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The nonlinear Schrödinger equation, used to describe the dynamics of quantum fluids, is known to
be valid not only for massive particles, but also for the propagation of light in a nonlinear medium,
predicting condensation of classical waves. Here we report on the initial evolution of random waves
with Gaussian statistics using atomic vapors as an efficient two dimensional nonlinear medium.
Experimental and theoretical analysis of near field images reveal a phenomenon of nonequilibrium
precondensation, characterized by a fast relaxation towards a precondensate fraction of up to 75%.
Such precondensation is in contrast to complete thermalization to the Rayleigh-Jeans equilibrium
distribution, requiring prohibitive long interaction lengths.

Bose-Einstein condensation has been reported in a va-
riety of quantum systems, such as ultracold atoms and
molecules [1], exciton polaritons [2–4], or photons [5],
where the bosonic character of the particles is crucial.
On the other hand, it is known that an ensemble of clas-
sical waves can exhibit a phenomenon of condensation,
whose thermodynamic properties are analogous to those
of the genuine quantum Bose-Einstein condensation, de-
spite the classical nature of the system [6–15]. Indeed
for waves traveling in random directions in a nonlinear
medium, wave thermalization and condensation can oc-
cur. Such spontaneous formation of large scale coher-
ent structures is encountered in many fields of physics,
such as astrophysics, low-temperature condensed mat-
ter, hydrodynamics, plasma physics and optics. Contrary
to dissipative systems, conservative Hamiltonian systems
cannot evolve towards a fully ordered state, because such
an evolution would imply a loss of statistical information
for the system, which would violate its formal reversibil-
ity. However, in spite of its formal reversibility, a noninte-
grable Hamiltonian system can exhibit a self-organization
process which is induced by its natural thermalization
towards the equilibrium state [6–10, 12, 14–20]. Wave
condensation is a spectacular example of this type of self-
organization processes, which results from the divergence
of the classical Rayleigh-Jeans equilibrium distribution.

Here we present an experimental system allowing us
to study the time evolution of such wave condensation
in two dimensions. In contrast to ultracold atom exper-
iments, the wave under consideration is the electromag-
netic field of a laser beam, rendered spatially incoherent
by passing through a diffuser. At variance with many
ultracold atom experiments, we also consider here a sit-
uation without an external potential.

An important aspect of this experimental work is the
study of fast relaxation to out of equilibrium states in
the initial process of two-dimensional thermalization. In-
deed achieving complete thermalization and condensa-
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FIG. 1: Experimental setup. After passing a first lens (L1)
a 1W laser is impinging on a diffuser (D) creating a speckle
field at the input face of a heated atomic vapor cell containing
rubidium atoms. The output field is imaged on a CCD camera
using a second lens (L2) with focal distance f .

tion of random nonlinear waves through nonlinear optical
propagation is known to require prohibitive large inter-
action lengths [17–19]. The existence of fast relaxation
to out of equilibrium states is an open problem that is
attracting a growing interest in different research commu-
nities [21–24], including long range interacting systems,
where fast relaxation occurs towards quasi-stationary
states [25, 26] or one dimensional nearly integrable quan-
tum systems, where experimental signatures of prether-
malization have been observed [27–29]. At variance with
the usual approach characterizing wave condensation in
the far field spectrum, here, we identify a fast initial re-
laxation through the analysis of the optical near field,
which reveals the existence of a phenomenon of precon-
densation that occurs far from thermal equilibrium for
short propagation lengths. Our work thus contributes an
experimental observation (supported by numerical simu-
lations) of fast relaxation to out of equilibrium states.

