
HAL Id: hal-03533348
https://hal.science/hal-03533348v1

Submitted on 18 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed algorithms for multi-resource allocation
Francesca Fossati, Stephane Rovedakis, Stefano Secci

To cite this version:
Francesca Fossati, Stephane Rovedakis, Stefano Secci. Distributed algorithms for multi-resource
allocation. IEEE Transactions on Parallel and Distributed Systems, 2022, 33 (10), pp.2524-2539.
�10.1109/TPDS.2022.3144376�. �hal-03533348�

https://hal.science/hal-03533348v1
https://hal.archives-ouvertes.fr


1

Distributed algorithms for multi-resource allocation
Francesca Fossati, Stéphane Rovedakis, Stefano Secci, Senior, IEEE

Abstract—Novel network infrastructures require the distri-
bution of computing and network resource control to meet
stringent requirements in terms of latency, reliability and bitrate.
5G systems bring a key novelty in systems design that it the
‘network slice’as a new resource provisioning entity. A network
slice is meant to serve end-to-end services as a composition of
different network and system resources as radio, link, storage and
computing resources. Conventionally, each resource is managed
by a distinct decision-maker, platform, provider, orchestrator or
controller. Naturally, centralized slice orchestration approaches
are proposed in the literature, where a multi-domain orchestrator
allocates the resources, for instance using a multi-resource
allocation rule. Nonetheless, while simplifying the algorithmic
approach, centralization can come at the expense of scalability
and performance. In this paper, we propose new ways to dis-
tribute the slice multi-resource resource allocation problem, using
cascade and parallel resource allocations that are functionally
compatible with novel software platforms. We also show how to
adapt the proposed algorithms to make them able to guarantee
service level agreements on the minimum resource needed, and to
take into account deadline priority policy scheduling. We provide
an exhaustive analysis of the advantages and disadvantages of
the different approaches, including a numerical analysis for a
realistic setting.

I. INTRODUCTION

Starting with the fifth-generation (5G) systems, communi-
cation networks need to meet novel diverse requirements. In
5G, mobile services are categorized in three main classes:
enhanced mobile broadband (eMBB), Ultra Reliable Low
Latency Communications (URLLC) and massive machine
type communications (mMTC) - characterized by bandwidth,
latency, frequency and reliability requirements. To guarantee
these services are adequately provisioned over an end-to-
end infrastructure covering multiple resource domaines, the
concept of network slice was formalized by 5G standardization
bodies [1] - going beyond former application-level notions of
network slices not encompassing multiple resource allocation.

The network slice, as meant starting with 5G systems, is an
independent and logically-isolated end-to-end virtual network
running on a shared physical infrastructure, aiming to provide
the customers required service or vertical corresponding to
different business domains such as health care, transport,
smart office, agriculture, industry, automotive etc [2]. Hence a
network slice spans different parts of the network as the access,
transport, core and data-center segments, combining network-
ing, computing and storage programmable resources [3]. The
interest towards network slicing is motivated by the increasing

Francesca Fossati is with CentraleSuplec, Gif-sur-Yvette, France.
francesca.fossati@l2s.centralesupelec.fr

Stéphane Rovedakis and Stefano Secci are with Cnam, Cedric, 75003 Paris,
France. Email: {firstname.lastname}@cnam.fr

A preliminary version of the content of this article appears in [7].
This work was funded by the Agence Nationale de la Recherche (ANR)

MAESTRO-5G (ANR-18-CE25-0012) project.

Fig. 1: Multi-resource subsystems in virtualized access net-
works.

programmability of the Radio Access Networks (RANs) as
well as of the core elements, also thanks to the novel technolo-
gies such as Software-Defined Networking/RAN (SDN/SD-
RAN) and Network Function Virtualization (NFV) [1].

Provisioning resources along an end-to-end path is therefore
a multi-resource allocation problem. In the literature, different
multi-resource allocation techniques exist, such as the Dom-
inant Resource Fairness (DRF) [5] and the generalization of
single-resource allocation rules ones [6]; such allocation rules
are based on a centralized approach. In network slicing, a cen-
tralized approach implies the presence of a multi-domain or-
chestrator able to manage heterogeneous resources. Nowadays
each part of the network is managed separately, as depicted in
Fig. 1, and the presence of this kind of orchestrator may not
be viable in practice for large-scale multi-domain deployments
because resources can belong to different resource providers;
e.g., the radio resource can be managed by radio operator, the
cloud resource by a cloud service provider, the network link
resource by an Internet service access provider.

In this paper we provide an extension of the preliminary
work [7] toward the distribution of network slice resource
allocation. We are interested in investigating distributed algo-
rithms able to allocate slices. In particular, we propose three
algorithms: two following a cascading approach and one a
parallel approach.

Our reference technical framework is the one of novel
virtualized access networks, depicted in Fig. 1. Large efforts
are currently devoted to the design of virtualized/Software-
Defined Radio Access Network (vRAN/SD-RAN) systems,
such as Open RAN [4]. In these systems, a radio intelligent
controller (RIC) can coordinate with other resource controllers
(SDN link controllers, NFV/MEC orchestrators and resource
managers) in the resource allocation and scheduling decisions.
Such an interaction is envisioned as being done via an orches-
tration layer, using standard interfaces already identified in



corresponding sub-systems open-source projects. In particular,
three level of scheduling are functionally identified: real-time
(running at traffic processing device), near-real-time (running
at resource controllers) and non-real-time (running at the
multi-resource orchestration level). The algorithms we propose
in this paper have the potential to be integrated to these
systems, running at the near-real-time controller level.

We compare the approaches quantitatively (time complexity,
message overhead, latency budget) and qualitatively (advan-
tages, disadvantages). We then propose and test scheduling
algorithms dealing with run-time constraints. The novel con-
tributions of this work compared to [7] are:
• the generalization of the distributed algorithms in case of

an arbitrary number of providers;
• the design of a priority-and-deadline-based scheduling

algorithm to consider Service Level Agreement (SLA)
targets;

• a complete analysis and demonstration of the delay
budget and message complexity figures.

The paper is organized as follows. Section II provides a
background on well-known single- and multi-resource allo-
cation rules, along with a background on recent network
slice allocation works. In section III we describe the three
proposed algorithms, called Cascading Resource Allocation
(CRA), Ordered Cascading Resource Allocation (OCRA) and
Parallel Resource Allocation (PRA). Section IV provides the
evaluation of the algorithms. Section V proposes a scheduling
approach to meet SLA constraints. Finally section VI con-
cludes the paper.

II. BACKGROUND

We give an overview of common single and multi-resource
allocation rules and related state of the art in network slicing.

A. Single and multi-resource allocation

Resource allocation problems can be divided into two types:
single-resource ones, when only one resource has to be shared
among the users, and multi-resource ones, when there are at
least two resources to share.

Being N = {1, · · · , n} the set of users, a single resource
allocation problem can be modeled by a pair (d, r) where d is a
vector containing the demands of the n users (or tenants) and r
is the amount of available resource that has to be shared among
the users. An allocation a is a n-dimensional vector where ai is
the amount of resource given to user i ∈ N . The allocation has
to satisfy: (i) non-negativity (ai ≥ 0), (ii) demand boundedness
(ai ≤ di) and (iii) efficiency (

∑n
i=1 ai=r) [8].

Let now N = {1, ..., n} be the set of users and let
M = {1, ...,m} be the set of m available resources, then a
multi-resource allocation problem can be modeled as a pair
(D,R). R represents the vector of the available resource
amounts and D is the matrix of demands (dij ∈ D is the
quantity of resource j ∈ M demanded by user i ∈ N ). The
allocation matrix A is given by assigning to user i for resource
j the amount aij=dij · xi, where x = (x1, ..., xn) - with
0 ≤ xi ≤ 1 ∀i ∈ N - is the vector of the ratios of resource
allocated to each tenant. In the following, we assume that

a feasible vector of ratios x must belong to the admissible
region F s.t.

∑
i∈N xi ≤ 1 (so, a feasible allocation is s.t.∑

i∈N aij ≤ rj , ∀j ∈M ).
We now summarize the most common allocation rules,

which do solve an actual problem when the resource is scarce,
i.e., when

∑
i∈N di > r in case of single resource, or when

it exists at least one resource j for which
∑
i∈N dij > Rj in

the case of multiple resources. Existing rules are as follows:
Weighted proportional rule [9]: computes the allocation

that maximizes the
∑n
i=1 pi log ai. When the weight pi is

equal to 1 for each user, the solution is such that increasing
the allocation of a user, at least another user gets a loss in
proportion larger than the gain of the previous user. When the
weights are chosen equal to the demand di for each user i,
the allocation assigns the same proportion of demand to each
user, maximizing the fairness Jain’s index [10].

Max-Min Fair (MMF) rule [11]: is an egalitarian solu-
tion, privileging the weak users (with small demands). It
is calculated in a recursive way maximizing the minimum
allocation, then the second lowest allocation, and so on.
Ordering the users according to their increasing demand, i.e.,
d1 ≤ d2 ≤ · · · ≤ dn, then MMF allocation for user i is given

by MMFi(d, r) = min

(
di,

r−
∑i−1
j=1MMFj(d,r)

n−i+1

)
.

