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ABSTRACT

The short-term (‘operational’) dynamics of pedestrian crowds are generally

thought to involve no anticipation, except perhaps the avoidance of the most immi-

nent collisions. We show that current models rooted in this belief fail to reproduce

essential features experimentally observed when a static crowd is crossed by an in-

truder. We identify the missing ingredient as the pedestrians’ ability to plan ahead

far enough beyond the next interaction, which explains why instead of walking away

from the intruder they accept to temporarily move transversely towards denser re-

gions on the intruder’s sides. On this basis, a minimal model based on mean-field

game theory proves remarkably successful in capturing the experimental observa-
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tions associated with this setting, but also other daily-life situations such as partial

metro boarding. These findings are clear evidence that a long term game theoretical

approach is key to capturing essential elements of the dynamics of crowds.
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I. INTRODUCTION

Although crowd disasters (such as the huge stampedes that grieved the Hajj

in 1990, 2006 and 2015 [1]) are more eye-catching to the public, the dynamics of

pedestrian crowds are also of great relevance in less dire circumstances. They are

central when it comes to designing and dimensioning busy public facilities, from

large transport hubs to entertainment venues, and optimising the flows of people.

Modelling pedestrian motion in these settings is a multi-scale endeavour, which re-

quires determining where people are heading for (strategic level), what route they

will take (tactical level), and finally how they will move along that route in response

to interactions with other people (operational level) [2]. The strategic and tactical

levels typically involve some planning in order to make a choice among a discrete or

continuous set of options, such as targeted activities, destinations [2], paths (possi-

bly knowing their expected level of congestion) [3], or, in the context of evacuations,

egress alternatives [3, 4]. These choices are often handled as processes of maximisa-

tion (minimisation) of a utility (cost), which may depend on lower-level information

such as pedestrian density or streaming velocity [5, 6].

The operational level deals with much shorter time scales and is generally believed

to involve no planning ahead. Anticipatory effects are thus merely neglected in so-

called reactive models, especially at high densities, possibly with the lingering idea

that mechanical forces then prevail. For example, the popular social force model of

Helbing and Molnar [7], still at the heart of several commercial software products,

combines contact forces and pseudo-forces (“social” forces) which, in the original

implementation, are only functions of the agents’ current positions (and possibly

orientations). Some degree of anticipation has since been introduced into these mo-

dels to better describe collision avoidance, e.g., by making the pseudo-forces depend

on future positions rather than current ones [8, 9]. In a dual approach, the most

imminent collisions can be avoided by scanning the whole velocity space [10–12] or

a subset of it [13] in search of the optimal velocity. In order to handle navigation

through dense crowds, anticipated collisions beyond the most imminent one [14]

or, at a more coarse-grained scale, local density inhomogeneities [5] can be taken

into account in the optimisation. All these dynamic models, at best premised on
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a constant-velocity hypothesis, owe their high computational tractability to their

relative shortsightedness : The simulated agents do not plan ahead in interaction

with their counterparts.

In this Letter, we argue that, even at the operational level, crowds in some daily-

life circumstances display signs of anticipation that may elude the foregoing short-

sighted models ; this will be exemplified by the recently studied response of a static

crowd when crossed by an ‘intruder’ [15, 16]. We purport to show that a minimal

game theoretical approach, made tractable thanks to an elegant analogy between

its mean-field formulation [17–19] and Schrödinger’s equation [20, 21], can replicate

the empirical observations for this example case, provided that it accounts for the

anticipation of future costs. Beyond that particular example, the approach efficiently

captures certain behaviours of crowds at the interface between the operational and

tactical levels.

II. CROSSING A STATIC CROWD

Crossing a static crowd is a common experience in busy premises, from standing

concerts and festivals to railway stations. Recently, small-scale controlled experi-

ments [15] shed light on robust trends in the response of the crowd when crossed by

a cylindrical intruder, as displayed in Fig. 1 (right column). The induced response

consists of a fairly symmetric density field around the intruder, displaying depleted

zones both upstream and downstream from the intruder, as well as higher-density

regions on the sides. Indeed the crowd’s displacements are mostly transverse : pe-

destrians tend to simply step aside. Incidentally, a qualitatively similar response was

filmed at much larger scale in a dense crowd of protesters in Hong-Kong, which split

open to let an ambulance through [22].

Such features strongly depart from the mechanical response observed e.g. in expe-

riments [23, 24] or simulations [25] of penetration into a granular mono-layer below

jamming, where grains are pushed forward by the intruder (see Figs. 1 (left column))

and accumulate downstream, instead of moving crosswise. More worryingly, these

“mechanical” features [26] are also observed in simulations of pedestrian dynamics

performed with the social-force model [7], which rests on tangential and normal
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forces at contact and radial repulsive forces for longer-ranged interactions.

