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RESUME. Un ensemble d’indicateurs morphologiques est proposé pour identifier les tissus 

urbains par clustering spatial. L’approche LINCS est préférée aux plus classiques LISA pour 

mieux intégrer le point de vue du piéton dans la ville. Certains indicateurs morphologiques, 

comme ceux de couvertures du sol, sont des taux et posent un problème de variabilité avec la 

taille de la population mère. La correction empirique Bayésienne utilisé en épidémiologie, où 

la population mère serait la surface de l’unité spatiale, semble mal s’appliquer à la morpho-

logie urbaine, car celle-ci influence le découpage spatial. Des nouvelles corrections 

Bayésiennes sont ainsi proposées et testées sur les paysages urbains de la Côte d’Azur. Une 

correction utilisant une fonction sublinéaire de la surface se montre plus apte à réduire 

l’hétéroscédasticité des taux et à identifier les concentrations de tissu pavillonnaire.  

 

ABSTRACT. A set of morphological indicators is proposed to identify urban fabric using spatial 

clustering. The LINCS approach is preferred to classical LISA in order to better integrate the 

point of view of pedestrians moving in the city. Some morphological indicators like land 

coverage are rates and this poses the well-known problem of rate variability with the base 

population size. Classical empirical Bayesian correction used in epidemiology, with the 

spatial unit surface area as base population, seems unfit to the analysis of urban morphology, 

as spatial units depend from morphological phenomena. New empirical Bayesian corrections 

are thus proposed and tested on the case study of urban landscapes of the French Riviera. A 

new Bayesian correction which is a sublinear function of the unit surface proves better able 

to reduce rate heteroscedasticity and to identify hotspots of individual houses. 
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LINCS, Correction Empirique Bayésienne, Côte d’Azur. 
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1. Introduction. 

The classical schools of urban morphology (Caniggia and Maffei 1979, Castex et 

al. 1980, Conzen 1960, for an overview Pinon 1991) have developed a rich 

methodology to measure and evaluate urban morphology, and namely urban fabric, 

at the scale of a few blocks or a neighbourhood (Levy 2005). The analyses being 

carried out manually, their application to the whole urban space of a big city or of a 

conurbation becomes a daunting task. The use of geoprocessing and LISA/LINCS 

(Anselin 1995, Yamada and Thill 2010) has thus been proposed in the analysis of 

urban fabric within a large urban area (Araldi and Fusco 2016). The goal is to 

implement computer-aided chains of treatments to carry out analyses of urban fabric 

previously limited to small areas. The key to geo-processing is the use of 

morphological indicators well suited to identify specific traits of urban fabric. More 

particularly, the approach proposed by Araldi and Fusco (2016) is bottom-up: 

elementary morphological units are aggregated in order to identify through 

LISA/LINCS analysis of morphological indicators coherent patterns corresponding 

to particular urban fabrics. 

However, when indicators of urban form are rates (for example a land coverage 

rate), the question arises of the influence of the base population size on rate 

variability among the spatial units of the analysis. If this variability is overlooked, 

LISA analysis can produce spurious spatial patterns. This problem is well known in 

epidemiology and has been addressed through the empirical Bayesian correction 

procedure (Marshall 1991, Assunçao and Reis 1999). Straightforward application of 

solutions conceived in epidemiology seems nevertheless inappropriate for urban 

morphological analysis. The main specificity of urban morphology is the link 

between spatial unit definition and morphological characteristics, which makes the 

identification of a base population influencing rate variability much more complex. 

