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ABSTRACT

The short-term (‘operational’) dynamics of pedestrian crowds are generally thought to

involve no anticipation, except perhaps the avoidance of the most imminent collisions. We

show that current models rooted in this belief fail to reproduce essential features experi-

mentally observed when a static crowd is crossed by an intruder. We identify the missing

ingredient as the pedestrians’ ability to plan ahead far enough beyond the next interaction,

which explains why instead of walking away from the intruder they accept to temporarily

move transversely towards denser regions on the intruder’s sides. On this basis, a minimal

model based on mean-field game theory proves remarkably successful in capturing the expe-

rimental observations associated with this setting, but also other daily-life situations such as
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partial metro boarding. These findings are clear evidence that a long term game theoretical

approach is key to capturing essential elements of the dynamics of crowds.
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INTRODUCTION

Although crowd disasters (such as the huge stampedes that grieved the Hajj in 1990,

2006 and 2015 [1]) are more eye-catching to the public, the dynamics of pedestrian crowds

are also of great relevance in less dire circumstances. They are central when it comes to de-

signing and dimensioning busy public facilities, from large transport hubs to entertainment

venues, and optimising the flows of people. Modelling pedestrian motion in these settings is

a multi-scale endeavour, which requires determining where people are heading for (strategic

level), what route they will take (tactical level), and finally how they will move along that

route in response to interactions with other people (operational level) [2]. The strategic and

tactical levels typically involve some planning in order to make a choice among a discrete

or continuous set of options, such as targeted activities, destinations [2], paths (possibly

knowing their expected level of congestion) [3], or, in the context of evacuations, egress

alternatives [3, 4]. These choices are often handled as processes of maximisation (minimi-

sation) of a utility (cost), which may depend on lower-level information such as pedestrian

density or streaming velocity [5, 6].

The operational level deals with much shorter time scales and is generally believed to

involve no planning ahead. Anticipatory effects are thus merely neglected in so-called reactive

models, especially at high densities, possibly with the lingering idea that mechanical forces

then prevail. For example, the popular social force model of Helbing and Molnar [7], still

at the heart of several commercial software products, combines contact forces and pseudo-

forces (“social” forces) which, in the original implementation, are only functions of the agents’

current positions (and possibly orientations). Some degree of anticipation has since been

introduced into these models to better describe collision avoidance, e.g., by making the

pseudo-forces depend on future positions rather than current ones [8, 9]. In a dual approach,

the most imminent collisions can be avoided by scanning the whole velocity space [10–12]

or a subset of it [13] in search of the optimal velocity. In order to handle navigation through

dense crowds, anticipated collisions beyond the most imminent one [14] or, at a more coarse-

grained scale, local density inhomogeneities [5] can be taken into account in the optimisation.

All these dynamic models, at best premised on a constant-velocity hypothesis, owe their high

computational tractability to their relative shortsightedness : The simulated agents do not

plan ahead in interaction with their counterparts.
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In this Letter, we argue that, even at the operational level, crowds in some daily-life cir-

cumstances display signs of anticipation that may elude the foregoing short-sighted models ;

this will be exemplified by the recently studied response of a dense static crowd when crossed

by an ‘intruder’ [15, 16]. We purport to show that a minimal game theoretical approach,

made tractable thanks to an elegant analogy between its mean-field formulation [17–19] and

Schrödinger’s equation [20, 21], can replicate the empirical observations for this example

case, provided that it accounts for the anticipation of future costs. Beyond that particular

example, the approach efficiently captures certain behaviours of crowds at the interface bet-

ween the operational and tactical levels that are crucial to consider in attempts to improve

the security of dense crowds.

CROSSING A STATIC CROWD

Crossing a static crowd is a common experience in busy premises, from standing concerts

and festivals to railway stations. Recently, small-scale controlled experiments [15] shed light

on robust trends in the response of the crowd when crossed by a cylindrical intruder, as dis-

played in Fig. 1 (right column). The induced response consists of a fairly symmetric density

field around the intruder, displaying depleted zones both upstream and downstream from

the intruder, as well as higher-density regions on the sides. Indeed the crowd’s displacements

are mostly transverse : pedestrians tend to simply step aside. Incidentally, a qualitatively si-

milar response was filmed at much larger scale in a dense crowd of protesters in Hong-Kong,

which split open to let an ambulance through [22].

Such features strongly depart from the mechanical response observed e.g. in experiments

[23, 24] or simulations [25] of penetration into a granular mono-layer below jamming, where

grains are pushed forward by the intruder (see Figs. 1 (left column)) and accumulate downs-

tream, instead of moving crosswise. More worryingly, these “mechanical” features [26] are

also observed in simulations of pedestrian dynamics performed with the social-force model

[7], which rests on tangential and normal forces at contact and radial repulsive forces for

longer-ranged interactions.

