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ABSTRACT

Aims. We investigate the radio properties of a sample of 850 µm-selected sources from the SCUBA-2 Cosmology Legacy Survey
(S2CLS) using new deep, low-frequency radio imaging of the Lockman Hole field from the Low Frequency Array. This sample
consists of 53 sources, 41 of which are detected at >5σ at 150 MHz.
Methods. Combining these data with additional observations at 324 MHz, 610 MHz, and 1.4 GHz from the Giant Metrewave Radio
Telescope and the Jansky Very Large Array, we find a variety of radio spectral shapes and luminosities (L1.4 GHz ranging from ∼4 ×
1023−1 × 1025) within our sample despite their similarly bright submillimetre flux densities (>4 mJy). We characterise their spectral
shapes in terms of multi-band radio spectral indices. Finding strong spectral flattening at low frequencies in ∼20% of sources, we
investigate the differences between sources with extremely flat low-frequency spectra and those with ‘normal’ radio spectral indices
(α > −0.25).
Results. As there are no other statistically significant differences between the two subgroups of our sample as split by the radio spectral
index, we suggest that any differences are undetectable in galaxy-averaged properties that we can observe with our unresolved images,
and likely relate to galaxy properties that we cannot resolve, on scales .1 kpc. We attribute the observed spectral flattening in the radio
to free–free absorption, proposing that those sources with significant low-frequency spectral flattening have a clumpy distribution of
star-forming gas. We estimate an average spatial extent of absorbing material of at most several hundred parsecs to produce the levels of
absorption observed in the radio spectra. This estimate is consistent with the highest-resolution observations of submillimetre galaxies
in the literature, which find examples of non-uniform dust distributions on scales of ∼100 pc, with evidence for clumps and knots in
the interstellar medium. Additionally, we find two bright (>6 mJy) S2CLS sources undetected at all other wavelengths. We speculate
that these objects may be very high redshift sources, likely residing at z > 4.

Key words. galaxies: high-redshift – galaxies: star formation – galaxies: starburst – submillimeter: galaxies – galaxies: structure –
radio continuum: galaxies

1. Introduction

Bright submillimetre galaxies (SMGs; Smail et al. 1997;
Hughes et al. 1998) are prime laboratories for investigating the
physical processes involved in high redshift star formation. With

total luminosities that imply star-formation rates (SFRs) of hun-
dreds to thousands of solar masses per year (e.g. Barger et al.
1998; Michałowski et al. 2017) – relative to the Milky Way’s
∼1 M� yr−1 (e.g. Chomiuk & Povich 2011) – these sources are
the locations of the most extreme star formation in the Universe.
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Understanding the nature of SMGs and the star formation mech-
anisms at play within them is an important step in beginning to
address several open questions in the formation and evolution of
massive galaxies.

In the local Universe, galaxies with very high infrared (IR)
luminosities (LIR > 1011 L� and LIR > 1012 L� – luminous and
ultraluminous infrared galaxies, LIRGs and ULIRGs, respec-
tively) and therefore high inferred SFRs (>10−100 M� yr−1) are
rare and usually the result of recent major mergers (Sanders &
Mirabel 1996; Rigopoulou et al. 1999; Hopkins et al. 2013).
This fits into an evolutionary picture in which mergers trig-
ger episodes of extreme star formation, which is subsequently
quenched by, for example, feedback from an active galactic
nucleus (AGN), leaving a ‘red and dead’ massive elliptical
galaxy (e.g. Hopkins et al. 2006). This picture can be expanded
to describe more comprehensively the diversity of star-forming
galaxy populations and physical processes observed in galaxy
evolution across a range of redshifts, with secular evolution-
ary processes also playing a role as star-formation triggers, and
including galaxies with more extended, clumpy star-forming
regions. While evidence from gas kinematics suggests that at
high redshift (z > 1) some episodes of high SFRs in galaxies may
also be triggered by mergers (e.g. Tacconi et al. 2008), the aver-
age SFR of the whole galaxy population is significantly higher
than at low redshift (e.g. Madau & Dickinson 2014). Not only
are galaxies with SFRs comparable to local LIRGs and ULIRGs
the dominant galaxy population (Chary & Elbaz 2001; Le Floc’h
et al. 2005; Magnelli et al. 2013; Bothwell et al. 2013), but a pop-
ulation of rare galaxies with extremely high SFRs appears at the
same epoch. The fact that such intensely star-forming galaxies
are common at high redshift (z > 1) suggests they may play a
crucial role in galaxy evolution by rapidly assembling the high
stellar masses required for the formation of the most massive
galaxies we see in the nearby Universe. In this evolutionary pic-
ture, SMGs at high redshift (z > 2) are attractive candidates for
the progenitors of massive elliptical galaxies at z = 0 (Lilly et al.
1999; Tacconi et al. 2008; Hickox et al. 2012; Toft et al. 2014,
but see Garcia-Vergara et al. 2020). Studying how this extreme
star-forming phase shapes galaxy populations at high redshift is
therefore crucial in uncovering the origins and nature of massive
galaxy populations in the local Universe.