α-fair rule [12]: is a family of allocation rules that gen-
eralizes the MMF and proportional rules. It is obtained by
maximizing

∑n
i=1

a
(1−α)
i

1−α , where α ≥ 0 1.
Mood value rule [13], [14]: is a solution conceived for

complete awareness situation when users have full knowledge
of the other users demand and of the available resource. Each
user i can compute its minimal right mini (what remains
if all the other users are fully satisfied) and maximal right
maxi (its own demand or the available resource, if the
demand overcomes it), and the allocation is computed as
mini + m(maxi − mini) where m in [0,1] is the ratio
between what remains when users get the minimum and∑n
i=1(maxi −mini).
Dominant Resource Fairness (DRF) [5] rule: generalizes

the MMF rule for a multi-resource context. The allocation is
the solution of the following problem:

maximize x

subject to dsixi = dsjxj , ∀i, j ∈ N
(1)

where x ∈ F , and dsi = maxk∈M{dikrk } is called dominant
share of user i.

The above described allocation rules (single and multi-
resource) are Pareto efficient.

Definition 1. An allocation a is Pareto efficient if for any
other allocation a′ we have a′kj > akj for some k ∈ N and
j ∈M =⇒ a′k′j < ak′j for some k′ ∈ N .

Other multi-resource rules: A detailed description of multi-
resource allocations can be found in [16], [6].

1If α = 1 the solution coincides with the proportional one, if α = 2
with the minimum delay potential allocation, that is the allocation obtained

minimizing the total potential delay
n∑

i=1
( 1
xi

) and if α→∞ with the MMF

rule [12].

2



(a) Centralized algorithm (b) Distributed algorithm (c) Decentralized algorithm

Fig. 2: Diagrams of multi-resource allocation approaches for an example with three providers pi providing one resource ri,
with i = 1, 2, 3. D is a n × 3 demand matrix, where n is the tenant number and di, with i = 1, 2, 3 is a demand vector for
the resource i, a is the n× 3 allocation matrix and ai, with i = 1, 2, 3 is an allocation vector for the resource i.

A family of allocation rules, generalizing well-known single
and multi-resource problems is the MURANES [6]. They are
obtained solving the following problem:

maximize OWA(v)

subject to x ∈ F , 0 ≤ xi ≤ 1,∀i ∈ N

where OWA(v) =
∑n
j=1 v(j), v(j) is the j-th smallest element

of (v1, ..., vn), the input vector v is the (weighted) satisfaction
vector2 and F provides the region of acceptable solutions.
See [6] for details. In addition to those already presented, let
us mention: (i) the asset fairness [5], aiming at equalizing
the resource allocated to each users, (ii) the Nash product
that maximizes the product of the percentage of resource to
allocate [5] and (iii) the Bottleneck-Based Fairness (BBF)
equalizing the share received on the bottleneck resource [15].

B. Centralized vs distributed multi-resource allocation

All the described multi-resource allocation rules are central-
ized, i.e. they are meant to be run by a multi-domain orchestra-
tor (e.g., at the non-real time orchestration layer in Fig. 1) that
has a view on all the resources and receives the demands of the
users, as represented in Fig. 2a. Centralized approaches imply
that there is a relation between the resource; in particular,
for all the proposed allocation in previous paragraph, a linear
dependency between resources is considered.

Alternatively to centralized approaches, distributed ap-
proaches can be considered (e.g., running at the near-real time
scheduling layer at resource controllers as in Fig. 1). With
these approaches it is possible to let providers calculating their
own allocation without sharing confidential information as the
quantity of available resource. Naturally, the presence of other
providers with their own allocation, can provide not efficient
or unfeasible solutions, so a degree of collaboration between
providers is necessary to obtain the final allocation, acceptable
for all them (Fig. 2b).

A third approach that is possible to follow is to let allocate
resources of each provider separately, without any information

2The considered (weighted) satisfaction vectors are x, ds ·x, ps and ds ·ps
where x is the classical satisfaction, i.e. the percentage of resource allocated
to a user, ds · x is the weighted classical satisfaction that takes inspiration
from the DRF allocation rule, ps is player satisfaction the correct way to
measure the satisfaction in full knowledge environment [13],[14] and ds · ps
is the weighted player satisfaction considering the dominant share to weight
the ps satisfaction.

exchange among resource controllers (Fig. 2c). In this case,
that we call de-centralized approach, we can have a resource-
waste problem as described in [6]. For this reason, this type
of approach is not considered in the following.

In this paper, we compare centralized and distributed algo-
rithms, following the first two approaches. It is worth noting
that combinations of the three described approaches can be
conceived as well, in particular to deal with situations in
which the hypothesis of linear dependency between groups
of resources does not hold.

C. Resource allocation in network slicing

Recent works address resource allocation problems in
network slicing from many points of view. Categorizing them
by the type of resource, some such as [17] deal with the
allocation of network link and computing resources, and others
that address the radio allocation [18], [19].

Many objectives are adopted for the computation of a
slice allocation. Some examples are (i) the maximization
of the slice customers profit [20], (ii) the maximization of
network revenue [21] or (iii) the achievement of a desirable
fairness across the network slices of different tenants and their
associated users [18].

Different mathematical methods are used. A game theoretic
approach is often adopted; in [22], where the authors propose a
network slice game as a non-cooperative game, with existence
of a Nash equilibrium under appropriate hypothesis; in [19]
the network slicing game is a cooperative game, but solved
with a distributed algorithm not to force the mobile network
operator to reveal private information; in [21] and [23], where
the resource allocation is the outcome of an auction. Instead, a
utility optimization approach, with different objectives, is used
in [17], [18] and [20].

Let us position our work with respect to these works.

• We consider multi-resource allocation problems in order
to provide end-to-end network slices, and not only spec-
trum sharing problems as in [18], [19].

• We provide distributed algorithms, i.e., the decision-
making is the result of a distributed set of computations
at different nodes, in order to let each resource provider
play a role in the slice provisioning, differently from the
above-mentioned works.

3



• Each network slice has a resource demand vector for each
resource that has to be allocated, similarly to [23].

III. DISTRIBUTED MULTI-RESOURCE ALLOCATION

We propose three algorithmic approaches to address the
multi-resource allocation problem in a distributed way. The
first two follow a cascading behavior while the third one
exploits parallelism. In this section we analyze the slice
resource allocation process under the three approaches, de-
scribing advantages and disadvantages of each one. Note that
while in this section and the following one we focus on static
distributed resource allocation approaches, in Section V we
develop and evaluate dynamic scheduling variants.

A. Problem modelling

Let N = {1, ..., n} be the set of tenants, M = {1, ...,m}
be the set of available resources and P = {1, ..., p} be the set
of resource providers. We realistically consider |P | ≤ |M |,
that is, an ex-ante per-resource provider competition may have
taken place beforehand to select the set of providers involved
in the slice resource allocation and provisioning. It follows that
in our problem we have only one provider for each resource,
and each of them can provide more than one resource. The
allocation problem is represented as a triplet (D,R, γ), where
D is a n×m matrix with dij equal to the quantity of resource
j ∈M demanded by tenant i ∈ N , R = (r1, ..., rm) is a vector
of positive numbers rj equal to the amount of each available
resource j ∈ M , and γ is a n-dimensional vector containing
the priority index of the service required by tenants.

In this work, the priority index γ is linked to the latency of
the service. Services requiring low latency have high priority
and a low value of γ, those tolerant to higher latency have
lower priority and the correspondent value of γ is high. E.g.,
considering the three classes of service formalized for the 5G,
following what is recommended in [24], the importance of
latency requirement is high for URLLC services, which refers
to wireless connection with low latency, medium for eMBB
services, which needs high data bandwidth and moderate
latency, and low for mMTC services because they focus on
massive objects connectivity, with no strict latency require-
ments [25]. For this reason, at first instance, we consider 3
priority levels characterizing the three reference 5G classes of
services.

Another important aspect to model in network slice re-
source allocation is the relation between allocated resources.
As already assumed in previous works [6], [17], [26], the
relationship between resources can be safely approximated
with a linear one; this means that if a user asks for 10 Gbps, 40
CPU and 160 GB and it receives only 5 Gbps then the cloud
resource provider has to allocate 20 CPU and 80 GB because
if the allocation is superior, the cloud resource is wasted, while
if inferior, the link resource is wasted.

Let the allocation outcome be represented by a matrix A
with components aij = dij · xi where x = (x1, ..., xn),
0 ≤ xi ≤ 1 ∀i ∈ N , is the vector of the percentage of
demand allocated to each tenant. The allocation is not trivial
if it exists a resource j ∈ M such that

∑n
i=1 dij > rj

Algorithm 1 Priority-aware allocation rules logic
Input: R,D,N,M, γ
Output: x

for pr = 1 : s do
S=set of user with γ = pr
Q=set of user with γ > pr
if
∑

i∈S dij ≤ rj , ∀j ∈M then
x=ones(|S|)

else
xS= solution of the selected allocation rule
xQ=zeros(|Q|)
exit for loop

end if
end for

because the resource is not sufficient to fully allocate the
demands of the users (i.e. the resource is congested - in the
trivial case the resource provider can allocate the demand
and x = (1, · · · , 1)). The three algorithms proposed in next
subsections take into account that resources can be congested.

