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A B S T R A C T

Background: Dengue infection is a global health threat. While symptomatic cases contribute to morbidity
and mortality, the majority of infected people are asymptomatic but serve as an important reservoir.
However, the kinetics of viremia in asymptomatic infections remains unknown.
Methods: We enrolled 279 hospital-based symptomatic index cases and quantified dengue virus (DENV)
RNA at enrollment and at the day of defervescence. To identify asymptomatic cases, 175 household
members of index cases were monitored for clinical symptoms during follow-up, and blood was taken
twice weekly to test for and quantify DENV RNA until cleared.
Results: We detected DENV in thirteen asymptomatic household members (7.43%). Their DENV serotypes
were primarily the same as those of their family index cases. The median peak DENV viremia in
asymptomatic subjects was lower than that of symptomatic individuals during the febrile phase, and the
viral decay rate was slower in asymptomatic infections.
Conclusions: DENV level and kinetics in asymptomatic individuals differed significantly from those of
symptomatic cases. Despite the lower viremia, the slower decay rate in asymptomatic infections could
lead to their prolonging the infectious reservoir. The improvement of transmission control to prevent
such long-lived asymptomatic infections from transmitting the DENV is needed.
© 2020 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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Introduction

Dengue is the most important arthropod-borne viral infection
worldwide, infecting an estimated 390 million people annually
(Bhatt et al., 2013). The incidence of dengue virus (DENV) infection
has been rising over the last five decades (Gubler, 2020). The
outcome of DENV infection ranges from asymptomatic/inapparent
infection, mild self-limited dengue fever (DF) to severe dengue
hemorrhagic fever (DHF), with the potential development of life-
threatening dengue shock syndrome (DSS). However, the majority
of infected individuals have no or insufficient symptoms to result
in a clinical presentation; nevertheless, they could serve as a
ciety for Infectious Diseases. This is an open access article under the CC BY-NC-ND
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significant reservoir for DENV transmission (Endy, 2002; Endy
et al., 2011; Grange et al., 2014; ten Bosch et al., 2018).

The level of DENV viremia is one of the most important
determinants of human infectiousness to mosquitoes (Nguyen
et al., 2013; Duong et al., 2015), and the duration of infection is a
crucial parameter determining the epidemiological dynamics of
any pathogen and the subsequent R0 (Anderson and May, 1991).
In symptomatic DENV infections, classical experimental infec-
tion studies showed that DENV was infectious from two days
before and five days after illness onset (Siler et al., 1926;
Simmons et al., 1931; Nishiura and Halstead, 2007). The duration
of infectiousness, estimated via the success of transmission to
mosquitoes or viral isolation, was found to range from between
1–7 days with a mean of 4–5 days and with longer durations in
primary than secondary infections (Siler et al., 1926; Duyen
et al., 2020; Kuberski et al., 1977). More recent studies using
molecular detection of the virus have revealed a similar duration
of infection, with a range lasting up to six days post-onset of
fever and with some variation according to serotype, disease
severity, and 1� vs. 2� infections (Duyen et al., 2020). In
experimental non-human primate sylvatic DENV infections,
Figure 1. Study design for index cases and household members investigation. D1 (day of
(two months after enrollment); DENV PCR (RT-PCR of DENV result).
viremia duration ranged from three to five days, depending on
the DENV serotype (Althouse et al., 2014). To date, the kinetics of
DENV in individuals with asymptomatic DENV infections
remains unknown.

We conducted a cohort study to identify and follow asymp-
tomatic DENV infected individuals, DF, and DHF patients prospec-
tively to characterize their viremia kinetics. Asymptomatic DENV
infected individuals were identified by investigating the presence
of DENV by Reverse transcription PCR (RT-PCR) in household
members (HHM) of symptomatic DENV infected patients (index
cases) (Dussart et al., 2012). Once identified, we followed these
individuals prospectively, monitored their symptoms, and mea-
sured the level of DENV in blood samples twice a week until DENV
was cleared from the circulation. This knowledge of DENV kinetics
in asymptomatic individuals is crucial for predicting the level and
duration of infectiousness in this important DENV reservoir.
 enrollment); Ddef (Day of defervescence); Wk2 (two weeks after enrollment); Mo2



Table 1
Index cases characteristics.