To gain an understanding of the mechanisms driving star for-
mation in these galaxies, we require observations spanning a
range of wavelengths, from ultraviolet (UV) to radio, to trace
physical processes occurring at different energy scales. Star-
forming galaxies can emit prodigious amounts of energy from
the far-infrared (FIR) to millimetre range due to the thermal heat-
ing of dust by UV photons from massive young stars (Kennicutt
1998). This re-processed emission is a robust tracer of star-
formation activity in star-forming galaxies, and observations of
the shape of the FIR spectral energy distribution (SED) have
long been used to characterise SFRs in galaxies (e.g. Sauvage
& Thuan 1992; Devereux & Hameed 1997; Chapman et al. 2010;
Magnelli et al. 2012).

While much of the UV and optical emission is obscured
in the most dusty sources, star formation may also be traced
using radio continuum emission, which is not obscured by dust.
The radio spectrum arising from star formation consists of two
components: thermal, free–free emission from H II regions and
non-thermal synchrotron emission. The contribution of free–free
emission is only significant at high frequencies (>10 GHz), and
so in this study we focus on radio synchrotron emission, which
dominates the spectrum at the low frequencies considered here.
This synchrotron continuum results from supernovae exploding

after a delay of several megayears following the births of popu-
lations of O and B stars, which produce cosmic rays that interact
with the galaxy’s magnetic field. Since both thermal FIR emis-
sion and non-thermal radio continuum emission trace physical
processes associated with star formation, one would expect these
quantities to correlate. Indeed there is a well-known tight corre-
lation between the FIR and radio luminosities of star-forming
sources, the far-infrared to radio correlation (FIRC; van der
Kruit 1971; de Jong et al. 1985; Helou et al. 1985; Ivison et al.
2010), which is observed consistently across over four orders of
magnitude of galaxy luminosities (Yun et al. 2001).

The synchrotron radio emission of star-forming galaxies is
observed to follow approximate power law behaviour at giga-
hertz frequencies, with a typical spectral index of α ' −0.7
(Mauch et al. 2013)1. The sources, acceleration, and propagation
mechanisms of the cosmic ray electrons responsible for the radio
continuum emission of star-forming galaxies are still not well
understood, but there are several large-scale effects that can be
observed to impact the shape of the radio spectrum due to condi-
tions of the interstellar medium (ISM). Over time, a synchrotron
spectrum will steepen at high frequencies due to radiative losses
as high-energy electrons lose energy more rapidly than low-
energy electrons (Kardashev 1962; Scheuer & Williams 1968).
In the low-frequency regime, free–free absorption can flatten
the spectrum below a turnover frequency at which the ISM
becomes optically thick (Condon 1992; Clemens et al. 2010;
Lacki 2013). Therefore, the shape of the radio synchrotron spec-
trum and its divergence from a simple power law hold clues as
to the conditions of the ISM in and around star-forming regions.

Single-dish submillimetre observations are currently limited
by the resolving power of relatively small telescopes operating
at such long wavelengths, resulting in much lower-resolution
observations than, for example, optical imaging. However, obser-
vations at these wavelengths also benefit from a negative
K-correction (Blain & Longair 1993): as galaxies are redshifted,
the observed-frame 850 µm emission traces an increasingly
bright part of the galaxy’s FIR to millimetre spectrum due to
the shape of the Rayleigh-Jeans tail, in effect compensating for
cosmological dimming. This results in the observed submillime-
tre flux density remaining roughly constant for a galaxy of a
given luminosity between 0.5 < z < 10 at 850 µm, enabling the
detection of submillimetre sources out to very high redshifts.
Both optical and radio wavelengths, however, suffer a positive
K-correction across the majority of the spectrum, meaning that
the flux density of sources of the same luminosity decreases
with distance. Many studies have identified SMGs without coun-
terparts at optical to near-infrared wavelengths (Simpson et al.
2014; Wang et al. 2019b; Dudzevičiūtė et al. 2020). Radio obser-
vations provide a view of star formation that is not biased by
dust; however, due to the positive K-correction, observing galax-
ies in the radio at the high redshifts at which SMGs are most
numerous (z > 2) is very challenging.