Introducing collision anticipation in the pedestrian model helps reproduce the

opening of an agent-free ‘tunnel’ ahead of the intruder, as illustrated with a ‘time to

(first) collision’ model (second column of Fig. 1) directly inspired from [12], details

of which can be found in SI. However, even though the displacements need not align

with the contact forces in this agent-based model, the displacement pattern diverges

from the experimental observations, with streamwise (walk-away) moves that prevail

over transverse (step-aside) ones. Indeed, such models rely on ‘short-sighted’ agents,

who do not see past the most imminent collision expected from constant-velocity

extrapolation.

Results may vary with the specific collision-avoidance model and the selected

parameters. Yet, our inability to reproduce prominent experimental features suggests

that an ingredient is missing in these approaches based on short-time (first-collision)

anticipation.

III. A GAME THEORETICAL APPROACH TO ACCOUNT FOR LOW-

LEVEL PLANNING

To bring in the missing piece, we start by noticing that the observed behaviours

are actually most intuitive : Pedestrians anticipate that it will cost them less effort to

step aside and then resume their positions, even if it entails enduring high densities

for some time, than to endlessly run away from an intruder that will not deviate

from its course. But accounting for this requires a change of paradigm compared

to the foregoing approaches. Game theory is an adequate framework to handle the

conflicting impulses of interacting agents endowed with planning capacities : agents

are now able to optimise their strategy taking into account the choices (or strategies)

of others. So far, its use in pedestrian dynamics has mostly been restricted to eva-

cuation tactics in discrete models [4, 27, 28]. Unfortunately, the problem becomes

intractable when the number of interacting agents grows.

To overcome this quandary, we turn to Mean Field Games (MFG), introduced

by Lasry and Lions [17, 18] as well as Huang et al. [19] in the wake of the mean-

field approximations of statistical mechanics, and since used in a variety of fields,
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Figure 1: Density (middle row) and velocity (bottom row) fields induced in a

static crowd by a cylindrical intruder that crosses it ; the transparency of the

velocity arrows is linearly related to the local density. (Column 1) Simulations of a

mono-layer of vibrated disks. (Column 2) Simulations of an agent-based model a

wherein agents may anticipate the most imminent collision. (Column 3) Results of

the mean-field game introduced in this paper. (Column 4) Controlled experiments

of [15]. Note the relatively symmetrical density dip in front and behind the

intruder, as well as the transverse moves. (Columns 1-3) The crowd’s density and

intruder’s size have been adjusted to match the experimental data. Details of

simulations and videos showcasing time evolution can be found in SI.

a. The snapshot illustrating the agent-based model was rendered using the Chaos visualisation

software developed by INRIA (https ://project.inria.fr/crowdscience/project/ocsr/chaos/).
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ranging from finance [29–31] to economics [32–34], epidemiology [35–37], sociology

[35, 38, 39], or engineering [40–42]. While applications of MFG to crowd dynamics

have already been proposed [3, 43–45], our goal here is to demonstrate the practical

relevance of this approach at the operational level, using an elementary MFG belon-

ging to one of the first class of models introduced by Lasry and Lions [17], and which

can be thoroughly analysed thanks to its connection with the nonlinear Schrödinger

equation.

In the mean field approximation, the “N-player” game is replaced by a generalized

Nash equilibrium [46] where indiscriminate microscopic agents play against a macro-

scopic state of the system (a density field) formed by the infinitely many remaining

agents. Consider a large set of pedestrians, the agents of our game, characterised by

their spatial position (state variable) Xi ≡ (xi, yi) ∈ R2, which we assume follows

Langevin dynamics, viz.,

dXi
t = ai

tdt+ σdWi
t , (1)

where the drift velocity (control variable) ai
t reflects the agent’s strategy. In Eq. (1),

σ is a constant and components of Wi are independent white noises of variance one

accounting for unpredictable events. All agents are supposed identical, apart from

their initial positions Xi(t = 0) and realisations of Wi.

Each agent strives to adapt their velocity ai
t in order to minimise a cost functional

that we assume to take the simple form

c[ai](t,xi
t) =

〈∫ T

t

[
µa2

2
− (gmt(x) + U0(x−vt))

]
dτ

〉
noise

, (2)

where the average denoted by 〈·〉noise is performed over all realizations of the noise

for trajectories starting at xi
t at time t. In this expression, the term µa2/2, akin to

a kinetic energy, represents the efforts required by the agent to enact their strategy,

while the interactions with the other agents via the empirical density m(e)(t,x) =∑
i δ(x−Xi(t))/N are controlled by a parameter g < 0. Finally, the space occupied

by the intruding cylinder, which moves at a velocity v = (0, v), is characterised by

a ‘potential’ U0(x) = V0Θ(‖x‖ − R) that tends to V0 → −∞ inside the radius R of

the cylinder and is zero elsewhere.

