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Abstract. This paper is devoted to the analysis of calculation methods for solv-
ing fractional chaotic systems and the impact of these different approaches on the
behavior of the fractional chaotic system. Two widely used time domain fractional
differential equations solving approaches are discussed, the fractional ABM corrector-
predictor method based on Caputo fractional derivative definition, and the long mem-
ory calculation approach based on Grunwald fractional derivative. These numerical
solutions calculation methods are employed to depict the phase portrait of a class of
commensurate fractional chaotic systems. The Lyapunov exponent and bifurcation
diagrams of the systems over various fractional orders and parameters are illustrated
to detect the impact on the dynamics of the chaotic system applying different calcu-
lation approaches.
Keywords: Fractional calculus, Numerical solution, Fractional Chaotic system,
Non-linear dynamics.

1 Introduction

Chaos is a random-like behavior exhibited by many nonlinear dynamic systems.
The very first proponent on this topic can be dated back to 1880 while the three
body problem was studied [1]. Eighty years latter, when Edward Lorenz worked
on weather prediction, the so-called ’Lorenz attractor’ was found [2]. By giving
it a description and a poetic name of ’butterfly effect’, the gate of mathematical
and scientific world of Chaos was opened. Since then, many researchers have
tried to uncover the deterministic laws behind the apparently random states of
disorder of different chaotic systems.
One of the characteristics of chaotic system is that it is very sensitive to the ini-
tial conditions as described by butterfly effect. This sensitivity can be measured
by Lyapunov Exponent(LE) which calculates the rate of exponential divergence
of trajectories starting from two close initial conditions. This characteristics
also contributes to the application of chaotic systems in many domains of sci-
ence and engineering, such as biology [3], economics [4], finance [5], cryptogra-
phy [6][7] and etc.
In the meantime, fractional calculus is considered as the generalization of clas-
sical integer-order integration and differentiation operators to real, or complex
orders [8]. Many mathematicians have discussed the fractional calculus since
1695 by introducing different mathematical characterisations (definitions) for
fractional derivative and integration. In many cases, these characterisations



are equivalent if the initial conditions are ad hoc [9], and the most well known
three are Rienmann-Liouville(RL), Grunwald-Letnikov(GL) and Caputo char-
acterisations.
The analysis and discussion of fractional calculus remained purely in the do-
main of mathematics for centuries. It was not until 1980s that the application
of fractional calculus in the domain of science and engineering has started to
be studied and explored. Due to the memory effect possessed by fractional
calculus, it is considered to be suitable to model many real-life systems. After
years of research, the fractional differential equations have now been used in
diverse disciplines like physics, biology, and economics, etc. [10][11].
The fractional chaotic system also attracts a lot of attention. The difficulties for
this research owes to the intricate geometric interpretation of fractional deriva-
tives [12] and the fact that there exist, as mentioned above, different definitions
for fractional derivatives. One basically considers continuous systems, and uses
numerical methods to approximate the solution. In the case of a fractional
system, the discrete approximating system may inherit the chaotic behaviour
of the initial continuous system, but this relationship is somehow complex.
What adds to the intricacy is that the chaotic behavior of the approximating
can be different for different numerical methods employed to solve the frac-
tional differential equations [13]. Therefore, the understanding of the impact
on the chaoticity of the system applying one or another numerical calculation
approaches is of great importance, in order to choose the most appropriate one
for a given application.
In the following, two numerical calculation methods under GL and Caputo
characeterizations for fractional differential equations are recalled. Then, we
employ both methods to obtain the states of two fractional chaotic systems ex-
tended from classical integer order chaotic system. The impact on the chaoticity
of the systems applying the two approaches has been analyzed in terms of LE
and from the aspect of bifurcation diagram and time responses.

2 Preliminaries on fractional calculus and fractional
systems

In this section, some preliminaries on fractional calculus and fractional systems
are introduced to give a rough idea on the topic. The widely-accepted stability
criteria for a commensurate fractional system is also illustrated.

2.1 Fractional calculus

As mentioned before, the fractional calculus studies the fractional derivative
and integral which can be considered as the extension of classical integer order
differentiation and integration to real or complex orders. In the long history
of the study of fractional calculus, many mathematicians have contributed and
introduced different characterisations(referred as ’definitions’ in many paper)
towards the topic. Here after, we give two well-known definitions Grünwald-
Letnikov (GL) and Caputo definitions [14][15].



