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Abstract The misconformation and aggregation of the protein Amyloid-Beta
(Aβ) is a key event in the propagation of Alzheimer’s Disease (AD). Different
types of assemblies are identified, with long fibrils and plaques deposing dur-
ing the late stages of AD. In the earlier stages, the disease spread is driven
by the formation and the spatial propagation of small amorphous assemblies
called oligomers. We propose a model dedicated to studying those early stages,
in the vicinity of a few neurons and after a polymer seed has been formed.
We build a reaction-diffusion model, with a Becker-Döring-like system that
includes fragmentation and size-dependent diffusion. We hereby establish the
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theoretical framework necessary for the proper use of this model, by proving
the existence of solutions using a fixed point method.

Keywords Alzheimer’s Disease · Reaction-diffusion · Partial differential
equations

Mathematics Subject Classification (2010) 35K57 · 92B05

1 Introduction

Alzheimer’s disease (AD) is the most common of neurodegenerative diseases, a
group that also includes Parkinson’s disease, Huntington disease, Creutzfeldt-
Jakob disease, and transmissible spongiform encephalopathies. AD consists in
a gradual neuron loss not consistent with habitual aging. As is the case for
these other diseases, AD is associated with the misconformation, aggregation
and propagation of different proteins in the neural system (Soto, 2003), in par-
ticular Amyloid-beta (Aβ) and Tau (Hardy and Higgins, 1992; Hardy, 2003).
These proteins can adopt different stable conformations. Some of them, called
misconformations, lead to the creation of structured assemblies that are re-
liable biological markers of the disease (Haass and Selkoe, 2007; Ittner and
Götz, 2011; Jack Jr et al., 2013).

Aβ is formed by cleavage of the Amyloid Precursor Protein (APP), which
is produced by healthy neurons and attaches to the membrane of neuron cells
with an endogenous purpose that remains unclear (Hiltunen et al., 2009). The
self-assembly of Aβ leads to different types of structures. Fibrils are long linear
polymers, that can coalesce into large tangles called plaques. Plaques consti-
tute the visible deposits observed in most late-stage AD patients. During the
earlier stages smaller and less ordered structures are also formed, commonly
named oligomers. To the best of our knowledge the interactions between the
different types of structures are unclear, but it has been shown that oligomers
appear early on during the onset of Alzheimer’s disease (Oda et al., 1994,
1995), while fibrils and plaques become detectable much later. Oligomers are
soluble and difficult to detect, but their role in AD propagation and pathology
is believed to be essential (Čižas et al., 2011; Haass and Selkoe, 2007; Sengupta
et al., 2016; Zhao et al., 2012).

The generally accepted mechanism for the onset of AD is the so-called cas-
cade hypothesis (Yankner, 1996; Hardy and Higgins, 1992; Haass and Selkoe,
2007; Cohen et al., 2013). The first appearance of misfolded Aβ in the form of
oligomers is a rare and highly stochastic event, possibly favored by mutations
or co-factors. Monomers can spontaneously change conformation and assemble
into small proto-oligomers. This process is termed (primary) nucleation. Once
the process has started and a seed has appeared, the oligomers replicate and
propagate rapidly (Morales et al., 2012; Olsson et al., 2018; Sowade and Jahn,
2017). This second step is usually referred to as secondary nucleation (Cohen
et al., 2013). Although the precise phenomenon that allows oligomers to repli-
cate is not known, it can be described as a prion-like propagation (Rasmussen
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et al., 2017). Moreover, recent discoveries show the existence of a positive
feedback where infected cells increase production of Aβ proteins leading to a
further acceleration of the pathology (Elliott et al., 2018). The propagation of
misconformed proteins in the brain is the result of multiple phenomena act-
ing at different scales. At smaller scales diffusion drives the propagation, but
for long range propagation other mechanisms come into play (e.g. exosomes)
(Xiao et al., 2017). As the pathology progresses, stagnant fibrillar structures
and plaques begin to form. These structures remain fixed or travel slowly. How-
ever, breakage of fibrils potentially produces new seeds that propagate fast and
drive the spatial progression and the development of AD (Cohen et al., 2013).
It is only at advanced stages of the disease and at longer-time-scales that the
symptoms of dementia appear (Perrin et al., 2009). The spatial and tempo-
ral progression of biomarkers and the appearance of symptoms in AD is thus
highly complex and heterogeneous (Storandt et al., 2002; Ohm et al., 1995;
Smith, 2002; Perrin et al., 2009). For this reason, it is of particular interest
for the biomedical community to understand the mechanisms of propagation
and replication of Aβ oligomers, especially during the early latent stages of
AD. Insights into this phenomenon could help develop therapeutic strategies
before the first signs of dementia (Eleuteri et al., 2015; Haass and Selkoe,
2007). Having a mechanistic model of the oligomers replication coupled with
spatial propagation is a first step towards identifying the key parameters in the
early stage development of the disease. If this mechanistic model is validated
(which is the following step in the process), hopefully some therapeutic strate-
gies could be proposed by focusing on the events that impact propagation the
most.