In the presence of many agents, the density self-averages tom(t,x) = 〈m(e)(t,x)〉noise
and the optimization problem (2) does not feature explicit coupling between
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agents anymore. It can then be solved by introducing the value function u(t,x) =

min
a(·)

c[a](t,x), which obeys a Hamilton-Jacobi-Bellman [HJB] equation [18, 47], with

an optimal control given by a∗(t,x) = −∇u(t,x)/µ. Consistency imposes that

m(t,x) is solution of the Fokker-Planck [FP] equation associated with Eq. (1), given

the drift velocity a(t,x) = a∗(t,x). As such, MFG can be reduced to a system of

two coupled partial differential equations [17, 18, 20, 21]
∂tu(t,x) =

1

2µ
[∇u(t,x)]2 − σ2

2
∆u(t,x) + gm(t,x) + U0(x− vt) [HJB]

∂tm(t,x) =
1

µ
∇ [m(t,x)∇u(t,x)] +

σ2

2
∆m(t,x) [FP]

(3)

The atypical “forward-backward” structure of Eqs. (3), highlighted by the oppo-

site signs of Laplacian terms in the two equations, accounts for anticipation. The

boundary conditions epitomise this structure : based on Eq.(2), the value function

has terminal condition u(t = T,x) = 0, while the density of agents evolves from a

fixed initial distribution m(t = 0,x) = m0(x). In previous work, we have evinced a

formal, but insightful mapping of these MFG equations onto a nonlinear Schrödin-

ger equation (NLS) [20, 21, 48], which has been studied for decades in fields ranging

from non-linear optics [49] to Bose-Einstein condensation [50] and fluid dynamics

[51].

We perform a change of variables (u(t,x),m(t,x)) 7→ (Φ(t,x),Γ(t,x)) through

u(t,x) = −µσ2 log Φ(t,x),m(t,x) = Γ(t,x)Φ(t,x) [21]. The first relation is the usual

Cole-Hopf transform [52] ; the second corresponds to an "Hermitization" of Eqs. (3).

In terms of the new variables (Φ,Γ), the MFG equations read
−µσ2∂tΦ =

µσ4

2
∆Φ + (U0 + gΓΦ)Φ

+µσ2∂tΓ =
µσ4

2
∆Γ + (U0 + gΓΦ)Γ

. (4)

Except for the missing imaginary factor associated with time derivation, these equa-

tions have exactly the structure of NLS describing the evolution of a quantum

state Ψ(t,x) of a Bose-Einstein condensate, with formal correspondence Ψ → Γ,

Ψ∗ → Φ and ρ ≡ ||Ψ||2 → m ≡ ΦΓ. This system, however, retains the forward-

backward structure of MFG evidenced by mixed initial and final boundary condi-

tions Φ(T,x) = 1, Γ(0,x) Φ(0,x) = m0(x). Several methods have been developed to
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deal with NLS and most can be leveraged to tackle the MFG problem [21, 53].

Self-consistent solutions of Eqs. (4) are obtained by iteration over a backward-

forward scheme. A video illustrating the evolution of the agents’ density for a parti-

cular set of parameters, as well as details about the numerical scheme, can be found

in SI.

Focusing on the permanent regime (a.k.a. the ergodic state [54]) , rather than

on the transients associated with the intruder’s entry or exit, further simplifies the

resolution. In this regime, defined by time-independent density and velocity fields

in the intruder’s frame, the auxiliary functions Φ and Γ are not constant in time,

but they assume the trivial dynamics Φ(t,x) = exp[λt/µσ2]Φer and exp[−λt/µσ2]Γer

where, in the frame of the intruder, Φer and Γer satisfy
µσ4

2
∆Φer − µσ2v · ~∇Φer + [U0(x) + gmer]Φer = −λΦer,

µσ4

2
∆Γer + µσ2v · ~∇Γer + [U0(x) + gmer]Γer = −λΓer

, (5)

(with mer = ΦerΓer independent of time). Far from the intruder, pedestrians are at

rest in the lab frame, and thus have constant velocity −v in the intruder frame.

This imposes the asymptotic form Φer(x) → √
m0 exp[−v · x/σ2] and Γer(x) →

√
m0 exp[+v · x/σ2] far from the intruder, which then sets λ = −gm0 − 3

2
µv2.

