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Abstract. This paper deals with the constraint and the singularity analysis of the Exechon. Using 
the screw theory, the constraint and actuation wrenches acting on the moving platform are analyzed. 
The motion pattern of the Exechon is characterized based on a representation of the constraint 
wrenches in the projective space. A wrench graph representing the constraint and actuation wrench 
systems in the projective space is obtained. Based on this wrench graph, a superbracket of the 
Exechon is formulated. Finally, this superbracket is explored to provide the geometric conditions 
for the parallel singularities of the Exechon. 

Introduction 

When the manipulation tasks require less than six dof, the use of a lower-mobility parallel 
manipulator (PM) may bring some advantages (very fast machine, simple architecture) in addition 
to the known features of PMs. The parallel singularities of lower-mobility PMs are critical 
configurations characterized by either a loss of control or a change of the motion performed by the 
moving platform. Thus, the determination of these singularities is a central issue in the field of 
parallel robots. The kinematic characteristics of lower-mobility PMs make their constraint analysis, 
singularity analysis and design a more complex problem in comparison with their 6-dof 
counterparts. 

For a ( 6)n  -dof PM, in a general configuration, the actuators apply a n -system, a , of actuation 

wrenches, whereas the limbs apply a (6 )n -system, c , of constraint wrenches on the moving 
platform. Based on screw theory [1, 2, 3], Ling and Huang [4], and then Joshi and Tsai [5], 
developed a method to derive a 6 6  Jacobian matrix J for a lower-mobility PM. Accordingly, in a 
general configuration, the rows of J for a ( 6)n  -dof PM are composed of n  linearly independent 
actuation wrenches plus (6 )n  linearly independent constraint wrenches. 

Parallel singularities are related to the rank deficiency of J. Classical methods for the parallel 
singularity analysis consist in a direct analysis of J by exploring the vanishing conditions of its 
determinant. These methods mostly fail to provide satisfactory results since the determinant of the 
Jacobian matrix is usually unwieldy to assess, even with a computer algebra system. Thus, 
alternative approaches, using Grassmann-Cayley Algebra (GCA) [6, 7, 8, 9] and/or Grassmann 
Geometry (GG) [9, 10], were proposed in the literature to deal with the vanishing conditions of this 
determinant. These approaches are based on the correspondence between the lines composing the 
Jacobian matrix and Plücker vectors, namely, six-component vectors representing lines in the 3-
dimensional projective space. 

 



 

The GCA provides an approach for the singularity analysis of a PM through the superbracket, 
which is bracket representation of the determinant of the Jacobian matrix. By exploring this 
superbracket, the parallel singularity conditions of a PM can be obtained. 

The classification of singularities of PMs has stimulated the interest of many 
researchers [5, 12, 13, 14, 15]. In this paper, we adopt a classification similar to the one used 
in [5, 14]. Accordingly, a lower-mobility PM can exhibit two types of parallel singularities, namely, 
constraint singularities and actuation singularities. Constraint singularities of a n<6-dof PM 
correspond to the degeneracy of its (6-n)-constraint wrench system c . In such configurations, at 
least one of the initial limited motions will be no longer constrained and the moving platform of the 
PM gains one or several dof. In turn, actuation singularities correspond to configurations in which J 
is rank deficient while the PM is not in a constraint singularity, namely, while its constraint wrench 
system c  does not degenerate. In such configurations, the moving platform of the PM has some 
instantaneous uncontrolled motions. 

This paper deals with the constraint and singularity analysis of the Exechon [16]. To this vein and to 
better understand the geometric characteristics of the Exechon, it is necessary to use the concept of 
points at infinity [7, 9] in the projective space 3 . This concept allows to visualize the relations 
between the constraint wrenches (the intersection of two parallel constraint forces and the 
representation of the constraint moment, which is a line at infinity) and to formulate a superbracket 
expression that provides geometric conditions for parallel singularities. 

The paper is organized as follows. First, the main properties of points and lines at infinity in 3  as 
well as the expression of the superbracket decomposition of GCA are recalled. Then, the constraint 
analysis of the Exechon is performed. The motion of the moving platform is not easy to grasp. 
Thus, a representation of the constraint wrench system in 3  helps understand the PM's motion 
pattern. A wrench graph representing the actuation and the constraint wrenches in P3 is also 
obtained. This wrench allows formulating a superbracket of the PM. Finally, this superbracket is 
explored to provide geometric conditions for the parallel singularities of the Exechon. 

