linearization corresponds to b = 1 withQ1 =
Q. The value of b is chosen such that the rank of M(Qb) is equal to the number
of columns minus one. In this case, the linear system M(Qb)x

T = 0 has a non-
trivial solution, and this solution easily yields a solution to the initial MinRank
problem. The situation is quite different when there are N ′ > 1 solutions to
this original MinRank instance, e.g. HFE, see Fact 1, but the approach can be
adapted. There still exists a value of b for which the kernel of M(Qb) is non-
trivial and can be computed, but the dimension N ′′ of this kernel is expected
to be > 1. In particular, the second step to solve the initial MinRank problem
from arbitrary kernel vectors is no longer straightforward. By finding a basis of
that kernel one can at least reduce the initial MinRank problem to a new one
with N ′′ matrices with the same dimensions and the same target rank d, but
this secondary MinRank instance has no reason to be much easier to solve.

The linear systemM(Qb)x
T = 0 is usually sparse, especially when b > 1, and

in this case it is often advantageous to use the Wiedemann algorithm. Another
idea to reduce the cost of linear algebra is to start from a Macaulay matrix of
smaller size by selecting only n′ ≤ nc columns in M (for example the first n′

ones), which yields a SM system with nr
(

n′

d+1

)
equations and N

(
n′

d

)
monomials

uicT , where this time T ⊂ {1..n′}.

10

4 Improved Attack on GeMSS Using Support-Minors

In this section, we describe our approach to solve the MinRank instance 2 arising
from HFEv- using Support-Minors. As noted in Fact 1, this problem is expected
to have several solutions which are triggered by the big-field structure, hence
we cannot directly apply the XL techniques from [5]. Two remarks are in order
before we describe the attack. From the definition of Z in Equation (2) and the
fact that the M i’s are over the small field, it is important to notice that the
coefficients of the SM system are in Fq, whereas the solutions may belong to
the extension field Fqn . Also, as discussed in [5], we will consider a subset of the

SM equations coming from a submatrix of ZT ∈ Fq[u]
(n+v)×(n−a) obtained by

selecting a subset J of n′ ∈ [d+ 1, n− a] columns.

4.1 Fixing Variables in the Support-Minors System

Up to relabelling of the linear variables, one can fix un+v = 1 as in [40]. In this
case, one expects to obtain n solutions which correspond to the first n rows of
U , namely u,u[1], . . . ,u[n−1]. Also, since we can choose an arbitrary submatrix
ZT

∗,J of ZT with #J = n′, we can make sure that this submatrix is full rank on
its first d columns. Therefore, we will fix the minor variable c{1...d} to 1.

Modeling 1 (Support-Minors modeling on ZT) Let Z be as defined in Equa-
tion (2). We consider the SM equations obtained by choosing n′ ≤ n−a columns
in ZT, with coefficients in Fq and solutions in Fqn . Moreover, we fix un+v = 1
and c{1...d} = 1.

The system from Modeling 1 contains (n+v)
(

n′

d+1

)
affine bilinear equations in

(n+v)
(
n′

d

)
monomials, and (n+v−1)(

(
n′

d

)
−1) of them are bilinear monomials.

Also, one can choose a number of columns n′ ≤ n − a that yields a sub-system
with more equations than monomials. Indeed, this will be the case when (n +

v)
(

n′

d+1

)
≥ (n + v)

(
n′

d

)
, and this condition is equivalent to n′ ≥ 2d + 1. Finally,

in GeMSS the value of n− a is much higher than 2d+1, which allows to choose
n′ ∈ [2d+ 1, n− a].

4.2 Solving via Gröbner Bases when n′ ≥ 2d + 1

In the case when n′ ≥ 2d + 1, there are more equations than monomials in the
SM system, but once again it is not possible to solve by direct linearization
because the resulting linear system has a large kernel. More precisely, since we
expect the system to have n solutions and since these solutions correspond to
n linearly independent vectors {v,v[1], . . . ,v[n−1]} such that the first n+ v − 1
components of v are u1, . . . , un+v−1, its dimension should be at least n. For
large enough n, in every single instance we have tested, the linearization process
triggers no spurious solutions, thus the dimension of the solution space is equal
to n. Therefore, we adopt the following Assumption 1 in the rest of the analysis.

11

Assumption 1 Let n′ ≥ 2d + 1. Then, the number of linearly independent
equations in Modeling 1 is equal to

N1 := (n+ v)
(
n′

d

)
− n.

Our attack works in two steps. First, by forming linear combinations between
the equations from Modeling 1, we are able to produce a system L of degree 1
polynomials (Step 1). Then, using L to substitute some of the variables, we get
a quadratic system in nu = n − 1 of the linear variables. Finally (Step 2) we
solve this second system.

Step 1: Linear Polynomials Produced at b = 1. Here we explain how the
system L is obtained at Step 1. We start by proving

Fact 3 Under Assumption 1, by linear algebra on the affine SM equations, one
can generate NL linearly independent degree 1 polynomials, where

NL ≥
(
n′

d

)
+ v − 1. (4)

Proof. By Assumption 1, the system given in Modeling 1 contains N1 := (n +

v)
(
n′

d

)
− n linearly independent equations. Moreover, one has

N1 ≥ (n+ v − 1)
((

n′

d

)
− 1
)
,

so that the number of linearly independent affine bilinear equations is greater
than the number of bilinear monomials. In particular, there are non-trivial linear
combinations between the bilinear parts of the equations that are zero. This
means that by performing linear algebra operations on the equations in Modeling
1, one can generate at least(

(n+ v)
(
n′

d

)
− n

)
︸ ︷︷ ︸

N1

− (n+ v − 1)
((

n′

d

)
− 1
)

︸ ︷︷ ︸
#bilinear monomials

=
(
n′

d

)
+ v − 1

linearly independent affine degree 1 polynomials in the ui’s and in the cT vari-
ables. ⊓⊔

The linear equations from Fact 3 are often referred to in the literature as
degree falls from degree 2 to degree 1, and we denote by M(L) the Macaulay
matrix of this linear system L. By considering an ordering on the columns such
that cT > un+v−1 > · · · > u1 > un+v = 1, we choose to eliminate first and

foremost all the ncT :=
(
n′

d

)
− 1 minor variables.

Lemma 1 Under Assumption 1, the reduced row echelon form of M(L) is of
the form

L =

(
IncT

∗
0 K

)
∈ FNL×(ncT

+n+v)
q , (5)

where K ∈ F(NL−ncT
)×(n+v)

q is row reduced. Moreover, we have that NL =(
n′

d

)
+ v − 1.

12

Proof. Let L denote the echelon form of M(L), namely

L :=

(
N ∗
0 K

)
,where N ∈ FncT

×ncT
q and K ∈ F(NL−ncT

)×(n+v)
q .