The main aim of this paper is thus to present these specificities of urban 

morphological spatial analysis and to explore possible solutions of the Bayesian 

correction problem. The different solutions will be applied and tested on the case 

study of the French Riviera, allowing an expert-based feedback on the results of the 

analyses. The rest of the paper is organized as follows. Section 2 will present the 

main methodological choices of our research: spatial unit definition, morphological 

indicators and spatial analysis approach. Section 3 will explain why the classical 

Bayesian correction methods of epidemiology could be unfit for urban 

morphological analysis and will propose a few alternatives. Section 4 will present 

the main empirical results on the case of the French Riviera, when coverage rate of 

single-family houses are considered. Conclusions and future perspectives will put 

the research results in the broader context of computer-aided analysis of urban 

morphology. 
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2. Geoprocessing and LISA/LINCS for Urban Morphology Analysis: 

Methodological Choices. 

2.1. Defining Elementary Spatial Units from a Pedestrian Point of View. 

In the Italian, French and English traditional schools of urban morphology, the 

analysis of urban form, and more specifically the analysis of the urban fabric, has 

focused on three main aspects (Pinon 1991): (i) the identification of urban form 

components (urban network, buildings and parcels), (ii) their geometrical 

description and (iii) the analysis of their spatial relationships. The analyses of 

traditional urban morphology were normally carried out at the scale of a city 

neighbourhood, with manual calculations and a focus on the historical process 

behind observable urban forms. Geoprocessing of urban morphology within a GIS 

environment has become more widespread in the last twenty years, allowing for 

larger scales of analyses, but often losing the fine grain of the constituent elements 

of urban form (like in Berghauser Pont and Haupt 2010, or in Fusco 2016). Our 

research focuses in particular on the urban street network and the built-up space, 

which are the aspects of urban form more directly observable by pedestrians moving 

in urban space. Parcel structure plays a more important role in the historical 

production of urban form and has been omitted in our research. 

In order to identify the elementary spatial units for the analysis of urban form, 

we consider a new division of urban space resulting from the combination of two 

elements: the urban street network, a connected set of segments allowing pedestrian 

movement, and the planar extension of urban space. A generalization of Thyssen 

polygons is thus created around each street segment (topologically delimited by 

street junctions) to identify the portion of planar space conventionally served by the 

segment. For several morphological indicators, we only consider a double-sided 

proximity band within this polygon, in order to approximate visible space (Figure 1). 

 

 

FIGURE 1. Street segment proximity bands and physical footprints of built-up units. 
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The rationale for this spatial unit definition is that a street segment should not be 

considered the limit, but rather the core of a fragment of urban fabric. This is often 

the case in European cities where discontinuities in urban fabric normally coincide 

with double carriageway boulevards (the latter produce two different spatial units in 

our model) but not with ordinary streets. Moreover, this approach is the most 

consistent with the pedestrian point of view: when standing in public space, people 

perceive the urban fabric on both sides of the street and not the elements within the 

four sides of a city block. In our study area, 99 562 elements were thus identified 

with 98% of street segment lengths varying between 5 m and 920 m (median value 

is 77.7 m). When considering the 50 m proximity band area, 98% of values range 

between 25 m2 and 77 550 m2 (median value being 3 700 m2).  

2.2. A Set of Morphological Indicators 

As anticipated, the street network morphology and the built-up forms are the 

main components of urban fabric considered in this research. Nine indicators, 

obtained through geoprocessing in GIS, were calculated for each spatial unit and 

cover five main aspects of urban fabric: network morphology, built-up morphology, 

network-building relationship, site morphology and site-network relationship. The 

indicators are presented in more detail in Araldi and Fusco (2016). 

TABLE 1. A set of morphological indicators to characterise urban fabric.  

Component of Urban 
Fabric Morphology Indicator Definition 

   

Network 
Morphology 

Length Street segment length between two intersections  

Linearity/Windiness Ratio between segment length and Euclidean distance 

Local connectivity 
Number of degree 1 nodes 

Number of degree 4 nodes 

Number of degree 3 or 5 and more nodes 

   

Built-up 
Morphology 

Built-up Type 
Coverage Ratio 

Ratio between 50 m proximity band surface and 0-150 m2 built-
up units surface 

Ratio between 50 m proximity band surface and 150-450 m2 
built-up units surface 

Ratio between 50 m proximity band surface and 450-1500 m2 
built-up units surface 