The nonlinear Schrödinger equation (NLS) describing
the experiment can be rewritten as [30]:

i
∂ψ

∂z
= − 1

2k0
∇2ψ + γ|ψ|2ψ, (1)
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where ∇ is the gradient in the transverse surface section
of the beam r = (x, y), while the longitudinal variable
z plays the role of the time evolution. The wavelength
of the optical wave is λ = 2π/k0 and γ describes the
strength of the nonlinearity. The incident speckle field is
characterized by a transverse correlation length σc, which
also determines the initial transverse momentum distri-
bution. The healing length denotes the relevant trans-
verse length scale for which linear and nonlinear effects
are of the same order Λ =

√
zNL/(2k0), where zNL =

1/(γI0) is the nonlinear length scale, and I0 =
〈
|ψ|2

〉
is

the intensity averaged over the relevant transverse surface
of the beam (see below). In this work we consider defo-
cusing nonlinearities (γ > 0), corresponding to repulsive
interactions. We recall that, in addition to the intensity
I0 (‘particle number’), the NLS Eq.(1) also conserves the
total energy (Hamiltonian) H = E + U , which has a ki-
netic (linear) contribution E(z) = 1

2k0

∫
|∇ψ|2dr, and a

nonlinear contribution U(z) = γ
2

∫
|ψ|4dr.

We stress that this type of classical wave condensa-
tion occurs in the spatial frequency domain and at the
same wavelength as that of the incident laser. This is
in contrast to the condensation of photons reported in
[5], where the effect of condensation also occurs for tem-
poral frequencies and is accompanied with inelastic light
scattering via interactions with a thermal bath. In the
situation considered here, no thermal bath is present: we
deal with a microcanonical statistical description, where
the total energy H plays a role analogous to the tem-
perature (note that, in analogy with kinetic gas theory,
the kinetic energy E(z) provides a natural measure of
the amount of randomness in the incoherent wave). This
is a key difference with respect to the broader notion of
condensation used to characterize different phenomena
in optical cavities, which are inherently forced-dissipative
systems [4, 42–46]. Also, at variance with quenched cool-
ing achieved in ultracold atom experiments [47–50], here
the initial condition explored does not include any trun-
cation of higher transverse momenta. The possibility to
engineer the initial conditions for the nonlinear propaga-
tion illustrates the potential of this experiment to explore
novel regimes of the universal two dimensional NLS equa-
tions.

The experimental setup is depicted in Fig. 1. The out-
put of a 1W fibre laser, tuned below the D2 line of Rb
at 780nm (allowing for defocusing nonlinearities [30]),
is used to realize a speckle field by passing through a
diffuser providing a Gaussian distribution of incident
wavevectors in the transverse plane. The correlation
length of the speckle field can be adjusted by changing the
size of the illumination area on the diffuser (see Fig. 1).
This allows us to tune the kinetic contribution E(z = 0).
This speckle field is then sent onto the atomic vapor with
a Gaussian envelope on the order of wsp ≈ 5mm and the
average intensity I0 around the center of the beam is
thus proportional to the total power I0 ∝ P/w2
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FIG. 2: Near Field Speckle: (a)-(c) near field images for
L/zNL = 0, 3.5π and 14.4π; (d)-(f): corresponding intensity
histograms, showing the emergence of a non zero value for the
maximum of P (I) with corresponding precondensation frac-
tions n0 : (d) n0 = 0, (e) n0/I0 = 0.5, (f) n0/I0 = 0.7. The
dotted black line refers to the exponential (Gaussian statis-
tics), the dashed red line is a fit to the probability density
(2).

nonlinear medium consists of a L = 7cm long heated va-
por cell containing a natural mixture of rubidium atoms.
By adjusting the temperature of the cell, we can vary
the atomic density ρat of the atoms by several orders of
magnitude. The narrow atomic resonances allow efficient
control of the linear index of refraction and its nonlin-
earity is due to the excited state saturation, which can
be tuned by changing the incident laser frequency ωL
away from the atomic resonance ωat by ∆ = ωL − ωat
or by adapting the power of the incident laser beam.
We are thus able to realize a nonlinear phase shift up
to ΦNL = k0L∆n = 20π, with a nonlinear index of re-
fraction of ∆n = 20π/(k0L) ≈ 10−4 and a transmitted
power larger than 70%, so that zNL = L/20π ≈ 1mm
and Λ ≈ 10µm [30].