To obtain a more complete picture of the physical processes
that shape star formation in the early Universe, very deep radio
surveys over wide areas of sky are required to complement deep
submillimetre surveys. Previous work has used high-resolution
radio observations, typically at 1.4 GHz, as a method of pinpoint-
ing the position of submillimetre sources detected in single-dish
surveys (Ivison et al. 2002; Chapman et al. 2005); however, such
work has been limited by the depth of available radio sky sur-
veys, with dedicated deep surveys over only small regions of

1 We note that the sign convention varies: in this work we use notations
such that S ν ∝ να and α is usually negative.
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sky, resulting in a view biased towards the brighter radio sources.
Studies have largely included limited radio spectral coverage of
SMGs, focusing on the nature of the FIRC and its relation to
properties such as stellar mass and redshift (e.g. Yun et al. 2001;
Ivison et al. 2010; Smith et al. 2014). The Low Frequency Array
(LOFAR; van Haarlem et al. 2013) has opened up new ways of
studying galaxies in the radio, and a number of studies have used
LOFAR’s capabilities to investigate this relationship between
star formation and radio luminosity in the low-frequency regime
– for example Gürkan et al. (2018), Read et al. (2018), Smith et al.
(2021), and Wang et al. (2019a). However, these studies generally
investigate the statistical properties of large samples of galax-
ies, in optically selected samples at low redshift (z .2), rather
than probing the shapes of individual radio spectra. Thomson
et al. (2019) conducted an in-depth study of high-frequency
(>610 GHz) spectral curvature in SMGs, finding evidence of
curved spectra that they attributed to spectral ageing of the
synchrotron emission from star formation; their results implied
estimated starburst ages consistent with expected SMG lifetimes.
Studies at low frequencies, where we may be able to observe
absorption processes affecting the shape of the spectrum, have
been hampered by a lack of sufficiently deep, wide-area data.
More comprehensive observations of the shape of the radio spec-
trum, extending to lower frequencies, can provide a probe of the
physical conditions that give rise to extreme star formation in
SMGs. Calistro Rivera et al. (2017) exploit LOFAR’s frequency
range to investigate the spectral shapes of star-forming galaxies
and AGN, finding evidence of low-frequency spectral flattening
in the star-forming sample. This sample is also constrained in
redshift, focusing on local galaxies rather than the peak of star
formation at z > 2, and so does not probe the bulk of the highly
star-forming SMG population. Chyży et al. (2018) also find weak
spectral flattening in local star-forming galaxies with LOFAR but
largely attribute this slight effect to synchrotron losses, predict-
ing stronger low-frequency spectral flattening due to free–free
absorption at high redshift, where galaxies with high SFRs are
more common.

In this study, we make use of new LOFAR deep field obser-
vations. Reaching ∼22µJy beam−1, these observations have the
potential to reveal the faint radio counterparts to high-redshift
submillimetre sources at low frequencies. We select a sample
of SMGs using observations from the SCUBA-2 Cosmology
Legacy Survey (S2CLS; Geach et al. 2017), currently the largest
area sky survey of its kind, which allows us to limit our study
to the sites of the most extreme star formation. Selecting sources
from the Lockman Hole field, for which we have survey coverage
with both LOFAR and S2CLS, we characterise their radio spec-
tra with additional radio data from the Jansky Very Large Array
(JVLA) and the Giant Metrewave Radio Telescope (GMRT). We
describe the data in Sect. 2, our sample selection in Sect. 3.1, and
how we measure radio fluxes in Sect. 3.2. We briefly comment
on two bright S2CLS sources that are undetected at every other
wavelength in Sect. 3.3. In Sects. 3.4 onwards, we focus on the
radio spectra in more detail. We investigate the diversity of radio
spectral shapes and luminosities exhibited by sources in Sect. 4.

Throughout this paper we assume a flat Lambda cold dark
matter (ΛCDM) cosmology with H0 = 69.3 km s−1 Mpc−1 and
Ωm = 0.287 (Hinshaw et al. 2013).