IV. RESULTS

The ergodic Eqs. (5) have two remarkable features : (i) They give direct access to

the permanent regime, and are straightforward to implement numerically since time

dependence has disappeared. (ii) The solutions of Eqs. (5) are entirely specified by

two dimensionless parameters.

Indeed, the intruder is characterised by its radius R and its velocity v. In the same

way, pedestrians are characterized by a length scale ξ =
√
|µσ4/2gm0|, the distance

over which the crowd density tends to recover its bulk value from a perturbation,

a.k.a healing length, and a velocity scale cs =
√
|gm̄0/2µ|, the typical speed at

which pedestrians tend to move1. Up to a scaling factor, solutions of Eqs. (5) can

1. Note that µξcs = µσ2 has the dimension of an action and plays the role of ~ in the original

nonlinear Schrödinger equation.
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be expressed as a function of the two ratios ξ/R and cs/v instead of depending on

the full set of parameters (R, v, µ, σ,m0, g), which facilitates the exploration of the

parameter space.

Figure 2 presents typical density and velocity fields simulated in the ergodic

state, for parameters selected in each quadrant of the reduced space parametrised

by log cs/v and log ξ/R on the horizontal and vertical axis respectively. Intuitively,

one understands that cs governs the cost of motion for the agents while ξ gives

the extent of the perturbation caused by the presence of the intruder. The main

visual difference between the small and large cs/v cases is the change in rotational

symmetry, a fact that reflects a more fundamental change in strategy. For large values

of cs/v pedestrians do not mind moving, and they rather try to avoid congested areas

for as long as possible, thus creating circulation around the intruder, as shown in the

velocity plots. On the other hand, for small values of cs/v, moving fast costs more ;

therefore, in order to avoid the intruder, pedestrians have to move earlier, and will

accept to temporarily side-step into a more crowded area, thereby causing a stretch

of the density along the vertical direction. The experimental observations of [15] are

best reproduced for small cs/v and small ξ/R (cs = 0.22 and ξ = 0.15), as shown in

the third column of Fig. 1. The obtained agreement is remarkable, considering the

minimalism of our MFG model.

V. DISCUSSION

The data plotted in Fig. 1 (third column) demonstrate that even basic MFG

models can naturally capture and semi-quantitatively reproduce prominent features

of the response of static crowds [15], which may be out of reach of more short-sighted

pedestrian dynamics models.

Beyond this particular example, MFG are also applicable to a broader array

of crowd-related problems. This will now be illustrated by exploring the daily-life

situation of people waiting to board the coach in an underground station. This is

readily achieved by suitably modifying the external potential U0(x) and the geometry

of the system, as shown on Fig. 3, and introducing a terminal cost cT (x) [21, 53]

that is lower aboard the metro than on the platform ; we manage to reproduce the
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Figure 2: Typical density and velocity fields induced by the crossing intruder in

the ergodic state, as predicted by the MFG model in different regions of the

parameter space. Parameters taken in the small cs/v and small ξ/R quadrant

display good visual agreement with the experimental data.

boarding process in a qualitatively realistic way, up to the decision made by some

agents to stay on the platform rather than board the overcrowded metro, which

would be more difficult to implement in traditional approaches of crowd dynamics

at the tactical level.

To conclude, let us recall that the foregoing results have been obtained with a

simple, generic MFG model which depends linearly on density via gm(t,x). This ap-

proximation can be refined and the MFG formalism is flexible enough to incorporate

further elements to make it truer to life, including time-discounting effects [55, 56]

and congestion [43, 57, 58]. Higher quantitative accuracy will be within reach of these

more sophisticated approaches, possibly at the expense of less transparent outcomes

compared to the elementary model used here. For sure, MFG will struggle to capture

a variety of problems of crowd dynamics at the operational level, notably those for

which the granularity of the crowd is central. However, the above demonstration of

the realistic predictions of a generic MFG model, in cases where more conventional

pedestrian dynamics are found wanting, highlights the role played by optimization

and anticipation at the operational level of crowd dynamics, and justifies to claim

entry for such an approach into the toolkit of practitioners of the field.
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Figure 3: Boarding a crowded metro coach at rush hour. Left : Morning rush

hour of November 18, 2021, on the platform of Metro A in Lyon, France. The

doors are about to close and the gap between boarding passengers and those who

preferred to wait for the next metro is clearly visible. Right : Snapshot from a

MFG simulation at t = 0.9T . Players start uniformly distributed on the platform

and would like to get on the coach before the doors close, at t = T . Just before

that moment, the players closest to the doors choose to rush towards the coach and

cram themselves in it despite the high density. Others prefer to stay on the

platform (see SI for a movie of the whole process).
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