Ratio between 50 m proximity band surface and 1500-8000 m2 
built-up units surface 

Ratio between 50 m proximity band surface and >8000 m2 built-
up units surface 

   

Network-Building 
Relationship 

Street corridor effect Ratio between length of parallel façades and street length in the  
10 m proximity band 

Proximity Band 
Coverage Ratio Buildings coverage on the 20 m proximity band  

Proximity Band 
Building Height Ratio between building vol. and surf. inside 20 m proximity band 

   Site Morphology Surface Slope Ratio between total and high sloped space-unit ( S>30°) in 50m 
proximity band 

   Network-Site 
Relationship Street Acclivity Computed as segment average of arctan(slope) 
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FIGURE 2. Built-up types corresponding to physical footprint classes on the Riviera.  

Within this paper we will focus on the indicator describing the contribution to 

the coverage ratio of the 50 m proximity band around each street segment by the 

different classes of built-up elements. Built-up elements are either isolated buildings 

or sets of contiguous buildings. Empirical knowledge lets us establish multiple 

correspondences between built-up unit physical footprints and possible 

morphological types within our study area (Figure 2). 0-150 m2 built-up footprints 

are mainly the fact of ordinary single-family independent houses (a) or of their 

annexes (b: sheds, detached garages). 150-450 m2 footprints can correspond to big 

villas (c), to small series of row-houses (d) or to small block of flats (e). 450-1500 

m2 correspond mainly to four different typologies: big block of flats (f), small 

continuously built-up city blocks (i), small retail buildings (h) and long rows of 

townhouses (g), the latter being particularly rare in our study area. Footprints 

between 1500 and 8000 m2 correspond to big modern housing estates (j), large 

continuously built-up city blocks (k) and big specialized buildings. Finally, class 5 

are exceptional elements in the urban landscape of the study area, i.e. functionally 

specialized “giant” buildings (l: hospitals, stadiums, convention centres, shopping 

malls). The indicator is a rate measuring the part of the spatial unit 50 m wide 

around a street segment covered by each footprint class. The total coverage ratio of 

the spatial unit is thus the sum of the values calculated for each footprint class.  

2.3. Spatial Statistical Analysis of Morphological Indicators 

Once indicators are calculated for each spatial unit, local spatial clustering 

techniques are used to identify larger scale urban features (urban fabric). Spatial 
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clustering indicates where a phenomenon of interest has high/low incidence level, 

identifying hot/cold spots; many different methods have been developed, in different 

research fields and perspectives. Local Moran’s I indicator of spatial association 

(LISA, Anselin 1995), based on Moran’s I spatial correlation measure (Moran 

1948), was identified as a valid geostatistical method. Despite its large application in 

other research fields, it has so far been used relatively little in the study of urban 

form (Tsai 2005, Musakwa and Niekerk 2014). In order to test the pedestrian 

perspective assumption, Araldi and Fusco (2016) analysed and compared the planar 

application of local Moran’s I statistic LISA with the corresponding network-

constrained ILINCS (I statistics in Local Indicator of Network-Constrained Clusters, 

Yamada and Thill 2007, 2010). Their work considered several network and planar 

neighbourhood depths, always following a topological queen contiguity approach. 

The case of the street corridor effect indicator was used in order to show that 

network-constrained LINCS are better suited to capture the feature patterns from a 

pedestrian point of view. Following this indication, we will carry out spatial analysis 

of built-up type coverage through a LINCS approach, a network extension of LISA. 

Adopting a network geometry, the GeoDa software (Anselin 2003) can be used to 

implement these statistics. 

3. The Problem of Population Size in the Spatial Analysis of Rate Values 

3.1. Bayesian Correction in Epidemiology 

Epidemiology has been one of the first and is still one of the most important 

fields of application of spatial clustering techniques (Jacquez et al. 1996a, 1996b). 

