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Abstract. Sarcopenia is a medical condition characterized by a reduc-
tion in muscle mass and function. A quantitative diagnosis technique
consists of localizing the CT slice passing through the middle of the third
lumbar area (L3) and segmenting muscles at this level. In this paper, we
propose a deep reinforcement learning method for accurate localization
of the L3 CT slice. Our method trains a reinforcement learning agent
by incentivizing it to discover the right position. Specifically, a Deep
Q-Network is trained to find the best policy to follow for this prob-
lem. Visualizing the training process shows that the agent mimics the
scrolling of an experienced radiologist. Extensive experiments against
other state-of-the-art deep learning based methods for L3 localization
prove the superiority of our technique which performs well even with a
limited amount of data and annotations.

Keywords: L3 slice · CT slice localization · Deep Reinforcement Learn-
ing · Sarcopenia

1 Introduction

Sarcopenia corresponds to muscle atrophy which may be due to ageing, inactiv-
ity, or disease. The decrease of skeletal muscle is a good indicator of the overall
health state of a patient [11]. In oncology, it has been shown that sarcopenia
is linked to outcome in patients treated by chemotherapy [14, 5], immunother-
apy [20], or surgery [9]. There are multiple definitions of sarcopenia [7, 23] and
consequently multiple ways of assessing it. On CT imaging, the method used is
based on muscle mass quantification. Muscle mass is most commonly assessed
at a level passing through the middle of the third lumbar vertebra area (L3),
which has been found to be representative of the body composition [29]. After
manual selection of the correct CT slice at the L3 level, segmentation of muscles
is performed to calculate the skeletal muscle area [8]. In practice, the evalua-
tion is tedious, time-consuming, and rarely done by radiologists, highlighting
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the need for an automatic diagnosis tool that could be integrated into clinical
practice. Such automated measurement of muscle mass could be of great help
for introducing sarcopenia assessment in daily clinical practice.

Muscle segmentation and quantification on a single slice have been thor-
oughly addressed in multiple works using simple 2D U-Net like architectures [4,
6]. Few works, however, focus on L3 slice detection. The main challenges for
solving this task rely on the inherent diversity in patient’s anatomy, the strong
resemblance between vertebrae, the variability of CT fields of view as well as
their acquisition and reconstruction protocols.

The most straightforward approach to address L3 localization is by investi-
gating methods for multiple vertebrae labeling in 3D images using detection [25]
or even segmentation algorithms [22]. Such methods require a substantial vol-
ume of annotations and are computationally inefficient when dealing with the
entire 3D CT scan. In fact, even if our input is 3D, a one-dimensional output as
the z-coordinate of the slice is sufficient to solve the L3 localization problem.

In terms of L3 slice detection, the closest methods leverage deep learning [3,
13] and focus on training simple convolutional neural networks (CNN). These
techniques use maximal intensity projection (MIP), where the objective is to
project voxels with maximal intensity values into a 2D plane. Frontal view MIP
projections contain enough information towards the body and vertebra’s bone
structure differentiation. On the sagittal view, restricted MIP projections are
used to focus solely on the spinal area. In [3] the authors tackle this problem
through regression, training the CNN with parts of the MIP that contain the
L3 vertebra only. More recently, in [13] a UNet-like architecture (L3UNet-2D) is
proposed to draw a 2D confidence map over the position of the L3 slice.

In this paper, we propose a reinforcement learning algorithm for accurate
detection of the L3 slice in CT scans, automatizing the process of sarcopenia as-
sessment. The main contribution of our paper is a novel formulation for the prob-
lem of L3 localization, exploiting different deep reinforcement learning (DRL)
schemes that boost the state of the art for this challenging task, even on scarce
data settings. Moreover, in this paper we demonstrate that the use of 2D ap-
proaches for vertebrae detection provides state of the art results compared to
3D landmark detection methods, simplifying the problem, reducing the search
space and the amount of annotations needed. To the best of our knowledge, this
is the first time a reinforcement learning algorithm is explored on vertebrae slice
localization, reporting performances similar to medical experts and opening new
directions for this challenging task.

2 Background

Reinforcement Learning is a fundamental tool of machine learning which al-
lows dealing efficiently with the exploration/exploitation trade-off [24]. Given
state-reward pairs, a reinforcement learning agent can pick actions to reach un-
explored states or increase its accumulated future reward. Those principles are
appealing for medical applications because they imitate a practitioner’s behavior
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and self-learn from experience based on ground-truth. One of the main issues of
this class of algorithm is its sample complexity: a large amount of interaction
with its environment is needed before obtaining an agent close to an optimal
state [26]. However, those techniques were recently combined with deep learning
approaches, which efficiently addressed this issue [17] by incorporating priors
based on neural networks. In the context of highly-dimensional computer vi-
sion applications, this approach allowed RL algorithms to obtain outstanding
accuracy [12] in a variety of tasks and applications.