The congestion level (µ) of a resource provider p is defined
as the ratio between the sum of the demands for its resource(s)
and the available quantity of resource(s), i.e. µj =

∑n
i=1 dij
rj

, if
it provides only one resource j ∈M . Contrarily, if it provides
more than one resource, the congestion level is the maximum
between the level of each resource it provides. If µp > 1 the
resources provided by the provider p are congested. We can
notice that the congestion level of a resource provider is used
in the proposed algorithms to avoid or reduce the sharing of
sensible information by resource providers, e.g., quantity of
available resources.

Example 1. Let us consider the problem (D,R, γ) with

R = (100, 30, 600, 80) and D =

[
20 10 160 40
20 25 488 64
30 10 160 40

]
and

γ = (1, 1, 1). The resources are radio (in number of resource
blocks RB), link (in Gbps), RAM (in GB) and CPU (in number
of vCPU). The resource providers are 3: radio, network link
and cloud providers.

The congestion level is: µ1 = 20+20+30
100 = 0.7, µ2 =

10+25+10
30 = 1.5, µ3 = max{ 160+488+160

600 , 40+64+40
80 } = 1.8.

Each resource provider has to take into account the priority
index so that the allocation rule described in Section II has
to be adapted to the context. In this work we consider a
simple algorithm (Algorithm 1) to adapt the allocation rules.
We suppose that the priority index takes integer value from 1 to
s, where s is the priority index of the lower priority required
service, and lower value of γ corresponds to higher service
priority. Algorithm 1 firstly attempts to fully satisfy users with
the highest priority, and then the ones with lower priorities.
Note that, alternatively, any other algorithm providing Pareto
efficient solution could be used as well.

B. Cascading Resource Allocation (CRA)

The first algorithm we propose follows a cascading ap-
proach, i.e., each resource provider sends to the following one
the information about its allocation, and passing through all
the providers the allocation is adjusted taking into account the

4



Fig. 3: CRA algorithm.

Algorithm 2 CRA
Input: R,D,N,M, γ, P
Output: x

Each provider k ∈ P receives Dk, i.e. the submatrix of demands
for the resources provided by k
The first provider calculates x
The first provider sends x to the second provider
for k = 2 : p do

if
∑n

i=1 dijxi > rj , for at least one j provided by k then
Provider k updates x (old values of xi are upper bound)

end if
if k < p then

Provider k sends x to provider k + 1
else

Provider k sends x to all the other providers
Providers 1, ...., p− 1 reallocate the resources

end if
end for

congestion level of each resource and the allocation proposed
by the previous provider. Algorithm 2 describes the CRA
approach for the general case with p providers; the steps of
the algorithm are labeled within parenthesis. The order follows
the natural end-to-end order of the resources, as for the radio-
link-cloud three resources scenario presented in Figure 3.

We consider now and later as reference scenario for the
examples the one with 3 resources providers (P = {1, 2, 3})
providing radio, link and cloud resources. To make the notation
clearer, in this case we use the subscript r for radio (p = 1),
l for link (p = 2) and c for cloud (p = 3).

Example 2. Let us consider the same problem (D,R, γ) of
Example 1. The algorithm’s steps are:

(1) The radio resource provider receives the demand vec-
tor (20, 20, 30), the link resource provider receives the
demand vector (10, 25, 10) and cloud resource provider

receives the demand matrix
[
160 40
488 64
160 40

]
.

(2) The radio resource provider calculates the allocation. In
this case there is no congestion so ar = (20, 20, 30) and
xr = (1, 1, 1).

(3) The link resource provider receives the vector xr.
(4) The link resource provider calculates the allocation. In

Fig. 4: OCRA algorithm. The steps not always necessary are
drawn in dashed line.

Algorithm 3 OCRA
Input: R,D,N,M, γ, P
Output: x
Each provider k ∈ P receives Dk, i.e. the submatrix of demands
for the resources provided by k
Each provider k ∈ P calculates the congestion level µk and sends
it a multi-domain orchestrator
Each provider k ∈ P receives the new order of the resources
calculated by the multi-domain orchestrator
The first provider calculates x
The first provider sends x to the second provider
for k = 2 : p do

if
∑n

i=1 dijxi > rj , for at least one j provided by k then
Provider k updates x (old values of xi are upper bound)
Provider k sends x to all the k − 1 previous providers
Providers 1, ...., k − 1 reallocate the resources

end if
if k < p then

Provider k sends x to provider k + 1
end if

end for

this case there is congestion so xr is not an admissible
solution. The provider uses an allocation rule; if it is for
example the MMF one, the allocation is al = (10, 10, 10)
and xl = (1, 0.4, 1).

(5) The cloud resource provider receives the vector xl.
(6) The cloud resource provider checks if xl is admissible:

• 160 · 1 + 488 · 0.4 + 160 · 1
?
< 600→ yes

• 40 · 1 + 64 · 0.4 + 40 · 1
?
< 80→ no

Due to the fact that the proposed xl is not admissible;
the cloud provider calculates a new allocation, taking
into account that for each user i the upper bound for
xci is xli . For example using the DRF rule we get

xc = (0.68, 0.4, 0.68) and ac =
[
108.8 27.2
195.2 25.6
108.8 27.2

]
.

(7) The cloud resource provider sends the vector
xc = (0.68, 0.4, 0.68) to the link and radio resource
providers that re-allocate the resources obtaining
ar = (13.6, 8, 20.4) and al = (6.8, 10, 6.8).

C. Ordered Cascading Resource Allocation (OCRA)

5



Algorithm 4 PRA
Input: R,D,N,M, γ, P
Output: x
Each provider k ∈ P receives Dk, i.e. the submatrix of demands
for the resources provided by k
Each provider k ∈ P calculates the value of x
Each provider sends the allocation vector to each of the other
providers
A consensus algorithm provides the final value of x

In the presence of a multi-domain orchestrator that is able
to schedule how resource allocation takes one can partially
avoid resource re-allocation. Before each decision is taken,
the orchestrator asks or receives the congestion level of
the resources provided by the p providers and re-order the
providers. This cannot guarantee to bypass the re-allocation
for all resources, but it can strongly reduce its impact on
the solution (see Example 3). The algorithm is described by
Algorithm 3, and is depicted in Figure 4 for the radio-link-
cloud scenario.

Example 3. Let us consider the same problem (D,R, γ) of
Example 1. The algorithm’s steps are:
(1) Each resource provider receives the demand vec-

tor/matrix.
(2) Each resource provider calculates the congestion level:

µr = 0.7 µl = 1.5, µc = 1.8.
(3) The multi-domain orchestrator sends the resources order

to the resource providers. The first resource to be allo-
cated is the cloud followed by the link and the radio.

(4) The cloud resource provider calculates the allocation, for
example using the DRF: xA = (0.67, 0.412, 0.67), ac =[
107.2 26.8
201.1 26.4
107.2 26.8

]
(5) The link resource provider receives the vector xA.
(6) The link resource provider checks if xB is admissible:

10 · 0.67 + 25 · 0.412 + 10 · 0.67
?
< 30→ yes.

The allocation is: xB = xA, al = (6.7, 10.3, 6.7).
(7) The radio resource provider receives the vector xB .
(8) The radio resource provider accepts the proposed xB

because the resource is not congested. The allocation is:
ar = (13.4, 8.24, 20.1).

(9) Step not necessary because no resource re-allocation.

It is worth noting that with this algorithm one cannot always
avoid re-allocation. In fact if, in Example 3 we increase the
value of d22 from 25 to 30, the order of the resource, based on
the congestion level, remains the same (µl = 1.67), but if the
cloud provider proposes the allocation xA = (0.2, 1, 0.2), the
link provider cannot accept it because 10·0.2+30·1+10·0.2 >
30. This shows that the re-allocation is not always avoided with
this algorithm, but at least its negative impact is decreased.

D. Parallel Resource Allocation (PRA)

In the previous proposed algorithms the computation of
the resource allocation is done following a weakly distributed
manner. Indeed, the resource allocation is computed according

Fig. 5: PRA algorithms; PRA-1 using the 1-phase consensus
algorithm, PRA-2 using the 2-phase consensus algorithm.

to a defined sequence among the resource providers, which
implies a high dependency and a low collaboration degree
between providers. Thus, the computation time required by
these algorithms is dominated by the resource provider with
the highest response time. To limit the impact of such a situ-
ation, we design a fully-distributed algorithm, named Parallel
Resource Allocation (PRA), which allows to increase the level
of parallelism to compute the allocation and to reduce the
computation time. Contrary to the two preceding algorithms,
the idea of the PRA approach is to allow each provider to
compute its own allocation, then all the resource providers
exchange their allocation and use a distributed consensus
approach [27] to obtain the final allocation.

PRA is described in Algorithm 4, and is depicted in Figure 5
for the radio-link-cloud scenario.