Number of cases (percentage)

Severity DF 177 (63.44%)
DHF 102 (36.55%)

Year 2012 31 (11.11%)
2013 118 (42.29%)
2014 16 (5.73%)
2015 114 (40.86%)

Serotype 1 39 (13.98%)
2 38 (13.62%)
3 89 (31.90%)
4 96 (34.40%)
indeterminatea 17 (6.09%)

Primary/secondary infection Primary 22 (8.24%)
Secondary 208 (74.55%)
Indeterminate 49 (17.5%)

Gender Male 136 (48.75%)
Female 143 (51.25%)

Age Children(<=15) 88 (31.54%)
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Materials and methods

Ethics statement

The study was approved by the Institutional Review Board of
Faculty of Medicine Vajira Hospital (No.015/12) and the Faculty of
Tropical Medicine Mahidol University (TMEC 13�041). All subjects
or their legal guardians signed written informed consent before
study participation.

Study population

Subjects were recruited from two study sites in Bangkok (Vajira
hospital and the Faculty of Tropical Medicine, Mahidol University)
and one study site in Tak province (Tasongyang hospital). Subjects
were recruited from Vajira hospital in 2012–2015, and the Faculty
of Tropical Medicine and Tak sites were added in 2015. A total of
279 index cases were enrolled

Index case sample and data collection

Demographic and clinical data of index cases were collected
with standardized case report forms. Blood samples were collected
for RT-PCR twice: on the day of enrollment (D1) and on the day
fever subsided (Day of defervescence, Ddef). Additional blood
samples were collected once a day during the febrile phase
between D1 and Ddef and at 2-week and 2-month follow-up time
points for a heme-agglutination inhibition (HI) test and other
immunological studies. Index cases were classified into DF and
DHF according to WHO criteria (World Health Organization, 1997)
(Figure 1).

Household member samples and data collection

Once the index cases were confirmed for DENV infection, their
HHM were enrolled within 1–2 days. Their body temperature and
clinical symptoms were recorded on standardized case report
forms throughout the follow-up period. Blood samples were taken
for DENV RT-PCR on the first day of enrollment (D1) and then
between 24�72 hours later. The result of DENV RT-PCR became
available within 24 h after blood collection and dictated
subsequent investigation and follow-up. If DENV was detectable
by RT-PCR, two drops of blood were taken onto filter paper (Aubry
et al., 2012) every 2–4 days until DENV become undetectable twice
in a row (or the subject was lost to follow-up). The clinical follow-
up also ended when DENV was undetectable twice consecutively
by RT-PCR (Figure 1).

DENV detection, quantification and serotype determination by PCR

Serotype-specific nested RT-PCR was performed on all samples
to detect the presence of DENV RNA and determine the DENV
serotype. Quantitative RT-PCR (qRT-PCR) was used to quantify the
DENV viral load when possible. First, viral RNA was extracted from
blood samples using the QIAamp viral RNA mini kit (QIAGEN,
Germany) according to the manufacturer's instructions and stored
at �80 �C until used. Serotype-specific nested RT-PCR was
performed according to the published protocol (Lanciotti et al.,
1992). The serotype and quantity of DENV RNA were determined
by the qRT-PCR assay, as previously described (Duong et al., 2015)
(supplementary Table 1).
Primary/secondary DENV infection determination

In-house IgM capture ELISA (Duong et al., 2015) and HI assays
were performed as previously described (Clarke, 1958). Paired
plasma during acute infection and two weeks or two months
follow-up time points (when available) were used for HI. Primary
and secondary infections were determined using WHO/TDR (1997)
criteria (World Health Organization, 1997).

Statistical analysis

DENV decay rate in index cases was calculated based on the
DENV viral load on D1 subtracted by that on Ddef and divided by
the number of days between D1 and Ddef. Decay rates in
asymptomatic HHM were also calculated for every time point
when RT-PCR was performed on an individual.