The fractional derivatives under GL characterisation can be writen as
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The caputo type fractional derivative holds the form as following,
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(t− τ)α−n+1
dτ, for n− 1 < α < n (4)

where α denotes the fractional derivative order; a and t are the bounds for the
operation; n is the smallest integer greater than α; Γ (.) is the Eular Gamma
function in equation (3); and f (n)(t) is the n-th derivative of f(t).
The Caputo type fractional derivative is often used for engineering applica-
tion since the fractional differential equations with this type of derivative can
provide the applied problem with an interpretive initial condition.

2.2 Fractional system

A fractional system is a dynamic system which can be modeled by fractional
differential equations [16]. A general form of fractional system is as follows,

0D
αi
t xi (t) = fi (x1 (t) , x2 (t) , ..., xn (t) , t)

xi (0) = ci, i = 1, 2, ..., n.
(5)

In (5), xi(0)(i = 1, 2, ...n) denotes the initial conditions for each component
constituting the state vectors; αi(i = 1, 2, ...n) is the fractional derivative order
for i-th differential equations consisting the system, and fi is a linear or non-
linear function.
The equilibrium points of system (5) can be obtained by solving equation
fi(x) = 0(i = 1, 2, ..., n). If a commensurate system with αi = α, i = 1, 2, ..., n
is considered, then, according to the stability theorem defined in [17], the equi-
librium points are locally asymptotically stable if the eigenvalue of the Jacobian
matrix of system (5) satisfies the following equation evaluated at equilibria.

|arg (eig (J))| = |arg (λi)| > α
π

2
, i = 1, 2, ..., n (6)

where J denotes the Jacobian matrix of (5), λi(i = 1, 2, ...n) are its eigenvalues.



3 Numerical calculation methods for fractional
differential equations

In this section, two numerical solutions calculation methods for fractional differ-
ential equations are introduced. The methods are based on Grünwald-Letnikov
and Caputo fractional derivative characterisations.

3.1 Grünwald-Letnikov calculation method

The explicit numerical approximation of q-th derivative under GL characteri-
sation at the points kh, (h = 1, 2, ...) is expressed as follows [14]

(k−Lm)/hD
α
tk
f(t) ≈ h−α

k∑
j=0

(−1)
j

(
α
j

)
f(tk−j). (7)

In expression (7), Lm is the memory length; tk = kh, where h is the calculation

time step; the binomial coefficient (−1)j
(
α
j

)
can be denoted as c

(α)
j (j = 0, 1, ...)

which is expressed use the following expression[18],
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j =

(
1− 1 + α

j

)
c
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Thus, the general numerical solution of fractional differential equation de-
scribed by equation(9) can be expressed as given in (10).

aD
α
t y(t) = f(y(t), t) (9)

y(tk) = f(y(tk), tk)hα −
k∑
j=ν

c
(α)
j y(tk−j)) (10)

The sum in (10) stands for the memory term. If a ’long memory effect’ is
considered, then the lower index ν = 1 for all k, otherwise ν = 1 for k < (Lm/h)
and ν = k − Lm for k > (Lm/h).

3.2 Fractional ABM corrector-predictor method

The fractional ABM corrector-predictor method is another widely used time
domain numerical calculation method in the domain of engineering. It is a
generalization of the classical Adams–Bashforth–Moulton integrator which is
used for the numerical calculation of classical first order problem.
From the analytical point of view, the fractional differential equations under
Caputo characterization with initial conditions yk(0) = yk0 , k = 0, 1, 2...m − 1
where m := dαe, is equivalent to Volterra integral equation expressed as follows,
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y
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0
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1
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0

(x− t)α−1f(t, y(t))dt (11)



The algorithm is developed on a uniform grid {tn = nh : n = 0, 1, ...N}. The
basic idea of the algorithm is to obtain the approximation of the latter point on
the grid from the former point. Detailed formula derivation for the algorithm
can be found in [19]. Here, we only give out the derived equations for the next
states values in equation (12)-(15).
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(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1, if 1 ≤ j ≤ n,
1, if j = n+ 1.

(14)

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α) (15)

In the above equations, yh(tn+1) stands for the next state, yPh (tn+1) denotes
the predictor value for the next state, a and b are coefficients.