We develop the PRA idea with two different consensus
algorithm variants. The first one has the property of being
fast, but it does not guarantee to saturate at least one of the
congested resources, so it is not Pareto efficient as we prove
later (Section IV-B). The second one introduces an additional
information exchange to the process, but it guarantees to
saturate at least one of the congested resources.

The first consensus algorithm, called PRA-1, is a 1-phase
algorithm; each resource provider diffuses to all the other ones
the value of x, and the allocations are obtained in the following
way: (mink∈P xk1 , · · · ,mink∈P xkn). The non-saturation of
the resources can happen when there exists at least one
user for which the dominant resource, i.e., the resource in
percentage most requested by the user, is not the one with
higher congestion level (see Example 4).

The second algorithm, called PRA-2, is a 2-phase algorithm;
each resource provider diffuses (i) the value of the allocation,
(ii) the congestion level and (iii) the resource share of each
resource it provides for each user, i.e., rsi = {dijrj } ∀i ∈ N and
for each resource j it provides. These information are used in
order to limit the exchange of sensible information for resource
providers (e.g., quantity of available resource). The provider
with the most congested resource can identify itself and cal-
culate the value of x using a multi-resource approach. In fact,
the information about the resource share allows the provider

6



(a) Centralized (b) CRA (c) OCRA (d) PRA

Fig. 6: Involved signaling for the centralized algorithm and the proposed distributed ones, for the radio-link-cloud scenario, as
a function of time, under the hypothesis of upper bound on transfer times (τ ) and equal allocation computing times (δ). The
dashed arrows indicate not necessary steps, and the red arrows correspond to extra steps of the 2-phase consensus algorithm.

to take into account the capacity constraints; moreover the
optimization objective is decided by the provider following its
fairness goal. We can notice that the calculus of the allocation
by each provider is thus not necessary and can be avoided to
decrease the delay budget. PRA-2 guarantees a Pareto efficient
allocation as proven later.

Example 4. Let us consider the problem (D,R, γ) of Exam-
ple 1. The value of x calculated in a parallel way is xr=(1, 1, 1)
for the radio resource, xl=(1, 0.4, 1) for the link resource using
the MMF allocation rule and xc=(0.67, 0.412, 0.67) for the
cloud resource, using the DRF allocation rule.

Using the PRA-1, each resource provider allocates the
resources using x = (0.67, 0.4, 0.67). The allocations are:

ar = (13.4, 8, 20.1), al = (6.7, 10, 6.7), ac =

[
107.2 26.8
195.2 25.6
107.2 26.8

]
and the resource used is (41.5, 23.4, 409.6, 79.2). This shows
that the saturation of the resources is not guaranteed when we
use the 1-phase algorithm. In fact, for user 2 the dominant
resource is the link resource but the resource with higher
congestion level is the cloud one.

With PRA-2, the three resource providers diffuse the fol-
lowing information:

• xr = (1, 1, 1), rsr = (0.2, 0.2, 0.3), µr=0.7.
• xl = (1, 0.4, 1), rsl = (0.33, 0.83, 0.33), µl=1.5.
• xc = (0.67, 0.412, 0.67), rsc = (0.5, 0.81, 0.5), µc=1.8.

The cloud resource is the most congested one and the
cloud provider calculates the value of x. For example, if
it chooses to use a proportional approach (equalizing the x
of each tenant), the solution is x = (0.556, 0.556, 0.556),
ar = (11.12, 11.12, 16.68), al = (5.56, 13.9, 5.56), ac =[

89 22.2
271.3 35.6
89 22.2

]
.

IV. PERFORMANCE EVALUATION

In this section we provide a qualitative and quantitative
analysis of the proposed algorithms. Section IV-A provides
an analysis in terms of delay budget, Section IV-B highlights
advantages and disadvantages of each algorithm, and in Sec-
tion IV-C we numerically compare the algorithms.

Algorithm Best case Worst case Message complexity
Centralized 2τ + δ 2τ + δ 2p+ 1

CRA (p+ 1)τ + δ (p+ 1)τ + pδ 3p− 2

OCRA (p+ 2)τ + δ (p+ 3)τ + pδ [4p− 1, p
2+7p
2
− 1]

PRA-1 2τ + δ 2τ + δ p2

PRA-2 3τ + 2δ 3τ + 2δ p2 + p− 1

TABLE I: Delay budget and message complexity - General
case with p resource providers.

A. Delay budget

We are here interested in estimating the delay budget of
each algorithm, i.e., the global time between the submission
of a slice demand and the moment in which the computation
of the resource allocation is done. Delay contributions in the
process are the transfer time covering the transmission delay
and the propagation delay for each message and the allocation
computation time. Time for checking if an allocation x is
admissible can be considered negligible. We also assume in
the following the transmission delay to be negligible, given
the likely short message size in stake, so the transfer delay
corresponds to the propagation delay.

Figure 6 shows delay budget diagrams for the three pro-
posed algorithms, and an arbitrary centralized approach where
a multi-domain orchestrator receives the tenants demand and
computes the allocation as a one-shot operation. Under the
simplification that propagation delays are all roughly equal
to a value τ and all allocation computing times are equal to
δ, we obtain the estimation of the delay budget in Table I
for the general case with p resource providers. We report the
value of the delay budget in the best and worst case; these two
values do not coincide in case of cascading approaches: the
best case is the one in which only one allocation is calculated
and is admissible for all the other resource providers, while
the worst one is in case an allocation has to be calculated by
each resource provider.

Clearly the centralized approach is the one with lower
delay budget together with the first distributed approach.
The algorithm closer to the centralized approach is PRA-1.
Cascading approaches have a higher figure; note that while
for the centralized and PRA approaches the value of delay
budget does not depend on the number of resource providers p,
for cascading approaches it does. Figure 7 compares the delay

7



Fig. 7: Comparison of delay budgets with p = 3. Case 1: τ �
δ, t = δ. Case 2: δ � τ , t = τ . Case 3: τ = δ = t.

Algorithm Advantages Disadvantages

Centr. Low delay budget
Multi-domain orchestrator

High confidentiality
disclosure

CRA No multi-domain orcherstrator Re-allocation

OCRA Rarely re-allocation High delay budget
Multi-domain orchestrator

PRA-1
No multi-domain orchestrator Pareto efficient solution

Low delay budget not guaranteed
Independent radio allocation High message complexity

PRA-2
No multi-domain orchestrator High message complexity

Low delay budget Low confidentiality
Independent radio allocation disclosure

TABLE II: Pros vs cons of studied algorithms.

budget of all the approaches with 3 resource providers, in three
different cases: (case 1) the propagation delay is negligible
with respect to the computing time, i.e., τ � δ, (case 2)
the reverse case, i.e., δ � τ and (case 3) the two times are
comparable - we plot the case τ = δ.

B. Pros and cons

Let us draw advantages and disadvantages of the different
algorithms. Table II summarizes the following observations.

Choosing a centralized approach we have the advantages
of a low delay budget in the creation of the slice, due to
the fact that the decision is taken atomically, by a single
entity. Meanwhile the fact of having centralization at a multi-
domain orchestrator can be seen as an obvious drawback
in terms of reliability and scalability from the one hand,
and confidentiality from the other hand as each provider has
to share possibly sensible information, as for example the
quantity of resource available in its domain. The presence of
a multi-domain orchestrator is also necessary for the OCRA
approach, to order the resource providers. In this case it
has only a function of dispatcher (note that for OCRA it is
however possible to avoid the presence of the multi-domain
orchestrator using a distributed approach to exchange the
information about the resources congestion level, however
impacting performance). All the other approaches have the
advantage of not needing such a centralized orchestrator.

Concerning cascading approaches (CRA, OCRA) they have
the disadvantage of re-allocating resources during the slice
provisioning; this is expected to be highly reduced with the
OCRA approach.

Allocation rule No re-allocation One re-allocation Two re-allocation
MMF 82.7% 17% 0.3%

Mood value 100% 0% 0%
Proportional 100% 0% 0%

TABLE III: Occurrence of re-allocations with the OCRA
algorithm using common single-resource rules.

Allocation rule Percentage of non-optimal solutions
MMF 57%

Mood value 72%
Proportional 56%

TABLE IV: Percentage of non-Pareto efficient solutions using
the PRA-1 algorithm.

Advantages of parallel approaches are (i) the low delay bud-
get, due to the simultaneously computation of the allocation
and diffusion of the information, and (ii) the possibility to
independently allocate some resources. For example, this can
be useful for the radio resource for which the hypotheses of
linear dependency with the other resources may appear less
acceptable with some radio scheduling protocols.

If distributed approaches have good behavior in terms of
delay budget compared to the cascading ones, considering the
number of messages that have to be exchanged, the judgment
is reversed. From Table I, we can see that the number of
exchanged messages grows quadratically with the number of
providers p. In case in which p = 10 the number of the
exchanged messages is between 21 and 30 for the centralized
and cascading approaches, while it is 100 and 109 for the two
distributed ones. This is the price to pay when we distribute
the calculus of the allocation to avoid a single point of failure.