In medical imaging, model-free reinforcement learning algorithms are highly
used for landmark detection [10] as well as localization tasks [16]. In [1], a Deep
Q-Network (DQN) that automates the view planning process on brain and car-
diac MRI was proposed. This framework takes as an input a single plane and
updates its angle and position during the training process until convergence.
Moreover, in [27] the authors again present a DQN framework for the localiza-
tion of different anatomical landmarks introducing multiple agents that act and
learn simultaneously. DRL has also been studied for object or lesion localization.
More recently, in [19] the authors propose a DQN framework for the localiza-
tion of 6 different organs from CT scans achieving a performance comparable
to supervised CNNs. This framework uses a 3D volume as input with 11 differ-
ent actions to generate bounding boxes for these organs. Our work is the first
to explore and validate a RL scheme on MIP representations for a single slice
detection using the discrete and 2D nature of the problem.

3 Reinforcement Learning Strategy

In this paper, we formulate the slice localization problem as a Markov Decision
Process (MDP), which contains a set of states S, actions A, and rewards R.

States S: For our formulation, the environment E that we explore and exploit
is a 2D image representing the frontal MIP projection of the 3D CT scans. This
projection allows us to reduce our problem’s dimensionality from a volume of
size 512 × 512 × N (N being the varying heights of the volumes) to an image
of size 512 × N . The reinforcement learning agent is self-taught by interacting
with this environment, executing a set of actions, and receiving a reward linked
to the action taken. An input example is shown in Figure 1. We define a state
s ∈ S as an image of size 512 × 200 in E . We consider the middle of the image
to be the slice’s current position on a z-axis. To highlight this, we assign a line
of maximum intensity pixel value to the middle of each image provided as input
to our DQN.

Actions A: We define a set of discrete actions A = {t+z , t−z } ∈ R2. t+z
corresponds to a positive translation (going up by one slice) and t−z corresponds
to a negative translation (going down by one slice). These two actions allow us
to explore the entirety of our environment E .

Rewards R: In reinforcement learning designing a good reward function is
crucial in learning the goal to achieve. To measure the quality of taking an action
a ∈ A we use the distance over z between the current slice and the annotated
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slice g. The reward for non-terminating states is computed with:

Ra(s, s′) = sign(D(p, g)−D(p′, g)) (1)

where we denote as s and s′ the current and next state and g the ground truth
annotation. Moreover, our positions p and p′ are the z-coordinates of the current
and next state respectively.D is the Euclidean distance between both coordinates
over the z-axis. The reward is non-sparse and binary r ∈ {−1,+1} and helps
the agent differentiate between good and bad actions. A good action being when
the agent gets closer to the correct slice. For a terminating state, we assign a
reward of r = 0.5.

Starting States: An episode starts by randomly sampling a slice over the
z-axis and ends when the agent has achieved its goal of finding the right slice.
The agent then executes a set of actions and collects rewards until the episode
terminates. When reaching the upper or lower borders of an image, the current
state is assigned to the next state (i.e., the agent does not move), and a reward
of r = −1 is appointed to this action.

Final States: During training, a terminal state is defined as a state in which
the agent has reached the right slice. A reward of r = 0.5 is assigned in this case,
and an episode is terminated. During testing, the termination of an episode
happens when oscillations occur. We adopted the same approach as [1], and
chose actions with the lowest Q-value, which have been found to be closest to
the right slice since the DQN outputs higherQ-values to actions when the current
slice is far from the ground truth.

3.1 Deep Q-Learning

To find the optimal policy π∗ of the MDP, a state-action value function Q(s, a)
can be learned. In Q-Learning, the expected value of the accumulated discounted
future rewards can be estimated recursively using the Bellman optimality equa-
tion:

Qi+1(s, a) = E[r + γmax
a′

Qi(s
′, a′) | s, a] (2)

In practice, since the state S is not easily exploitable, we can take advan-
tage of neural networks as universal function approximators to approximate
Q(s, a) [18]. We utilize an experience replay technique that consists in storing
the agent’s experience et = (s, a, r, s′, a′) at each time step in a replay mem-
ory M . To break the correlation between consecutive samples, we will uniformly
batch a set of experiences from M . The Deep Q-Network (DQN) will iteratively
optimize its parameters θ by minimizing the following loss function:

Li(θi) = E(s,a,r,s′,a′)

[(
r + γmax

a′
Qtarget(s

′, a′; θ−i )−Qpolicy(s, a; θi)
)2]

(3)

with θi and θ−i being the parameters of the policy and the target network re-
spectively. To stabilize rapid policy changes due to the distribution of the data
and the variations in Q-values, the DQN uses Qtarget(θ

−
i ), a fixed version of

Qpolicy(θi) that is updated periodically. For our experiments, we update θ−i ev-
ery 50 iterations.
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Fig. 1. The implemented Deep Q-Network architecture for L3 slice localization. The
network takes as input an image of size 512× 200 with a single channel. The output is
the q-values corresponding to each of the two actions.