Background 

The 3 -dimensional projective space 3  is characterized by the affine space 3  in addition to the 
plane at infinity  . It is noteworthy that the coordinates of a projective element are determined up 

to scale. A projective point has four homogeneous coordinates whereas a projective line has six 
Plücker coordinates represented by its Plücker coordinate vector. The following properties highlight 
the relations between projective elements: 

 A finite point, A , is represented by its homogeneous coordinates vector 1 2 3( , , ,1)Ta a a a , 

the first three coordinates being its Cartesian coordinates in 3 ; 
 A finite line,  , is represented by its Plüker coordinates vector ( ; ) s r s ; where s  is the 

unit vector of  , r  is the position vector of any point on   and ( r s ) represents the 
moment of   with respect to the origin; 

 Let underlined points denote points at infinity. Any finite line, ( ; ) s r s , has a unique 
point at infinity ( ;0)c  s . This point only depends on the line direction and is determined 
up to scale. Accordingly, if a  and b  are two finite points on F , then  c b a  . 
Furthermore, all finite lines directed along s intersect at one common point at infinity, 
namely, c ; 

 All finite planes of normal vector m , have a common line at infinity. This line is given by: 
(0; ) m  and passes through the point at infinity on any finite line orthogonal to m ; 



 

 Two lines at infinity 1 1(0; ) m  and 2 2(0; ) m  intersect at a unique point at infinity 

1 2( ;0)g  m m . 

 
GCA and superbracket 
 
The GCA was developed by H. Grassmann (1809-1877) as a calculus for linear varieties operating 
on extensors with the join   and meet   operators. The latter are associated with the span and 
intersection of vector spaces of extensors characterized by their step. GCA makes it possible to 
work at the symbolic level, and therefore, to produce coordinate-free algebraic expressions for the 
singularity conditions of spatial PMs. For further details on GCA, the reader is referred to [6, 17] 
and references therein. 
 
The superbracket and its decomposition 
 
Many researchers in the field of parallel robots have explored the determinant of the 6 6  Jacobian 
matrix J to analyze the singularities. The columns of TJ  of a PM are usually six Plücker vectors. 
Each Plücker vector, being of six components, is the support of an extensor of step 1 in the 5 -
dimensional projective space 5  (a Plücker vector corresponds to a point in 5 ). The join (also 
called superjoin) of these six 1-extensors in 5  is equal to the determinant of TJ , up to scale. This 
determinant matrix, whose columns are the Plücker coordinates of six lines (2-extensors), is called 
the superbracket in GCA (2)( )V  [17]. Thus, a singularity occurs when this superbracket vanishes. 

The superbracket is an expression involving 12 points selected on six projective lines (2-
extensors) and can be developed into a linear combination of 24 bracket monomials [6, 18], each 
one being the product of three brackets of four projective points: 

24

1

[ , , , , , ] i
i

ab cd ef gh ij kl y


   (1) 

 
 

where 
 

1 [ ][ ][ ]y abcd efgi hjkl   2 [ ][ ][ ]y abcd efhi gjkl  3 [ ][ ][ ]y abcd efgj hikl  

4 [ ][ ][ ]y abcd efhj gikl   5 [ ][ ][ ]y abce dfgh ijkl  6 [ ][ ][ ]y abde cfgh ijkl   

7 [ ][ ][ ]y abcf degh ijkl   8 [ ][ ][ ]y abdf cegh ijkl  9 [ ][ ][ ]y abce dghi fjkl   

10 [ ][ ][ ]y abde cghi fjkl  11 [ ][ ][ ]y abcf dghi ejkl  12 [ ][ ][ ]y abce dghj fikl  

13 [ ][ ][ ]y abdf cghi ejkl   14 [ ][ ][ ]y abde cghj fikl   15 [ ][ ][ ]y abcf dghj eikl   

16 [ ][ ][ ]y abdf cghj eikl  17 [ ][ ][ ]y abcg defi hjkl  18 [ ][ ][ ]y abdg cefi hjkl   

19 [ ][ ][ ]y abch defi gjkl   20 [ ][ ][ ]y abcg defj hikl   21 [ ][ ][ ]y abdh cefi gjkl  

22 [ ][ ][ ]y abdg cefj hikl  23 [ ][ ][ ]y abch defj gikl  24 [ ][ ][ ]y abdh cefj gikl   

 
A bracket [ ]abcd  is null if and only if (iff) the projective points , ,a b c  and d  are coplanar. The 

bracket of four projective points is defined as the determinant of the matrix whose columns are the 
homogeneous coordinates of these points. 

 
Constraint analysis of the Exechon 

 
The Exechon is a machine tool recently developed by Neumann [16] based on the Tricept PM. 