Among the disadvantages, for the PRA-2 we find the low
confidentiality disclosure; in fact, providers are forced to
exchange much more information compared to the PRA-1
and the centralized approaches. A drawback for the PRA-1
approach is the possibility to get a solution that is not Pareto
efficient. In this respect, we can state the following Theorem.

Theorem 1. CRA, OCRA and PRA-2 algorithms provide
Pareto-efficient solutions.

Proof. CRA and OCRA algorithms provide Pareto-efficient
solutions because the allocation coincides with the one pro-
posed by one provider that selects a Pareto efficient allocation
rule. The PRA-2 algorithm provides an allocation that saturates
one resource because it is calculated using a multi-resource
allocation rule, so it provides a Pareto efficient solution.
The algorithm PRA-1, using the minimum value for each
component allows the increasing of the allocation of one tenant
without decreasing the one of the other. Let us consider the
example 4. If we increase the allocation of tenant 2 from 0.4
to 0.412 we obtain the allocation proposed with the OCRA in
Example 3. Thus, it is possible to increase the allocation of
tenant 2 without modifying the one of the others (allocation
not Pareto efficient).

Figure 8 shows an example with two tenants and two
resources provided by two different providers. We can see how
algorithms works and that the Pareto efficiency is guaranteed
for the cascade approaches and for the PRA-2 algorithm, while
it is not for the PRA-1 algorithm because the solution is inside

8



(b) CRA - OCRA (c) PRA-1 (d) PRA-2

Fig. 8: Pareto efficiency for an example with 2 tenants and 2 resources provided by p1 and p2. Hypothesis: in the OCRA plot
p1 more congested than p2 and in the PRA-2 plot p2 more congested than p1.

(a) MMF (b) Proportional (c) Mood value

Fig. 9: Percentage of resource loss.

the region of the admissible solutions and not on the Pareto
frontier.

C. Numerical analysis

We present a numerical analysis to measure (i) the oc-
currence of reallocation using the OCRA algorithm, (ii) the
occurrence of inefficient solutions for the PRA-1 algorithm,
and (iii) the distance of the proposed distributed approaches
from the centralized one. The analysis for (i) and (ii) is done
considering services with the same priority. In our knowledge
there are no previous works considering a congestion scenario
so the results show the difference between the 4 distributed
approaches and they are compared to centralized ones.

1) Occurrence of re-allocation: The aim here is to under-
stand if there is a real gain using an ordered approach, i.e., if
the re-allocation of the resources is reduced and consequently
the delay budget induced by allocation computation. We gener-
ate 300 problems with three tenants, three resources belonging
to three providers, randomly associating a level of congestion
between 0.1 and 2 for each provider. Table III shows the results
of the simulations when all providers use the same allocation
rule (Proportional, Mood value, MMF). We can see that there
is a real gain in using an OCRA approach because with the
proportional allocation and the mood value we have no re-
allocations, while with the MMF there are situations in which
one re-allocation is needed, but two are needed only for a
negligible number of cases.

(a) Mono-class (b) Multi-class

Fig. 10: Chebyshev distance.

2) Percentage of inefficient solutions in PRA-1: We test
here the efficiency of the solutions when we use the PRA-
1 algorithm. Using the same data generated for the previous
simulations, we calculate the percentage of time in which the
PRA-1 algorithm does not provide a Pareto-efficient solution
(Table IV) and we estimate how much is the loss for the
tenants in term of resources (Fig. 9). Clearly, PRA-1 has high
probability to provide allocations that are not Pareto-efficient.
When providers use the same allocation rule, more than half
of the time the produced allocation is not Pareto efficient.
Furthermore the resource loss is high. The median value in
percentage, obtained in the boxplot (Fig. 9) belongs to the
interval of [0.8, 0.9]. We can also observe that the higher
resource loss is experienced with the Mood value allocation.

3) Distance from a centralized approach: We firstly intro-
duce a measure of the distance between a centralized approach
and a distributed one. A simple measure we can consider is
the Chebyshev distance (or L∞ metric) defined as follows.

Definition 2. The Chebyshev distance between two vectors
y1 and y2 is dche = maxi|y1i − y2i |.

In our case, considering a solution vector obtained with
a centralized approach and one with a distributed one, the
measure indicates the gain (or loss) of the user that obtains
the maximum gain (or loss) when a distributed approach is
used. This measure provides an estimation of the satisfaction
(unsatisfaction) of the users in adopting a distributed approach.

We developed an ad-hoc simulator in Python that we make
available in [33] for verification and reproducibility. We sim-

9



(a) CRA (b) OCRA

(c) PRA-1 (d) PRA-2

Fig. 11: Chebyshev distance average and service rate.

ulate 200 problems with five tenants, taking inspiration from
Amazon EC2 instances [28] (the same considered instances
as in [6]); we report in the supplementary materials the
detailed instance table: we select those templates with different
‘instance type’ (‘General Purpose’, ‘Computer Optimized’,
‘Memory Optimized’, ‘Accelerated Computing’and ‘Storage
Optimized’) and we consider three resources belonging to
two providers (CPU and memory for the cloud provider, link
capacity in Gbps for the network link provider), a level of
congestion between 0.1 and 1.5 for each provider, and both
the case in which the tenants have the same priority and
belong to the same class (single-class) and the case in which
the tenants have different priorities and belong to different
classes (multi-class). In the second case we arbitrarily asso-
ciate to the different Amazon templates a type of service as
follows: URLLC to Accelerated Computing instance, eMBB
to Computer and Memory Optimized instance, mMTC to
Storage Optimized instance, and best effort to General Purpose
instance. The considered services, defined accordingly to 5G
standards, are differentiated accordingly to the demand and
the priority index.

Figure 10 shows the boxplot of the distance for each algo-
rithm, using different combinations of allocation rules, when
the centralized approach uses the DRF rule. When the priority
is the same for each tenant there are users that can gain or loose
a lot when the providers adopt as distributed approach the
CRA, OCRA and PRA-1. In the single-class case, the distance
is reduced using the PRA-2 approach because the proposed
allocation is calculated as a multi-resource allocation taking
into account the information provided by each provider. In
the multi-class case we notice a performance improvement of
the distributed algorithms. In fact, in this case, the differences
emerge only for the group of tenants belonging to the same
priority class for which the remaining resource, after that
tenants with higher priority are fully served, is not enough.
In this case due to the small cardinality of the subset of users
belonging to the same class, there is a high probability that
the distributed solution is close to the centralized one.

We then consider the distance measure inside each group of

services and the service rate, i.e., the percentage of requests
processed (Figure 11). The distributed algorithm always serves
the users with higher priority and the service rate decreases
with the service priority. On average, the distance increases
decreasing the service priority, but a decrease of the distance
is possible because (i) services with low priority have high
probability not to be served both with the centralized and
distributed approaches (Figure 11) and (ii) as already said, if
the cardinality of the last served group is small the distributed
and centralized solutions can be close. We can also observe
that: (i) CRA has better behavior in terms of distance than
OCRA algorithm for best-effort services, vice-versa for the
URLLC and eMBB services, (ii) although PRA-1 is not Pareto
efficient, it achieves Chebyshev distances close to the cas-
cade approaches and (iii) PRA-2 algorithm returns allocations
which are the closest to the centralized algorithm in terms of
distance for the MMF and DRF allocations and it has the worst
results when using the mood-DRF allocation.

V. INTEGRATION OF SLA AND PRIORITY-BASED
SCHEDULING

In section III we proposed different distributed algorithms
to slice the network in a given time frame. We want now to
enrich these algorithms with policies taking into account Ser-
vice Level Agreement (SLA) constraints [1]. In the literature
we can find cloud scheduling algorithms that meet tenants’
Quality of Service (QoS) requirements. Examples are: (i) the
work in [29] where a deadline job scheduling algorithm is
proposed considering the current status of the system and the
job execution cost model; (ii) the work in [30] proposing
the Earliest Deadline First (EDF) that is a dynamic priority
real-time scheduling algorithm that considers time constraints
of tasks in scheduling for execution and (iii) the work in
[31] proposing an algorithm called Earliest Maximal Waiting
Time First (EMWTF), that enhances the EDF algorithm. None
of these works provide an algorithm able to provide a fair
allocation over the time considering all our constraints (SLA
constraints, priority, deadline and service time frame).

In this section we discuss (i) how to guarantee the continuity
of the service, i.e., when a tenant is served, it has to be served
for the required time and (ii) how to guarantee a minimum
capacity, i.e., the minimum quantity of resource specified in
the contract between the provider and the consumer. The main
aim is to guarantee time-fair allocations, i.e., to serve with a
similar service availability rate users asking for services of
equal priority.

Under this setting, given a time frame t, the resource allo-
cation problem is a tuple (Dt, D

m
t , γt, νt, τt, λt, Rt) where:

• Dt is the demand matrix,
• Dm

t is the matrix containing the minimum values of
resource to allocate to each tenant defined in the SLA,

• γt is a vector containing the priority index of each tenant,
• νt is a vector containing the availability rate of each

tenant, i.e. the percentage of time the tenant was served,
with at least a minimum resource amount,

10



• τt is the number of time frames the demand is for3

• λt is the deadline, i.e. the number of time frames the
tenant can wait before being served,

• Rt is the available resource4.
We link the priority index to the latency of the service: if the

service requires a low latency its priority is higher, otherwise
it is lower. For instance URLLC services can be characterized
by higher priority indexes compared to eMBB and mMTC
services because they are low-latency services.