2. Data

2.1. S2CLS

The S2CLS observed approximately 5 square degrees of extra-
galactic sky across several well-studied fields at 850 µm to a

depth of ∼1 mJy beam−1, close to the SCUBA-2 confusion limit.
In this work we focus on the Lockman Hole North field, cen-
tred at (α, δ) = 10h46m07s, +59◦01′17′′. The mapping strategy
resulted in an approximately circular map of diameter 30′, with
nearly uniform noise coverage over 0.28 square degrees, at an
rms depth of 1.1 mJy beam−1. This results in 126 submillime-
tre sources detected at a significance of >4. Full details of the
SCUBA-2 data reduction, catalogue, and source statistics are
given by Geach et al. (2017). In this work we use the S2CLS
source catalogue, and throughout we employ the de-boosted
850 µm flux densities.

2.2. LOFAR

We used the deep Lockman Hole image described by Tasse et al.
(2021), which is based on 112 hours of LOFAR observations.
The image has a central rms noise level of 22 µJy beam−1 at
a central frequency of 144 MHz and a resolution of 6 arcsec.
Together with the images in the Boötes and European Large Area
Infrared Space Observatory Survey-North 1 (ELAIS-N1) fields
(not covered by S2CLS) this comprises the first data release of
the LOFAR Two-metre Sky Survey (LoTSS) Deep Fields and is
one of the deepest images ever made at this frequency. It offers
us the best opportunity yet available to study the low-frequency
properties of distant submillimetre sources.

Of all sources in the LOFAR catalogue, ∼98 per cent
have a candidate optical identification, selected by a com-
bination of likelihood ratio and visual inspection using new
matched-aperture multi-wavelength catalogues, as described by
Kondapally et al. (2021). For the Lockman Hole, optical data are
provided by the Spitzer Adaptation of the Red-Sequence Clus-
ter Survey (SpARCS) and The Red Cluster Sequence Lensing
Survey (RCSLenS) with the Canada France Hawaii Telescope
(CFHT; Wilson et al. 2009; Muzzin et al. 2009; Hildebrandt et al.
2016), and there are near-infrared data from the UKIRT Infrared
Deep Sky Survey - Deep Extragalactic Survey (UKIDSS DXS;
Lawrence et al. 2007) as well as mid-infrared (MIR) data from
the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE)
and the Spitzer Extragalactic Representative Volume Survey
(SERVS; Lonsdale et al. 2003; Mauduit et al. 2012). Additional
FIR data come from the Spitzer Multiband Imaging Photome-
ter (MIPS) and the Herschel Multi-tiered Extragalactic Survey
(HerMES; Oliver et al. 2012). The Herschel catalogues use the
optical, IR, or radio positions as a prior to obtain de-convolved
flux densities for blended sources. (McCheyne et al., in prep.).

Spectroscopic redshifts were used where available, but the
majority of redshifts were generated photometrically from the
optical through MIR data in the manner described by Duncan
et al. (2021). The broad spectral coverage in this range allows
reasonable estimates of photometric redshift to be made (see
Table 1).

2.3. Additional radio data

We supplemented the LOFAR catalogue with deep archival
JVLA observations at 324 MHz and 1.4 GHz (Owen et al. 2009;
Ivison et al. 2002), and at 610 MHz from the GMRT (Ibar et al.
2009). The Very Large Array (VLA) observations reach cen-
tral rms noise levels of ∼70µJy beam−1 and ∼4.8µJy beam−1 at
324 MHz and 1.4 GHz, respectively, with resolutions of 6 arcsec
and 1.4 arcsec. Observations from Ibar et al. (2009) at 610 MHz
reach a central rms noise level of ∼14µJy beam−1, with a res-
olution of ∼6 arcsec. These survey footprints cover the S2CLS
Lockman Hole coverage in its entirety. Combined, these observa-
tions are the deepest available of the Lockman Hole field across
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Table 1. Positions and redshifts of the full sample of S2CLS sources in
this study.