For risk factor analyses of viral load, decay rate, day to
defervescence, and day to viral clearance, a Generalized Linear
Model with Poisson error structure was fitted to test the
association with the following explanatory variables: age (contin-
uous), gender (M/F), year, site, infection severity (DHF vs. DF) and
serotype and where indicated, log10 transformed viral load at D1.
The number of individuals included in each analysis varied: all viral
load samples were analyzed irrespective of whether they were
subsequently lost to follow-up; decay rate included only individu-
als who were not lost to follow-up and who showed a decrease in
viremia from D1 to Ddef (only eight individuals had an increase in
viremia from D1 to Ddef); days to defervescence included all
individuals not lost to follow-up irrespective of whether viremia
increased from D1 to Ddef; day to viral clearance included only
those with zero viremia at Ddef.

To assess whether there was a difference in the decay rate
between asymptomatic household members and their index cases,
a Generalized linear mixed model with Poisson error structure was
fitted to decay rate with age, gender, serotype (DENV-3 vs. DENV-
4), infection type (Index case vs. Asymptomatic HHM) as
explanatory variables and household ID as the random factor.
The viral load at D1 and Ddef of the index cases and the peak viral
load of the asymptomatic HHM were compared by the Mann-
Whitney U test For all analyses, a dispersion parameter was
estimated and used to account for overdispersion in the data.
Analyses were performed in Genstat version 15 (VSN International,
2017).
Adults (>15) 191 (68.46%)

a These subjects had a positive result for NS1 or IgM, but DENV RNA undetectable
by PCR and, therefore, unable to determine serotype.
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Results

Index cases characteristics

290 index cases were initially enrolled in the study, of which
279 cases had confirmed DENV infection from 138 households.
DENV was detected by RT-PCR in 262 of these 279 cases (94.27%).
Of those 17 with negative RT-PCR, eleven had anti-DENV IgM, four
had detectable NS1, and two had both anti-DENV IgM and NS1. The
majority of index cases had DF (63.44%), All four DENV serotypes
circulated during the study years, with DENV-4 (34.40%) and
DENV-3 (31.90%) being more prevalent than the other serotypes.
An almost equal number of male (48.75%) and female (51.25%)
subjects were enrolled, and the majority were adults (68.46%)
(Table 1).

DENV kinetics in index cases

Overall, the mean viral load in DENV positive individuals on the
day of enrollment (D1) was 7.24 � 109 viral copies/mL (SEM: 3.45 �
109). The time to defervescence ranged from 1 to 7 days post day of
recruitment (the average time was 2.28 days, SEM 0.08). Of those
individuals that cleared their viral load completely by the day of
defervescence, the mean time to clearance was 2.77 days (SEM
0.15).

DENV viral load on D1 was higher in DHF than DF (Relative Risk
(RR) = 5.88, P < 0.001), decreased with age (RR = 0.92, P = 0.003),
was lower in male than female gender (RR = 0.31, P < 0.001) and
DENV-1 (RR = 0.25, P = 0.001), DENV-2 (RR = 0.08, P = 0.002), and
DENV-4 (RR = 0.06, P = 0.006) as compared to DENV-3 (Table 2,
top). The full minimum adequate model explained 29.2% of the
variation in viral load.
Table 2
Factors associated with index case DENV kinetics.

A. Day 1 Viral load
N Mean 

Age (years) 222 7.31 (0
Gender F 113 7.12 (0

M 109 7.51 (0
Severity DF 142 7.34 (0

DHF 80 7.27 (0
Serotype 1 38 7.11 (0

2 31 6.82 (0
3 80 7.54 (0
4 73 7.39 (0

B. Decay Rate
N 

Severity DF 114 

DHF 69 

Serotype 1 30 

2 25 

3 69 

4 59 

Log10 Viral load D 1 183 

C. Days to Defervescence

N Me

Age (years) 225 2.3
Serotype 1 32 2.2

2 35 2.0
3 79 1.9
4 79 3.0

Log10 Viral load D 1 225 2.3

Shown in this table are the number of samples analyzed for each of the significant risk
estimate with standard error from the final fit in the multivariate log-linear regression
DENV decay rate (from D1 to Ddef) was faster in DHF than DF
(RR = 1.44, P = 0.004) and DENV-1 (RR = 1.43, P = 0.014) as
compared to DENV-3 (Table 2, middle) and with an increased viral
load on D1 (RR = 6.34, P < 0.001). The full minimum adequate
model explained 94.7% of the variation in the decay rate.