Assume that this matrix is not systematic on its first ncT rows. On that
hypothesis, there is a set of v0 ≥ NL − ncT + 1 ≥ v + 1 linearly independent
vectors in the row space of L which have zero in their leftmost ncT entries. This
yields v0 linearly independent vectors h1, . . . ,hv0 ∈ Fn+v

q such that for all i,

uhT
i = 0, where u ∈ Fn+v

qn denotes the first row of the matrix U defined in
Equation (1). Then, by applying the Frobenius isomorphism and using the fact
that it is the identity on Fq, it follows that u

[j]hT
i = 0 for all i and 0 ≤ j ≤ n−1.

Therefore, the matrix

U{1..n},∗ =

 u
...

u[n−1]

 ∈ Fn×(n+v)
qn ,

is not full-rank, which is a contradiction since U is invertible. This gives N =
IncT

.

For the second part of the proof, the number of rows NL − ncT in K is at
least v by Fact 3. Since u is a solution to the MinRank problem, there exists a
vector v ∈ FncT

qn corresponding to the minor variables such that

M(L) · (v, un+v−1, . . . , u1, un+v)
T = 0.

Since the matrix M(L) has its entries in Fq we obtain n linearly independent
vectors in the right kernel, namely

∀ 0 ≤ j ≤ n− 1, M(L) · (v[j], u
[j]
n+v−1, . . . , u

[j]
1 , u

[j]
n+v)

T = 0.

This shows that the rank of K is at most (n+v−n) = v, so that NL−ncT = v.
⊓⊔

By Lemma 1, it is possible to express all the minor variables as well as v linear
variables in terms of the remaining n−1 linear variables. Moreover, by reordering
the linear variables if necessary, we may further assume that the remaining ones
are u1, . . . , un−1. In this case, the matrix corresponding to the homogeneous
degree 1 parts (by dropping the last column of L) is of the form

L(h) :=

(
IncT

0 Y

0 Iv W

)
∈ FNL×(ncT

+n+v−1)
q , (6)

where Y ∈ FncT
×nu

q , W ∈ Fv×nu
q and nu := n− 1.

13

Step 2: Solving the Resulting Quadratic System. By using the linear
equations from L to substitute variables in Modeling 1, we obtain the following

Modeling 2 (Quadratic system) We consider the quadratic system in nu =
n − 1 linear variables u1, . . . , un−1 obtained by plugging the linear polynomials
of L into the equations from Modeling 1.

We now focus on the task of solving this quadratic system using Gröbner bases,
and in Proposition 1 we prove at which degree the computation terminates as
long as ncT ≥ nu. The proof relies on Assumption 1 and the following Assump-
tion 2 on the echelon form L from Equation (6).

Assumption 2 The matrix Y ∈ FncT
×nu

q in Equation (6) is full rank.

Note that this assumption should hold with high probability if Y behaves as a
random matrix. Also, we have performed different simulations to experimentally
verify Assumptions 1 and 2. According to the results obtained for different sets
of parameters (q, n, v,D, a), it seems that if n′ is chosen such that n′ ≥ 2d + 1
and ncT ≥ nu, then the 2 assumptions are satisfied almost 100% of the times.
The reader might find helpful to experimentally explore these assumptions using
the SageMath notebook [2].

Proposition 1. Under Assumptions 1 and 2, if ncT ≥ nu, a Gröbner basis
of the system from Modeling 2 can be obtained by Gaussian elimination on the
initial equations, i.e. it is found at degree 2.

Proof. By Assumption 1 and the first part of Lemma 1, the number of degree
2 affine equations which remain after the linear algebra step in Modeling 1 is

equal to N1−NL = (n+ v− 1)
((

n′

d

)
− 1
)
. As we cannot construct extra degree

falls between them, this implies that the linear span of these equations contains
an equation with leading monomial uicT for any T, #T = d, T ̸= {1..d} and
any 1 ≤ i ≤ nu + v. Let

L(h) :=

(
IncT

0 Y

0 Iv W

)
∈ FNL×(ncT

+n+v−1)
q ,

where Y ∈ FncT
×nu

q , W ∈ Fv×nu
q and nu := n−1 as defined in Equation (6). We

also denote by c the row vector of length ncT whose components are the minor
variables and (u1, . . . , un+v−1) := (u+,u−), where u+ is of length nu (remaining
linear variables) and u− is of length v (removed linear variables). Then, there is
a vector of constants α ∈ FncT

q such that

cT = −Y uT
+ − αT. (7)

Since Y is full rank by Assumption 2, the linear system given by Equation (7)
can be inverted when ncT ≥ nu, and therefore all the

(
nu+1

2

)
quadratic leading

monomials will be found in the span of Modeling 2. ⊓⊔

14

When ncT < nu, we conjecture that the Gröbner basis algorithm terminates in
degree 3. Finally, note that the content of the current Section 4 also applies to
pHFEv- with rank equal to d′ = d+ p, since what really matters in the analysis
is the number of solutions to the MinRank problem. We simply have to replace
the condition n′ ≥ 2d+ 1 by n′ ≥ 2d′ + 1.

5 Complexity of the Attack

This section analyses the cost of our attack on GeMSS. In Sections 5.1 and 5.2,
we estimate the time complexity. This complexity comes down to two major
steps, first generating Modeling 2 from Modeling 1 (Step 1) and then solving
Modeling 2 via Gröbner bases (Step 2). Then, in Section 5.3, we evaluate the
corresponding memory complexity. First, note that choosing n′ = 2d+1 already
ensures ncT ≥ nu for all the GeMSS and pHFEv- parameters, see Table 2. In
particular, Proposition 1 implies that the system in Modeling 2 will be solved at
degree 2. In the following, we then adopt n′ = 2d+ 1 and we will also consider
that v = o(n).

5.1 Time Complexity of Step 1

This first step can be performed by echelonizing the equations from Modeling 1
using Strassen’s algorithm. The complexity in this case is

O

(
(n+ v)

(
2d+ 1

d

)(
(n+ v)

(
2d+ 1

d

))ω−1
)

= O
(
nωcT n

ω
u

)
(8)

Fq-operations, where nu = n − 1, ncT =
(
2d+1

d

)
− 1 and ω ≈ 2.81 is the linear

algebra constant.
An alternative path is to use Coppersmith’s Block-Wiedemann algorithm

(BW). Let M be the rowspace of the Macaulay matrix M(Q) of the SM system.
By Assumption 1, it can be seen as a linear code of length (n+ v)

(
2d+1

d

)
and

dimension N1 = (n+ v)
(
2d+1

d

)
− n, so that we expect the right kernel of M(Q)

to be of dimension n. In particular, by running BW roughly n times, we hope to
obtain a basis for this kernel which corresponds to the dual code C := M⊥. Let
I be the subset of positions of M corresponding to the bilinear monomials. We
then puncture C at I to obtain PI(C). Since the dual of the punctured code is the
shortening of the dual, we have that PI(C)⊥ = SI(M), and the dimension of this
code corresponds to the number of independent linear equations NL given by
Fact 3. By Lemma 1, we have thatNL =