4 Fractional chaotic Chen and Lu systems

4.1 Fractional chaotic Chen systems

The system equation for fractional Chen system can be expressed as follow-
ing[20],

fc (x) =

Dαcx1 (t) = ac (x2 (t)− x1 (t))
Dαcx2 (t) = (cc − ac)x1 (t)− x1 (t)x3 (t) + ccx2 (t)
Dαcx3 (t) = x1 (t)x2 (t)− bcx3 (t)

(16)

In the equation, Dαc denotes the fractional derivative with order αc, (ac, bc,
cc) are the parameters of the system. The system is an extension from integer
order chaotic Chen system studied in [21].
The equilibria of the system can be obtained through the same way as its
original integer order system, by setting the right hand sand system equation
equal to zero fc (x∗) = 0 as given below,ac (x2 (t)− x1 (t)) = 0

(cc − ac)x1 (t)− x1 (t)x3 (t) + ccx2 (t) = 0
x1 (t)x2 (t)− bcx3 (t) = 0

(17)



The singularity of the equilibrium points can also be acquired through the
classical method as given below, by evaluating the eigenvalue of the jacobian
matrix of the system at equilibrium points.

det (λcI−Jc) =

 λc + ac −ac 0
−cl + al + x∗3 λc − cc x∗1

−x∗2 −x∗1 λc + bc

 = 0 (18)

Jc in equation (18) represents the Jacobian matrix of the system equation, I is
the identity matrix, λc denotes the eigenvalue, and (x∗1, x

∗
2, x
∗
3) stands for the

equilibrium point.
The singularity of the three equilibrium points of fractional Chen system for
system parameters (ac, bc, cc) = (35, 3, 28) can be obtained through above an-
alytical expressions and are given in Table 1.

4.2 Fractional chaotic Lu system

The system equation for fractional chaotic Lu system extended from integer
order Lu system can be described as follows [22],

fl (x) =

Dαlx1 (t) = al (x2 (t)− x1 (t))
Dαlx2 (t) = −x1 (t)x3 (t) + clx2 (t)
Dαlx3 (t) = x1 (t)x2 (t)− blx3 (t)

(19)

where Dαl denotes the fractional derivative with order αl, al, bl, and cl are
the parameters of the system. The equilibrium points of the system can be
acquired calculating the solutions of the following system of equations,al (x2 (t)− x1 (t)) = 0

−x1 (t)x3 (t)x1 (t) + clx2 (t) = 0
x1 (t)x2 (t)− blx3 (t) = 0

(20)

The singularity of the equilibria can be obtained the same way as discussed
previously for the fractional Chen system through the following identities,

det (λlI−Jl) =

λl + al −al 0
x∗3 λl − cc x∗1
−x∗2 −x∗1 λl + bl

 = 0 (21)

where Jl in equation (21) represents the Jacobian matrix of the fractional Lu
system, λl denotes the eigenvalue, and (x∗1, x

∗
2, x
∗
3) stands for the equilibrium

point. When the parameters of the system is set to (ac, bc, cc) = (36, 3, 20),
three equilibirum points E∗1 = (0, 0, 0), E∗2 = (7.460, 7.460, 20) and E∗3 =
(−7.460,−7.460, 20) can be obtained applying equation (20). The singular-
ity of the equilibria is also given in Table 1.

5 Solutions for the chaotic systems applying different
approaches

In this section, the solutions for fractional Chen and Lu solution are obtained
applying both GL method and fractional ABM corrector-predictor method dis-



cussed in section 3. The impact of the two approaches on the chaotic behavior
of the systems are also discussed.

5.1 Chaotic system applying GL method

With the numerical solution of fractional differential equation calculated under
GL method derived as in (10), the calculation for the states of fractional Chen
system and fractional Lu system (expression (16) and (19)) can be expressed
by the following identities (22) and (23), respectively.

x1(n) = (ac(x2(n)− x1(n− 1)))hαc −
n∑
j=ν

c
(αc)
j x1(n− j)

x2(n) = ((cc − ac)x1(n)− x1(n)x3(n− 1) + ccx3(n− 1))hαc −
n∑
j=ν

c
(αc)
j x2(n− j)

x3(n) = (x1(n)x2(n)− bcx3(n− 1))hαc −
n∑
j=ν

c
(αc)
j x3(n− j)