3.2 Network Architecture

Our Deep Q-Network takes as input the state s and passes it through a con-
volutional network. The network contains four convolution layers separated by
parametric ReLU in order to break the linearity of the network, and four lin-
ear layers with LeakyReLU. Contrary to [1], we chose not to add the history of
previously visited states in our case. We opted for this approach since there is a
single path that leads to the right slice. This approach allows us to simplify our
problem even more. Ideally, our agent should learn, just by looking at the current
state, whether to go up or down when the current slice is respectively below or
above the L3 slice. An overview of our framework is presented in Figure 1.

We also explore dueling DQNs from [28]. Dueling DQNs rely on the concept
of an advantage which calculates the benefit that each action can provide. The
advantage is defined as A(s, a) = Q(s, a)−V (s) with V (s) being our state value
function. This algorithm will use the advantage of the Q-values to distinguish
between actions from the state’s baseline values. Dueling DQNs were shown to
provide more robust agents that are wiser in choosing the next best action. For
our dueling DQN, we use the same architecture as the one in Figure 1 but change
the second to last fully connected layer to compute state values on one side, and
action values on the other.

3.3 Training

Since our agent is unaware of the possible states and rewards in E , the ex-
ploration step is implemented first. After a few iterations, our agent can start
exploiting what it has learned on E . In order to balance between exploration
and exploitation, we use an ε-greedy strategy. This strategy consists of defining
an exploration rate ε, which is initialed to 1 with a decay of 0.1, allowing the
agent to become greedy and exploit the environment. A batch size of 48 and
an experience replay of 17× 103 are used. The entire framework was developed
in Pytorch [21] library using an NVIDIA GTX 1080Ti GPU. We trained our
model for 105 episodes, requiring approximately 20-24 hours. Our source code is
available on GitHub: https://git.io/JRyYw.
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4 Experiments and Results

4.1 Dataset

A diverse dataset of 1000 CT scans has been retrospectively collected for this
study. CT scans were acquired on four different CT models from three manufac-
turers (Revolution HD from GE Healthcare, Milwaukee, WI; Brillance 16 from
Philips Healthcare, Best, Netherlands; and Somatom AS+ & Somatom Edge
from Siemens Healthineer, Erlangen, Germany). Exams were either abdominal,
thoracoabdominal, or thoraco-abdominopelvic CT scans acquired with or with-
out contrast media injection. Images were reconstructed using abdominal kernel
with either filtered back-projection or iterative reconstruction. Slice thickness
ranged from 0.625 to 3mm, and the number of slices varied from 121 to 1407.
The heterogeneity of our dataset highlights the challenges of the problem from
a clinical perspective.

Experienced radiologists manually annotated the dataset, indicating the po-
sition of the middle of the L3 slice. Before computing the MIP, all of the CT
scans are normalized to 1mm over the z-axis. This normalisation step harmonises
our network’s input, especially since the agent performs actions along the z-axis.
After the MIP, we apply a threshold of 100 HU (Hounsfield Unit) to 1500 HU al-
lowing us to eliminate artifacts and foreign metal bodies while keeping the skele-
ton structure. The MIP are finally normalized to [0,1]. From the entire dataset,
we randomly selected 100 patients for testing and the rest 900 for training and
validation. For the testing cohort, annotations of L3 from a second experienced
radiologist have been provided to measure the interobserver performance.

4.2 Results and Discussion

Our method is compared with other techniques from the literature. The error is
calculated as the distance in millimeters (mm) between the predicted L3 slice
and the one annotated by the experts. In particular, we performed experiments
with the L3UNet-2D [13] approach and the winning SC-Net [22] method of the
Verse20206 challenge. Even if SC-Net is trained on more accurate annotations
with 3D landmarks as well as vertebrae segmentations, and addresses a different
problem, we applied it to our testing cohort. The comparison of the different
methods is summarised in Table 1. SC-Net reports 12 CT scans with an error
higher than 10mm. Moreover, L3UNet-2D [13] reports a mean error of 4.24mm
±6.97mm when the method is trained on the entire training set, giving only
7 scans with an error higher than 10mm for the L3 detection. Our proposed
method gives the lowest errors with a mean error of 3.77mm±4.71mm, proving
its superiority. Finally, we evaluated our technique’s performance with a Duel
DQN strategy, reporting higher errors than the proposed one. This observation
could be linked to the small action space that is designed for this study. Duel
DQNs were proven to be powerful in cases with higher action spaces and in
which the computation of the advantage function makes a difference.