ID LOFAR source ID RA Dec z

1 ILTJ104635.83+590749.2 10h46m35.78s +59◦7′48.00′′ 1.89±0.71
0.68

2 ILTJ104644.98+591542.4 10h46m45.01s +59◦15′39.80′′ 1.30±0.92
1.08

3 (∗) ILTJ104727.95+585213.9 10h47m27.66s +58◦52′14.60′′ 2.93±0.39
0.42

4 ILTJ104700.22+590108.1 10h47m0.03s +59◦1′7.50′′ 2.73±0.48
0.57

5 ILTJ104535.03+585050.1 10h45m35.23s +58◦50′49.90′′ 3.76±0.89
0.86

6 ILTJ104555.38+591528.7 10h45m55.19s +59◦15′28.10′′ 4.48±2.72
2.52

7 ILTJ104632.77+590214.3 10h46m32.85s +59◦2′12.00′′ 3.42±1.34
1.38

8 (†) 10h45m54.58s +58◦47′54.10′′ −
9 (∗) ILTJ104725.39+590337.8 10h47m25.25s +59◦3′40.70′′ 2.32±0.74

0.80

10 ILTJ104631.52+585055.9 10h46m31.68s +58◦50′54.00′′ −
11 ILTJ104803.58+585421.4 10h48m3.37s +58◦54′22.90′′ 2.66±0.49

0.50

12 ILTJ104447.60+590035.5 10h44m47.69s +59◦0′36.60′′ 1.98±0.69
0.78

13 ILTJ104720.51+591043.6 10h47m20.57s +59◦10′40.90′′ 2.69±0.80
0.66

14 ILTJ104657.32+591459.2 10h46m57.26s +59◦14′57.60′′ 2.96±0.75
0.62

15 ILTJ104456.67+585000.0 10h44m56.86s +58◦49′59.00′′ −
16 (†) 10h45m1.83s +59◦4′3.10′′ −
17 (∗) ILTJ104717.95+590232.2 10h47m18.21s +59◦2′31.00′′ 2.31±0.34

0.39

18 ILTJ104556.88+585318.8 10h45m56.87s +58◦53′18.10′′ 1.39±0.64
0.68

19 ILTJ104702.46+585102.9 10h47m2.61s +58◦51′5.40′′ 3.28±1.89
1.86

20 ILTJ104800.86+590343.8 10h48m1.05s +59◦3′43.10′′ −
21 ILTJ104633.12+585158.7 10h46m33.24s +58◦52′0.00′′ 3.00±1.16

1.14

22 (∗) ILTJ104523.51+591631.2 10h45m23.87s +59◦16′25.70′′ 0.82±0.20
0.16

23 ILTJ104351.14+590058.1 10h43m51.48s +59◦0′57.70′′ 2.27±0.56
0.60

24 (∗) ILTJ104626.25+590539.5 10h46m26.92s +59◦5′44.10′′ −
25 ILTJ104440.17+585929.8 10h44m40.23s +58◦59′28.30′′ 2.14±0.74

1.37

26 (∗) ILTJ104715.52+590636.6 10h47m15.49s +59◦6′33.10′′ 3.95±2.06
2.14

27 (∗) ,(†) 10h47m20.94s +58◦51′52.90′′ −
28 ILTJ104633.11+591220.2 10h46m32.97s +59◦12′20.00′′ 2.61±1.19

1.09

29 ILTJ104522.33+591726.0 10h45m22.55s +59◦17′21.70′′ 1.99±0.76
0.74

30 (†) 10h48m0.04s +58◦54′47.10′′ −
31 ILTJ104813.45+590340.9 10h48m13.49s +59◦3′38.30′′ 3.19±2.12

2.14

32 (∗) ILTJ104630.75+585908.3 10h46m31.00s +58◦59′8.00′′ 5.64±1.17
1.08

33 ILTJ104734.49+591333.2 10h47m34.22s +59◦13′28.40′′ 3.15±1.97
2.06

34 (∗) ILTJ104718.16+585525.9 10h47m18.23s +58◦55′25.00′′ 3.84±1.23
1.34

35 ILTJ104638.62+585612.6 10h46m38.72s +58◦56′11.90′′ 2.27±0.32
0.33

36 ILTJ104700.07+585441.5 10h46m59.87s +58◦54′37.50′′ −
37 (†) 10h46m23.24s +58◦59′36.10′′ −
38 ILTJ104822.99+590112.1 10h48m22.92s +59◦1′9.70′′ −
39 ILTJ104431.34+590612.8 10h44m31.37s +59◦6′15.90′′ 1.14±0.16

0.15

40 (†) 10h44m42.19s +59◦2′10.40′′ −
41 ILTJ104608.72+585828.7 10h46m8.49s +58◦58′28.20′′ 2.09±0.90