(
2d+1

d

)
+v−1 . Also, the cost of obtaining

the shortened code SI(M) from PI(C) is negligible compared to the BW step to
obtain PI(C). Finally, by Fact 2, there are at most (d+ 1)(n+ v) monomials in
one SM equation, so that the overall complexity using the Wiedemann algorithm
n times to find a basis of C is

O

(
n× (n+ v)(d+ 1)

(
(n+ v)

(
2d+ 1

d

))2
)

= O
(
dn2cT n

4
u

)
. (9)

15

5.2 Time Complexity of Step 2

As the choice n′ = 2d + 1 ensures nu ≤ ncT for all the parameters of GeMSS
and pHFEv-, the system given by Modeling 2 can be solved at degree 2 by
Proposition 1. Thus, the cost of this second step is simply the cost of row reducing
the Macaulay matrix of this quadratic system. The number of columns is the
number of initial monomials which is equal to 1 + nu +

(
nu+1

2

)
and there are

more equations than monomials, so that the complexity of the second step is

O

(
ncT (n+ v − 1)×

(
1 + nu +

(
nu + 1

2

))ω−1
)

= O
(
ncT n

2ω−1
u

)
(10)

Fq-operations. Note that Step 1 is expected to be more costly since nu ≤ ncT .

5.3 Memory Cost

In this section, we estimate the space complexity of the attack on GeMSS, which
is dominated by the space complexity of Step 1 as the system from Modeling 2 is
much smaller. We choose q = 2 to be in accordance with the GeMSS parameters,
so that one element in Fq occupies one bit in memory. We start by describing
two approaches to store the Macaulay matrix M(Q) associated with the system
Q from Modeling 1 when used within the Block-Wiedemann algorithm.

Standard Approach. This approach uses the sparsity of the matrix M(Q)
in a naive way. Recall from Fact 2 that every SM equation contains at most
(n+ v)(d+1) nonzero monomials. Thus, one way to store a single row of M(Q)
is by storing the indexes corresponding to nonzero positions. Hence we must
store at most (n+ v)(d+1) column indexes per row. Since the Macaulay matrix
has (n + v)

(
2d+1

d

)
columns and assuming that several rows can be dropped to

get a square matrix, the space complexity is given by(
2d+1

d

)
(d+ 1)(n+ v)2 log2

((
2d+1

d

)
(n+ v)

)
= O

(
dn2

uncT log2(ncT)
)
. (11)

Optimized Approach. Here we adapt to the SM equations the strategy used
by Niederhagen for a generic Macaulay matrix [35, §4.5.3]. By Fact 2, recall that
for a given subset J ⊂ {1..nc}, #J = d + 1, all SM equations of the form Qi,J

for 1 ≤ i ≤ nr have the same set of potential nonzero monomials. Hence, the
set of columns in M(Q) potentially allocating nonzero entries are the same for
each row which correspond to one of these equations.

To store the system Q we use four arrays, namely V1, V2, V3, and V4. The
array V1 is implemented as a 2-dimensional array of size nr × (Nnc) in which
we store the coordinates of the MinRank input matrices M i’s. The array V2,
instead, stores the monomials of all SM equations. More precisely, for each subset
J ⊂ {1..nc}, #J = d + 1, we store in V2 the coordinates corresponding to
potential nonzero monomials in SM equations associated to J . Finally, it remains

16

to store the information about how to read from V1 the coefficients of a given
Qi,J equation. This information is given a list of N(d+1) coordinates in V1 that
belong to the same row. The set of column indexes is stored in V3, while the row
index is stored in V4. A more detailed description of this storage can be found in
the long version, see [3, Appendix A.3], and overall we obtain a space complexity
of (

2d+1
d

)
(n+ v)(d+ 1) log2

((
2d+1

d

)
(n+ v)

)
= O (dnuncT log2(ncT)) , (12)

which saves a factor of order n + v compared to the Standard approach. This
Optimized approach also has better memory access than the Standard approach.
Indeed, both approaches require to retrieve the same amount of information, but
in the Standard approach the size of the memory is larger. For instance, if one
uses the 2-dimensional model of [7,41] stating that retrieving b consecutive bits
from a memory of M bits costs

2−5(b+ logN)
√
M,

whereN is the length of the array we are reading from. In the Standard approach,
one can check that both (b + logN) and

√
M factors are larger in each vector-

vector multiplication of the Block-Wiedemann algorithm.

Table 3. Memory (log2(#bytes)) needed to store the Macaulay matrix M(Q) from
Step 1 to be used in BW or Strassen’s algorithm.

Scheme
BW

Standard
BW

Optimized
Strassen

GeMSS128 38.665 34.553 48.935
BlueGeMSS128 34.332 30.258 41.263
RedGeMSS128 27.645 23.729 29.873

GeMSS192 39.930 35.213 50.166
BlueGeMSS192 35.586 30.917 42.478
RedGeMSS192 28.897 24.410 31.073

GeMSS256 40.836 35.686 51.049
BlueGeMSS256 36.488 31.389 43.353
RedGeMSS256 29.800 24.905 31.940

Table 3 shows the space complexity of the first step of our attack. Keep in
mind that the memory demand for the BW algorithm will not be much more than
the one to fully store the Macaulay matrix. It can even be significantly lower,
if rows are generated on-demand, but this would increase the time complexity.
In contrast, the space complexity of Strassen’s algorithm is dominated by the
memory demand to store a square dense matrix of size

(
2d+1

d

)
(n+v), see Column

“Strassen”. As we can see in Table 3, the Optimized storage requires only a few

17

GigaBytes of shared memory to execute Step 1 with BW on any of the proposed
parameters for GeMSS, whereas for the Standard approach requires up to a few
TeraBytes. To perform this step with Strassen’s algorithm, one would need up
to more than two Petabytes. To sum up, the amount of memory required by
BW is small enough to be allocated even in a shared memory device, especially
if one uses the Optimized storage.

6 Application to GeMSS and pHFEv- Parameter Sets

In this section, we use the results developed in Section 5 to determine the effect
of our attack on the security of the GeMSS and pHFEv- signature schemes.
In Table 4, we give the time complexity of our attack on the current GeMSS
parameters. We use Equation (8) or Equation (9) for Step 1 (Strassen or BW)
and Equation (10) for Step 2. We use ω = 2.81 and a conservative constant of
7 for the concrete complexity of Strassen’s algorithm [43], while a constant of 3
for the concrete complexity of BW [30, Theorem 7]. One can check that for the
specific parameters proposed by the GeMSS team, the value n′ = 2d+ 1 is high
enough to ensure to solve at degree 2 in Step 2, i.e. nu ≤ ncT . Similarly, the
behavior of our attack on pHFEv- is given in Table 5. We adopt the parameters
from [36, Table 2] using ω = 2.81. In this paper, the value of p was chosen
such that the minors attack from [40] is just above the security level. On these
parameters, one notices that our attack always succeeds in solving at degree 2
with n′ = 2d′ + 1 = 2(d + p) + 1. As before, for those parameters the values of
d′ are indeed high enough to guarantee nu ≤ ncT .