Tackling the case of spatial clustering of rate values, Marshall (1991) and Assunçao 

and Reis (1999) highlight that the size of the base population over which the rate is 

calculated has an impact on the variability of the rate. When dealing with spatial 

units having strong differences in population size, the variability of the prevalence 

rate of a given disease in large population units is lower than the variability 

measured in small population units. This is due to the limits of statistical estimators 

on small populations. When this dependence of variability on base population size is 

overlooked, spatial clustering techniques could detect spurious hot/cold spots, linked 

to the variability of estimations on small populations and not to spatial structure. The 

same authors thus propose an empirical Bayesian correction taking into account the 

knowledge of the base population size to correct the a priori assumptions on the 

variability of the rates. This approach, which is now commonly accepted in 

epidemiology, considers that spatial unit definition (normally administrative units 

like municipalities in a given region) is independent from the phenomena under 

investigation (here disease prevalence). Epidemics do not define spatial units and the 

epidemiological phenomenon (the prevalence rate) can be modelled as a Poisson 

stochastic process whose outcome (the number of infected people) is directly 

proportional to the population exposed in the spatial unit. Under this assumption, 

Empirical Bayesian correction of Moran local I (EBI) is defined as follows 

(Assunçao and Reis 1999): 
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Where m is the number of spatial units, wij are the neighbourhood coefficients for 

units i and j (normally 1 if j is considered neighbour of i, 0 otherwise), zi are the new 

deviates for which the Moran local I is calculated and which are derived from the 

original rates pi, a and b are Bayesian estimators described in Marshall (1991). The 

empirical Bayesian correction boils down to reducing the variance of rate values pi a 

posteriori through standardization coefficients, which have a fixed part and a varia-

ble part which is inversely proportional to the population size xi of each spatial unit. 

LISA/LINCS clusters are aimed at verifying whether, on the one hand, the 

observed rates are the likely result of random outcomes of a spatially homogenous 

Poisson process with a unique rate or with different rates without spatial structure 

(null hypothesis) or, on the other hand, if they are the random outcome of a spatial 

structure of different underlying rates (alternative hypothesis). Bayesian corrections 

have a direct impact on the calculus of LISA/LINCS clusters: deviations from the 

study area average values tend to be more significant when they are calculated for 

units with large populations and less significant when then they are calculated for 

units with small populations. Accordingly, the usual categories of High-High, Low-

Low, High-Low and Low-High spatial patterns tend to be less significant when 

calculated on units having mainly smaller populations. 

3.2. Why could the Analysis of Urban Morphology be Different from the Classical 

Epidemiological Framework. 

At first view, it is easy to conceive a straightforward application of the 

epidemiological approach to urban morphological rates. The coverage ratio of a 

given built-up type within a spatial unit would have as base population the surface of 

the spatial unit. Every square meter of the 50 m proximity band around a street 

segment is the equivalent of an exposed person in epidemiological terms. In this 

context, small spatial units should exhibit higher variability than big spatial units, 

the latter corresponding to long street segments and the former to short street 

segments. The empirical Bayesian correction of these variabilities based on spatial 

unit surface amounts to considering as more reliable rates measured around long 

street segments. But this presupposes that spatial units are independent from the 

phenomenon under investigation. 

Unfortunately, when dealing with urban morphology, spatial unit definition is 

directly linked to the phenomena under investigation. This is evident in our case as 

we define spatial units as proximity bands around street segments, which are 

themselves part of the urban morphology we want to study. Coarser (and often 

inappropriate) spatial unit definitions like urban neighbourhoods or street blocks (the 

natural urban grid) also depend on urban morphology. Neighbourhoods are in fact 

smaller where urbanization is denser and larger where it is less intense. Superposing 
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a conventional grid of decametric/hectometric grain on urban space is very popular 

in the analysis of land coverage, landscape ecology and, more recently, 

socioeconomic phenomena. Its use for the analysis of the morphology of urban 

fabric seems more problematic, as the spatial arrangements of form elements could 

be partially destroyed by the superimposed observation grid1. Moreover, we should 

not see urban space as a coropleth phenomenon. Urban space is the result of the 

urban colonization of natural and agricultural land. The morphological process is 

here to be taken into account in order to understand the production of spatial units. 