0.97

42 ILTJ104430.59+585518.4 10h44m30.59s +58◦55′15.90′′ 1.94±0.41
0.36

43 ILTJ104730.66+590427.5 10h47m30.73s +59◦4′22.50′′ 1.76±0.69
0.68

44 ILTJ104601.72+590917.3 10h46m1.99s +59◦9′18.20′′ 1.88±0.29
0.28

45 ILTJ104731.18+591134.4 10h47m29.72s +59◦11′32.50′′ −
46 ILTJ104601.56+585153.4 10h46m1.26s +58◦51′52.20′′ 2.27±0.92

1.36

47 (†) 10h46m21.39s +58◦54′34.10′′ −
48 (†) 10h44m18.32s +59◦2′41.30′′ −
49 ILTJ104744.66+591413.6 10h47m44.16s +59◦14′11.90′′ 2.20±0.58

0.53

50 ILTJ104444.87+591500.9 10h44m44.53s +59◦14′50.50′′ −
51 (∗) ILTJ104354.98+590616.7 10h43m55.28s +59◦6′16.00′′ 2.84±0.86

0.82

52 ILTJ104539.62+584829.8 10h45m39.90s +58◦48′30.00′′ 3.70±1.45
1.45

53 ILTJ104738.02+585634.2 10h47m37.65s +58◦56′32.20′′ −

Notes. We assign IDs in Col. 1, which are used throughout. We mark
images where multiple sources fell in the SCUBA-2 beam size with
an asterisk (*), and those that are detected at 850 µm but not in the
LOFAR images we mark with a dagger (†). Photometric redshifts and
uncertainties from the LOFAR catalogue are also provided.

Fig. 1. Cutouts of an example S2CLS source (ID 1 in our numbering
system, an 11.91 mJy 850 µm source) in each radio frequency used in
this study. Each square is 50 arcsec across, with the approximate S2CLS
beam size (∼15 arcsec FWHM) marked with an orange circle. Image
contrast is scaled arbitrarily for clarity.

the radio spectrum, and among the deepest radio observations to
date for any extragalactic survey field.

3. Sample selection and FIR properties

3.1. Sample

Our sample consists of the 53 point sources detected at >5σ –
at which significance the false detection rate falls below 1 per
cent – at 850 µm in the S2CLS Lockman Hole North field, with
a median flux density of S 850 = 6.45 mJy (details in Tables 1
and 2). For each submillimetre source we extracted a thumbnail
image cutout in the SCUBA-2 map and at the same position in
each radio map. Figure 1 shows an example source with cutouts
at all four radio frequencies. Due to the large beam size of
SCUBA-2 (∼15 arcsec full width at half maximum, FWHM),
there is a risk of blending, where submillimetre flux from sev-
eral galaxies that is unresolved within the large beam contributes
to the source flux measurement (e.g. Hayward et al. 2018). We
checked that each S2CLS source corresponds to a single point
source in the high-resolution radio images via a visual inspec-
tion of the cutout images. By doing so, we were able to constrain
any possible multiplicity to within the 1.4 arcsec resolution of
the 1.4 GHz images. There are a number of sources that split up
into multiple components in the 1.4 GHz images, and we discuss
our treatment of them below.

Given the 6 arcsec resolution of the LOFAR image, we
ran a simple positional cross-match between each submillime-
tre source and the LOFAR catalogue, identifying the closest
LOFAR source within a generous 15 arcsec radius, equivalent to
the size of the SCUBA-2 beam, and approximately correspond-
ing to the 5σ positional error on SCUBA-2 sources at the limit
of the S2CLS catalogue (Geach et al. 2017). This results in 44
matched LOFAR sources and nine sources for which there is no
clear LOFAR counterpart. We calculated the corrected Poisso-
nian probability, p, of serendipitous LOFAR matches within the
search radius following Biggs et al. (2011) and using the LOFAR
source surface density calculated above the detection threshold
of the LOFAR catalogue sources. For identifications with p <
0.05, we assumed that this is a robust cross-match. Three identifi-
cations were found to have p > 0.05 and were excluded, reducing
the final sample size of robust S2CLS–LOFAR matches to 41
sources. Only three of these sources (7 per cent) have spectro-
scopic redshifts available in the LOFAR catalogue, and we used
photometric redshifts where spectroscopic were not available.