One approach towards this purpose is via mathematical and computa-
tional modeling. The dynamics of misfolded proteins and their role in neurode-
generative disorders have attracted considerable attention from mathemati-
cians (Carbonell et al., 2018) with a strong increase during the last 30 years.
Most influential studies have used systems of Ordinary Differential Equations
(ODEs) to model and replicate the dynamics of aggregation and proliferation
of prion proteins (Eigen, 1996; Harper and Lansbury Jr, 1997; Nowak et al.,
1998; Greer et al., 2006). Different spatial extensions to these models have
been proposed under the assumption of isotropic diffusion (Matthäus, 2006),
diffusion combined with a network topology (Matthaeus, 2009; Raj et al.,
2012) or lattice-like domains based on cell connectivity networks (Stumpf and
Krakauer, 2000). Concerning AD, mathematical modeling has focused on ana-
lyzing microscopic processes related to prion-like replication or joint prion-Aβ
dynamics. Recently, a number of multi-scale, non-spatial models have been
aimed at studying the evolution of monomers, oligomers, fibrils, and plaques
(Ciuperca et al., 2018; Helal et al., 2014, 2018). Some descriptions use dis-
crete aggregate sizes, others favor continuous sizes. The two approaches are
similar at large aggregate sizes but have discrepancies at the scale of small
oligomers (Doumic et al., 2009; Vasseur et al., 2002; Velázquez, 1998). In the
case of discrete sizes, models generally use the Becker-Döring Equations. Spa-
tial extensions of these models have been rare with the possible exception of
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(Bertsch et al., 2016, 2017) where interesting results where achieved but where
potentially essential biological factors were not considered when extrapolat-
ing microscopic processes to larger-spatial scales. Integration of microscopic,
mesoscopic and macroscopic scales is difficult as there are different processes
intervening at each level (e.g spreading through exosomes, axons, or cere-
brospinal fluid). Overall, few models have successfully integrated molecular
and large scales (Carbonell et al., 2018).

In the present study we introduce a model based on a discrete growth-
fragmentation system of oligomeric species, in which we include spatial diffu-
sion. We focus our analysis on the early stages of the pathology, after a seed
has appeared and oligomers start replicating. The resulting system of partial
differential equations aims at representing the simultaneous replication and
spatial diffusion of Aβ oligomers in the vicinity of a few neurons. More pre-
cisely, the considered Aβ monomers can assemble first into proto-oligomers
and then oligomers. Proto-oligomers are small unstable polymers that grow
by addition of monomers (polymerization) and shrink by loosing monomers
(depolymerization). Proto-oligomers can also fragment (fragmentation)
into smaller pieces. Those processes are illustrated in Figure 1. The goal here
is to establish a robust mathematical framework for the study of this model
with theoretical results ensuring the relevance and stability of the model. This
model is novel in the sense that it couples the chemical replication oligomers
with their spatial-dependent toxicity. The results that we obtain here differ
from the classical models of growth-fragmentation with spatial diffusion in
that the oligomers have a direct impact on the production of monomers. This
interplay needs to be dealt with and the mathematical study needs to be
adapted. In the preliminary work (Andrade-Restrepo et al., 2020), we carried
out a modeling work based on the description and the numerical simulation
of this model where a simple representation of the oligomers neurotoxic effect
is included. The numerical results reveal that the oligomers spatial dynamics
are very sensitive to the balance between their diffusion and their replication.
The paper is organized as follows. In Section 2 we describe the considered
problem, Section 3 is devoted to setting up an associated regularized problem
and the proof of its well-posedness. In Section 4 we prove the existence of
solutions to our initial problem.

2 Initial problem description

2.1 Domain description and variables definition

Let us describe the problem at hand and its mathematical formulation. We
consider a bounded domain Ω ⊂ Rn, with n = 2 or n = 3. A number N of holes
in the domain, representing the neuron cells, are defined by the boundaries ∂ωk
for k = 1 ∈ {1, . . . , N}. The exterior boundary of Ω is denoted Γ . The whole
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Aβ monomer proto-oligomer oligomer neuron

polymerization

diffusion

oligomerization

neurotoxicity

fragmentation

production

depolymerization

Fig. 1 Illustration of the biological species and interactions represented in the model

boundary of Ω is thus

∂Ω = Γ ∪
N⋃
k=1

∂ωk.

This geometric description of the domain is illustrated in Figure 2.

External boundary Γ

Domain Ω

Neuron ω
k

Membrane ∂ω
k

Oligomer action zone

Fig. 2 Illustration of the mathematical domain used in the model
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We consider a time interval [0, T ] with T > 0. The unknowns of the problem
are m,µ2, µ3, · · · , µi0 : Ω × (0, T ) 7→ R with i0 ∈ N, i0 ≥ 5. Here m := m(x, t)
represents the monomers concentration, µi := µi(x, t) with i ∈ {2, · · · , i0 − 1}
represents the concentration of proto-oligomers of size i and µi0 := µi0(x, t) is
the concentration of oligomers.

We look for solutions that are L2 both in time and in space for generality,
and that are non-negative. For this purpose, let us define the Banach space

X = L2(0, T : L2(Ω))

which is identified with L2(Ω × (0, T )).
In the following for any space B of functions defined on (0, T ) × Ω or on Ω
only, we denote by B+ the subset of non negative function of B.
Our problem will be defined on X+ ×X+ · · · ×X+︸ ︷︷ ︸

i0 times

which is denoted by Xi0
+ .

2.2 Parameters description and assumptions

All parameters introduced in the following are assumed to be real and non-
negative. Each species, from monomers to oligomers of size i0, has its own
diffusion coefficient denoted as Di for size i. Monomers are degraded from the
system with rate δ. Proto-oligomers grow by monomer addition with polymer-
ization rate ri for size i, and they can lose one monomer by depolymerization
with rate b (constant). Proto-oligomers can also fragment with a homogeneous
fragmentation kernel and a fragmentation rate β × (i − 1) for size i. Finally
γ denotes the rate of absorption of matter at the external boundaries of the
domain, and Bk denotes the time-dependent rate of monomer production by
neuron k. A summary of all parameters and variables is proposed in Table 1,
and the biological model behind those processes is illustrated in Figure 1.

In order to simplify the equations formulation, we define the following
coefficients

a2,2 = β, a2,3 = 2β + b,

for j = 4, . . . , i0 − 1, a2,j = 2β,

for i = 3, . . . , i0 − 2, ai,i = b+ β(i− 1), ai,i+1 = 2β + b,

and for j = i+ 2, i0 − 1, ai,j = 2β,

ai0−1,i0−1 = b+ β(i0 − 2).