Time taken to defervescence decreased with age (RR = 0.99, P =
0.003) and increased with viral load at D1 (RR = 1.12, P < 0.001) and
for DENV-4 (RR = 1.53, P < 0.001) as compared to DENV-3 (Table 2,
bottom). The full minimum adequate model explained 27.4% of the
variation in days to defervescence. A similar result was found when
using only those individuals who had a completely cleared viremia
on the day of defervescence.

Rate of asymptomatic DENV infections in household members of
dengue index cases

Overall, thirteen subjects of 175 HHM (7.43%) from the 138
households investigated had asymptomatic DENV infections
(hereon called "asymptomatic HHM") as determined by the
presence of DENV RNA by RT-PCR and absence of symptoms
during the follow-up period. These thirteen asymptomatic HHM
were from eleven households out of the 138 households
investigated (7.97%). There was an additional one HHM with
DENV viremia that subsequently developed symptoms (pre-
symptomatic) in Tak. A further two HHM had had a recent clinical
dengue infection within two weeks before their family index cases
were diagnosed. Overall, the attack rate with more than one
infection in a household (including asymptomatic, pre-symptom-
atic, and recent DENV infection) was 14/138 households (10.14%).
The proportion of households with asymptomatic HHM was 6/53
(11.32%) in Bangkok and 5/85 (5.88%) in Tak (Figure 2).
Log10 Viremia (SEM) RR (95% CI) P-value

.14) 0.92 (0.87�0.97) 0.003
.21) Ref
.18) 0.31 (0.16�0.62) <0.001
.17) Ref
.23) 5.88 (2.92�11.82) <0.001
.40) 0.25 (0.11�0.57) 0.001
.40) 0.08 (0.02�0.40) 0.002
.24) Ref
.17) 0.06 (0.01�0.43) 0.006

Mean (SEM) decay rate/day RR P-value

7.47 (6.83) Ref
7.63 (7.03) 1.44 (1.12�1.84) 0.004
7.71 (7.13) 1.43 (1.08�1.90) 0.014
7.66 (7.13) 0.32 (0.79�2.08) 0.319
7.55 (6.97) Ref
7.30 (6.92) 0.18 (0.24�1.32) 0.182
7.54 (6.90) 6.34 (5.49�7.32) <0.001

an (SEM) days RR P-value

8 (0.08) 0.990 (0.986�0.997) 0.003
4 (0.18) 1.13 (0.93�1.37) 0.21
7 (0.19) 1.04 (0.84�1.29) 0.69
8 (0.11) Ref
3 (0.16) 1.53 (1.31�1.78) <.001
8 (0.08) 1.12 (1.08�1.16) <.001

 factors, the Relative Risk (RR) and associated P-value and the dependent variable
 (see Methods).



Figure 2. Numbers of index cases and household members investigated and numbers of asymptomatic dengue viremia in Bangkok and Tak study sites.

Figure 3. Dengue viral load in asymptomatic dengue infected HHM compared to
index cases. The peak viral load of asymptomatic dengue infected HHM
(asymptomatic (peak)) was compared to the viral load of index cases at the day
of enrollment (D1) and day defervescence (Ddef). Mann-Whitney was used to
compare two groups indicated, *p < 0.05, **p < 0.01, ***p < 0.001.
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Characteristics of subjects with asymptomatic dengue infection and
their family index cases

The characteristics of each of the thirteen asymptomatic HHM
and their family index cases are shown in Supplementary Table 2.
There were two households from the Bangkok site that had two
asymptomatic HHM in the same house. Most but not all of the
asymptomatic HHM 9/13 (69.23%) harbored the same DENV
serotypes as their family index cases. Interestingly, two asymp-
tomatic HHM (H1 and H2) had co-infection with two DENV
serotypes (DENV-3 and -4), while their family index case was
infected with only DENV-4. An additional asymptomatic HHM (H9)
had a different DENV serotype from the family index case; there
was one index case (family of H10) for whom we do not know the
DENV serotype. Most family index cases were male 9/11 (81.82%),
while 5/13 (38.46%) of asymptomatic HHM were male. Most, 10/11
(90.90%), family index cases had DF, and only one had DHF.