Introducing collision anticipation in the pedestrian model helps reproduce the opening of

an agent-free ‘tunnel’ ahead of the intruder, as illustrated with a ‘time to (first) collision’

model (second column of Fig. 1) directly inspired from [12], details of which can be found in
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SM. However, even though the displacements need not align with the contact forces in this

agent-based model, the displacement pattern diverges from the experimental observations,

with streamwise (walk-away) moves that prevail over transverse (step-aside) ones. Indeed,

such models rely on ‘short-sighted’ agents, who do not see past the most imminent collision

expected from constant-velocity extrapolation.

Results may vary with the specific collision-avoidance model and the selected parameters.

Yet, our inability to reproduce prominent experimental features suggests that an ingredient

is missing in these approaches based on short-time (first-collision) anticipation.

A GAME THEORETICAL APPROACH TO ACCOUNT FOR LOW-LEVEL

PLANNING

To bring in the missing piece, we start by noticing that the observed behaviours are

actually most intuitive : Pedestrians anticipate that it will cost them less effort to step aside

and then resume their positions, even if it entails enduring high densities for some time, than

to endlessly run away from an intruder that will not deviate from its course. But accounting

for this requires a change of paradigm compared to the foregoing approaches. Game theory

is an adequate framework to handle the conflicting impulses of interacting agents endowed

with planning capacities : agents are now able to optimise their strategy taking into account

the choices (or strategies) of others. So far, its use in pedestrian dynamics has mostly been

restricted to evacuation tactics in discrete models [4, 27, 28]. Unfortunately, the problem

becomes intractable when the number of interacting agents grows.

To overcome this quandary, we turn to Mean Field Games (MFG), introduced by Lasry

and Lions [17, 18] as well as Huang et al. [19] in the wake of the mean-field approximations

of statistical mechanics, and since used in a variety of fields, ranging from finance [29–31]

to economics [32–34], epidemiology [35–37], sociology [35, 38, 39], or engineering [40–42].

While applications of MFG to crowd dynamics have already been proposed [3, 43–45], our

goal here is to demonstrate the practical relevance of this approach at the operational level,

using an elementary MFG belonging to one of the first class of models introduced by Lasry

and Lions [17], and which can be thoroughly analysed thanks to its connection with the

nonlinear Schrödinger equation.

In the mean field approximation, the “N-player” game is replaced by a generalized Nash
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Figure 1 – Density (middle row) and velocity (bottom row) fields induced in a static

crowd by a cylindrical intruder that crosses it ; the transparency of the velocity arrows is

linearly related to the local density. (Column 1) Simulations of a mono-layer of vibrated

disks. (Column 2) Simulations of an agent-based model wherein agents may anticipate the

most imminent collision. The snapshot illustrating the agent-based model was rendered

using the Chaos visualisation software developed by INRIA

(https ://project.inria.fr/crowdscience/project/ocsr/chaos/). (Column 3) Results of the

mean-field game introduced in this paper. (Column 4) Controlled experiments of [15]. Note

the relatively symmetrical density dip in front and behind the intruder, as well as the

transverse moves. (Columns 1-3) The crowd’s density and intruder’s size have been

adjusted to match the experimental data. Details of simulations and videos showcasing

time evolution can be found in SM.
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equilibrium [46] where indiscriminate microscopic agents play against a macroscopic state

of the system (a density field) formed by the infinitely many remaining agents. Consider a

large set of pedestrians, the agents of our game, characterised by their spatial position (state

variable) Xi ≡ (xi, yi) ∈ R2, which we assume follows Langevin dynamics, viz.,

dXi
t = ai

tdt+ σdWi
t , (1)

where the drift velocity (control variable) ai
t reflects the agent’s strategy. In Eq. (1), σ is

a constant and components of Wi are independent white noises of variance one accounting

for unpredictable events. All agents are supposed identical, apart from their initial positions

Xi(t = 0) and realisations of Wi.

Each agent strives to adapt their velocity ai
t in order to minimise a cost functional that

we assume to take the simple form

c[ai](t,xi
t) =

〈∫ T

t

[
µa2

2
− (gmt(x) + U0(x−vt))

]
dτ

〉
noise

, (2)

where the average denoted by 〈·〉noise is performed over all realizations of the noise for tra-

jectories starting at xi
t at time t. In this expression, the term µa2/2, akin to a kinetic energy,

represents the efforts required by the agent to enact their strategy, while the interactions

with the other agents via the empirical density m(e)(t,x) =
∑

i δ(x−Xi(t))/N are controlled

by a parameter g < 0. Finally, the space occupied by the intruding cylinder, which moves

at a velocity v = (0, v), is characterised by a ‘potential’ U0(x) = V0Θ(‖x‖ − R) that tends

to V0 → −∞ inside the radius R of the cylinder and is zero elsewhere.