As classical morphological analysis shows (Caniggia and Maffei 1979), when a 

spatial unit approximately defined as we do in our research (land close to a street 

segment) is relatively saturated (i.e. it has a high land coverage ratio), it becomes 

economically interesting to intensify the street network in order to develop adjacent 

natural or agricultural land. Unless strong topographic constraints forbid it, new 

street segments are added and the average length of the street segments diminishes 

locally, just as the average surface of the spatial unit (proximity band of 50 m 

around the street segment). Taking into account that spatial unit definition is linked 

to morphological phenomena, two alternative hypotheses could be considered 

against the epidemiological approach. 

The first hypothesis considers that new urbanization is historically produced by 

the repetition of a given building type (with its typical open spaces like interior 

courts, front and back gardens, parking space, etc.), or of a very limited number of 

complementary building types. Even if these patterns can later evolve through 

destruction/reconstruction processes, the contribution of given building types to the 

land coverage around a street should tend to oscillate within given limits once the 

unit is totally urbanized. Variability could be much higher when a long street 

segment proximity band is only partially developed and natural or agricultural land 

can still be in it (even if variability should fall again for the longest segments, in 

completely undeveloped land). The understanding of the morphological process 

could thus suggest an approach that is opposite to the one used in epidemiology. 

Rates around short and medium-sized segments should be considered as more 

reliable because the morphological process has produced more stable urban features. 

Rates around longer segments should be corrected as higher variability characterizes 

a phase of the morphological process that could be considered as intermediate 

between natural/agricultural status and full urbanisation. Within this hypothesis of 

“inverse relation”, we can conceive an empirical Bayesian correction where the base 

population is not the surface of the area unit, but is inversely proportional to it. 

The second alternative hypothesis is a milder revision of the epidemiological 

approach. The aforementioned link between spatial unit definition and the 

morphological phenomena would weaken the relationship between the 

morphological variability and population size (here spatial unit size), without being 

                                                 
1 Nevertheless, when the focus of the analysis is not the relationship between 

buildings, street segments and parcels within urban fabric but more abstract aspects of urban 

form, like fractal dimension of the built-up area, pixel-based analyses are of paramount 

interest (like in Batty and Longley 1994 or in Frankhauser 1994).  
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able to inverse it. The statistical reduction of morphological rate variability within 

larger spatial units will be only partially offset by the higher heterogeneity 

associated with longer street segments in not fully urbanised areas. In this case, a 

sublinear variation of the total land coverage ratio and of the land coverage ratios by 

each built-up type could be considered, with an exponent less than one to be applied 

to the spatial unit surface in order to obtain a convenient EBI. 

In the following section we will test these three different approaches to empirical 

Bayesian correction of ILINCS (EBI-LINCS) using data from the French Riviera. 

4. Empirical Evidence from the French Riviera 

4.1. The French Riviera: an ideal test area for new morphological analyses 

The French Riviera is a conurbation in southern France stretching more than 

sixty kilometres from the Italian border to the Esterel mountains. Covering around 

1500 km2, the French Riviera has a population of over one million inhabitants. This 

space is a unique conjunction of natural and urban landscapes: firstly, the 

topography, with elevation ranging from the sea level up to 1700 meters of the pre-

Alps (passing through hills and valleys differently sloped). Secondly the socio-

political and historical influences on the urban planning. Traditional villages are also 

scattered around three high density urban areas. From east to west, we find: Monaco 

and its skyscrapers, the most densely populated sovereign nation in the world; the 

urban agglomeration of Nice with a regular meshed core inspired by the Turin 

model (Graff 2013), surrounded by hilly and less tightly planned areas. And finally 

the urban agglomeration of Cannes-Grasse-Antibes characterised by land 

irregularity together with old city-centres and the car-centred sprawl development of 

the lasts 50 years (Fusco 2016). The combination of all these elements produces a 

sequence of urban centres and peripheral areas of different size and different 

morphology. This study area gives the opportunity to test the validity of all the 

morphological indicators of Table 1, of the LISA/LINCS approaches (Araldi and 

Fusco 2016)  and, as far as this paper is concerned, the proposed methodology of 

empirical Bayesian correction for morphological rates.      