The monomer production rate Bk of neuron k, for k ∈ {1, . . . , N}, satisfies
the equations

B′k(t) =− τ
(∫

RN−ωk

µi0(x, t)ηk(x)dx

)
Bk,

Bk(0) =B0
k.

(1)
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The function ηk is the indicator function of the oligomer action zone around
neuron k, taking its values in {0, 1}. The oligomer action zone is a bounded
domain containing the neuron ωk, in which the oligomers of concentration
µi0 have an impact on the monomer production rate, as described by (1). In
practice for numerical simulations (already done in (Andrade-Restrepo et al.,
2020)), the neurons are defined as circles and the oligomer action zones as
larger concentric circles around the neurons, as it is illustrated in Figure 2.

Remark 1 We observe that Bk is expressed in terms of µi0 by

Bk(t) = B0
k exp

(
− τ

∫ t

0

∫
Rn−ωk

µi0(x, s)ηk(x)dxds

)
. (2)

One additional assumption is that the polymerization rate is an increasing
function of the proto-oligomers size

for i = 2, . . . , i0 − 2, ri ≤ ri+1. (3)

With all the parameters introduced and the assumptions established, we can
formulate the problem at hand.

2.3 Problem formulation

The problem is defined as follows

Problem 1 (P) Find (m,µ2, µ3 . . . , µi0) ∈ Xi0
+ such that

∂m

∂t
=D1∆m−m

( i0−1∑
j=2

rjµj + δ

)
+

i0−1∑
j=3

bµj + 2β

i0−1∑
j=2

µj , (4)

∂µ2

∂t
=D2∆µ2 −mr2µ2 − a2,2µ2 +

i0−1∑
j=3

a2,jµj , (5)

for i = 3, . . . , i0 − 2,

∂µi
∂t

=Di∆µi +mri−1µi−1 −mriµi − ai,iµi +

i0−1∑
j=i+1

ai,jµj ,
(6)

∂µi0−1
∂t

=Di0−1∆µi0−1 +mri0−2µi0−2 −mri0−1µi0−1

− ai0−1,i0−1µi0−1,
(7)

∂µi0
∂t

=Di0∆µi0 +mri0−1µi0−1. (8)
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We add the boundary conditions

D1
∂m

∂ν
=− γm on Γ, (9)

for k = 1, . . . , N, D1
∂m

∂ν
=Bk(t) on ∂ωk, (10)

and for i = 2, . . . , i0, Di
∂µi
∂ν

=− γµi on Γ, (11)

Di
∂µi
∂ν

=0 on ∂ωk. (12)

Finally we have the initial conditions

for almost all x ∈ Ω, and for i = 1, . . . , i0, µi(t = 0, x) =µ0
i (x),

for almost all x ∈ Ω,m(t = 0, x) =m0(x),
(13)

with each initial concentration distribution m0, µ0
2, µ

0
3, . . . , µ

0
i0

taken in L2(Ω)
and non-negative.

We recall that this model is introduced in more detail and with biological
interpretation of every term in (Andrade-Restrepo et al., 2020). More precisely,
numerical simulations are performed and strong dependency of Alzheimer’s
disease progression and balance between oligomers diffusion and replication is
highlighted.
Our purpose is here to establish the theoretical well-posedness of the model
by proving the existence of solutions. In this prospect, we use a regularization
method.

Table 1 Model variables and parameters

Symbol Description
m (or µ1) Local density of Aβ monomers

µi, i = 2 . . . i0 − 1 Local density of proto-oligomers
µi0 Local density of oligomers

Di Diffusion coefficient of size i particles
δ Degradation coefficient of monomers
γ Boundary absorption rate
ri Polymerization rate of size i proto-oligomers
b Depolymerization rate
β Fragmentation rate
Bk Monomer production rate on the membrane of neuron k

3 The associated regularized problem

We first define a regularized problem associated with (P), by introducing a
regularization of the monomer concentration.
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3.1 Setting up a regularization

We denote by D(Rn+1) the set of test functions on Rn+1, i.e. the set of in-
finitely smooth and compactly supported functions from Rn+1 to R. Let us

consider, for ε > 0, a mollifier function θε :

{
Rn+1 → R
(x, t)→ θε(x, t)

, with the fol-

lowing properties

θε ∈ D(Rn+1), supp(θε) ⊂ BRn+1(0, ε), θε ≥ 0,

∫
Rn+1

θε(x, t)dxdt = 1,

where BRn+1(0, ε) is the ball centered in 0 and of radius ε in Rn+1. For any
function v ∈ L1(Ω × (0, T )) we denote by v ∗ θε the convolution defined on
Rn+1 by

(v ∗ θε)(x, t) =

∫
Rn+1

v(x− y, t− s)θε(y, s)dyds

where v is extended by 0 outside Ω × (0, T ). The properties of θε give the
regularity of (v ∗ θε), more precisely

v ∗ θε ∈ C∞(Ω̄ × [0, T ]).

The first step to study the existence of solutions to the initial problem P
is to prove the existence of solutions to the regularized problem (Pε) defined
below for any ε > 0, using a fixed point argument. After this regularization
step, we study the limit ε → 0 and obtain the existence of weak solutions to
the problem (P).