The light transmitted after nonlinear propagation can
be analyzed either in real space (near field) through imag-
ing onto a CCD camera (see Fig. 1), or by investigat-
ing the (far field) momentum distribution. Experimental
measurements of the far field spectrum are delicate and
extremely sensitive to details of the optical setup and de-
tection scheme [51]. At variance with [14], our analysis is
based on near field measurements, which will be shown to
provide the appropriate framework to define the notion
of ‘non-equilibrium precondensation’.

In Fig. 2 we illustrate the experimental results of the
near field data for increasing values of L/zNL, obtained
by changing the nonlinear distance zNL at constant L.
As the laser intensity in the wings of the Gaussian en-
velope vanishes, the nonlinear interaction is prominent
only in the central part of the speckle field. We therefore
analyzed the near field intensity by performing spatial
averaging (〈.〉) within a sufficiently small region of inter-
est of the beam where the statistics of the random wave
is almost homogeneous.
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For a very far detuned laser inducing a vanishing non-
linearity the transmitted intensity distribution P (I) ex-
hibits an exponential decrease (see Fig. 2(d)), as expected
for random waves with Gaussian statistics. By increasing
the nonlinearity, the probability distribution strongly de-
viates from Gaussianity and the maximum of P (I) grad-
ually shifts away from I = 0 (see Fig. 2(f)). We remark
that such a deformation of the distribution is a robust
phenomenon that also occurs for non-Gaussian heavy
tailed statistics. Also note that apparently similar defor-
mations of the probability density have been reported in
1D optical systems [52–54]. However, the 1D NLS equa-
tion is integrable and does not exhibit thermalization or
precondensation, so that the 1D probability density P (I)
is of different nature than in 2D [30]. Notice that, ow-
ing to an exact relation based on energy conservation, a
deviation from Gaussian statistics can be related to the
variation of the spectral width of the wave [55].

In analogy with Bose-Einstein condensation, the defor-
mation of the probability distribution in Fig. 2 reflects a
reduction of intensity fluctuations that precedes the es-
tablishment of long range phase coherence [56, 57]. We
analyze the transmitted near field distribution by decom-
posing the field into a homogeneous (plane-wave) conden-
sate component and an incoherent component with sta-
tistical Gaussian fluctuations, ψ(r, z) =

√
n0 + φ(r, z).

Although the coherent component does not refer to a
purely homogeneous plane-wave, such a decomposition
proves robust and relevant to our analysis [30]. The in-
tensity distribution P (I) is given then by:

P (I) =
exp

(
− I+n0

I0−n0

)
I0 − n0

I0

(
2
√
n0I

I0 − n0

)
, (2)

where I0(x) is the modified Bessel function of zero-th
order, and I0 = 〈I〉. In the limit n0 → 0, the distribu-
tion (2) (also known as Rice-Nakagami distribution) re-
duces to a pure exponential which characterizes a Gaus-
sian field, P (I) = exp(−I/I0)/I0. In the opposite limit,
n0/I0 → 1, one obtains P (I) = δ(I − I0) as expected for
a pure condensate plane-wave solution. It is interesting
to note that, according to (2), the precondensate is sim-
ply related to the variance of the intensity fluctuations,
n0/I0 =

√
2− 〈I2〉 /I2

0 , which, by energy conservation,
is related to the prethermalized kinetic energy. Note in
Fig. 2 that the intensity distributions observed in our ex-
periment remain broad. This invalidates the standard
Bogoliubov approach [1, 23, 58], which requires a sharp
peaked intensity histogram around I0.

We stress the fact that Eq. (2) does not require the
field to be in a thermal equilibrium state, so that the
probability density (2) is valid even far from equilibrium.
Note that this is in contrast with the equilibrium proba-
bility density that is derived on the basis of equilibrium
statistical mechanics, see Ref.[53]. Actually, the precon-
densation effect occurs very far from thermal equilibrium
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FIG. 3: Precondensate fraction at the constant laser
power (P = 1W ) and sample length (L = 7cm): (a) as a
function of propagation distance L/zNL for different values
of the speckle correlation length σc. The nonlinear length
zNL is varied via the laser frequency ∆. (b) as a function of
Λ/σc, obtained by changing the healing length Λ via the laser
detuning for various correlation lengths σc(full symbols) or by
changing the correlation length σc at constant detuning and
corresponding healing length Λ = 44µm (gray circles). Er-
ror bars are derived from uncertainties of the nonlinear phase
calibration and from fitting respectively.