4.2. Spatial Patterns of Single Family Houses: Results and Discussion 

Within this paper we will focus on the spatial clustering of coverage rates for the 

smallest footprint class (≤ 150 m2). This is the class which corresponds more strictly 

to a single building type: ordinary free-standing single-family houses and their 

annexes. Figure 3 shows the values of land coverage ratios for this building type 

within the 50 m proximity bands of street segments. The represented area is the 

central section of the French Riviera, around the city of Nice. The map clearly 

shows a strong under-representation of this building type in the city-centre of Nice. 

It is much harder to identify spatial patterns in more peripheral areas based on street 

connections reflecting the way pedestrians explore urban space. This fully justifies 

the use of spatial clustering analysis based on the LINCS approach.  
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FIGURE 3. Land coverage ratios for single-family houses around the city of Nice. 

For this first typo-morphological class, the interpretation of the hot/cold spots of 

the spatial clustering will be relatively easy. A good spatial clustering should 

identify as hotspots (High-High) the swaths of residential urban fabric mainly made 

of individual houses, within planned subdivisions or more spontaneous urbanisation; 

cold spots (Low-Low) should correspond either to urban fabric made up of other 

building types or to relatively undeveloped natural and agricultural land. Exceptions 

within these patterns or transition areas should be identified as Low-High or High-

Low features. Finally, more mixed configurations without clear spatial structure 

should be classified as statistically non-significant in terms of spatial clustering 

(significance level of 0.05 will be used throughout our analyses). A few preliminary 

statistical analyses are nevertheless necessary before calculating spatial clustering 

indicators. 

Figure 4.a shows the variation of the variance of single houses land coverage 

ratio with the increase of the spatial unit surface. The diagram clearly shows 

heteroscedasticity for the observed morphological rates, pointing to the need of 

empirical Bayesian correction: the ratio of the variances calculated in the ventiles 

with maximal and minimal variability is 32.1 and even considering only the 18 

ventiles with most homogeneous variance, this ratio is still 7.0. Variance increases 

over the first three ventiles (with a maximum for the 3rd ventile, corresponding to an 

average unit surface of 312 m2) and steadily decreases afterwards. This trend 

invalidates the inverse relation hypothesis: like in epidemiology, and apart for 

extremely small spatial units (where the possibilities of urbanisation are technically 

limited to fewer options) rate variability steadily decreases with spatial unit size. 

We still have to ascertain whether the classical epidemiological approach or the 

alternative hypothesis of a sublinear correction is best suited to our empirical data. 

Figure 4.b and 4.c answer this question. In the former, variance is calculated for 

empirically Bayesian corrected rates as in the epidemiological approach. Hetero-

scedadsticity remains almost the same. On the contrary, through a Bayesian 
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correction which uses the cubic root of the spatial unit surface (Figure 4.c), we 

reduce heteroscedasticity considerably: the ratio between the highest and lowest 

variance is now 13 and even to 3.5 when only the 18 ventiles with most 

homogeneous variance are considered. This result points to the sublinear correction 

hypothesis: the morphological process can reduce but not invert the trend of 

coverage rate variability to decrease with spatial unit surface. Other sublinear 

corrections were tested within our research (exponents 0.667, 0.5, 0.25 and 

logarithmic transformation). The cubic root proved the most effective in reducing 

heteroscedasticity for single-family houses coverage ratio on the French Riviera. 