The kinetics of DENV viremia in asymptomatic infections

Overall, the DENV kinetics varied widely among individuals
(Supplementary Fig. 1). While some asymptomatic HHM had high
viremia but rapidly cleared (H1, H2, H6, H11), others had lower
viremia that lasted longer (H3, H4). H9 likely had a very low viral
load below the detection limit of qRT-PCR, but detectable by nested
PCR. Unfortunately, several subjects were lost to follow-up before
the virus was cleared from the circulation. Taken together, the
DENV kinetics in asymptomatic HHM are variable, but DENV
viremia could persist up to 1–2 weeks after the detection of index
cases in the household.

Factors affecting DENV kinetics in asymptomatic infections

Excluding the single instance of a DENV-1 infection, we
assessed risk factors associated with viral load, decay, and
clearance rate. The mean maximum viral load was 3.89 � 106

viral copies/mL (SEM 1.35 � 106); there was no association with
any explanatory variables (age, gender, serotype, mixed or single
serotype infection: P > 0.05). The time needed for DENV clearance
from the maximum (measured) viral load was found to decrease
with increasing maximum viral load (χ21 = 5.54, P = 0.019) and to be
also faster in mixed serotype infections (Single serotype infections:
Mean 6.4 days SEM 1.5; Mixed serotype infections: 3.0 days SEM
0.7. χ21 = 5.02, P = 0.025).

Comparing asymptomatic HHM and index case viral kinetics

The peak viremias of asymptomatic DENV infections were
lower than those of index cases at the D1 when patients were still
febrile. At Ddef, index cases’ viral loads dropped markedly from D1



Figure 4. Dengue viral load decay rate by day for asymptomatic HHM infections
and index cases from the day of recruitment (D1) to the day of defervescence (Ddef).
The decay rate is log (10) transformed for visual clarity.
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and were even lower than those of asymptomatic HHM peak viral
load (Figure 3).

Asymptomatic infections were associated with a slower decay
rate than index cases (Index case: mean 4.31 � 108 / day SEM: 2.91
� 108; Asymptomatic HHM: 5.32 � 105 / day, SEM 2.89 x 105. χ21
=72.0, P=0.003) (Figure 4).

Discussion

A DENFREE cohort of DENV infected patients with their
household members in Thailand was established to identify
asymptomatic DENV infections to provide the first description
of viral kinetics within asymptomatic infections and compare
them with that in symptomatic clinical presentations from the
vicinity and/or the same household. In the symptomatic index
cases with a measurable virus at enrollment (D1), viremias were
generally higher than those previously reported (Duyen et al.,
2020; Yeh et al., 2020), but time to defervescence and/or viral
clearance significantly faster (Duyen et al., 2020; Yeh et al., 2020;
Gubler et al., 1978; Gubler et al., 1979; Vaughn et al., 1997; Libraty
et al., 2002). Significant variation within viral load and time to both
defervescence and viral clearance was observed. Notably, patients
with DHF and DENV-3 had a higher viral load, and those who were
male and older had lower viral loads. A trend for increased viremia
with disease severity has been observed previously (Perdomo-
Celis et al., 2017), and variation amongst serotypes has also been
noted (Duyen et al., 2020). Previous studies have repeatedly found
shorter durations of infection in secondary infections as compared
to primary infections but which also had higher viremias (Kuberski
et al., 1977; Duyen et al., 2020; Yeh et al., 2020; Libraty et al., 2002).
In our study, we had too few primary infections to make a
reasonable comparison. The viral decay rate from enrollment to
defervescence was faster in patients with DHF than those with a
higher viral load at enrollment. Despite this, time to defervescence
was still longer with higher enrollment viral load.

From index case houses, 7.43% of HHM of index cases had DENV
viremia without any symptoms. Most of these asymptomatic HHM
had the same DENV serotypes as their family index cases. The
kinetics of DENV of these asymptomatic HHM were highly variable
among individuals. There were no factors associated with the
maximum measured viral load. A higher decay rate was found in
DENV-4 infections, and time to viral clearance was faster with
increasing viral load and mixed serotype infections. Thus, in both
index cases and asymptomatic infections, high viral load was
associated with more rapid viral decay, although this did not lead
to clearance at defervescence in symptomatic cases. Significant
among serotype differences in viral kinetics were observed here as
often before (Duyen et al., 2020), and both among and within-
serotype differences in the immune response have been recently
highlighted (Katzelnick et al., 2015), albeit not in the context of
asymptomatic infections.