The structure of the algorithms remains similar but we have
to define a users delay policy (V-A), how to allocate the
resources, under the constraint of guaranteeing a minimum
share of resource (V-B) and how the cascade (V-C1) and
parallel algorithms work (V-C2). Finally we propose a SLA
and deadline priority algorithm (V-D).

A. User delay policy

When a provider p is not able to satisfy the minimum
allocation of each tenant (

∑n
i=1 d

m
ij > Rj , for at least one

resource j provided by p), it has to remove one or more
tenants, putting them in hold for possible servicing in the
next time slot. Different user removal/delay policies can be
proposed. Here we propose one that takes into account both
the user priority index and the current availability rate of
each tenant, already used in [32], for its desirable property
of guaranteeing fairness over the time.

The idea is that, to order users, we should firstly consider the
priority index. Tenants with high priority have to be removed
only if the tenants with lower priority do not exist or are
already been removed. This can match operational constraints
because high priority services are the ones asking for low
latency, and tenants asking for this type of services have to be
served as fast as possible.

One time users are ordered depending on the priority index,
the removal/delay policy considers the value of ν. The highest
is the value of ν, the highest is the percentage of time the
tenants were served in past time slots. It follows that users
with same priority have to be ordered by descending values
of ν, in order to guarantee a sort of time-fairness. An example
of users re-ordering, considering the described policy is given
in Example 5.

Example 5. Let us consider five tenants with priority vector
γ = [1, 2, 1, 3, 1], where lower value of γ means higher
priority, and availability vector ν = [0.1, 1, 0.5, 0.9, 0.3].
The ordered users vector, following the policy proposed is
[4, 2, 3, 5, 1].

The users re-ordering has to be done by each provider at the
beginning of each time frame and in case the expiration time of
a tenant falls in currently time slot, providers automatically set

3We consider that during the service time frame τ the demand of the user
is fixed. In practice, it can change across service time frames so as to take
into account dynamic resource demands.

4We consider the available resource as fixed in a given time frame, knowing
that the resource available could also vary at different service time frames, to
cope for the fact that externalities can change the actual available resource at
a given service time frame.

(a) Scenario with
a straightforward
extension of the
MMF allocation

(b) First scenario
with a challenging
extension of the
MMF allocation

(c) Second scenario
with a challenging
extension of the
MMF allocation

Fig. 12: Different resource allocation scenarios. The MMF
extension is challenging, for example, if users with high
demands have high minimal demands as in (b) and (c). The
resource left after the allocation of the minimal demand has to
be divided equally between users (b) or it has to be allocated
to the one with smaller demand (c).

the priority of the user as the highest one, trying to avoid the
delaying of the tenant (as further explained in Section V-D).

Once the order of the users to remove is established, each
provider tests if the minimum of the resources it provides
can be allocated, if not it excludes a user following the order
described above and it checks if in the group of the excluded
one there is one or more one that can be re-introduced. The
users’ re-introduction order is inverse with respect to the
elimination one.

B. Resource allocation with minimum capacity constraints

We now discuss how resource allocation rules can be
modified to take into account the user’s minimum demand.

Concerning the rules obtained as solutions of optimization
problem, it is sufficient to add a constraint regarding the value
of the percentage of resource to allocate x, or alternatively
on the value of the minimal allocation. For single-resource
allocations (weighted proportional, α-fairness) we can modify
the demand boundness constraints (ai ≤ di) adding a lower
bound: dmi ≤ ai ≤ di; for multi-resource allocation the
boundness constraints (xi ≤ 1) becomes xmi ≤ xi ≤ 1 with
xmi = maxj

(dmij
dij

)
, when each provider considers the resources

j it provides.
The re-definition of the mood value and the MMF allocation

rules, in case of minimal demand to guarantee, is less intu-
itive. The MMF allocation is not solvable as an optimization
problem and it is not clear how the problem with the minimal
demand to satisfy can be solved. In particular Figure 12 shows
how, using the hydraulic interpretation of the MMF allocation,
the re-definition problem is challenging. This open problem
represents an interesting possible future work.

The mood value instead can be interpreted as the results
of an optimization problem [13], [14], after that the minimal
allocation, calculated considering the other users demands, is
allocated to each user. Under the hypothesis that the sum of the
minimal demands is inferior to the available resource (always
respected otherwise we remove one or more users), the mood
value allocation can be calculated as follows.

Definition 3. Let (dm, d, R) be an allocation problem, where
dm is the vector of the minimal demands such that

∑n
i=1 d

m
i ≤

11



Fig. 13: Bi-dimensional representation of a nominal and min-
imal demand for two resources, when the linear dependency
between resources is the same for the two types of demands.

R, then the Refined mood value is given by ami = min∗i +
m∗(maxi−min∗i ), where: min∗i = max{dmi ,mini}, maxi =
max{di, R}, m∗ =

R−
∑n
i=1min

∗
i∑n

i=1maxi−
∑n
i=1min

∗
i

.

C. Cascade and parallel algorithms enhancements

Before adapting the two types of algorithms proposed in
section III for long term allocations, let us further elaborate
on a hypothesis of our problem. We assume that the minimal
demand of each user maintains the same linear dependence
between the resources expressed by the nominal demand. As
we can see from Figure 13, this implies that for each tenant the
portion of the nominal demand demanded as minimal demand
is the same for each resource. Consequently, each user, instead
of submitting the minimal demand for each resource, can
simply submit the demand ratio vector needed to receive the
minimal allocation for each resource. Thus, alternatively to the
demand matrix Dm, we can consider a vector dm, where each
component gets value between 0 and 1 and that represents the
percentage of demand each user requires as minimal one5.

We are now ready to describe how cascade and parallel
algorithms work at each instant of time, taking in consideration
the user delay policy and the guarantee on the minimal
allocation. In fact, differently from the classical algorithms,
now, when a provider proposes an allocation it takes into
account the minimal allocation, hence it uses allocation rules
described in V-B. We first present hereafter the enhanced
algorithm, and then we explain the general algorithm over the
time, considering the redefined cascade and parallel algorithms
and the deadline priority policy.

1) Cascade algorithms (sCRA, sOCRA): The two enhanced
cascade algorithms, we name sCRA and sOCRA, work sim-
ilarly to the static case but, in order to provide feasible
allocations, providers need to know which users can be served
by every provider. This can be done by adding a pre-processing
step at the beginning of the classical CRA algorithm, or while
providers send their congestion for the OCRA algorithm.

If we do not add the pre-processing step in the sCRA
algorithm the budget-delay can excessively increase because
each time a provider k delays a user, served by the previous
ones, this information has to be sent to the first provider that
has to update the allocation and consequently each of the

5In practice, the minimum service to be guaranteed is established by the
SLA, which is a contract between the resources providers and the users so it is
possible that, for different resources, different minimum values are negotiated.

Fig. 14: Example of SLA-deadline priority algorithm dynamic.

service time frame τ

URLLC 1 + (1− 0.2)x−10.2
eMBB 1 + (1− 0.01)x−10.01
mMTC 1 + (1− 0.8)x−10.8

Best effort 1 + (1− 0.01)x−10.01

Deadline λ

URLLC 2
eMBB 100
mMTC 50

Best effort 100

Priority γ

URLLC 1
eMBB 2
mMTC 3

Best effort 4

TABLE V: Simulation settings.

following provider had to re-calculate the allocation. Adding
this preliminary step, the sCRA algorithm has the same delay-
budget of the sOCRA and, as the sOCRA, it needs the presence
of a multi-domain orchestrator. Consequently the sCRA loses
all the advantages over the sOCRA and therefore we consider
only the sOCRA algorithm next.

2) Parallel algorithms (sPRA-1, sPRA-2): In parallel al-
gorithms the notion about which user is served and which
is delayed is learned after that each provider diffuses the
allocation. In fact if a user cannot be served, the allocation is
zero. It follows that sPRA1 and sPRA2 work as the classical
parallel algorithms.

D. SLA and deadline priority algorithm

We here describe how to integrate the re-defined cascade
and parallel algorithms with a general SLA and deadline
priority scheme.

At each instant of time t the algorithm can be decomposed
in the following phases. Let Na be the set of users that have
started to be served at time t, Nn the set of new tenants
submitting their first demands at time t and Nd the set of
users whose demands were delayed at time t− 1 6.

1) Resource availability update: a group of Na users with
demand matrix and minimal demand matrix respectively
Da and Dm

a has to be served because accepted in a
previous instant of time, with a service time frame still
not expired. Each resource is consequently updated as
follows R∗j = Rj−

∑
i∈Na

Dm
aij ,∀j ∈M , i.e., considering

6Note that we avoid the subscript t for the sake of simplicity.