The kinematic analysis of the Exechon was addressed in [19, 20]. The basic architecture of the 



 

Exechon consists of a 3-dof PM mounted in series with a spherical wrist. This paper deals with the 
constraint analysis of the first part only, called hereafter the Exechon PM. 

 
The Exechon PM presented in Fig. 1 has three limbs: 1 1 1 1

1 1 2 3 L UPR R R P R  , 
2 2 2 2

2 1 2 3 L UPR R R P R   and 3 3 3
3L SPR S P R   such that: 

 The axis of 1
1R  is directed along 1s  and coincides with the axis of 2

1R ; 

 The axes of 1
2R , 1

3R , 2
2R  and 2

3R  are directed along 2s ; 

 The iP -joint, 1,2,3i  , is directed along ip ; 

 The axis of 3R  is directed along 3s , which is orthogonal to 2s . 

 
 

 
Figure 1: Schematic representation of the Exechon PM 

 
Twist systems and constraint wrench systems associated with each limb 

 
Limb 1L  

The twist system 1  of limb 1L  is spanned by the twists associated with its kinematic 

joints 1
1R , 1

2R , 1P  and 1
3R , namely, 

1

1

01 1 1( , )A s r s , 
1

1

02 2 2( , )A s r s , 
1

1 1(, )  p  and 


1

1

03 2 2( , )B s r s , respectively where the superscript ()  denotes a unit screw. Since 
1

02  and 
1

03  

have parallel axes,    1 1 1 1

02 03 02 12span( , ) span( , )     [8], with 
1

12 2 1(, )  s p . Therefore, 1L  is a 

2T2R limb, namely, it generates two independent translations and two independent rotations. The 
constraint wrench system 1

c  of limb 1L  is spanned by screws that are reciprocal to all the twists 

of 1 : 

 
1 11 span( , )c
c c             (2) 

where 
1

1 2 2( , )c A s r s  and 1 1 2(0, )c  s s . 

Limb 2L  



 

The twist system 2  of limb 2L  is spanned by: 
2

2

01 1 1( , )A s r s , 
2

2

02 2 2( , )A s r s , 

 2

2(0, )  p , and 
2

2

03 2 2( , )B s r s . The wrench system 2
c  of limb 2L  is given by: 

 
2 22 span( , )c

c c             (3) 

where 
2

2 2 2( , )c A s r s  and  2 1 2(0, )c  s s . It should be noticed that 1c  and  2c  are 

identical. Moreover, 1c  and  2c  have parallel axes. Thus,    1

1 2 12span( , ) span( , )c c c c    , 

with   
12 1 21 2(0, )c c c   s s   . 

 
Limb 3L  

The twist system 3  of limb 3L  is spanned by: 
3

3(0, )  p  and 
3

3

04 3 3( , )B s r s  in addition to 

any three independent  0  whose axes pass through point 3A . The constraint wrench system 3
c  of 

limb 3L  is given by: 


33 span( )c

c             (4) 

where 
3

3 3 3( , )c A s r s . 

 
Constraint wrench system of the Exechon PM 

Since  
1 3c c  , the limbs of the Exechon PM apply four different constraints to its moving 

platform. The constraint wrench system of this PM is given by: 
   

1 2 3 1span( , , , )c
c c c cPM               (5) 

where 
1

1 2 2( , )c A s r s , 
2

2 2 2( , )c A s r s , 
3

3 3 3( , )c A s r s  and 
1 1 2(0, )c  s s . Since 

   
1 2 1 1span( , ) span( , )c c c c    , c

PM  is a 3 -system. Therefore, the Exechon PM is an over-

constrained 3 -dof parallel manipulator. Indeed, the limbs apply redundant constraint on the moving 
platform. 
 
Motion of the moving platform in a general configuration 
 
The constraint wrench system c

PM  of the Exechon PM provides information about the constraints 

applied to its moving platform in a general configuration. In order to characterize the motion of the 
moving platform in such a configuration, one should determine the twist system PM  of the moving 

platform, which is reciprocal to c
PM . 

 
Let 1a , 2a  and 3a  be the extensors of step 1 associated with points 1A , 2A  and 3A , respectively 

and let ( ,0)i is  s , 1,2,3i  , be the 1-extensor representing the point at infinity in the direction of 

is . Then, 
1

1 1 2( , )c A s r s  can be represented by 1 2a s ; 
2

2 2 2( , )c A s r s  can be represented by 

2 2a s ; 
3

3 3 3( , )c A s r s  can be represented by 3 3a s  and 1 1 2(0, )c  s s  can be represented by 

1 2s s . 