In the presence of many agents, the density self-averages to m(t,x) = 〈m(e)(t,x)〉noise
and the optimization problem (2) does not feature explicit coupling between agents any-

more. It can then be solved by introducing the value function u(t,x) = min
a(·)

c[a](t,x), which

obeys a Hamilton-Jacobi-Bellman [HJB] equation [18, 47], with an optimal control given by

a∗(t,x) = −∇u(t,x)/µ. Consistency imposes that m(t,x) is solution of the Fokker-Planck

[FP] equation associated with Eq. (1), given the drift velocity a(t,x) = a∗(t,x). As such,

MFG can be reduced to a system of two coupled partial differential equations [17, 18, 20, 21]
∂tu(t,x) =

1

2µ
[∇u(t,x)]2 − σ2

2
∆u(t,x) + gm(t,x) + U0(x− vt) [HJB]

∂tm(t,x) =
1

µ
∇ [m(t,x)∇u(t,x)] +

σ2

2
∆m(t,x) [FP]

(3)
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The atypical “forward-backward” structure of Eqs. (3), highlighted by the opposite signs

of Laplacian terms in the two equations, accounts for anticipation. The boundary conditions

epitomise this structure : based on Eq.(2), the value function has terminal condition u(t =

T,x) = 0, while the density of agents evolves from a fixed initial distribution m(t = 0,x) =

m0(x). In previous work, we have evinced a formal, but insightful mapping of these MFG

equations onto a nonlinear Schrödinger equation (NLS) [20, 21, 48], which has been studied

for decades in fields ranging from non-linear optics [49] to Bose-Einstein condensation [50]

and fluid dynamics [51].

We perform a change of variables (u(t,x),m(t,x)) 7→ (Φ(t,x),Γ(t,x)) through u(t,x) =

−µσ2 log Φ(t,x),m(t,x) = Γ(t,x)Φ(t,x) [21]. The first relation is the usual Cole-Hopf trans-

form [52] ; the second corresponds to an "Hermitization" of Eqs. (3). In terms of the new

variables (Φ,Γ), the MFG equations read


−µσ2∂tΦ =

µσ4

2
∆Φ + (U0 + gΓΦ)Φ

+µσ2∂tΓ =
µσ4

2
∆Γ + (U0 + gΓΦ)Γ

. (4)

Except for the missing imaginary factor associated with time derivation, these equations have

exactly the structure of NLS describing the evolution of a quantum state Ψ(t,x) of a Bose-

Einstein condensate, with formal correspondence Ψ→ Γ, Ψ∗ → Φ and ρ ≡ ||Ψ||2 → m ≡ ΦΓ.

This system, however, retains the forward-backward structure of MFG evidenced by mixed

initial and final boundary conditions Φ(T,x) = 1, Γ(0,x) Φ(0,x) = m0(x). Several methods

have been developed to deal with NLS and most can be leveraged to tackle the MFG problem

[21, 53].

Self-consistent solutions of Eqs. (4) are obtained by iteration over a backward-forward

scheme. A video illustrating the evolution of the agents’ density for a particular set of

parameters, as well as details about the numerical scheme, can be found in SM.

Focusing on the permanent regime (a.k.a. the ergodic state [54]) , rather than on the

transients associated with the intruder’s entry or exit, further simplifies the resolution. In this

regime, defined by time-independent density and velocity fields in the intruder’s frame, the

auxiliary functions Φ and Γ are not constant in time, but they assume the trivial dynamics

Φ(t,x) = exp[λt/µσ2]Φer and exp[−λt/µσ2]Γer where, in the frame of the intruder, Φer and
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Γer satisfy 
µσ4

2
∆Φer − µσ2v · ~∇Φer + [U0(x) + gmer]Φer = −λΦer,

µσ4

2
∆Γer + µσ2v · ~∇Γer + [U0(x) + gmer]Γer = −λΓer

, (5)

(with mer = ΦerΓer independent of time). Far from the intruder U0(x) = 0, m ' m0 and

pedestrians have constant velocity −v in the intruder frame. This imposes the asymptotic

solutions Φer(x) = Γer(x)=
√
m0, from which λ = −gm0.