and does not require the establishment of an equilibrium
state, i.e., the Rayleigh-Jeans spectrum. This is a strik-
ing difference with the usual equilibrium condensation
arising from the divergence of the Rayleigh-Jeans distri-
bution, which is featured by a marked peak at k = 0. We
recall that complete thermalization to the Rayleigh-Jeans
equilibrium spectrum requires extremely long propaga-
tion lengths that are not accessible experimentally, as
revealed by numerical simulations (the thermalization
length is of the order of 105zNL in the example of Fig. 4),
or through the analysis of non-equilibrium kinetic equa-
tions [17]. At variance with this fully developed equi-
librium condensation, here we identify a non-equilibrium
precondensation effect that is characterized by a fast re-
laxation of n0/I0 for small propagation lengths available
experimentally. Surprisingly, this initial stage of precon-
densation, featured by an accumulation of relatively long-
wavelength modes around k ≈ 0, provides a good indica-
tion for the final condensate fraction at Rayleigh-Jeans
thermal equilibrium.

We report in Fig. 3(a) the precondensate fraction ex-
tracted by fitting the probability distribution (2) to the
experimental intensity histogram, as a function of the
effective propagation distance L/zNL. One clearly ob-
serves a continuous increase of n0/I0 for different values
of the initial speckle correlation length. The Hamilto-
nian evolution of the random wave can be understood
in a microcanonical statistical description, where the to-
tal energy H is the relevant parameter in the absence
of an external heat bath governing the temperature for
a canonical statistical description. Accordingly, we have
studied the transition to precondensation by varying the
energy H, while keeping constant the ‘number of parti-
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FIG. 4: Numerical simulations of precondensation:
Precondensate fraction n0/I0 (red lines), zero momentum
population nFF

0 /I0 (blue lines) and normalized kinetic energy

Ẽ (magenta lines) in early stage (a) and in the long-term evo-
lution (b). The dashed dark lines in (a) denote the analytical
prediction for small z, in (b) the thermal equilibrium state.
(c) Momentum spectrum of the initial wave at z = 0 (black
line) and at z = 100zNL (blue line), showing an accumulation
of particles ‘near’ k ∼ 0. (d) Near field intensity histogram:
initial field (dark dashed line), after z = 100zNL (green cir-
cles) and fit of Eq.(2) (green line), and corresponding intensity
histograms after z = 1.5 × 105zNL (in blue).

cles’ (I0 fixed). Such a transition is reported in Fig. 3(b)
as a function of a dimensionless Hamiltonian, which can
be conveniently expressed in terms of the ratio of the
healing length Λ and the initial correlation length σc :
H̃ = 1 + (Λ/σc)

2 [30]. This representation shows that
the nonlinear evolution consists of an exchange between
the initial linear contribution 〈E〉0 ∝ 1/σ2

c , and the ini-
tial nonlinear contribution 〈U〉0 ∝ γI2

0 of the Hamilto-
nian. This total energy can be tuned in our experiment
by either changing the correlation length σc, or the non-
linear index of refraction (by changing the laser-atom
detuning or the laser intensity). As a remarkable re-
sult, the precondensate fraction seems to only depend on
the ratio between the linear and nonlinear contributions,
〈E〉0 / 〈U〉0 = (Λ/σc)

2. We report in Fig. 3(b) n0/I0 as
a function of (Λ/σc)

2 for various different initial corre-
lation lengths and different values of the nonlinear in-
teraction. The collapse of the data to an almost unique
universal curve is a good indicator of the relevance of
H̃ = 1+(Λ/σc)

2 to describe precondensation. Note how-
ever that there is some dispersion in the positions of the
different curves for small precondensate fractions, a fea-
ture that can be ascribed to the impact of the nonlocal
nonlinearity [59, 60].