We will however highlight the importance of the residual heteroscedasticity after 

the empirical Bayesian correction. Once the size of the spatial unit is taken into 

account (though a sublinear correction), intermediate spatial units still exhibit more 

rate variability than smaller and bigger ones. The link between the morphological 

phenomenon and the spatial unit definition is possibly more complex than what a 

monotonic Bayesian correction with the unit surface can handle. Intermediate spatial 

units are closely associated with urban fabric. High heterogeneity of urban fabrics in 

the study area could thus be a possible cause of observed residual heteroscedasticity. 

 

 

 

FIGURE 4. Variance of land coverage ratios for single-family houses. 
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Another important point to be considered before calculating ILINCS statistics is 

the lack of normality of the empirical distribution of our morphological rates. 

Griffith (2016) shows how pseudo-significance of Moran I is biased by skewness in 

data distribution. The same could be said for local Moran I and ILINCS. More 

particularly, single-family houses coverage ratio is extremely right-skewed on the 

French Riviera, with 48% of spatial units having the modal value 0, a median value 

of just 0.0004 and an average value of 0.02, whereas 71% of values are below 

average (this is not directly visible in Figure 3, where only the central area around 

the city of Nice is represented). The typical negative deviate from the average value 

is thus around 0.0004. Positive deviates can be much wider: 0.6% of deviates are 

two orders of magnitude larger than the typical negative deviate. As the average 

number of neighbours on each spatial units is around 20 (when a topological radius 

of 3 is used, see further), a single very large positive deviate can produce a higher 

than average value in the neighbourhood of a street segment. Now, a random 

sampling of our empirical distribution will easily obtain at least one very large 

deviate in 20 independent draws (p = 20 x 0.006 = 0.12, well beyond the 

significance threshold of 0.05). Conversely, obtaining a lower than average 

neighbourhood from randomly sampling our empirical distribution is more difficult: 

almost all draws have to be below the average and no single draw must have a large 

positive deviate (here p is well below 0.05). As a consequence, when calculating 

pseudo-significance of ILINCS, HH or LH significance values are underestimated 

and LL or HL significance values are overestimated. 

Given the particular empirical distribution of our data (48% of 0 values), no non-

linear transformation of the data could produce a symmetric, almost-normal 

distribution, not even a rank transformation. Furthermore, EBI correction of rank 

data would not decrease data heteroscedasticity. As a consequence, ILINCS and 

EBI-LINCS will be calculated for the original coverage ratio data, and we will be 

forced to accept spatial clusters with different pseudo-significance levels. 

ILINCS were thus calculated following topological contiguity on the street 

network with a neighbourhood depth of three (which corresponds well to the 

relatively local features of urban fabric). Values in Figure 5.1 have no Bayesian 

correction. They identify 32 000 units in Low-Low clusters. In the area represented 

on the map they correspond to the city-centre of Nice (a), to modern developments 

in the Var Valley or on the hills, like the IBM centre (b), to natural areas (c) or to 

old villages. High-High clusters involve more than 10 000 units, both in small 

subdivisions north of the city-centre (d) and in larger less regular areas on the hills 

(e). Nevertheless, differences in the variability of rates for different size of spatial 

units could bias the identification of significant and non-significant spatial clusters. 

Figure 5.2 thus proposes a classical empirical Bayesian correction of coverage 

rates for individual houses, based on the straightforward epidemiological analogy. 

We observe a big increase of non-significant features. Spatially, significant patterns 

are severely reduced in urbanised areas (with small or medium-sized spatial units). 

Low-Low clusters are only marginally reduced: they resist well both in the very 

connected city-centre and in the undeveloped areas with long street-segments. 
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FIGURE 5. ILINCS of land coverage rations for single-family houses. 
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FIGURE 6. Sample of Riviera landscapes within the areas identified in Fig.5. 

 

FIGURE 7. The case of a mixed area on the hills around Nice (f in Fig.5). 