Ten of the 53 objects in the original sample break up into
multiple sources in the LOFAR image such that it is unclear
whether the closest positional match corresponds to the cor-
rect counterpart. This gives a multiplicity fraction of ∼20 per
cent. Estimates of multiplicity based on high-resolution Ata-
cama Large Millimeter/submillimeter Array (ALMA) follow-
up of previous single-dish submillimetre surveys range from
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Table 2. Fluxes and radio spectral indices of sources in this study.

ID S 850 S 150MHz S 324MHz S 610MHz S 1.4GHz α150−324 α324−1400

(mJy) (µJy) (µJy) (µJy) (µJy)

1 11.91 ± 1.23 515.87 ± 21.88 269.05 ± 74.19 215.36 ± 16.93 80.64 ± 3.72 −0.81 −0.82
2 12.28 ± 0.00 569.90 ± 45.00 326.56 ± 69.59 230.62 ± 18.62 60.12 ± 6.04 −0.69 −1.16
3 (∗) 9.91 ± 1.33 437.02 ± 84.05 218.79 ± 69.63 243.83 ± 34.52 76.62 ± 6.97 −0.86 −0.72
4 8.92 ± 1.62 627.80 ± 26.03 654.40 ± 67.81 463.67 ± 12.53 232.95 ± 3.45 0.05 −0.71
5 8.66 ± 1.43 260.40 ± 33.58 185.44 ± 65.30 97.98 ± 16.65 46.60 ± 4.08 −0.42 −0.94
6 9.68 ± 0.91 155.09 ± 28.09 226.77 ± 63.90 66.25 ± 14.25 32.53 ± 4.82 0.47 −1.33
7 8.15 ± 1.28 427.66 ± 30.85 318.65 ± 81.14 217.56 ± 15.91 119.51 ± 3.12 −0.37 −0.67
8 (†) 8.31 ± 1.50 53.22 ± 217.11 −73.58 ± 306.52 39.84 ± 37.60 −21.12 ± 65.69 − −
9 (∗) 7.92 ± 1.37 352.32 ± 24.68 242.35 ± 45.25 110.80 ± 11.23 36.95 ± 3.90 −0.47 −1.29
10 7.91 ± 1.36 2757.32 ± 29.80 1591.78 ± 65.92 923.99 ± 10.53 265.02 ± 4.33 −0.68 −1.23
11 8.92 ± 1.35 2901.79 ± 33.26 1886.64 ± 66.49 965.98 ± 8.66 261.03 ± 6.77 −0.54 −1.35
12 7.45 ± 1.32 891.28 ± 35.67 597.49 ± 64.44 314.52 ± 14.95 131.48 ± 4.16 −0.50 −1.03
13 7.35 ± 1.33 677.98 ± 25.79 399.62 ± 75.91 218.91 ± 11.76 65.99 ± 4.84 −0.66 −1.23
14 7.87 ± 0.86 382.77 ± 22.14 211.55 ± 78.58 173.30 ± 15.20 34.05 ± 6.29 −0.74 −1.25
15 7.56 ± 1.40 195.09 ± 82.58 −142.94 ± 252.32 76.64 ± 64.94 202.57 ± 69.16 − −
16 (†) 6.81 ± 1.44 147.40 ± 187.52 −136.26 ± 286.97 39.09 ± 33.00 −115.27 ± 52.75 − −
17 (∗) 6.77 ± 1.37 396.25 ± 18.82 230.10 ± 75.84 155.23 ± 13.57 39.92 ± 3.66 −0.68 −1.20
18 6.76 ± 1.42 786.16 ± 36.80 611.55 ± 80.54 413.93 ± 14.34 205.57 ± 4.10 −0.31 −0.74
19 6.72 ± 1.30 257.25 ± 21.91 304.00 ± 75.83 68.13 ± 10.48 31.74 ± 4.65 0.21 −1.54
20 7.45 ± 1.14 201.01 ± 117.18 63.77 67.83 ± 48.35 −243.98 ± 90.86 − −