Table 4. Complexity of our attack (log2(#gates)) versus known attacks from [40] for
the GeMSS parameters.

Scheme Minors [40] SM [40]
SM Step 1 SM Step 2

n′
(Strassen/BW) (Strassen)

GeMSS128 139 118 76/72 54 21
BlueGeMSS128 119 99 65/65 51 17
RedGeMSS128 86 72 49/53 45 11

GeMSS192 154 120 78/75 57 21
BlueGeMSS192 132 101 67/67 53 17
RedGeMSS192 95 75 51/55 48 11

GeMSS256 166 121 79/77 59 21
BlueGeMSS256 141 103 68/69 55 17
RedGeMSS256 101 76 52/57 50 11

The nature of our approach, although in theory similar to the one used
in [40], allows us to reduce significantly the complexity of the Support-Minors
attack performed by Tao et al. against GeMSS. This is important since this im-
provement makes it completely infeasible to repair GeMSS by simply increasing

18

the size of its parameters without turning it into an impractical scheme. The
dominant cost of our attack is the initial linear algebra step (dense or sparse)
on the Support-Minors equations, whereas in [40] an attacker needs to multi-
ply these equations by linear and/or minor variables to solve the system. This
explains why we obtain a much smaller cost than the one presented in column
“SM [40]”. Another noticeable difference between our work and the one in [40]
is that their complexity estimate is conjectural, whereas ours is proven under
mild assumptions in comparison.

The results from Table 5 also suggest that the projection modifier on HFEv-
will not be sufficient to repair the scheme as we have significantly broken the
parameters given in [36]. To meet the new security levels, the value of p should be
increased by a consequential amount, making the scheme inefficient. For example,
to achieve security level 128 with the former GeMSS128 parameters, one should
take p = 14, increasing the signing time by a factor q14, which is considerable.

Table 5. Complexity of our attack (log2(#gates)) versus known attacks from [40]
for pHFEv-. The pHFEv- parameter set for level x consists of (q, n, v,D, a, p), where
(q, n, v,D, a) is taken from GeMSSx and p ≥ 0 is the smallest value such that the cost
of the minors attack [40] is just above x.

Scheme p Minors [40,36]
SM Step 1 SM Step 2

n′
(Strassen/BW) (Strassen)

GeMSS128 0 139 76/72 54 21
BlueGeMSS128 1 128 71/69 53 19
RedGeMSS128 4 128 71/69 53 19

GeMSS192 5 201 105/95 67 31
BlueGeMSS192 7 201 105/95 67 31
RedGeMSS192 10 205 105/95 67 31

GeMSS256 10 256 134/117 79 41
BlueGeMSS256 11 256 129/113 77 39
RedGeMSS256 14 263 129/113 77 39

7 Experiments for Step 1

We have performed experiments in Magma-2.23-8 in order to explore the feasi-
bility of the attack on GeMSS. We focus on Step 1, because its cost dominates
the total cost as discussed in Section 5. We measure the running time of this step
for larger parameters so that a trend can be observed. For these experiments,
we selected a = v ≈ n/10, a small prime q > 2 and d =

⌈
logq (D)

⌉
≥ 3. We

chose the number of columns n′ to be the smallest integer such that ncT ≥ nu,

i.e.
(
n′

d

)
≥ n, so the system from Step 2 is solved at degree 2.

19

Fig. 1 summarizes the results of these experiments. In the graph, the theoret-
ical value is the logarithm in base two of the time complexity given in Equation

(8) with nu = n − 1, ncT =
(
n′

d

)
− 1, ω = 2.81 and a hidden constant from the

Strassen’s algorithm taken equal to 7. The experimental complexity is measured
in terms of clock cycles of the CPU given by the Magma command ClockCycles().
The matrix reduction was done via the Magma command GroebnerBasis(Q, 2),
which is equivalent to Reduce(Q) in this context7, yet more efficient.

Our goal here is to discuss how feasible an attack on GeMSS is. For example,
the level I parameter set RedGeMSS128 is (q, n, v,D, a) = (2, 177, 15, 17, 15), so
that d = 5. According to our estimates its complexity is upper bounded by 249,
as shown in Table 4. For this value of d, we have been able to run experiments
up to n = 160, which is quite close to the goal of 177. Fig. 1 also shows that the
estimated complexity is a good upper bound for the computation’s complexity.
Note that the jump in the d = 4 curves corresponds to a change in the value of
n′. Indeed, one can solve the system from Step 2 at degree 2 with n′ = 2d+1 = 9
as long as n ≤ 126, and otherwise one has to consider n′ > 2d+ 1, for instance
n′ = 2d+ 2 for the rest of the data points in these curves.

60 80 100 120 140 160 180
30

35

40

45

50

55

60

n

lo
g
2
(c
o
st
)

Experimental d = 4

Experimental d = 5

Experimental d = 6

Theory d = 4 (Strassen ω = 2.81)

Theory d = 5 (Strassen ω = 2.81)

Theory d = 6 (Strassen ω = 2.81)

Fig. 1. Experimental vs Theoretical value of the complexity of Step 1.

8 Memory Management Strategy for the Support-Minors
Equations within Block Wiedemann

This section is dedicated to the study of the memory complexity associated to
the XL strategy on a very large Support-Minors system Qb with possibly b > 1

7 The two procedures are equivalent because the system is bilinear, hence quadratic,
and Gröbner bases are automatically reduced in Magma.

20

such as in attacks on rank metric code-based cryptosystems [5] or in the recent
rectangular MinRank attack on Rainbow [9]. The core operation here is the use
of Block-Wiedemann, whose cost is dominated by the combined cost of a large
number of matrix-vector multiplications, where the matrix is a fixed, full-rank,
square submatrix M(Qb)

′ of the initial Macaulay matrix M(Qb). Note that this
matrix-vector product occurs approximately 3V times, where V is the dimension
of the vector v being multiplied. While the cost of these multiplications is often
expressed in terms of the number of field operations involved, it is likely that for
cryptographically-interesting instances, this cost is dominated instead by queries
to a large memory. In [41], the cost of a random access memory query is estimated
by the formula

C2 log2 V
√
V log2 q, (13)

where C2 > 0 is a constant, and it is asserted that such a random access must
occur every time a field multiplication is performed in the Wiedemann algorithm.
Here, [41] follows [7] in estimating the cost of moving a bit in a memory of size

V log2 q – the size of v – as C2

√
V log2 q. The constant C2 = 2−5 is used in [7],

[41] and, where we provide concrete numbers, in our paper.
In Section 8.1, we propose a strategy to obviate much of the memory ac-

cess cost per multiplication of Formula (13). In this methodology, the cost of
the matrix-vector products that dominate the cost of the Wiedemann algorithm
approaches one long distance memory access to a field element per active row
of M(Qb)