(22)

x1(n) = (al(x2(n− 1)− x1(n− 1)))hαl −
n∑
j=ν

c
(αl)
j x1(n− j)

x2(n) = (−x1(n)x3(n− 1) + clx2(n− 1))hαl −
n∑
j=ν

c
(αl)
j x2(n− j)

x3(n) = (x1(n)x2(n)− blx3(n− 1))hαl −
n∑
j=ν

c
(αl)
j x3(n− j)

(23)

System Equilibrium
Eigenvalue

singularity
λ1 λ2, λ3

Fractional
Chen
system

(0, 0, 0) -30.8359 23.8359,-3 Saddle
(-7.9379,-7.9379,21) -18.4280 4.2140±14.8846i Saddle Focus
(7.9379,7.9379,21) -18.4280 4.2140±14.8846i Saddle Focus

Fractional
Lü

system

(0, 0, 0) −36 20,−3 Saddle
(−7.460,−7.460, 20) −22.6516 1.8258 ± 13.6887i Saddle Focus

(7.460, 7.460, 20) −18.4280 1.8258 ± 13.6887i Saddle Focus

Table 1: Fractional Chen and Lu systems’ equilibria and their singularity

To be mentioned is that in our work, the ’long memory effect’ is adopted
applying GL method which means that the number ν in equaitons (22) and
(23) is equal to 1. The time step h in above equations is set to a fixed value
0.001.
We plotted the phase portraits of the two systems with fractional orders αc =
0.9 and αl = 0.95 in Fig.1a and 1b, respectively. The parameters and initial
conditions for Chen system are (35, 3, 28) and (−9,−5, 14). Those of Lu system
are chosen to be (36, 3, 20) and (0.2, 0.5, 0.3).



5.2 Chaotic systems applying ABM corrector-predictor approach

Based on the fractional ABM corrector-predictor numerical calculation ap-
proach for the solution of fractional differential equations given in equations
(12)-(15), the states of fractional Chen system applying ABM predictor correc-
tor approach can be expressed as follows,

Xc(n+ 1) = Xc(0) +
hαc

Γ (αc + 2)
fc(X

P
c (n+ 1))

+
hαc

Γ (αc + 2)

n∑
j=0

aj,n+1fc (Xc (j))
(24)

XP
c (n+ 1) = Xc (0) +

1

Γ (αc)

n∑
j=0

b1j,n+1fc (Xc (j))

aj,n+1 =


nαc+1 − (n− αc)(n+ 1)

αc , ifj = 0,

(n− j + 2)
αc+1

+ (n− j)αc+1 − 2(n− j + 1)
αc+1

, if1 ≤ j ≤ n,
1, ifj = n+ 1.

bj,l+1 =
hαc

αc
((n+ 1− j)αc − (n− j)αc)

(25)
In the above expressions, Xc(n + 1), Xc(n) and XP

c (n + 1) are state vectors
composed of all the state components x1, x2, and x3; αc is the fractional order
between (0, 1); fc stands for the Chen system equations.
The formula for the calculation of the states of fractional Lu system can be
obtained by substituting the state vectors, fractional order and system equa-
tions in equations (24)-(25) with Xl, αl and fl where 0 < αl < 1. The phase
portraits of the two systems acquired employing corrector-predictor approach
are given in Fig.1c and 1d, respectively. The fractional orders, parameters and
initial conditions are the same as those for the GL method.

5.3 Impact on system chaoticity with chosen methods

For the work in this section, we used the same parameters and initial conditions
for the two systems as adopted in the previous section, which are (ac, bc, cc) =
(35, 3, 28), Xc(0) = (−9,−5, 14); (al, bl, cl) = (36, 3, 20), Xl(0) = (0.2, 0.5, 0.3),
respectively. The time step h is set to 0.005. The MATLAB code[23] for ABM
corrector-predictor method and [24] is employed for the following simulation
and the calculation of LE.
According to the stability criteria introduced by the inequality (6) , the refer-
ence [17] states that for a fractional system Dαx = f(x) to remain chaotic, a
necessary condition is keeping the eigenvalues λ in the unstable region, which
gives the following equation for the fractional derivative order α.