RESULTS

The ergodic Eqs. (5) have two remarkable features : (i) They give direct access to the

permanent regime, and are straightforward to implement numerically since time dependence

has disappeared. (ii) The solutions of Eqs. (5) are entirely specified by two dimensionless

parameters.

Indeed, the intruder is characterised by its radius R and its velocity v. In the same way,

pedestrians are characterized by a length scale ξ =
√
|µσ4/2gm0|, the distance over which

the crowd density tends to recover its bulk value from a perturbation, a.k.a healing length,

and a velocity scale cs =
√
|gm̄0/2µ|, the typical speed at which pedestrians tend to move1.

Up to a scaling factor, solutions of Eqs. (5) can be expressed as a function of the two ratios

ξ/R and cs/v instead of depending on the full set of parameters (R, v, µ, σ,m0, g), which

facilitates the exploration of the parameter space.

Figure 2 presents typical density and velocity fields simulated in the ergodic state, for

parameters selected in each quadrant of the reduced space parametrised by log cs/v and

log ξ/R on the horizontal and vertical axis respectively. Intuitively, one understands that cs

governs the cost of motion for the agents while ξ gives the extent of the perturbation caused

by the presence of the intruder. The main visual difference between the small and large cs/v

cases is the change in rotational symmetry, a fact that reflects a more fundamental change

in strategy. For large values of cs/v pedestrians do not mind moving, and they rather try to

avoid congested areas for as long as possible, thus creating circulation around the intruder,

as shown in the velocity plots. On the other hand, for small values of cs/v, moving fast

costs more ; therefore, in order to avoid the intruder, pedestrians have to move earlier, and

1. Note that µξcs = µσ2 has the dimension of an action and plays the role of ~ in the original nonlinear

Schrödinger equation.
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will accept to temporarily side-step into a more crowded area, thereby causing a stretch

of the density along the vertical direction. The experimental observations of [15] are best

reproduced for small cs/v and small ξ/R (cs =0.11 and ξ = 0.15), as shown in the third

column of Fig. 1. The obtained agreement is remarkable, considering the minimalism of our

MFG model.

Figure 2 – Typical density and velocity fields induced by the crossing intruder in the

ergodic state, as predicted by the MFG model in different regions of the parameter space.

Parameters taken in the small cs/v and small ξ/R quadrant display good visual agreement

with the experimental data.

DISCUSSION

The data plotted in Fig. 1 (third column) demonstrate that even basic MFG models can

naturally capture and semi-quantitatively reproduce prominent features of the response of

static crowds [15], which may be out of reach of more short-sighted pedestrian dynamics

models.

Beyond this particular example, MFG are also applicable to a broader array of crowd-

related problems. This will now be illustrated by exploring the daily-life situation of people

waiting to board the coach in an underground station. This is readily achieved by suitably

modifying the external potential U0(x) and the geometry of the system, as shown on Fig. 3,

and introducing a terminal cost cT (x) [21, 53] that is lower aboard the metro than on the
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platform ; we manage to reproduce the boarding process in a qualitatively realistic way,

up to the decision made by some agents to stay on the platform rather than board the

overcrowded metro, which would be more difficult to implement in traditional approaches

of crowd dynamics at the tactical level.

Figure 3 – Boarding a crowded metro coach at rush hour. Left : Morning rush hour of

November 18, 2021, on the platform of Metro A in Lyon, France. The doors are about to

close and the gap between boarding passengers and those who preferred to wait for the

next metro is clearly visible. Right : Snapshot from a MFG simulation at t = 0.9T . Players

start uniformly distributed on the platform and would like to get on the coach before the

doors close, at t = T . Just before that moment, the players closest to the doors choose to

rush towards the coach and cram themselves in it despite the high density. Others prefer to

stay on the platform (see SM for a movie of the whole process).

To conclude, let us recall that the foregoing results have been obtained with a simple,

generic MFG model which depends linearly on density via gm(t,x). This approximation

can be refined and the MFG formalism is flexible enough to incorporate further elements to

make it truer to life, including time-discounting effects [55, 56] and congestion [43, 57, 58].

Higher quantitative accuracy will be within reach of these more sophisticated approaches,

possibly at the expense of less transparent outcomes compared to the elementary model used

here. For sure, MFG will struggle to capture a variety of problems of crowd dynamics at the

operational level, notably those for which the granularity of the crowd is central. However,

11



the above demonstration of the realistic predictions of a generic MFG model, in cases where

more conventional pedestrian dynamics are found wanting, highlights the role played by

optimization and anticipation at the operational level of crowd dynamics, and justifies to

claim entry for such an approach into the toolkit of practitioners of the field.
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