Numerical simulations of the NLS Eq.(1) show that
the precondensate fraction increases in a significant way
in the initial stage (see Fig. 4(a)), a feature that can be
described analytically: n0

I0
' 2
√

2 Λ
σc

z
zNL

[30]. Note that,

as compared to the theory and simulations, the experi-
mental results show a delay for the initial growth of n0/I0
and its subsequent saturation, a feature that can be asso-
ciated to a first correction of a nonlocal nonlinearity [30].
The growth of n0/I0 then rapidly saturates to a quasi-
stationary value after few nonlinear lengths zNL. This
fast process is characterized by a transfer and subsequent
equilibration of the kinetic (E) and nonlinear (U) ener-
gies to their prethermalized quasi-steady values, which
in turn determine the amount of precondensate fraction
n0/I0 [30]. In marked contrast to such a short-time re-
laxation of E and n0, the spectrum of the random wave
exhibits a very slow thermalization to the Rayleigh-Jeans
equilibrium distribution. This is revealed by the far-field
zero-momentum condensate nFF

0 = n(k = 0), whose re-
laxation toward the thermal equilibrium state requires
several thousands of nonlinear propagation lengths, see
Fig. 4(b) (blue line). Note that this slow relaxation is set
by an analogue of photon-photon collisions: The corre-
sponding collision rate scales as 1/γ2 [17], in contrast to
the nonlinear length zNL that scales as 1/γ and which
is reminiscent of the chemical potential in Bose-Einstein
condensates. The far-from equilibrium nature of the pre-
condensation process is also evidenced by the fact that
the system does not exhibit long-range phase order, as
it would be expected for the thermalized 2D NLS equa-
tion below the Berezinskii-Kosterlitz-Thouless transition
[61, 62]. Indeed, precondensation is characterized by a
fast decay of the correlation function [30], which is in
contrast with the power-law behavior found at equilib-
rium. This means that precondensation does not refer
to a “quasi-condensate” in the sense of the Berezinskii-
Kosterlitz-Thouless theory [62].

Precondensation is characterized by an accumulation
of particles (power) toward k ∼ 0, as revealed by the
far-field spectrum (momentum distribution) in Fig. 4(c).
Note that this strongly nonlinear effect (〈E〉0 < 〈U〉0)
cannot be described by a weak turbulence kinetic ap-
proach [8, 16, 20]. This shows an important property,
namely the multimode nature of the effect of preconden-
sation. At variance with nFF

0 that refers to the pure zero-
momentum occupation, here the precondensate refers to
a slowly varying coherent field ψc(r, z), characterized by
low-frequency components k . 1/Λ. The conventional
decomposition of the field discussed above through Eq.(2)
can then be refined by the substitution

√
n0 → ψc(r, z),

i.e., ψ(r, z) = ψc(r, z)+φ(r, z), where φ(r, z) denotes the
rapidly varying incoherent component and n0 =

〈
|ψc|2

〉
.

Importantly, the multimode analysis reveals that the
bare intensity distribution (2) is well corroborated by
a refined multimode intensity distribution, as revealed
by the remarkable agreement between the simulations
and the bare intensity distribution (2), see Fig. 4(d) at
z = 100zNL and at full equilibrium (z = 150× 103zNL).
In addition, precondensation proves robust with respect
to the intensity moments (〈Ip〉) used to compute n0/I0,
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or the frequency cut-off that is known to regularize the
ultraviolet catastrophe inherent to classical waves. These
aspects validate the simple model (2) used to analyze pre-
condensation [30].

In conclusion, we have reported the observation of a
phenomenon of non-equilibrium precondensation of clas-
sical waves in two dimensions. This experiment can be
extended to study a classical analogue of Bose-Einstein
condensation after a sudden quench below the critical
temperature (in 3D) [48, 49], the Berezinskii-Kosterlitz-
Thouless transition (in 2D) [61], or the formation of non-
thermal fixed points [63, 64]. The possibility of shap-
ing the initial conditions further allows the study of
the growth of long range coherence using, e.g., a Gaus-
sian beam with small fluctuations corresponding to non-
linear filtering of high frequency components [65], in
relation with spatial beam self-cleaning in multimode
fibers [66, 67]. This experimental platform also paves
the way to the study of a variety of phenomena in the
key area of quantum fluids of light, such as superfluid
behaviors [3, 68–71], strongly nonlinear shocks [72, 73],
nonlocal effects [59, 60], the development of turbulence
cascades [8, 9, 74], or quench dynamics in the framework
of the Kibble-Zurek mechanism [75].
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Schollwöck, J. Eisert, I. Bloch, Probing the relaxation to-
wards equilibrium in an isolated strongly correlated one-
dimensional Bose gas, Nature Physics 8, 325 (2012).