The problem (Pε) is described as follows: find (mε, µ2,ε, . . . , µi0,ε) in Xi0

such that

∂mε

∂t
=D1∆mε −mε

( i0−1∑
j=2

rjµj,ε + δ

)
+

i0−1∑
j=3

bµj,ε + 2β

i0−1∑
j=2

µj,ε, (14)

∂µ2,ε

∂t
=D2∆µ2,ε − (mε ∗ θε)r2µ2,ε − a2,2µ2,ε +

i0−1∑
j=3

a2,jµj,ε, (15)

for i =3, . . . , i0 − 2,

∂µi,ε
∂t

=Di∆µi,ε + (mε ∗ θε)ri−1µi−1,ε − (mε ∗ θε)riµi,ε

− ai,iµi,ε +

i0−1∑
j=i+1

ai,jµj,ε,

(16)

∂µi0−1,ε
∂t

=Di0−1∆µi0−1,ε + (mε ∗ θε)ri0−2µi0−2,ε − (mε ∗ θε)ri0−1µi0−1,ε

− ai0−1,i0−1µi0−1,ε,
(17)

∂µi0,ε
∂t

=Di0∆µi0,ε +mεri0−1µi0−1,ε, (18)
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The boundary and initial conditions are the same as for the problem (P).

Remark 2 We would normally denote by (mε, µ2,ε, . . . , µi0,ε) the solution of
problem (Pε), but for simplicity we omit the subscript ε in the following.

We can now study the existence of solutions to the regularized problem,
by using a fixed-point method.

3.2 Existence of solutions for the regularized problem

Now we define the following application F0 :

{
(L∞(0, T : L2(Ω)))+ → Xi0−2

m̃→ (µ2, . . . , µi0−1)
,

where µ2, . . . , µi0−1 are solutions of the system

∂µ2

∂t
=D2∆µ2 − m̃r2µ2 − a2,2µ2 +

i0−1∑
j=3

a2,jµj ,

for i =3, . . . , i0 − 2,

∂µi
∂t

=Di∆µi + m̃ri−1µi−1 − m̃riµi − ai,iµi +

i0−1∑
j=i+1

ai,jµj ,

∂µi0−1
∂t

=Di0−1∆µi0−1 + m̃ri0−2µi0−2 − m̃ri0−1µi0−1 − ai0−1,i0−1µi0−1,

with boundary and initial conditions as for the problem (P).
Then we introduce the function

Fε :

{
X+ → Xi0−2

m̃→ Fε(m̃) = F0(m̃ ∗ θε)
, for any m̃ ∈ X+.

Since m̃ ∗ θε is in (L∞(0, T : L2(Ω)))+ for any m̃ ∈ X+ it is clear that Fε is
well defined as long as F0 is.

Now we consider the application Gε :

{
X2

+ → X2

(m̃, µ̃i0)→ (m,µi0).
In the definition of Gε, m is a solution to the reduced problem

∂m

∂t
=D1∆m−m

( i0−1∑
j=2

rj µ̃j + δ

)
+

i0−1∑
j=3

bµ̃j + 2β

i0−1∑
j=2

µ̃j ,

D1
∂m

∂ν
=− γm on Γ,

for k = 1, . . . , N, D1
∂m

∂ν
=Bk(t) on ∂ωk,

Bk(t) =B0
k exp

(
− τ

∫ t

0

∫
Rn−ωk

µ̃i0(x, s)ηk(x)dxds

)
,

(19)
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with (µ̃2, . . . , µ̃i0−1) = Fε(m̃). Then, µi0 is solution to the problem

∂µi0
∂t

=Di0∆µi0 +mri0−1µ̃i0−1,

Di0

∂µi0
∂ν

=− γµi0 on Γ,

for k = 1, . . . , N, Di0

∂µi0
∂ν

=0 on ∂ωk.

(20)

It is clear that if we prove Fε and Gε are well defined (the solutions of
the reduced problems do exist and are in the right sets) and if (m,µi0) is a
fixed point of Gε, then (m,µ2, . . . , µi0) is a solution to the problem (Pε) (with
(µ2, . . . , µi0−1) = Fε(m)).
So, we apply Schauder fixed point theorem for Gε. In what follows, we denote
by Vk = (H1(Ω))k and Uk = (L2(Ω))k. We denote by V ′k the dual space of Vk
and use the classical continuous embeddings Vk ⊂ Uk ≡ U ′k ⊂ V ′k.

3.2.1 Proof that F0 is well defined

Let us fix m0 ∈ (L∞(0, T : L2(Ω))+ for this section. To remain consistent
with the rest, we index the components of the elements of Vi0−2 and Ui0−2

by {2, . . . , i0 − 1}. We introduce the function A :

{
Vi0−2 × Vi0−2 × U1 → R
(u, v, w)→ A(u, v, w),

where

A(u, v, w) =

i0−1∑
i=2

(
Di

∫
Ω

∇ui · ∇vidx+ γ

∫
Γ

uividσ

)

+

i0−1∑
i=2

∫
Ω

riuiviwdx−
i0−1∑
i=3

∫
Ω

ri−1ui−1viwdx

+

i0−1∑
i=2

∫
Ω

ai,iuividx−
i0−2∑
i=2

i0−1∑
j=i+1

∫
Ω

ai,jujvidx,

For any w ∈ U1, A is bilinear on Vi0−2×Vi0−2. The variational formulation of
the parabolic system that defines F0 is

d

dt
(µ(t), v)Ui0−2

+A
(
µ(t), v,m0(t, ·)

)
= 0, for v ∈ Vi0−2

µ(0) = µ0,
(21)

where µ =

 µ2

...
µi0−1

 , µ0 =

 µ0
2
...

µ0
i0−1

. This equation is to be interpreted as

follows:

For all ϕ ∈ C1([0, T ]) s.t. ϕ(T ) = 0, and for all v ∈ Vi0−2,

−
∫ T

0

(µ(t), v)Ui0−2
ϕ′(t)dt− (µ0, v)Ui0−2

ϕ(0) +

∫ T

0

A
(
µ(t), v,m0(t, ·)

)
ϕ(t)dt = 0.
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As a preliminary lemma we obtain the result below.