A few long Low-Low segments even appear and replace shorter ones which are 

now considered non-significant. The main loss of significant features is observed for 

the High-High clusters (they diminish of more than 60%): whenever street segments 

are not particularly well connected, the lower corrected values of short-segments 

deviates make whole High-High clusters become non-significant. Only the most 

typical urban subdivisions (d) or suburban concentrations of single-houses remain 

significant, many tree-like hotspots of individual houses (like e) disappear because 

of the Bayesian correction to the small branches of the main streets. 

Figure 5.3 results from the application of our proposed sublinear empirical 

Bayesian correction. Overall, compared to Figures 5.1 and 5.2, there is a much 

slighter reduction of non-significant features. Spatially, most significant High-High 

and Low-Low clusters are maintained both in urbanised areas and in the less 

developed hilly peripheries. Sometimes, though, a slight penalization of the deviates 

of the smaller spatial units, reclassifies as non-significant a few structures that were 

previously considered as High-High. This is the case, for example, of relatively 
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heterogeneous areas on the hills around the city-centre of Nice (like f). The aerial 

image in Figure 7 shows no noticeable difference between the southern and the 

northern section of the area, with class 1 elements (single-family houses) 

intermingled with class 2 elements (big villas and a few semidetached houses). 

However, in the south many of the short street segments happen to lead to single-

family houses only. In the north, they happen to connect more heterogeneous 

elements. The uncorrected ILINCS reveal the existence of a significant High-High 

structure in the south, whereas the corresponding EBI-LINCS, by overlooking the 

contribution of the smallest street segments, rightly identifies a seamless suburban 

area with non-significant overrepresentation of class 1 elements. The area in section 

f is thus clearly distinguished from areas of more pronounced homogeneous over-

representation of single family houses like d and e. 

5. Conclusions and Perspectives. 

Specific knowledge of the morphological process led us to critically assess the 

classical empirical Bayesian correction of rate variability used for LISA/LINCS in 

epidemiology, because spatial unit definition is linked to the morphological process. 

We could thus formulate two new proposals: an EBI for morphological rates where 

the base population is the inverse of the spatial unit surface and an EBI where the 

base population is a monotonic sublinear function of the spatial unit surface. 

The case study of urbanisation in the French Riviera let us verify empirically that 

the proposed sublinear EBI of individual house coverage rate is better able to reduce 

heteroscedasticity in the empirical data, to correctly detect typical suburban fabric as 

hotspots of single-family houses and central-city areas, functionally specialised 

areas, as well us scarcely developed areas as cold spots. Residual heteroscedasticity 

is nevertheless still important after the EBI correction. The link between morpho-

logical phenomena and the spatial unit definition is possibly more complex than 

what a monotonic Bayesian correction with the unit surface can handle, especially in 

the presence of high heterogeneity of urban fabrics, like in our study area. 

The spatial analysis of the coverage rate of single houses is only a first step of 

the research. Other physical footprint classes, having multiple correspondences to 

morphological types, will have to be cross-analysed with single-family houses.  

Built-up volumes could then be used to better asses the correspondence between 

physical footprints and morphological types. The results presented in this paper 

make us however believe that the best way to take into account size-related 

variability of the coverage rates will be through an empirical Bayesian correction 

using as base population a sublinear function of the spatial unit surface.  

A complete bottom-up identification of urban fabric types, coherently taking into 

consideration the pedestrian point of view, will of course be possible only through 

the combined spatial analysis of all indicators identified in our research design. 

Street network morphology and network-building relations could be essential to 

solve the ambiguous correspondences between physical footprints and morpho-

logical types. Araldi and Fusco (2016) showed the pertinence of the LINCS 

approach, already proposed by Yamada and Thill (2007, 2010) in other research 
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fields, for the spatial analysis of urban morphology. This paper proposes an alter-

native way of applying empirical Bayesian corrections to morphological rates. These 

two indications should thus guide the cross-analysis of the whole indicator set. 
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