′ per matrix-vector multiplication, and moreover memory accesses are
blocked so that the cost of transmitting memory addresses is negligible. First,
note that as we have not seen any obvious way to avoid storing v while the value
of the matrix-vector product is being written to memory, we assume without
harm a memory of size 2V log2 q instead of V log2 q. With this choice and as-
suming the same cost formula for generic RAM access as [41], this implies that
the cost of the Wiedemann algorithm should be quite close to

3V 2 log2 q · C2

√
2V log2 q. (14)

If we instead assume a 3-dimensional memory model, we closely approximate a
similar formula for the cost with (2V log2 q)

1/3 substituted for
√
2V log2 q and a

different constant. In Section 8.2, we analyze the memory costs associated to our
strategy with this 2-dimensional memory model in mind with the understanding
that it is a trivial matter to adjust them to the 3-dimensional model. Finally,
we apply our formulae in Section 8.3 to the rectangular MinRank attack [9] to
show that at least in this case our results are indeed close to Formula (14).

8.1 Hashing strategy on the main memory

Each coordinate of a matrix-vector product performed within the Wiedemann
algorithm is obtained from a vector-vector product of the form

rvT =
∑

i∈Supp(r)

rivi,

21

where r is a row of the Macaulay matrix with support Supp(r) of size w, whose
elements can be cheaply computed on the fly. The cost estimates in [41] effectively
assign a cost of w random access queries in a memory of size V to perform
this vector-vector product. This would be accurate if the corresponding sum is
computed by a central processor which first computes the nonzero elements ri,
then fetches vi for i ∈ Supp(r) from memory, and finally multiplies each ri by
the corresponding vi and sums the products.

The strategy we propose, however, will partition the main memory in which
the vi’s are stored, so that for each row r, the vi’s with i ∈ Supp(r) will be
clustered into a small number of groups such that the vi’s in each group are
all in the same memory partition. This allows a distributed approach where a
processor assigned to each memory partition Π computes the nonzero ri’s for
vi ∈ Π and then computes the partial sum

∑
vi∈Π rivi. This partial sum is

then transmitted by each such processing cluster to that cluster among them
located in the section of memory where the total sum is to be written. Thus,
most of the arithmetic is performed locally, within each partition, with “remote”
communication only between the small number of relevant processing clusters.

To establish this partition, we observe that each pair of memory addresses—
a read address for a coordinate of the vector v and a write address for the
same coordinate of the product M(Qb)

′vT— corresponds to a fixed bi-degree
(b, 1) monomial. Also, any row r is associated to an equation of Qb of the form
µQi,J , where J is a collection of d + 1 columns of the matrix M . The thing
each monomial in such an equation has in common is that the minor variable
present corresponds to a subset of J of size d; that is, it belongs to the set
{cJ\{j}, j ∈ J}. We may thus define an h-bit hash H for each monomial, where
bit i ∈ {1, . . . , h} of H(µcJ\{j}) is 1 exactly when i ∈ J \ {j}. Since there is
significant overlap in which columns are present in a minor corresponding to a
minor variable within each equation, we expect each row r to involve relatively
few possible hash values, thereby minimizing “remote” communication.

We may assume, as in [41] and [16], that the cost of distributing the MinRank
instance and a seed for a PRNG to generate the same square submatrix of the
Macaulay matrix to the 2h processing clusters arising from our hashing strategy
is insignificant in comparison to the cost of running the Wiedemann algorithm.
Thus, the hashing strategy has the potential to produce a significant savings in
memory access cost by making the vast majority of the multiplications in the
Wiedemann algorithm local.

8.2 Memory savings from our approach

In this section, we analyze the memory savings of our approach compared to
a naive XL implementation which does not take advantage of structure within
the SM system, see Fact 2. First, note that rows of the full Macaulay matrix
M(Qb) can be grouped in blocks of size nr of the form {µQi,J , 1 ≤ i ≤ nr},
where J ⊂ {1..nc}, #J = d+1 and where µ is a fixed monomial of degree b− 1
in the linear variables. While not all of these nr rows of M(Qb) are present in

22

the square submatrix M(Qb)
′ input into the Wiedemann algorithm, on average

n′r =
rank(M(Qb))

#blocks
≈ #cols(M(Qb))

#blocks
=

(
N+b−1

b

)(
nc

d

)(
N+b−2
b−1

)(
nc

d+1

)
such equations are included from each block. Fact 2 states that these equations
have potential nonzero coefficients for N(d+1) monomials all involving the same
set of minor variables, and thus memory access patterns arising from vector-
vector products involving these rows will be the same.

In our approach, each of these equations is considered by a given processing
cluster in function of the presence or absence of the first h columns of M in the
calculation of that equation. Note that the total number of choices of d + 1 of
the nc ≥ h columns can be written(

nc
d+ 1

)
︸ ︷︷ ︸

#All patterns

=

h∑
i=d+h+1−nc

(
h

i

)(
nc − h

d+ 1− i

)
,

where we have partitioned the choices by the hash value, and where binomial
coefficients with a negative second argument, if they occur, are interpreted as
zero. Therefore, for each hash value of Hamming weight i, there are

(
nc−h
d+1−i

)
choices of d+1 among the nc columns of M including exactly that hash specified
choice of i of these first h columns.

Memory access cost of one field element within a partition. The por-
tion of memory required by the processing cluster corresponding to a hash H
of Hamming weight i is of size 2Vi := 2

(
nc−h
d+1−i

)(
N+b−1

b

)
. This quantity includes

all Vi memory locations associated with bidegree (b, 1) monomials µukcT , where
ukcT is a bilinear monomial from the initial SM system and such that Hj = 1
if and only if j ∈ {1..h} ∩ T , as well as an equal amount of memory for writ-
ing output values. The total cost of reading every value of v within such a
partition, that is, exactly half of the partition’s values, is the product of the
number of such values, the square root of memory size in bits and the commu-
nication cost for transmitting a field element and an address. This product is

(2 log2 q)
1/2(log2 q + log2(2Vi log2 q))V

3/2
i . Thus, summing this quantity across

all
(
h
i

)
hashes H of Hamming weight i for all values of i and dividing by the

total size, V =
(
N+b−1

b

)(
nc

d

)
, of read memory, we find that the average memory

access cost of a field element within some memory partition is given by

ψ1 =
C2(2 log2 q)

1/2

V

h∑
i=d+h+1−nc

(
h

i

)
(log2 q + log2(2Vi log2 q))V

3/2
i . (15)

Additional costs due to the hashing strategy. Still, our hash-based man-
agement scheme creates overhead that must be taken into account in the final