Lemma 1 The function A is well defined and the following estimates hold:

a) There exists a constant M1 ≥ 0 such that

for all (u, v, w) ∈ Vi0−2 × Vi0−2 × (U1)+, |A
(
u, v, w

)
| ≤M1(1 + ‖w‖U1)‖u‖Vi0−2‖v‖Vi0−2 .

b) There exist two constants C1 > 0 and C2 ∈ R such that

A
(
v, v, w) ≥ C1‖v‖2Vi0−2

− C2‖v‖2Ui0−2
, for v ∈ Vi0−2 and w ∈ (U1)+.

Proof a) This is clear due to the continuous embedding of H1(Ω) in L4(Ω).
b) We have

i0−1∑
i=2

(∫
Ω

Di|∇vi|2 + γ

∫
Γ

v2i dσ
)
≥
(

min
i=2,...,i0−1

Di

)
‖∇v‖2Ui0−2

. (22)

We also have∣∣∣∣∣∣
i0−1∑
i=2

∫
Ω

ai,iv
2
i −

i0−2∑
i=2

i0−1∑
j=i+1

∫
Ω

ai,jvjvi

∣∣∣∣∣∣ ≤ C3‖v‖2Ui0−2
(23)

with C3 a constant independent of m̃. It remains to estimate the terms
containing w. Rearranging the sums and using the hypothesis that (ri)i is
an increasing sequence, we have

i0−1∑
i=2

∫
Ω

riv
2
iw −

i0−1∑
i=3

∫
Ω

ri−1vi−1viw =

∫
Ω

w
(1

2

i0−1∑
i=2

riv
2
i +

1

2

i0−1∑
i=2

riv
2
i −

i0−1∑
i=3

ri−1vi−1vi

)
,

≥
∫
Ω

w
[1

2
r2v

2
2 +

1

2
ri0−1v

2
i0−1

+

i0−1∑
i=3

(1

2
ri−1v

2
i−1 +

1

2
ri−1v

2
i − ri−1vi−1vi

)]
,

≥
∫
Ω

w
(1

2
r2v

2
2 +

1

2
ri0−1v

2
i0−1 +

1

2

i0−1∑
i=3

ri−1(vi − vi−1)2
)
≥ 0.

(24)

Combining the inequalities (22), (23) and (24) we get the wanted result.

Using a classical result (Lions and Magenes, 2012), we have the existence
and uniqueness of a solution µ ∈ V to (21) thanks to the fact that m0 ∈
L∞(0, T : L2(Ω)). This is the reason why we regularize by convolution because
m0 ∈ X alone is not enough.
Then F0 is well defined. Moreover µ ∈ C(0, T : Ui0−2) ∩ L2(0, T : Vi0−2) and
dµ

dt
∈ L2(0, T : (Vi0−2)′).
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3.2.2 Estimates for Fε(m̃)

Let us consider µ = F0(m̃ ∗ θε), with m̃ ∈ X+ fixed. We define the application
Aε : [0, T ]× Vi0−2 −→ (Vi0−2)′, such that

For all t ∈ [0, T ], u ∈ Vi0−2 and v ∈ Vi0−2, 〈Aε
(
t, u
)
, v〉 = A

(
u, v, (m̃ ∗ θε)(t, ·)

)
where 〈·, ·〉 denotes the duality in

(
(Vi0−2)′, Vi0−2

)
.

With this notation, we have the following equality in L2(0, T : (Vi0−2)′)

dµ

dt
+Aε

(
t, µ(t)

)
= 0. (25)

We then claim the following estimate for µ:

Proposition 1 There exists a constant C4(T ) independent of m̃ and ε, such
that the solution µ of (21) satisfies

‖µ‖L∞(0,T :Ui0−2) + ‖µ‖L2(0,T :Vi0−2) ≤ C4(T ).

Proof We apply (25) to µ which gives

1

2

d

dt
‖µ(t)‖2Ui0−2

+A
(
µ(t), µ(t), (m̃ ∗ θε)(t, ·)

)
= 0.

From Lemma 1 we get

1

2

d

dt
‖µ(t)‖2Ui0−2

+ C1‖µ(t)‖2Vi0−2
≤ C2‖µ(t)‖2Ui0−2

.

The Gronwall lemma then gives us the appropriate estimate.

We now obtain the following maximum principle:

Proposition 2 Under the hypotheses m0 ≥ 0 and µ0
i ≥ 0 for i = 2, . . . , i0−1,

and with µ = Fε(m̃) we have

µi ≥ 0 for i = 2, . . . , i0 − 1.

In other words Fε : X+ → Xi0−2
+ .

Proof We denote µ− =

 µ−2
...

µ−i0−1

, with µ−i (x, t) = −min{µi(x, t), 0} and

similarly µ+, with µ+
i (x, t) = max{µi(x, t), 0} (so that we have µ = µ+−µ−).

We now show that µ− = 0.
We apply (25) to µ−, noting that µ− ∈ L2(0, T : Vi0−2) and that

〈dµ
dt
, µ−〉 = −1

2

d

dt
‖µ−‖2Ui0−2
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(this equality is obtained by a density argument) which gives the relation

1

2

d

dt
‖µ−‖2Ui0−2

= A
(
µ(t), µ−(t), m̃ ∗ θε(t, ·)

)
. (26)

Now using the fact that

µ+
i µ
−
i = 0 and ∇µ+

i · ∇µ
−
i = 0,

we expand the expression of A

A(µ, µ−,m̃ ∗ θε(t, ·)) =

−
i0−1∑
i=2

∫
Ω

Di|∇µ−i |
2 dx−

i0−1∑
i=2

γ

N∑
k=1

∫
∂ωk

(µ−i )2 dσ

−
i0−1∑
i=2

∫
Ω

ri(µ
−
i )2m̃ ∗ θεdx−

i0−1∑
i=2

∫
Ω

ai,i(µ
−
i )2 dx

−
i0−1∑
i=3

∫
Ω

ri−1µ
+
i−1µ

−
i m̃ ∗ θε dx−

i0−2∑
i=2

i0−1∑
j=i+1

∫
Ω

ai,jµ
+
j µ
−
i dx

+

i0−1∑
i=3

∫
Ω

ri−1µ
−
i−1µ

−
i m̃ ∗ θε dx+

i0−2∑
i=2

i0−1∑
j=i+1

∫
Ω

ai,jµ
−
j µ
−
i dx.