 
 
 



 

Let   be the finite plane containing the axes of 1c  and  2c . Since line 1 2A A  (Fig. 1) is 

directed along 1s , the point at infinity on this line is 1s . Hence, the line at infinity of plane   is 


11 2 cs s  . The constraint wrenches of the Exechon PM are illustrated in Fig. 2. 

 

 
Figure 2: Twist system of the Exechon PM 

 

Infinite-pitch twists in PM  should be orthogonal to the axes of 1c ,  2c  and 3c . Thus, they 

form a 1-$\  -system spanned by:  2 3 1 2(0, ) s s   s s . On the other hand, the axis of a zero-pitch 

twist  0  in PM  should be: coplanar with the axis of 3c , coplanar with the axes of 1c  and  2c  

and orthogonal to 1 2s s . 

 

In order to satisfy these two conditions, the axis of a  0i  in PM  should necessarily belong to 

plane   and cross at the same time the axis of 3c . Let I  be the intersection point between plane 

  and the axis of 3c . Hence, zero-pitch twists in PM  form a planar pencil of finite lines in plane 

  and passing through point I  as shown in Fig. 2. Consequently, 
  

01 02span( , , )PM               (6) 

where  01  and  02  are any two distinct zero-pitch twists whose axes lie in plane   and pass 
through point I . The moving platform of the Exechon PM provides a pure translation along 1 2s s  

plus two independent rotations. These rotations are about any two distinct axes in plane   and 
passing through point I . 
 
Actuation wrench system of the Exechon PM 



 

Each limb of the Exechon applies one pure actuation force whose axis is along the direction of 

the corresponding actuated \textsf{P}-joint, as follows: 
1

1 1 1( , )a A p r p ; 
2

2 2 2( , )a A p r p  and 


3

3 3 3( , )a A p r p . The actuation wrench system of the Exechon PM is given by: 

  
1 2 3span( , , )a
a a aPM              (7) 

 
Wrench graph of the Exechon PM 

 
  

 
Figure 3: Wrench graph of the Exechon in 3  

 
Let ( ,0)i ip  p , 1,2,3i  , be the 1-extensor representing the point at infinity in the direction of 

ip . Therefore, 
1

1 1 1( , )a A p r p  can be represented by the 2-extensor 1 1a p . Likewise, 


2

2 2 2 2 2( , )a A a p  p r p  and 
3

3 3 3 3 3( , )a A a p  p r p  

 
The line at infinity 2 2(0, )s  s  is the intersection of any plane having 2s  as normal vector with 

the plane at infinity  . Thus, any finite line orthogonal to 2s  meets 2s . Thus, line 2s  collects all 

the points at infinity defined by directions orthogonal to 2s . Since vectors 1p , 2p , 3s  and 1s  are 

orthogonal to 2s , points 1p , 2p , 3s  and 1s  belong to a same line, namely, to 2 2(0, )s  s . A wrench 

graph of the Exechon PM is obtained in Fig. 3. 
 

Singularity conditions of the Exechon PM 
 

The Exechon is an over-constrained PM since the limbs can apply four distinct constraint wrenches 
but they constrain only three dof. In that case, the transpose of the Jacobian matrix can be written as 
a 6 7  matrix, namely, 

 
      

1 2 3 1 2 3 1
T

a a a c c c c   J               (8) 

 



 

Superbracket expression 
 
A parallel singularity occurs when the rank of J  becomes smaller than six, namely, when the seven 

wrenches of Eq. 8 span a n<6-system 1c ,  2c  and 1c  are always linearly dependent. 

Consequently, there are 
3

3
2

 
 

 
 ways to select two among these three wrenches in the superbracket 

expression and thus, we can formulate 3  superbracket expressions for the Exechon PM. However, 

since    
1 2 1 1span( , ) span( , )c c c c     in any robot configurations, these three superbracket 

expressions are always equivalent to each other. Thus, it is sufficient to analyze one of the three 
possible expressions. 

 
Superbracket decomposition and singularity conditions 

Here we will analyze uniquely the superbracket of 1S , involving 1c ,  2c  but not 1c , as 

follows: 

1 1 1 1 2 2 2 2 2 3 3 3 3[ , , , , , ]S a p a s a p a s a p a s         (9) 

The decomposition of 1S  leads to three non-zero monomials as follows: 

 

1 1 1 2 2 1 2 2 3 2 3 3 3 1 1 2 2 1 2 2 3 2 3 3 3

1 1 2 2 1 2 2 3 2 3 3 3

[ ][ ][ ] [ ][ ][ ]

[ ][ ][ ]

S a p s a a a s a p p a s a p s p a a s a a p a s

a p s a a a p a s p a s






   (10) 