12



that at least a minimal demand for each user has to be
guaranteed. This is possible if the available resource of
the provider does not change, due to the fact that in the
previous instant of time t − 1 demands were served –
in some cases also with other users undergoing service
expiration at time t− 17.

2) Distributed allocation: Cascade or parallel algorithms
described in section V-C1 and V-C2 provide the dis-
tributed allocation. The user delay policy is considering
only users delayed in a previous step Nd and the new
group of tenants Nn arriving at instant t.

3) Demand, priority and availability rate update: After the
resource is allocated:
• the users with the service expired at time t are

removed from Na,
• the users served for the first time at the t instant are

added to Na,
• the users submitting a demand at t but not served

are added to Nd.
In order to try to serve also users with low priority, if the

deadline of a tenant demand falls at time t+1, the priority is
increased to the highest one8. In this way the tenant has higher
probability not to be delayed and consequently served before
the expiration of its request. If, despite the increased priority,
the tenant cannot be served, its availability rate is updated.

Figure 14 gives an example of algorithm dynamics. We
can notice that each user can be accepted or delayed in the
service time frame between the demand submission and the
deadline, once a demand of a tenant is accepted it is served for
a number of instants of time equal to the service time frame
τt. The acceptance or delay of the demand depends, as already
explained, on the resource R∗j and the delay policy used by
the providers.

To conclude, let us highlight that in order to account for
dynamic resource demand, we can model different demands
for a same user over different service time frames, including as
well a change in priority over time to favor servicing demands
in due time. Furthermore in practice, the available resource
can vary across service time frames, with no actual impact on
the algorithm which can adapt to changing available resource
parameters over time.

E. Numerical analysis

We provide a numerical analysis of the sOCRA, sPRA1
and sPRA2 algorithms. We simulate 1000 time instants, with
demands arrival following a Poisson distribution with mean 3.
The demands are generated as done in Section IV-C3 while
the minimum demand is set to 40% of the demand for each
user. Table V shows the settings of the simulations. The
four considered services are differentiated accordingly to the
demand, the priority index, the deadline and the service time

7In case the providers decrease their available resource it is possible that
the allocation for some of these users fall below the minimum threshold given
by the SLA

8Other strategies can be used to try to serve also users with low priority
before their demand expire. For example, the priority can be increased in a
gradual way (passing from the tenants user level of priority to the upper one)
each given number of instants of time.

(a) URLLC (b) emBB

(c) mMTC (d) Best effort

Fig. 15: WTR CDF - The dotted line is for the baseline
algorithm and the straight one for our proposal.

frame. The service time frame is simulated using a geometric
distribution with different parameters depending on the service
type. We consider four experiments varying the quantity
of available resource. The value of the resource, linked to
the average demand of each resource, is chosen as follows:
R1 = 3Colavg(D), R2 = 5Colavg(D), R3 = 10Colavg(D),
R4 = 20Colavg(D), where Colavg(D) is the average by
column of the simulated demands in the dataset D.

We consider two metrics to analyze the performance of
our algorithm. The first one is the Waiting Time Ratio (WTR)
calculated as the ratio of the waiting time over the deadline,
that is the maximum waiting time of a tenant. The second
metric is the Acceptance Ratio that is the ratio of the number
of users served, independently of when (soon or at an instant of
time close to the deadline), over the number of users demanded
resources. We compare our proposed scheduling algorithm to
a baseline one where the selection of the user to serve is
random instead of following the user delay policy. We want to
emphasize that the analysis does not go into the value of the
allocation provided using the cascade or parallel algorithms as
we want to assess the effectiveness in using an enhanced user
selection policy.

Figure 15 shows the Cumulative Distributed Function (CDF)
of the WTR for the two algorithms, as a function of the
available resource. If the waiting time is zero, i.e., the tenant
is served when it submits the demand, then the WTR is equal
to 0 while if WTR=1 the tenant is not served. As one would
expect, the number of served users, both with the baseline
and our algorithm, is increasing if the available resources

13



Centralized CRA OCRA PRA-1 PRA-2
Best case Worst case Best case Worst case

A
ct

io
ns

Demand submission (τ ) 1 1 1 1 1 1 1

Solution submission (τ ) 1 p p p− 1 p 1 2
Other information submission (τ ) - - - 2 2 - -

Allocation computation (δ) 1 1 p 1 p 1 2

Total delay budget 2τ + δ (p+ 1)τ + δ (p+ 1)τ + pδ (p+ 2)τ + δ (p+ 3)τ + pδ 2τ + δ 3τ + 2δ

TABLE VI: Number of actions required to reach the solution and total delay budget.

Centralized CRA OCRA PRA-1 PRA-2
Best case Worst case

C
om

m
un

ic
at

io
n tenant → multi-domain orchestrator 1 - - - - -

tenant → provider - p p p p p

provider → provider - 2(p− 1) (p− 1) (p− 1) +
p−1∑
i=1

i p(p− 1) p(p− 1) + (p− 1)

provider → multi-domain orchestator p - p p - -
multi-domain orchestator → provider p - p p - -

Message complexity 2p+ 1 3p− 2 4p− 1 p2+7p
2
− 1 p2 p2 + p− 1

TABLE VII: Number of communications required to reach the solution and message complexity. Moreover, we provide in the
supplementary materials an additional figure to show the message complexity as function of the number of resource providers.

(a) congestion level: 0-25 % (b) congestion level: 25-50 %

(c) congestion level: 50-75 % (d) congestion level > 75 %

Fig. 16: Boxplot of the Acceptance Ratio as function of the
congestion level.

increase; for example, in the case of URLLC requests with
R1 = 3Colavg(D) we are able to serve less than 20% of the
tenants while with R4 = 20Colavg(D) we can serve around
35% of the tenants with the baseline algorithm and more than
the 60% of the tenants with our algorithm. We highlight that
the step-like behavior of the URLLC CDF is due to the fact
that the deadline is equal to 2, and consequently the WTR
can have only three values. Furthermore, we can observe the
good performance of the algorithm into serving users with
high priority. In fact, in case of URLLC and eMBB services
the number of served users, independently of the waiting time,

is higher with our algorithm while it is inferior for mMTC and
Best effort services. In particular, the greater increase of served
users with our algorithm happens thanks to the increase of the
priority in the instant preceding the deadline. As a negative
aspect it must be noted that the dotted line is above the straight
line until the instant before the deadline thus the waiting times
are longer with our approach.

In Figure 16 we group the results based on the congestion
level and we plot the acceptance ratio. We can notice an
expectable behavior, with higher acceptance ratio for services
with higher priorities, for each congestion range, and de-
creasing acceptance ratio for each type of service when the
congestion level increases. In particular, when the congestion
is high (Fig. 16c and 16d), due to the lack of sufficient
resources, tenants of low priority services as the mMTC and
Best effort ones are rarely served.

VI. CONCLUSION

In this work we proposed algorithms to decentralize 5G
slice resource allocation, using two cascading algorithms and
two parallel algorithms. We extensively compared them, show-
ing the advantages and disadvantages, also with respect to
a centralized approach. In particular, we analyze the delay
budget, the pros and cons in terms of reallocation, presence
of a multi-domain orchestator, message complexity, level of
confidentiality and possibility of allocate the radio resources
independently. Finally by numerical simulations we (i) charac-
terize the re-allocation events using the OCRA approach, (ii)
estimate the percentage of inefficient solutions using PRA-
1, and (iii) calculate the distance of distributed approaches
solutions to the centralized one.

We then extended the algorithms proposing an algorithm
to include Service Level Agreements for enforcing minimal
allocation guarantees and time constraints. The numerical anal-
ysis shows that the proposed algorithm has good performances
in terms of waiting time and acceptance ratio, increasing

14



the service rate of tenants with high priority compared to a
baseline algorithm not considering the tenants priorities.

Future works on the subject can be on fault-tolerant dis-
tributed multi-resource allocation, and on the integration into
ORAN/SDRAN systems of the proposed algorithms. More-
over, new fairness concepts and allocation rules for distributed
multi-resource allocation may also be investigated.

APPENDIX

Proof of the delay budget and message complexity
Let us remember that the transfer times is τ , the allocation

computing times is δ and that the actions bringing delay in
the algorithms are:
• Demand submission: delay between the submission of

the demand by the users and the receipt of the demand
by the multi-domain orchestrator (centralized case) or the
resource provider (distributed case);

• Solution submission: delay between the submission of the
solution by one or more provider and the receipt of the
solution by one or more provider;

• Other information submission: delay between the submis-
sion of other information type by one or more providers
or by the multi-domain orchestrator and the receipt of the
solution by one or more providers or by the multi-domain
orchestrator;

• Allocation computation: delay required by the provider
or multi-domain orchestrator to calculate the solution.

Table VI shows the number of each action necessary to allocate
the resources with the considered algorithms and the budget
delay resulting from this. To calculate the message complexity
we need to count the exchanged messages, i.e., the number of
arrows in Figure 6 in case of three providers. For a general
case with p providers the results are proved in Table VII.