Proceeding as in the proof of Lemma 1, we write

−
i0−1∑
i=2

∫
Ω

ri(µ
−
i )2m̃ ∗ θε dx+

i0−1∑
i=3

∫
Ω

ri−1µ
−
i−1µ

−
i m̃ ∗ θε dx ≤ 0.

This implies

A(µ, µ−, m̃ ∗ θε(t, ·)) ≤
i0−1∑
i=2

i0−1∑
j=i+1

∫
Ω

ai,jµ
−
j µ
−
i dx,

≤ C‖µ−‖2Ui0−2
.

Combining this with (26), we get

d

dt
‖µ−‖2Ui0−2

≤ 2C‖µ−‖2Ui0−2
.

However, our hypothesis on initial conditions imposes ‖µ−(t = 0)‖Ui0−2 = 0,
so the Gronwall lemma allows to conclude ‖µ−‖Ui0−2

= 0, so µ− = 0.
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3.2.3 The fixed point of Gε

For any (m̃, µ̃i0) ∈ X2
+, we consider the following problem with unknown m

∂m

∂t
−Di∆m+

( i0−1∑
j=2

rjµj + δ
)
m = h,

D1
∂m

∂ν
= −γm on Γ,

D1
∂m

∂ν
= ψ̃k(t) on ∂ωk, for k = 1, . . . , N,

(27)

where we have defined

h(x, t) =

i0−1∑
j=3

bµj + 2β

i0−1∑
j=2

µj ,

ψ̃k(t) =B0
k exp

(
− τ

∫ t

0

∫
Rn−ωk

µ̃i0(x, s)ηk(x)dxds
)

and finally (µ2, . . . , µi0−1) = Fε(m̃).

If we define A1 :

{
V1 × V1 × L2(Ω)→ R
(u, v, w)→

∫
Ω
Di∇u · ∇v dx+

∫
Γ
γuv dσ +

∫
Ω
wuv dx,

the

variational formulation of (27) is

d

dt
(m, v)L2(Ω) +A1(m, v,

i0−1∑
j=2

rjµj + γ) =

∫
Ω

hv dx+

N∑
k=1

ψ̃k(t)

∫
∂ωk

v dσ, for v ∈ V1.

(28)

Recall that for j = 2, . . . , i0 − 1, µj ∈ L∞(0, T : L2(Ω)), µj ≥ 0 and µ̃i0 ∈
L2(0, T : L2(Ω)). We have the following result:

Proposition 3 a) There exists a unique solution m of (28) with

m ∈ L2(0, T : V1)∩C(0, T : L2(Ω)) and
∂m

∂t
∈ L2(0, T : V ′1). We also have

m ≥ 0, in other words m ∈ X+.
b) There exists a constant C5(T ) independent of ε, m̃, µ̃i0 such that

‖m‖L∞(0,T :L2(Ω)) + ‖m‖L2(0,T :V1) ≤ C5(T ), (29)∥∥∥∥∂m∂t
∥∥∥∥
L2(0,T :V ′1 )

≤ C5(T ). (30)

Proof a) Using the Sobolev inclusion H1(Ω) ↪→ L6(Ω) ⊂ L4(Ω) we easily
obtain

A1(u, v, w) ≤ C‖u‖V1
‖v‖V1

‖w‖L2(Ω).
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If w ≥ 0, then we have

A1(u, u, w) ≥ min{D1, γ}‖u‖2V1
.

Finally using the fact that h ∈ L∞(0, T : L2(Ω)), we obtain the existence
and uniqueness result in a classical manner.
Taking v = m− as a test function and proceeding exactly as in Proposi-
tion 2, we obtain m ≥ 0.

b) We note that for t ∈ [0, T ] and k ∈ {1, . . . , N}, |ψ̃k(t)| ≤ B0
k. Furthermore,

we deduce from Proposition 1 that there exists C6(T ), independent of m̃
and µ̃i0 such that

‖h‖L2(0,T :V1) ≤ C6(T ).

Taking v = m in (28), we obtain

1

2

d

dt
‖m‖2L2(Ω) +D1

∫
Ω

‖∇m‖2dx+ γ

∫
Γ

|m|2dσ +

∫
Ω

( i0−1∑
j=2

rjµj + δ
)
m2dx

=

∫
Ω

hmdx+

N∑
k=1

ψ̃k(t)

∫
∂ωk

mdσ.

Now we use the trace inequality∣∣∣∣∫
∂ωk

mdσ

∣∣∣∣ ≤ C‖m‖L1(∂ωk) ≤ C‖m‖L2(∂ωk) ≤ C‖m‖H1(Ω),

and we conclude with the first estimate on m. The second estimate is based
on the estimate on A1, the above inequalities on h and the trace inequality
on m.

Finally, we consider problem (20) and its variational formulation

d

dt
(µi0 , v)L2(Ω) +Ai0(µi0 , v) =

∫
Ω

ri0−1mµi0−1v dx, for v ∈ V1, (31)

where

Ai0(µi0 , v) = Di0

∫
Ω

∇µi0 · ∇v dx+ γ

∫
Γ

µi0v dσ,

and m is the solution of (27) and µi0−1 =
(
Fε(m̃)

)
i0−1

. We have the following
result:

Proposition 4 a) There exists a unique solution µi0 to (31), with µi0 ∈

L2(0, T : V1) ∩ C(0, T : L2(Ω)) and
dµi0
dt
∈ L2(0, T : V ′1). Furthermore,

µi0 ≥ 0.
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b) The following estimates hold

‖µi0‖L∞(0,T :L2(Ω)) + ‖µi0‖L2(0,T :V1) ≤ C6(T ),∥∥∥∥dµi0dt

∥∥∥∥
L2(0,T :V ′1 )

≤ C6(T ).