[29] T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler,
M. Kuhnert, W. Rohringer, I.E. Mazets, T. Gasenzer,
J. Schmiedmayer, Experimental observation of a gener-
alized Gibbs ensemble, Science 348, 207-211 (2015).

[30] See Supplemental Material [url] for a detailed descrip-
tion of the experimental methods (calibration of nonlin-
earity, correlation length of the incindent speckle beam)
and of the theoretical developments (NLS model, robust-
ness of precondensation, nonlocal nonlinearity, 1D vs 2D
comparison, moment analysis of precondensation), which
includes Refs. [31–41].

[31] Y. Wang, M. Saffman, Experimental study of nonlinear
focusing in a magneto-optical trap using a Z-scan tech-
nique, Phys. Rev. A 70, 013801 (2004).



6

[32] Y. R. Shen, The Principles of Nonlinear Optics, New
York: J. Wiley (1984)

[33] F. Simoni, Nonlinear Optical Properties of Liquid Crys-
tals and Polymer Dispersed Liquid Crystals, World Sci-
entific (1997).

[34] G.P. Agrawal, Nonlinear Fiber Optics, Academic Press
(2013).

[35] L. Deng, K. He, T. Zhou and C. Li, Formation and evo-
lution of far-field diffraction patterns of divergent and
convergent Gaussian beams passing through self-focusing
and self-defocusing media J. Opt. A: Pure Appl. Opt. 7,
409-415 (2005)

[36] E. V. Garcia Ramirez, M. L. Arroyo Carrasco, M. M.
Mendez Otero, S. Chavez Cerda, and M. D. Iturbe
Castillo, Far field intensity distributions due to spatial
self phase modulation of a Gaussian beam by a thin
nonlocal nonlinear media Opt. Express 18, 22067-22079
(2010)

[37] J. Berges, T. Gasenzer, Quantum versus classical statis-
tical dynamics of an ultracold Bose gas, Phys. Rev. A
76, 033604 (2007).

[38] P. Walczak, S. Randoux, and P. Suret, Optical Rogue
Waves in Integrable Turbulence, PRL 114, 143903
(2015).

[39] J.M. Soto-Crespo, N. Devine, N. Akhmediev, Integrable
Turbulence and Rogue Waves: Breathers or Solitons?,
Phys. Rev. Lett. 116, 103901 (2016).

[40] M. Abramowitz, I. Stegun, Handbook of mathemati-
cal functions, Dover Publications, New-York, 1965 (sec.
13.1).

[41] A. Picozzi, S. Rica, Condensation of classical optical
waves beyond the cubic nonlinear Schrödinger equation,
Opt. Commun. 285, 5440 (2012).

[42] C. Conti, M. Leonetti, A. Fratalocchi, L. Angelani,
G. Ruocco, Condensation in disordered lasers: theory,
3D simulations and experiments. Phys. Rev. Lett. 101,
143901 (2008).

[43] R. Weill, B. Fischer, O. Gat, Light-mode condensation
in actively-mode-locked lasers, Phys. Rev. Lett. 104,
173901 (2010).

[44] G. Oren, A. Bekker, B. Fischer, Classical condensation
of light pulses in a loss trap in a laser cavity, Optica 1,
145 (2014).

[45] E. Turitsyna, G. Falkovich, A. El-Taher, X. Shu, P.
Harper, S. Turitsyn, Optical turbulence and spectral con-
densate in long fibre lasers, Proc. R. Soc. A 468, 2145
(2012).

[46] E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X.
Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich,
S. Turitsyn, The laminar-turbulent transition in a fibre
laser, Nature Photon. 7, 783 (2013).
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