23

cost. For any given row of the Macaulay matrix, there is a (d+1)/nc probability
that the i-th column of M is used. Therefore, we expect the average vector-
vector product to require h(d+1)/nc processing clusters to locally add products
and then transmit to the designated accumulator. We further note that all of the
processing clusters can transmit all of their partial sums of size log2 q for every
equation to the designated accumulator in a canonical order, removing the need
for the transmission of an address of size log2(2V) between the processing cluster
and the accumulator for every equation. Therefore, dividing by N(d+1), which
is the number of monomials in any equation, we compute the average overhead
incurred by using the hash strategy per multiplication to be

ψ2 = C2
h log2 q

ncN

√
2V log2 q. (16)

Total cost per Fq-multiplication. Putting these pieces together, we compute
the memory access cost per multiplication for solving a generic SM system with
the Wiedemann algorithm as follows. Since each equation belongs to a set of, on
average, n′r equations having the exact same N(d + 1) monomials, and noting
that even for very large SM systems the quantity N(d+ 1) log2 q is small, each
processing cluster may retrieve these values only once and store them in its local
cache while computing each of the n′r partial sums. Thus, each field element is
accessed ρ := 1/n′r times on average per multiplication by a processing cluster.
Multiplying this average number of accesses by the average access cost ψ1 within
that partition and adding the above computed overhead ψ2, we obtain

Total Memory Cost Per Multiplication = ρψ1 + ψ2. (17)

Recall that the validity of Equations (15) and (16) depends on the acceptance
of a two-dimensional nearest-neighbor topology being optimal for large scale
memory. If we prefer a three-dimensional nearest-neighbor topology of a similar
nature, the above formulae still work when each exponent of 1/2 is replaced by
1/3, 3/2 is replaced by 4/3 and C2 is replaced by a new constant C3.

Neglected Costs There are many costs to consider that arise from the hashing
strategy that are either slight or negligible, hence they are not included in Equa-
tion (17). We provide a detailed analysis of some of these costs in [3, Appendix
B].

8.3 Application to the Rainbow rectangular MinRank attack [9]

In this section, we estimate the memory access cost of our hashing scheme applied
to the rectangular MinRank attack [9]. In comparison to our GeMSS attack, the
sizes of the SM systems encountered there can be significant. In particular, [41]
pointed out that it may be vital to consider memory access costs in this context.
Recall from Section 2.3 that the “MinRank + P = 0” version of this attack
considers the hybrid system H combining the SM equations Q with the m public

24

equations P(y) = 0 which are quadratic in the linear variables present in Q. In
this case, the Macaulay matrix M(Hb) in bi-degree (b, 1) is obtained by taking
the rows of M(Qb) together with these bi-degree (2, 0) public equations pi for
1 ≤ i ≤ m multiplied by all degree (b− 2, 1) monomials ν. The effect of adding
P = 0 to SM is that for a fixed number of columns nc of M , the resulting hybrid
system may be solved at a smaller degree b than the initial Support-Minors one.
In general, the system H can be solved in degree (b, 1) with any subset of the
SM and P = 0 equations of rank V =

(
N+b−1

b

)(
nc

d

)
− 1. As derived in [9], under

standard genericity assumptions such a subset exists at degree (b, 1) when the
coefficient of tb in (1 − t2)NG′(t) is non-positive, where G′(t) is the generating
function for the quotient of the polynomial ring by Q. In particular, since both
b and nc are parameters of the SM equations, it is possible to construct an
augmented SM system s.t. rank (M(Qb)) < V while rank (M(Hb)) = V . Note
that the rank RSM,b of M(Qb) is given by [5, Heuristic 2] when this quantity is
smaller than V , and therefore M(Hb) will be of full rank if there exist at least
V −RSM,b linearly independent equations in bi-degree (b, 1) derived from P = 0.
In practice, as is found in [9, Table 6], optimization of this attack often occurs
at a lower value of nc and a higher value of b than when considering the SM
system alone.

Adapting the approach to the P = 0 equations. To take these augmented
P = 0 equations into account in our hashing methodology, a first remark is that
they trivially come in groups of size m of the form {νpi, 1 ≤ i ≤ m} with the
same monomial content, a set of

(
N+1
2

)
monomials all involving the unique minor

variable which divides ν, where we set N := n−o2+1 and d := o2 to stick to the
notation from Section 3. This structure implies that any vector-vector product
rvT where r corresponds to a P = 0 equation can be computed by a single
processing cluster under the strategy we outlined in Section 8.1. Having at most
one processing cluster required to compute the vector-vector product and having
at most one long distance transmission of the sum to the designated processor
that writes the value in memory, the P = 0 equations are much more efficient
than the SM equations, even if they contain many more monomials per equation,
as
(
N+1
2

)
> N(d+ 1) for most parameters.

Another important remark is that any basis of the rowspace of M(Hb) can
be made to contain as many of the P = 0 equations as are linearly independent.
First, note that the first fall degree of the polynomial system P— which was
extensively tested in direct attacks on UOV/Rainbow — is significantly higher
than the solving degree of the SM system using the (b, 1) XL strategy. Also,
the assumptions which were proposed and empirically verified on pages 22-23 of
[9] for the hybrid system are actually stronger than assuming that merely the
P = 0 quadratic system is generic. Thus, there seems to be no harm in assuming
that with high probability, the number RP,b of linearly independent P = 0

equations can be calculated as RP,b =
(
nc

d

)
[tb]H(t), where H(t) = 1−(1−t2)m

(1−t)N
and

where [tb]H(t) represents the coefficient of tb in the power series expansion of H.
Finally, recall that we have to add as many SM equations as possible to these

25

P = 0 equations in order to reach the final rank V . Since SM equations occur
in the span of the augmented P = 0 polynomials, the rank of the Macaulay will
not always increase by 1 each time we add a random SM equation. Under the
standard heuristic that these equations behave as random vectors in a space of
the appropriate dimension, any random subset of RP,b of these P = 0 equations
should be linearly independent with probability around 1 − q−1, and a similar
argument under the same heuristic can be used again to verify that this system
can be extended to a full rank system with randomly chosen SM equations with
a similarly high probability. For clarity, we do not add the factor corresponding
to this probability in our estimations as we can treat it as a constant.

Overall costs. Naturally, using fewer of the SM equations requires a recalcula-
tion of the average number n′r of equations included in the system from among
each block of equations with the exact same monomial content. With the above
strategy, we have

n′r =
V −RP,b

#blocks
,

and the value of ρ := 1/n′r is adjusted accordingly. Thus we may compute the
total cost of the hybrid attack against Rainbow. Let σSM denote the ratio (V −
RP,b)/V of SM equations to total equations in the hybrid system corresponding
to M(Hb)

′ and let σP = RP,b/V represent the ratio of P = 0 equations. Then,
the total cost under the same assumptions on memory cost of [41] and using the
method described in Section 8.1 is given by

3(ρψ1 + ψ2)V
2σSMN(d+ 1)

+ 3

(
ψ1

m
+ C2 log2 q(2V log2 q)

1/2

)
V 2σP

(
N + 1

2

)
,

where we recall that N = n− o2 + 1 and where ψ1 is defined in Equation (15).
Since RP,b is significantly smaller than V − RP,b and the P = 0 equations are
much more memory efficient than the SM equations, we find that the contribu-
tion of the P = 0 equations in complexity ends up being a negligible fraction of
the total cost for all the parameters we consider. Finally, we present the total
estimated cost of applying XL using the hash method to the rectangular Min-
Rank attack on Rainbow in the 2-dimensional case in Table 6, and we compare
it to the conjectured formula given by (14).