Proof a) We have for almost all t ∈ [0, T ]∣∣∣∣∫
Ω

ri0−1mµi0−1vdx

∣∣∣∣ ≤ C‖m‖L2(Ω)‖µi0−1‖L4(Ω)‖v‖L4(Ω),

≤ C‖m‖L2(Ω)‖µi0−1‖V1‖v‖V1 .

We deduce that (ri0−1mµi0−1) ∈ V ′1 and

‖ri0−1mµi0−1‖V ′1 ≤ C‖m‖L2(Ω)‖µi0−1‖V1
,

which gives (ri0−1mµi0−1) ∈ L2(0, T : V ′1). We also have

‖ri0−1mµi0−1‖L2(0,T :V ′1 )
≤ C‖m‖L∞(0,T :L2(Ω))‖µi0−1‖L2(0,T :V1).

In a classical manner, we get the expected existence and uniqueness results.
The positivity results from m ≥ 0, µi0−1 ≥ 0, µ0

i0
≥ 0.

b) Taking v = µi0 in (31), we obtain on one hand

1

2

d

dt
‖µi0‖2L2(Ω) +Di0

∫
Ω

‖∇µi0‖2L2(Ω)dx+γ

∫
Γ

µ2
i0dσ +Di0

∫
Ω

µ2
i0dx =

Di0

∫
Ω

µ2
i0dx+

∫
Ω

ri0−1mµi0−1µi0dx.

On the other hand, proceeding as in the previous property we have∣∣∣∣∫
Ω

ri0−1mµi0−1µi0

∣∣∣∣ ≤ C‖m‖L2(Ω)‖µi0−1‖V1‖µi0‖V1 ,

≤ Di0

2
‖µi0‖2V1

+
C

2Di0

‖m‖2L2(Ω)‖µi0−1‖
2
V1
.

Using these two previous relations and the estimates from Proposition 3
and Proposition 1, we obtain the desired result.

3.3 Existence and estimates on the solution of the regularized problem

Let us define the Banach space

Y =

{
u ∈ L2(0, T : V1) :

∂u

∂t
∈ L2(0, T : V ′1)

}
,

with the norm ‖u‖Y = ‖u‖L2(0,T :V1) +
∥∥∂u
∂t

∥∥
L2(0,T :V ′1 )

. Note that we have the

compact embedding of Y in X from compactness embedding of V1 in L2(Ω)
(since Ω is bounded).
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The above results prove that there exists R = R(T ) independent of ε such
that

Gε(X
2
+) ⊂ B̄Y 2(0, R) ∩X2

+, (32)

where B̄Y 2(0, R) is the closed ball centered on 0 of radius R in Y 2.
Due to the continuous embedding of Y in X there exists R1 > 0 such that
Gε(X

2
+) ⊂ Σ where we denote Σ = {u ∈ X2

+ : ‖u‖X2 ≤ R1} which is a
bounded closed convex subset of X2.
We can restrict Gε to Σ and say that Gε send Σ to itself.
Also from (32) Gε is a precompact set in X2; so it remains to prove the
continuity of Gε in order to apply Schauder fixed point theorem.
For this let us fix (m̃, µ̃i0) ∈ X2

+ and choose a sequence (m̃p, µ̃i0,p)p∈N in X2
+

such that

(m̃p, µ̃i0,p)→ (m̃, µ̃i0) in X2
+.

We denote (µ2,p, . . . , µi0−1,p) = Fε(m̃p) and (mp, µi0,p) = Gε(m̃p, µ̃i0,p). As
above, we obtain bounds independently of p for |µ2,p, . . . , µi0−1,p| and (mp, µi0,p)
in L2(0, T : H1(Ω))∩L2(0, T : (H1)′). By compactness and taking the limit ε
tends to 0 we prove that

(mp, µi0,p)→ Gε(m̃, µ̃i0) in X2 strongly,

which proves the continuity of Gε.

Finally by the Schauder Theorem, we obtain the existence of a solution
to the problem (Pε). We denote this solution by (mε, µ2,ε, . . . , µi0,ε). We have
the existence of R ≡ R(T ) > 0, independent of ε, such that

‖mε‖L2(0,T :V1) +

∥∥∥∥∂mε

∂t

∥∥∥∥
L2(0,T :(V1)′)

≤ R, (33)

‖µi,ε‖L2(0,T :V1) +

∥∥∥∥∂µi,ε∂t

∥∥∥∥
L2(0,T :(V1)′)

≤ R, for i = 2, · · · i0. (34)

4 Stating and proof of the main result

By using the results for the regularized problem and the estimates on its
solutions, we now study the original problem P. Note that mε ∈ Y , µε =
(µ2,ε, . . . , µi0−1,ε) ∈ Y i0−2 and µi0,ε ∈ Y . They are a solution to the problem
(Pε) in the following variational sense

For all (v1, v2, . . . , vi) ∈ Vi
and for ϕ ∈ C1([0, T ]) such that ϕ(T ) = 0,
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−
∫ T

0

(mε, v1)H0ϕ
′(t)dt− (m0, v1)H0ϕ(0)

+

∫ T

0

A1(mε(t), v1,
∑i0−1
j=2 rjµj,ε + δ)ϕ(t)dt

−
∫ T

0

(µε, v)Hϕ
′(t)dt− (µ0, v)Hϕ(0)

+

∫ T

0

A(µε(t), v,mε ∗ θε(t, ·))ϕ(t)dt

−
∫ T

0

(µi0,ε, vi0)H0
ϕ′(t)dt− (µ0

i0 , vi0)H0
ϕ(0)

+

∫ T

0

Ai0(µi0,ε(t), vi0)ϕ(t)dt

=

∫ T

0

∫
Ω

( i0−1∑
j=3

bµj,ε + 2β

i0−1∑
j=2

µj,ε

)
v1dxϕ(t)dt

+

∫ T

0

∫
Ω

ri0−1mεµi0−1,εvi0dxϕ(t)dt

+

N∑
k=1

∫ T

0

∫
∂ωk

B0
k exp

(
− τ

∫ t

0

∫
R−ωk

µi0,εη(x)dxds
)
vi0dσϕ(t)dt.