Although the exact duration of viremia is difficult to estimate,
the viremia lasted up to two weeks in some of the asymptomatic
infections, and the decay rate was slower than that of index cases.
Similarly, compared with their index cases, the maximum level of
viremia in asymptomatic HHM was lower than that of index cases
at enrollment but higher than that on the day of defervescence,
consistent with the observed slower overall decay rate in
asymptomatic infections. This observation supports previous
studies that found lower viremia in asymptomatic infections than
those of symptomatic infections (Duong et al., 2015; Dussart et al.,
2012; Sowath et al., 2019

Overall, the kinetics of asymptomatic infections differ from
symptomatic infections in the magnitude of the viremia and the
rate of clearance, suggesting these infections last longer but
with a lower viremia. We and others have previously described
fundamental immunological differences in the immune
responses associated with symptomatic and asymptomatic
infections (García et al., 2010; Simon-Lorière et al., 2017;
Halstead and O’Rourke, 1977). A polymorphism in the FcgRIIA
was found to be associated with inapparent infection vs. DF or
DHF in the Cuban population (García et al., 2010). Asymptomatic
DENV infected individuals have been found to have increased T
cell responses with feedback regulation when compared to
symptomatic counterparts (Simon-Lorière et al., 2017). Classically
secondary infections are associated with more severe disease due
to the phenomenon of ADE and/or cross-reactive T cells (Halstead
and O’Rourke, 1977), but whether or not this leads to a decreased
risk of an infection being inapparent remains moot (Grange et al.,
2014; Clapham and Cummings, 2020). Post-secondary infections
will likely induce different immune responsiveness and have also
been found to impact upon inapparent rates (Olkowski et al.,
2013), which could introduce additional variability in the viral
kinetics in both asymptomatic and symptomatic infections. In our
study, however, the vast majority of infections were secondary,
although it is notable that increasing age had a significant impact
on viral clearance rates, suggesting a potential impact of post-
secondary infections. More recently, the importance of the
interplay between viral genotype within serotype and the
interaction with the immune response has been found to be
significant (Katzelnick et al., 2015; OhAinle et al., 2020), thereby
introducing additional variability that we can not capture in our
study.

We have previously shown that asymptomatic infections are as,
if not more, infectious to mosquitoes than symptomatic infections
(Duong et al., 2015). The likelihood that such asymptomatic
infections also last longer does suggest that their epidemiological
contribution is even more important. In symptomatic dengue
infections, the level of dengue viremia was shown to be the most
critical factor for transmission to mosquitoes (Duong et al., 2015).
Thus, both those asymptomatic cases with higher but shorter-lived
viremia and those with lower but longer-lasting viremia could
contribute to transmitting the disease.

A wide range of different epidemiological studies has
attempted to ascertain the extent of asymptomatic infections
and associated risk factors (Endy, 2002; Endy et al., 2011; Grange
et al., 2014; Gordon et al., 2013; Balmaseda et al., 2010; Montoya
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et al., 2013; Morrison et al., 2010). It is widely agreed that
inapparent, sub-clinical infections are prevalent, and thus this
silent infectious reservoir will be a significant contributor to
transmission. That we observed asymptomatic infections lasting
for two weeks will prove particularly problematic in preventing
their role as a reservoir through traditional fumigating
approaches around index cases: mosquito re-invasion of a
fumigated neighborhood occurs far quicker than such slow-
decaying infections. A more pro-active program encouraging
individual level protection of household members of index cases
from being bitten by mosquitoes is likely the only reasonable
approach to reduce any epidemiological contribution of poten-
tially infected asymptomatic HHM. The relatively low percentage
of infected HHM found in this study is likely underestimated,
further underscoring the futility of single time point surveys to
see whether HHM of index cases are infected: the variable
intrinsic incubation period undermines the utility of active "case"
detection.

In conclusion, his work not only the significant role that
asymptomatic infections can play in DENV epidemiology but also
emphasizes the need for alternative strategies to prevent infected
individuals from spreading the virus in the course of their daily
mobility.
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