The European Colloquium on Theoretical and Quantitative Geography

> 7-11 September 2017. York, UK

Retail Activity and the City Contributions from the Analysis of Urban Fabrics

Alessandro ARALDI, Giovanni FUSCO Université Côte d'Azur, CNRS, ESPACE, France

÷ 11

Retail activities in cities: the 3 revolutions (Desse et 2017)

It's not a <u>substitution</u> rather a <u>coexistence</u> of different forms of commerce

The buying experience

In the last decades, traditional shopping has evolved: it's not just the act of buying a good....

...there something more: cultural and historical landscape, landmarks, urban spaces....

Same evolution for big commercial surfaces....

The buying experience => the urban experience

Urban Fabric

The **finest scale of analysis of urban form** (city block, neighborhood).

Classical schools of urban morphology (Italy, France, UK): typical relations between elements of urban form revealing an urban culture

Focus of traditional urban morphology:

- 1. identification of urban fabric components (streets, buildings, parcels)
- 2. their geometrical description
- 3. analysis of their spatial relationships
- 4. study of the historic process behind the observed forms

Emphasis on urban form analyzed on plan.

How to cross analyse?

- ...through the pedestrian point of view
- ...with a spatial statistic approach
- ... from a qualitative to a quantitative and extensive aprroach

Tomorrow's presentation «» we will discuss about these indicators, how to obtain them and how we used in order to classify urban fabrics

Spatial Unit Definition

Street proximity bands: the pedestrian point of view of urban fabric.

Partition of the planar urban space into regions based on closeness to each network segment within a certain distance from the segment (10 m, 20 m, 50 m)

Street L

100k segments/PB

Urban Form and Retail Distribution

Indicators of retail densities

Ratio between high sloped (S>30°) and total space-unit in 50m PB

Computed as segment average of arctan(slope)

Urban Fabric

Component

Network

Morphology

Built-up

Morphology

Network-

Building

Relationship

Network-Parcels

Relationship

Site Morphology

Network-Site

Relationshin

+ PD

Indicator

Street Length

Linearity/ Windingness

Local connectivity

Prevalence

of Building type

Proximity band

coverage ratio Building Contiguity

Specialization of

Building Types

Street corridor effect

Proximity band

building height

Open Space Width

Height/Width Ratio

Building frequency

along street network

Plot fragmentation

along street network

Surface slope

Street acclivity

Which caracteristics of the urban form have a positive/negative influence on the presence of retail activities

9 families of urban fabrics

Variograms and Cross Variograms

Cross Variogram

$$\gamma fg(h) = \frac{1}{N-h} + \sum_{i=1}^{N-h} (f_i - f_{i+h}) (g_i - g_{i+h})$$

-These techniques have been created in the mining field in order to study the spatial patterns of minerals -Variograms tell us the spatial patterns of a distribution: the radius, directions,...

-How to apply this technique to our study case?

Variograms and CrossVariograms

Contiguity Variogram and Contiguity Cross Variogram, based on a topological network structure

Variogram Retail Surface Density

90 85

80 75 70

60

55

50 45

40

Contiguity variogram of the retail surface density on a network constrained space applied on all the study area

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

-Variogram of the retail distribution informs about its spatial organisation as well as intensity and topological extention of the autocorrelation:

-Nested structures (Serra J 1968)

-Comparison between subspaces could reveal other spatial behaviaur

Cross Variograms: Retail Density-Urban Fabrics Type

Cross Variograms: Retail Density-UF Indicators

How these analyses can be applied

Conclusions

A new geostatistical approach:

- Variography of socioeconomic phenomena within a street network taking into account the pedestrian point of view
- Cross analysis with urban form from pedestrian point of view
 - Cross-analysis with urban fabrics: relation between retail and overall urban form
 - Cross-analysis with individual indicators: role played by each morphological factor within a given urban form

Possible applications:

- Necessary step for understending spatial structures and specific lags for parametrising spatial regressive/autoregressive models
- Method can be applied to other socio-economic function with a quantitative approach (crime, accidents, etc)

Thankyou for your attention

Credits :

G. Fusco – <u>giovanni.fusco@unice.fr</u> A. Araldi – <u>alessandro.araldi@unice.fr</u>