(35)

In this section, we prove the existence of a variational solution of (P), that
is an element (m,µ2, µ3, · · · , µi) ∈ Y i such that for any ϕ ∈ C1([0, T ]) with
ϕ(T ) = 0 we have
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−
∫ T

0

(m, v1)L2(Ω)ϕ
′(t)dt− (m0, v1)L2(Ω)ϕ(0)

+

∫ T

0

A1(m, v1,
∑i0−1
j=2 rjµj + γ)ϕ(t)dt

−
∫ T

0

(µ, v)Ui0−2
ϕ′(t)dt− (µ0, v)Ui0−2

ϕ(0)

+

∫ T

0

A(µ, v,m(t, ·))ϕ(t)dt

−
∫ T

0

(µi0 , vi0)L2(Ω)ϕ
′(t)dt− (µ0

i0 , vi0)L2(Ω)ϕ(0)

+

∫ T

0

Ai0(µi0 , vi0)ϕ(t)dt

=

∫ T

0

∫
Ω

( i0−1∑
j=3

bµj + 2β

i0−1∑
j=2

µj

)
v1dxϕ(t)dt

+

∫ T

0

∫
Ω

ri0−1mµi0−1vi0dxϕ(t)dt

+

N∑
k=1

∫ T

0

∫
∂ωk

B0
k exp

(
− τ

∫ t

0

∫
R−ωk

µi0η(x)dxds
)
vi0dσϕ(t)dt.

(36)

The main result is

Theorem 1 There exists at least a solution (m,µ2, · · · , µi) ∈ Y i of (36).

Proof From the above section we have a solution (mε, µ2,ε, · · · , µi0,ε) ∈ Y i of
the regularized problem (Pε) in a variational form (35).
Due to the inequalities (33),(34) and the compact embedding of Y in L2(Ω ×
(0, T )), there exists a subsequence of ε (that we also denote ε for simplicity),
as well as (m,µ2, . . . , µi0) ∈ Y i0 such that

mε ⇀m in L2(0, T : V1) weakly,

mε → m in L2(0, T : L2(Ω)) strongly,
(37)

and for i = 2, . . . , i0,

µi,ε ⇀ µi in L2(0, T : V1) weakly,

µi,ε → µi in L2(0, T : L2(Ω) strongly.
(38)

Let us now prove that

mε ∗ θε → m in L2(Ω × (0, T )) strongly. (39)
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Indeed we have

mε ∗ θε −m = (mε −m) ∗ θε +m ∗ θε −m.

We also have

‖(mε −m) ∗ θε‖L2 ≤ ‖θε‖L1‖mε −m‖L2 ≤ ‖mε −m‖L2 ,

so (mε−m) ∗ θε → 0 in L2(Ω× (0, T )). We also know that m ∗ θε → m in L2,
and we can conclude with the convergence of mε ∗ θε.

Finally we use the previous convergence results to take the limit ε→ 0 in
(35), and obtain the expected result. Here we only deal with the most delicate
term which is ∫ T

0

∫
Ω

riµi,ε(t, x)(mε ∗ θε)(t, x)vi(x)ϕ(t)dxdt.

Since vi ∈ V1 then vi ∈ L6(Ω) and viϕ ∈ L∞(0, T : L6(Ω)). Using the fact
that if a ∈ L2 and b ∈ L6 then ab ∈ L3/2, we have

(mε ∗ θε)(t, x)vi(x)ϕ(t)→ m(x, t)vi(x)ϕ(t) in L2(0, T : L3/2(Ω)) strongly.

On the other hand, from the weak convergence of µi,ε to µi in L2(0, T : H1(Ω)),
we deduce

µi,ε ⇀ µi in L2(0, T : L6(Ω)) weakly.

From those two convergence results we deduce∫ T

0

∫
Ω

riµi,ε(mε ∗ θε)viϕdxdt →
ε→0

∫ T

0

∫
Ω

riµimviϕdxdt.

This achieves the proof of the theorem.

5 Conclusion

We have introduced a model combining chemical prion-like replication of
oligomers and spatial diffusion, as well as neurotoxicity. Those processes are
essential for the early stage development of Alzheimer’s disease, and it is of
great interest to understand their relative impact on the later stages of the
disease. To the best of our knowledge, this work is the first use of reaction-
diffusion equations to describe the secondary nucleation process leading to the
formation of Aβ oligomers on the one hand, and the pathological effects of
Aβ oligomers on the neuronal activity on the other hand. The results proved
here establish a strong mathematical framework for this model, and allow us
to go further with the use of this model in a quantitative context. The math-
ematical proofs are obtained using classical methods, but they were adapted
in order to deal with the specificities of our model. In particular in our model
the formation of oligomers directly impacts the production of monomers by
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neurons, and the system had to be split into two parts in order to get exis-
tence results. Future work will be dedicated to the practical use of the model
to interpret the relative importance of the different parameters. The goal is to
include this local model in a multi-scale model so as to be able to carry out
a quantitative comparison with data. Another important development aspect
will be to validate and improve the model if need be, in collaboration with
biologists.
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