REFERENCES

[1] 5G Americas. “Network Slicing for 5G and Beyond”. White Paper, 2016.
[2] NGMN. “5G white paper”. Next generation mobile networks, 2014.
[3] 3GPP TS 22.261 V15.5.0, 5G; Service requirements for next generation

new services and markets.
[4] O-RAN Use Cases and Deployment Scenarios, White Paper O-RAN

Alliance, February 2020.
[5] A. Ghodsi, et al. “Dominant resource fairness: fair allocation of multiple

resource types.” Proc. of USENIX NSDI 2011.
[6] F. Fossati, S. Moretti, P. Perny, S. Secci. “Multi-Resource Allocation for

Network Slicing”, IEEE/ACM Transactions on Networkig, 28.3: 1311-
1324, June 2020.

[7] F. Fossati , S. Moretti, S. Rovedakis, S. Secci. “Decentralization of 5G
slice resource allocation”, 2020 IFIP/IEEE Int. Symposium on Network
Operations and Management Systems (NOMS).

[8] W. Thomson. “Axiomatic and game-theoretic analysis of bankruptcy and
taxation problems: an update”, Math. Soc. Sciences 74: 41-59, 2015.

[9] FP. Kelly, AK. Maulloo, DKH Tan. “Rate control for communication
networks: shadow prices, proportional fairness and stability.” J. of the
Operational Research society 49.3, 1998.

[10] R. Jain, DM. Chiu, WR. Hawe. “A quantitative measure of fairness and
discrimination for resource allocation in shared computer system.” Vol.
38. Hudson, MA: East. Res. Lab., Digital Equipment Corporation, 1984.

[11] DP. Bertsekas, RG. Gallager, P. Humblet. Data networks. Vol. 2. New
Jersey: Prentice-Hall International, 1992.

[12] J. Mo, J. Walrand. “Fair end-to-end window-based congestion control.”
IEEE/ACM Trans. on Networking, 8.5: 556-567, 2000.

[13] F. Fossati, S. Moretti, S. Secci. “A Mood Value for Fair Resource
Allocations”. IFIP Networking 2017.

[14] F. Fossati, S. Hoteit, S. Moretti, S. Secci. “Fair Resource Allocation in
Systems with Complete Information Sharing”. IEEE/ACM Transactions
on Networking, 26.6: 2801-2814, Nov. 2018.

[15] Y. Etsion, T. Ben-Nun and D. G. Feitelson. “ A global scheduling
framework for virtualization environments.” IEEE Int. Symposium on
Parallel and Distributed Processing, 2009

[16] P. Poullie, T. Bocek, B. Stiller. “A survey of the state-of-the-art in
fair multi-resource allocations for data centers.” IEEE Transactions on
Network and Service Management, 15.1: 169-183, 2018.

[17] M. Leconte, et al. “A resource allocation framework for network slicing.”
IEEE INFOCOM 2018.

[18] P. Caballero, et al. “Multi-tenant radio access network slicing: Statistical
multiplexing of spatial loads.” IEEE/ACM Transactions on Networking
(TON), 25.5: 3044-3058, 2017.

[19] Y. Xiao, M. Hirzallah, and M. Krunz. “Distributed Resource Allocation
for Network Slicing Over Licensed and Unlicensed Bands.” IEEE
Journal on Selected Areas in Communications, 36.10: 2260-2274, 2018.

[20] G. Wang, et al. “Resource Allocation for Network Slices in 5G with
Network Resource Pricing.” IEEE GLOBECOM 2017, 2017

[21] M.Jiang, M. Condoluci, T. Mahmoodi. “Network slicing in 5G: An
auction-based model.” IEEE ICC 2017, 2017.

[22] P. Caballero, et al. “Network slicing games: Enabling customization in
multi-tenant networks.” IEEE INFOCOM 2017, 2017.

[23] H. Halabian. “Distributed Resource Allocation Optimization in 5G Vir-
tualized Networks.” IEEE Journal on Selected Areas in Communications
37.3: 627-642, 2019.

[24] M. Series. “IMT VisionFramework and overall objectives of the future
development of IMT for 2020 and beyond.” Recommendation ITU:
2083-0, 2015.

[25] P. Popovski, et al. “5G wireless network slicing for eMBB, URLLC,
and mMTC: A communication-theoretic view”, IEEE Access 6, 2018.

[26] S. Lee, et al. “ Resource Management in Service Chaining.” IETF
Secretariat, Intert-Draft, 2016.

[27] G. Coulouris, J. Dollimore, T. Kindberg. “Distributed systems - concepts
and designs (3rd ed.).” Addison-Wesley, p. 452, 2001.

[28] Amazon EC2 instances comparison: https://www.ec2instances.info.
[29] Liu, Li, et al. “Preemptive hadoop jobs scheduling under a deadline.”

IEEE Eighth International Conference on Semantics, Knowledge and
Grids. , 2012.

[30] V. G. Abhaya, Z. Tari, P. Zeephongsekul, and A. Y. Zomaya. “Perfor-
mance analysis of edf scheduling in a multi-priority preemptive m/g/1
queue, IEEE Trans. on Parallel and Distributed Systems 25.8: 21492158,
2014.

[31] Jia, Ru, et al. “A Deadline Constrained Preemptive Scheduler Using
Queuing Systems for Multi-tenancy Clouds.” IEEE 12th International
Conference on Cloud Computing, 2019.

[32] F. Fossati, S. Moretti and S. Secci. “Multi-Resource Allocation for
Network Slicing under Service Level Agreements”, Proc. of NoF 2019.

[33] Simulation code (website): https://roc.cnam.fr/sim tpds.zip (accessed on
June 24, 2021).

Francesca Fossati is currently a postdoc at CentraleSuplec, Gif-sur-Yvette,
France. She received her M.Sc. in mathematical engineering from Politecnico
di Milano, Italy in 2015. In 2019, she obtained a Ph.D. at LIP6, Sorbonne
Université. Her current research interests are about optimization and game
theory, with applications to network resource allocation problems.

Stephane Rovedakis is associate professor at Cnam (Conservatoire national
des arts et métiers), Paris, France. In 2009, he obtained a Ph.D. in Computer
Science from University of Evry, France. His research interests concern
the design of fault-tolerant and distributed algorithms to solve routing and
resource allocation problems with applications in networks.

Stefano Secci is full professor of networking at Cnam (Conservatoire national
des arts et métiers), Paris, France. He received the M.Sc. Degree in telecom-
munications engineering from Politecnico di Milano, Milan, Italy, in 2005,
and a dual Ph.D. Degree in computer science and networks from Politecnico
di Milano and Telecom ParisTech, France, in 2009. He was associate professor
at LIP6, UPMC from 2010 to 2018. His current interests cover network
automation. Webpage: https://cedric.cnam.fr/∼seccis.

15



Distributed algorithms for multi-resource allocation

Supplementary Materials annex

Francesca Fossati∗ Stéphane Rovedakis† Stefano Secci†

1 Message complexity

We provide in the following a supplementary figure to show the message complexity as function of
the number of resource providers.

Figure 1: Messages complexity as function of the number of resource providers.

∗Francesca Fossati is with CentraleSuplec, Gif-sur-Yvette, France. francesca.fossati@l2s.centralesupelec.fr
†Stéphane Rovedakis and Stefano Secci are with Cnam, Cedric, 75003 Paris, France. Email:

{firstname.lastname}@cnam.fr

1



2 Numerical analysis: Amazon EC2 instances

We provide in the following the Amazon EC2 instances table used to generate users demands.

API Name Memory (GB) vCPUs Gbps Instance Type
m4.10xlarge 160.00 40.00 10.00 General purpose
m4.16xlarge 256.00 64.00 25.00 General purpose
c5.9xlarge 72.00 36.00 10.00 Compute optimized
c5.18xlarge 144.00 72.00 25.00 Compute optimized
c4.8xlarge 60.00 36.00 10.00 Compute optimized
r4.8xlarge 244.00 32.00 10.00 Memory optimized
r4.16xlarge 488.00 64.00 25.00 Memory optimized
x1.16xlarge 976.00 64.00 10.00 Memory optimized
x1.32xlarge 1952.00 128.00 25.00 Memory optimized
x1e.16xlarge 1952.00 64.00 10.00 Memory optimized
x1e.32xlarge 3904.00 128.00 25.00 Memory optimized
p3.8xlarge 244.00 32.00 10.00 Accelerated comput.
p3.16xlarge 488.00 64.00 25.00 Accelerated comput.
p2.8xlarge 488.00 32.00 10.00 Accelerated comput.
p2.16xlarge 732.00 64.00 25.00 Accelerated comput.
g3.8xlarge 244.00 32.00 10.00 Accelerated comput.
g3.16xlarge 488.00 64.00 25.00 Accelerated comput.
f1.16xlarge 976.00 64.00 25.00 Accelerated comput.
h1.8xlarge 128.00 32.00 10.00 Storage optimized
h1.16xlarge 256.00 64.00 25.00 Storage optimized
d2.8xlarge 244.00 36.00 10.00 Storage optimized
i3.8xlarge 244.00 32.00 10.00 Storage optimized
i3.16xlarge 488.00 64.00 25.00 Storage optimized

Table 1: Amazon EC2 instances

2