6 https://verse2020.grand-challenge.org/
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Table 1. Quantitative evaluation of the different methods using different number of
training samples (metrics in mm).

Method # of samples Mean Std Median Max Error > 10mm

Interobserver - 2.04 4.36 1.30 43.19 1

SC-Net [22] - 6.78 13.96 1.77 46.98 12

L3UNet-2D [13] 900 4.24 6.97 2.19 40 7
Ours (Duel-DQN) 900 4.30 5.59 3 38 8
Ours 900 3.77 4.71 2.0 24 9

L3UNet-2D [13] 100 145.37 161.91 32.8 493 68
Ours 100 5.65 5.83 4 26 19

L3UNet-2D [13] 50 108.7 97.33 87.35 392.02 86
Ours 50 6.88 5.79 6.5 26 11

L3UNet-2D [13] 10 242.85 73.07 240.5 462 99
Ours 10 8.97 8.72 7 56 33

For the proposed reinforcement learning framework, trained on the whole
training set, 9 CTs had a detection error of more than 10mm. These scans were
analysed by a medical expert who indicated that 2 of them have a lumbosacral
transitional vertebrae (LSTV) anomaly [15]. Transitional vertebrae cases are
common and observed in 15-35% of the population [2] highlighting once again
the challenges of this task. For both cases, the localization of the L3 vertebra
for sarcopenia assessment is ambiguous for radiologists and consequently for the
reinforcement learning agent. In fact, the only error higher than 10mm in the
interobserver comparison corresponds to an LSTV case where each radiologist
chose a different vertebrae as a basis for sarcopenia assessment. Even if the
interobserver performance is better than the one reported by the algorithms,
our method reports the lowest errors, proving its potential.

Qualitative results are displayed in Figure 2. The yellow line represents the
medical expert’s annotation and the blue one the prediction of the different
employed models. One can notice that all of the different methods converge
to the correct L3 region with our method reporting great performance. It is
important to note that for sarcopenia assessment, an automatic system does not
need to be at the exact middle of the slice; a few millimeters around will not skew
the end result since muscle mass in the L3 zone does not change significantly.
Concerning prediction times for the RL agent, they depend on the initial slice
that is randomly sampled on the MIP. Computed inference time for a single step
is approximately 0.03 seconds.

To highlight the robustness of our network on a low number of annotated
samples, we performed different experiments using 100, 50, and 10 CTs corre-
sponding respectively to 10%, 5% and 1% of our dataset. We tested those 3
agents on the same 100 patients test set and report results in Table 1. Our ex-
periments prove the robustness of reinforcement learning algorithms compared
to traditional CNN based ones [13] in the case of small annotated datasets. One
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Fig. 2. Qualitative comparison of different localization methods for two patients. First
left to right represents: interobserver (4mm/ 2mm), SC-Net (4mm/2mm), L3UNet-2D
(8mm/1mm), Ours (1mm/4mm). In the parenthesis we present the reported errors for
the first and second row respectively. The yellow line represents the ground truth and
the blue one the prediction.

can observe that the traditional methods fail to be trained properly with a small
number of annotations, reporting errors higher than 100mm for all three exper-
iments. In our case, decreasing the dataset size does not significantly affect the
performance. In fact, trained on only 10 CTs with the same number of itera-
tions and memory size, our agent was able to learn a correct policy and achieve a
mean error of 8.97mm ± 8.72mm. Learning a valid policy from a low number of
annotations is one of the strengths of reinforcement learning. Traditional deep
learning techniques rely on pairs of images and annotations in order to build
a robust generalization. Thus, each pair is exploited only once by the learning
algorithm. Reinforcement learning, however, relies on experiences, each experi-
ence et = (s, a, r, s′, a′) being a tuple of state, action, reward, next state and
next action. Therefore, a single CT scan can provide multiple experiences to
the self-learning agent, making our method ideal for slice localization problems
using datasets with a limited amount of annotations.

5 Conclusion

In this paper, we propose a novel direction to address the problem of CT
slice localization. Our experiments empirically prove that reinforcement learning
schemes work very well on small datasets and boost performance compared to
classical convolutional architectures. One limitation of our work lies in the fact
that our agent is always moving 1mm independently of the location, slowing
down the process. In the future, we aim to explore different ways to adapt the
action taken depending on the current location, with one possibility being to
incentivize actions with higher increments. Future work also includes the use
of reinforcement learning in multiple vertebrae detection with competitive or
collaborative agents.
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