α >
2

π
tan−1

(
|Im(λ)|
Re(λ)

)
(26)



(a) GL method Chen system (αc = 0.9) (b) GL method Lu system (αl = 0.95)

(c) GL method Chen system (αc = 0.9 (d) ABM method Lu system (αl = 0.95

Fig. 1: Phase Portrait of fractional Chen and Lu systems characterized by GL
and ABM method

where λ denotes the eigenvalues of the Jacobian matrix of the system, α is the
commensurate fractional order. Therefore, for the given parameter values, the
fractional chaotic Chen system should have a fractional order αc greater than
or equal to 0.8244.
In Fig. 2, we plot the phase portrait of fractional Chen system at boundary
fractional values 0.82 and 0.83 applying both GL and ABM corrector-predictor
methods. The time response of the last 2000 states obtained through both
methods are also given. The states calculated by GL method is in red and
ABM corrector-predictor in blue. It is not difficult to observe from Fig. 2a
and 2c that with order 0.82 there are only one red point in the figure, which
indicates that the states stays at the same fixed point applying GL method.
Whereas for the applied ABM method(blue dots), they appear to have a shape
of the attractors. When the system order is equal to 0.83, both methods dis-
play the shapes with attractors. This indicates that when applying GL calcu-
lation method with long memory effect, the system’s dynamic behavior is in
accordance with the stability criteria given by equation (26). While the ABM
calculation method applied in this paper provides the system with a smaller
derivative order for the system to be chaotic.
The time response figures given by Fig. 2b and 2d confirms the founding. The



(a) Chen system with order 0.82 (b) Time response with order 0.9

(c) Chen system with order 0.83 (d) Time response with order 0.83

Fig. 2: Phase Portrait and time response of Chen system at boundary fractional
order values

blue curve stands for the states obtain through ABM method and red for GL.
It is clear that for derivative order 0.82, the red attractors stays at the same
value for the three state vector components x1, x2 and x3, while the blue curves
appear to be oscillating.
We also give the Lyapunov exponent and bifurcation diagrams over different
fractional orders of fractional Chen and Lu systems in Fig.3. For each frac-
tional derivative orders, 104 states were generated and the LEs were calculated
throughout the iterations. The LE spectrum curves in 3a and 3b are obtained
by combining LE values of the last iteration for every evaluated orders. The
plots show that only x1 component possesses LE value greater than 0 apply-
ing both methods. It can be observed that applying ABM corrector-predictor
approach, for the fractional Chen system, the LE of x1 greater than 0 appears
before order 0.53, whereas for GL method, the LE exceeds 0 after fractional
order of 0.8. The LEs for fractional Lu system calculated using both methods
show the similar results, with ABM method having a smaller chaotic fractional
derivative value. This is in accordance with our previous findings concern-
ing the phase portrait and time response which draws to the conclusion that
GL method give a more accurate approximation of original fractional system.



Apart from this, from the y-coordinates of the bifurcation diagram where the
system is non-chaotic, it can be observed that the solution obtained using ABM
method stays at the equilibrium point as obtained through analytical analysis.

(a) Chen system GL method (b) Chen system ABM method

(c) Lu system GL method (d) Lu system ABM method

Fig. 3: LE and bifurcation results for Chen and Lu systems over different
fractional derivatives employing different methods (ac, bc, cc) = (35, 3, 28),
(al, bl, cl) = (36, 3, 20)

The LEs results and bifurcation diagram over different parameters of fractional
Lu system are also given in Fig.4 to illustrate the dynamics possesses by the
system. We set the system fractional order fixed to 0.9. It can be observed
that applying different numerical calculation methods, the system dynamic is
quite different. It is worth mentioning that the results for different parameters
are conducted by changing one parameter at a time and fixing the other two
unchanged.

6 Conclusion

In this paper, we recalled two numerical solutions calculation methods for frac-
tional differential equations adopting Grünward-Leinikov and Caputo charac-



(a) Lu system GL method al LE results (b) Lu system ABM method al LE results

(c) Lu system GL method bl LE results (d) Lu system ABM method bl LE results

(e) Lu system GL method cl LE results (f) Lu system ABM method Cl LE results

Fig. 4: LE and bifurcation results for Chen and Lu systems over different frac-
tional parameters employing different methods



terization of fractional derivative, respectively. Two fractional chaotic systems,
fractional Chen system and fractional Lu system are discussed and their dis-
cretized states were calculated employing both methods. The results show that
compared to the adopted ABM corrector-predictor method, the GL approach
with long memory effect provide the original fractional system with a better
approximation in coherence with the analytical studies. At the contrary, em-
ploying ABM method, the approximation accuracy appears to be deteriorate.
However, in terms of chaoticity, it has a greater chaotic range for fractional
derivatives.
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