9 Conclusion

The Support-Minors modeling of the MinRank problem [5] has changed our
perspective of the applicability of rank methods in cryptanalysis. This new tech-
nique has changed the complexity of many MinRank instances by a significant
amount in the exponent. In addition, this advance has opened up new avenues
for cryptanalysis by making newly discovered attacks that exploit rank viable,

26

Table 6. Optimal hash size (h) and total attack cost including idle costs for the
MinRank (SM) and “MinRank + P = 0” (SM+P) attacks in the 2D nearest-neighbor
topology model for Rainbow variants compared with the conjectured bound (2D Conj.)
of Formula (14) and the required security level using the constant C2 = 2−5.

Scheme
(q, n,m, d)

2D
SM

2D
SM+P

2D
Conj.

Security
Level

Rainbow-I
(16, 100, 64, 32)

cost
(hash)

2146.9

(h = 12)
2139.5

(h = 14)
2135.8 2143

Rainbow-III
(256, 148, 80, 48)

cost
(hash)

2205.9

(h = 16)
2201.2

(h = 16)
2197.4 2207

Rainbow-V
(256, 196, 100, 64)

cost
(hash)

2272.4

(h = 18)
2260.9

(h = 19)
2256.9 2272

e.g. [9,40]. This new MinRank algorithm has inspired recent efforts to repair
broken schemes, see [36], and work to estimate the real-world complexity of im-
plementing Support-Minors via XL, see [41]. In particular, [36] claims to offer
protection from the Support-Minors method by way of a modification of GeMSS
called pHFEv- while [41] offers a first approximation of a memory cost analysis
for solving Support-Minors.

In this work, we provide a technique for solving a Support-Minors MinRank
instance with solutions in an extension field, verifying that both GeMSS and
pHFEv- remain insecure for all practical parameters. Indeed, it turns out that
the advantage of using Support-Minors in this scenario is significant and the
complexity of the attack is much smaller than that of [40]. The attack is efficient
enough so that with more effort it may finally be feasible to practically solve
HFE Challenge 2 [18].

Also, with our hashing strategy, we give theoretical arguments of the same
level as in [41] to show that much of the memory access cost described there may
be obviated when solving large Support-Minors systems using XL. Moreover,
while this hash strategy depends intimately on the structure of the Support-
Minors system, it does not seem to depend strongly on the solving degree in the
XL algorithm. This fact suggests that it may even be possible to fully parallelize
XL generically. This task remains an important direction for future work.

Acknowledgements. The Magma experiments of Section 7 were carried out
using the Grid’5000 testbed, supported by a scientific interest group hosted by
Inria and including CNRS, RENATER and several Universities as well as other
organizations (see https://www.grid5000.fr). This work was supported by a grant
from the Simons Foundation (712530, DCST).

27

References

1. Albrecht, M.R., Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram,
V., Maurich, I.v., Misoczki, R., Niederhagen, R., Paterson, K.G., Persichetti, E.,
Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Tjhai, C.J., Tomlinson, M.,
Wang, W.: Classic McEliece: Round 3 (2020), https://classic.mceliece.org/nist/
mceliece-20201010.pdf, last accessed on Sep. 10, 2021.

2. Baena, J., Verbel, J.: Sage tool for the GeMSS attack (2021), https://github.com/
jbbaena/Attack on GeMSS/blob/main/Attack on GeMSS.ipynb

3. Baena, J., Briaud, P., Cabarcas, D., Perlner, R., Smith-Tone, D., Verbel, J.: Im-
proving Support-Minors rank attacks: applications to GeMSS and Rainbow. Cryp-
tology ePrint Archive, Paper 2021/1677 (2021), https://eprint.iacr.org/2021/1677,
https://eprint.iacr.org/2021/1677

4. Bardet, M., Briaud, P.: An Algebraic Approach to the Rank Support Learning
Problem. In: Cheon, J.H., Tillich, J.P. (eds.) Post-Quantum Cryptography. pp.
442–462. Springer International Publishing, Cham (2021)

5. Bardet, M., Bros, M., Cabarcas, D., Gaborit, P., Perlner, R., Smith-Tone, D.,
Tillich, J.P., Verbel, J.: Improvements of Algebraic Attacks for Solving the Rank
Decoding and MinRank Problems. In: Moriai, S., Wang, H. (eds.) Advances in
Cryptology – ASIACRYPT 2020. pp. 507–536. Springer International Publishing,
Cham (2020)

6. Bardet, M., Mora, R., Tillich, J.P.: Decoding Reed-Solomon codes by solving a
bilinear system with a Gröbner basis approach. In: 2021 IEEE International Sym-
posium on Information Theory (ISIT). pp. 872–877 (2021)

7. Bernstein, D.J., Brumley, B.B., Chen, M.S., Chuengsatiansup, C., Lange, T.,
Marotzke, A., Peng, B.Y., Tuveri, N., Vredendaal, C.v., Yang, B.Y.: NTRU Prime:
Round 3 (2020), https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf, last ac-
cessed on Sep. 26, 2021.

8. Bettale, L., Faugère, J.C., Perret, L.: Cryptanalysis of HFE, multi-HFE and vari-
ants for odd and even characteristic. Designs, Codes and Cryptography 69(1), 1–52
(2013)

9. Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Canteaut, A.,
Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021. pp. 348–
373. Springer International Publishing, Cham (2021)

10. Billet, O., Gilbert, H.: Cryptanalysis of Rainbow. In: De Prisco, R., Yung, M. (eds.)
Security and Cryptography for Networks. pp. 336–347. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006)

11. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system.
I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997).
https://doi.org/10.1006/jsco.1996.0125, computational algebra and number the-
ory (London, 1993)

12. Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some
problems of linear algebra. J. Comput. System Sci. 58(3), 572–596 (Jun 1999)

13. Casanova, A., Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem,
J.: GeMSS: A Great Multivariate Short Signature. NIST CSRC (2020), https:
//www-polsys.lip6.fr/Links/NIST/GeMSS specification round2.pdf

14. Chen, M.S., Yang, B.Y., Smith-Tone, D.: PFLASH - Secure Asymmetric Signatures
on Smart Cards. Lightweight Cryptography Workshop 2015 (2015), http://csrc.
nist.gov/groups/ST/lwc-workshop2015/papers/session3-smith-tone-paper.pdf