Now let consider the sum1
• • •

2 21 1 2 1 2 3 3 3 32
[ ][ ][ ]a p s a a a s a p p a s . It is developed as follows: 

• • •

2 21 1 2 1 2 3 3 3 32
[ ][ ][ ]a p s a a a s a p p a s  = 1 1 2 2 1 2 2 3 2 3 3 3[ ][ ][ ]a p s a a a s a p p a s  

 - 1 1 2 2 1 2 2 3 2 3 3 3[ ][ ][ ]a p s a a a p a s p a s  

 - 1 1 2[ a p s s 1 2 2 3
2
][ a a a a 2 3 3 3][ ]p p a s  

 + 1 1 2 2[ a p s s 1 2 2 3 2 3 3 3][ ][ ]a a p a a p a s  

 + 1 1 2 2 1 2 2 3[ ][a p s p a a a a 2 3 3 3][ ]s p a s  

 - 1 1 2 2 1 2 2 3 2 3 3 3[ ][ ][ ]a p s p a a s a a p a s              (11) 

 
The crossed out brackets of Eq. 11 being equal to zero, we can notice that the superbracket of the 
Exechon PM can be written as: 

• • •

2 21 1 1 2 1 2 3 3 3 32
[ ][ ][ ]S a p s a a a s a p p a s         (12) 

From [6], it follows that the right hand side of Eq. 12 is the result of the meet of four planes: 

1 1 2( )a p s , 1 2 3( )a a a , 3 3 3( )p a s  and 2 2 2( )a s p . Hence, 

1 1 1 2 1 2 3 3 3 3 2 2 2( ) ( ) ( ) ( )S a p s a a a p a s a s p           (13) 

The singularity conditions of the Exechon PM depend on some relations between four planes. Plane 

1 2 3a a a  is spanned by three fixed points 1A , 2A  and 3A  lying in the plane of the fixed base. Planes 

1 1 1 2a p s , 2 2 2 2a s p  and 3 3 3 3p a s  contain the actuation and the constraint forces of limbs 

1L , 2L  and 3L , respectively. Figure 4 shows planes 1 2,   and 3  of the Exechon PM. Generally, 

the Exechon PM exhibits a parallel singularity whenever the four foregoing planes intersect at least 
at one point. This point can be a finite point or a point at infinity. As a matter of fact, the four planes 

                                                           

1 The superscript 
•

()  stands for permuted elements as pointed out in [17] 



 

intersect at a point at infinity whenever one can find a finite line (or a direction) parallel to the four 
planes at once. Moreover, Eq. 13 also holds the following particular cases: 

 

 
Figure 4: The Exechon PM, planes 1 2,   and 3  

 
1. One of the four planes degenerates: 
 

 Plane 1 2 3a a a  degenerates. This cannot occur since 1a , 2a  and 3a  correspond to three 

fixed points.  

 Plane 1 1 1 2a p s , whose Plücker coordinate vector is 
1

1 2

1 2·( )A




 
 
 

p s

r s s
, degenerates.  

This plane contains the axes of the actuation force 1a  and the constraint force 1c  of limb 1L  that 

intersect at a fixed point 1A . Thus, this plane degenerates if and only if 1 2p s , i.e., if 1 2 0 s s , 

i.e., if the two forces 1c  and 1a  become coaxial. However, since vectors 1p  and 2s  are 

orthogonal in any robot configuration, the foregoing condition turns to be impossible. 

 Plane 2 2 2 2a s p , whose Plücker coordinate vector is 
2

2 2

2 2·( )A




 
 
 

p s

r p s
, degenerates. 

This cannot occur since vectors 2p  and 2s  are orthogonal in any robot configuration. 

 Plane 3 3 3 3p a s , whose Pl\"ucker coordinate vector is 
3

3 3

3 3·( )A




 
 
 

p s

r p s
, degenerates. 

This cannot occur since vectors 3p  and 3s  are orthogonal in any robot configuration.  

2. Two of the four planes coincide. 
3. Three of the four planes intersect at a common line. 
4. The four planes intersect at a common point. 

 
Conclusions 
 
This paper presented the constraint and singularity analysis of the Exechon. The constraint analysis 
was performed by using the concept of points and lines at infinity and the screw theory. The motion 
pattern of the moving platform was not easy to grasp. Thus, a representation of the constraint 
wrenches in the projective space proved very useful to describe the motion of the moving platform 



 

in a general configuration. Then, a wrench graph representing all the wrenches of the manipulator in 
the projective space was obtained to help formulating the superbracket expression. Finally, this 
superbracket was explored to provide geometric conditions for the parallel singularities of the 
Exechon. 
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