28

https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://github.com/jbbaena/Attack_on_GeMSS/blob/main/Attack_on_GeMSS.ipynb
https://github.com/jbbaena/Attack_on_GeMSS/blob/main/Attack_on_GeMSS.ipynb
https://eprint.iacr.org/2021/1677
https://eprint.iacr.org/2021/1677
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://doi.org/10.1006/jsco.1996.0125
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification_round2.pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS_specification_round2.pdf
http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session3-smith-tone-paper.pdf
http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session3-smith-tone-paper.pdf

15. Chen, Cong and Danba, Oussama and Hoffstein, Jeffrey and Hülsing, Andreas and
Rijneveld, Joost and Schanck, John M. and Schwabe, Peter and Whyte, William
and Zhang, Zhenfei: NTRU: Round 3 (2019), https://ntru.org/f/ntru-20190330.
pdf

16. Cheng, C.M., Chou, T., Niederhagen, R., Yang, B.Y.: Solving Quadratic Equations
with XL on Parallel Architectures. In: Prouff, E., Schaumont, P. (eds.) Crypto-
graphic Hardware and Embedded Systems – CHES 2012. pp. 356–373. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

17. Coppersmith, D.: Solving Homogeneous Linear Equations Over GF(2) via Block
Wiedemann Algorithm. Mathematics of Computation 62(205), 333–350 (1994)

18. Courtois, N.: Algebraic Attacks over GF(2k), Application to HFE Challenge 2 and
Sflash-v2. pp. 201–217 (02 2004)

19. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solv-
ing Overdefined Systems of Multivariate Polynomial Equations. In: EUROCRYPT
(2000)

20. Courtois, N.T.: Efficient Zero-Knowledge Authentication Based on a Linear Alge-
bra Problem MinRank. In: Boyd, C. (ed.) Advances in Cryptology — ASIACRYPT
2001. pp. 402–421. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

21. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D.: Gui. NIST CSRC (2017), https:
//csrc.nist.gov/Projects/post-quantum-cryptography/Round-1-Submissions

22. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow.
NIST CSRC (2020), https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions

23. Ding, J., Petzoldt, A., Wang, L.c.: The Cubic Simple Matrix Encryption Scheme.
In: Mosca, M. (ed.) Post-Quantum Cryptography. pp. 76–87. Springer International
Publishing, Cham (2014)

24. Dubois, V., Fouque, P.A., Shamir, A., Stern, J.: Practical Cryptanalysis of
SFLASH. In: Menezes, A. (ed.) Advances in Cryptology - CRYPTO 2007. pp.
1–12. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

25. Faugère, J.C., Safey El Din, M., Spaenlehauer, P.J.: Computing Loci of Rank
Defects of Linear Matrices using Gröbner Bases and Applications to Cryptol-
ogy. In: ISSAC 2010 - 35th International Symposium on Symbolic and Alge-
braic Computation. pp. 257–264. ACM, Munich, Germany (Jul 2010), https:
//hal.archives-ouvertes.fr/hal-01057840

26. Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139, 61–88 (1999)

27. Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner Bases without
Reduction to Zero (F5). ISSAC 2002, ACM Press pp. 75–83 (2002)

28. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem, pp. 44–57.
Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

29. Jiang, X., Ding, J., Hu, L.: Kipnis-Shamir attack on HFE revisited. In: Pei, D.,
Yung, M., Lin, D., Wu, C. (eds.) Information Security and Cryptology. pp. 399–411.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

30. Kaltofen, E.: Analysis of Coppersmith’s Block Wiedemann Algorithm for the Par-
allel Solution of Sparse Linear Systems. Mathematics of Computation 64(210),
777–806 (1995), http://www.jstor.org/stable/2153451

31. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization. In: Wiener, M. (ed.) Advances in Cryptology – CRYPTO 99. pp.
19–30. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

29

https://ntru.org/f/ntru-20190330.pdf
https://ntru.org/f/ntru-20190330.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://hal.archives-ouvertes.fr/hal-01057840
https://hal.archives-ouvertes.fr/hal-01057840
http://www.jstor.org/stable/2153451

32. Longa, P., Wang, W., Szefer, J.: The Cost to Break SIKE: A Comparative
Hardware-Based Analysis with AES and SHA-3. In: Malkin, T., Peikert, C. (eds.)
Advances in Cryptology – CRYPTO 2021. pp. 402–431. Springer International
Publishing, Cham (2021)

33. Matsumoto, T., Imai, H.: Public Quadratic Polynominal-Tuples for Efficient
Signature-Verification and Message-Encryption. In: EUROCRYPT. pp. 419–453
(1988)

34. Mohamed, M., Ding, J., Buchmann, J.: Towards Algebraic Cryptanalysis of HFE
Challenge 2. vol. 6, pp. 123–131 (08 2011)

35. Niederhagen, R.: Parallel Cryptanalysis. Ph.D. thesis, Eindhoven University of
Technology (2012), http://polycephaly.org/thesis/index.shtml

36. Øygarden, M., Smith-Tone, D., Verbel, J.: On the Effect of Projection on Rank
Attacks in Multivariate Cryptography. In: Cheon, J.H., Tillich, J.P. (eds.) Post-
Quantum Cryptography. pp. 98–113. Springer International Publishing, Cham
(2021)

37. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
Two new families of asymmetric algorithms. In: EUROCRYPT. pp. 33–48 (1996)

38. Petzoldt, A., Chen, M.S., Yang, B.Y., Tao, C., Ding, J.: Design Principles for
HFEv- Based Multivariate Signature Schemes. In: Iwata, T., Cheon, J.H. (eds.)
Advances in Cryptology – ASIACRYPT 2015. pp. 311–334. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2015)

39. Porras, J., Baena, J., Ding, J.: ZHFE, a New Multivariate Public Key Encryption
Scheme. In: Mosca, M. (ed.) Post-Quantum Cryptography. pp. 229–245. Springer
International Publishing, Cham (2014)

40. Tao, C., Petzoldt, A., Ding, J.: Efficient Key Recovery for All HFE Signature
Variants. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology – CRYPTO
2021. pp. 70–93. Springer International Publishing, Cham (2021)

41. The Rainbow Team: Response to recent paper by Ward Beullens. https://troll.iis.
sinica.edu.tw/by-publ/recent/response-ward.pdf (2020)

42. Vates, J., Smith-Tone, D.: Key Recovery Attack for All Parameters of HFE-. In:
Lange, T., Takagi, T. (eds.) Post-Quantum Cryptography. pp. 272–288. Springer
International Publishing, Cham (2017)

43. Volker, S.: Gaussian Elimination is not Optimal. Numerische Mathematik 13, 354–
356 (1969)

30

http://polycephaly.org/thesis/index.shtml
https://troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf
https://troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf

	Improving Support-Minors rank attacks: applications to GeMSS and Rainbow