21 6.45 ± 1.36 246.71 ± 25.95 170.03 ± 75.18 129.69 ± 9.11 55.18 ± 3.85 −0.46 −0.77
22 (∗) 8.25 ± 1.51 599.27 ± 68.02 349.86 ± 88.50 187.96 ± 53.06 30.08 ± 8.89 −0.67 −1.68
23 8.15 ± 2.06 306.75 ± 21.86 302.24 ± 70.87 123.97 ± 11.61 36.63 ± 6.55 −0.02 −1.44
24 (∗) 6.47 ± 1.19 611.65 ± 412.64 46.51 ± 349.55 179.32 ± 186.81 286.13 ± 50.29 − −
25 6.31 ± 1.36 514.89 ± 26.75 248.83 ± 67.93 191.35 ± 9.75 67.50 ± 3.82 −0.90 −0.89
26 (∗) 6.50 ± 1.39 316.26 ± 44.95 200.46 ± 74.80 148.73 ± 19.29 45.82 ± 3.71 −0.57 −1.01
27 (∗) , (†) 6.32 ± 1.57 331.03 ± 103.48 314.05 ± 261.99 31.25 ± 55.27 456.51 ± 75.47 − −
28 6.17 ± 1.27 280.43 ± 29.52 134.93 ± 53.37 122.89 ± 12.37 47.90 ± 4.63 −0.91 −0.71
29 8.84 ± 1.68 417.91 ± 25.87 208.33 ± 55.58 196.16 ± 14.54 55.21 ± 6.88 −0.87 −0.91
30 (†) 6.42 ± 1.52 503.76 ± 114.80 781.95 ± 283.17 153.31 ± 75.00 420.91 ± 93.98 − −
31 6.69 ± 1.53 214.44 ± 18.08 203.56 ± 82.41 77.61 ± 16.35 25.53 ± 6.76 −0.06 −1.42
32 (∗) 5.52 ± 1.21 197.99 ± 37.48 186.59 ± 115.89 105.71 ± 69.49 32.39 ± 3.22 −0.07 −1.20
33 6.30 ± 1.33 320.15 ± 33.35 182.35 ± 47.71 111.52 ± 17.30 45.49 ± 6.72 −0.70 −0.95
34 (∗) 5.44 ± 1.30 224.34 ± 52.19 245.03 ± 77.06 56.77 ± 21.37 39.70 ± 5.24 0.11 −1.24
35 5.50 ± 1.33 603.71 ± 32.53 367.44 ± 71.91 283.81 ± 15.07 129.00 ± 3.86 −0.62 −0.72
36 5.42 ± 1.18 799.27 ± 254.92 164.88 ± 326.85 329.11 ± 256.36 368.81 ± 58.78 − −
37 (†) 4.86 ± 1.29 520.94 ± 83.10 −29.62 ± 313.97 136.86 ± 60.50 130.38 ± 48.72 − −
38 6.37 ± 1.38 748.04 ± 128.77 232.76 45.05 ± 53.30 124.80 ± 119.67 − −
39 4.98 ± 1.33 290.25 ± 33.77 315.02 ± 75.94 153.90 ± 8.45 53.63 ± 4.57 0.10 −1.21
40 (†) 5.07 ± 1.20 67.59 ± 98.51 −341.11 ± 221.77 99.69 ± 42.18 20.18 ± 59.61 − −
41 5.05 ± 1.31 1276.44 ± 27.34 786.63 ± 65.59 447.18 ± 12.20 189.72 ± 2.92 −0.60 −0.97
42 5.25 ± 1.39 475.66 ± 28.96 181.98 ± 63.07 192.92 ± 8.36 44.27 ± 4.53 −1.20 −0.97
43 5.02 ± 1.28 341.40 ± 26.43 331.18 ± 66.97 162.85 ± 11.18 65.27 ± 4.43 −0.04 −1.11
44 4.73 ± 1.19 464.62 ± 40.36 345.32 ± 85.46 193.13 ± 10.54 64.20 ± 3.66 −0.37 −1.15
45 5.31 ± 1.43 76.03 ± 239.46 −19.76 ± 232.55 164.37 ± 84.16 139.95 ± 95.10 − −
46 4.53 ± 1.14 516.47 ± 25.07 297.33 ± 74.08 222.81 ± 9.71 116.54 ± 3.86 −0.69 −0.64
47 (†) 4.66 ± 1.15 −106.75 ± 81.23 32.22 ± 250.29 −10.28 ± 49.18 93.86 ± 52.67 − −
48 (†) 5.00 ± 1.51 271.83 ± 80.87 −131.63 60.10 ± 51.23 −119.05 ± 67.70 − −
49 5.89 ± 1.28 197.55 ± 24.97 150.22 ± 68.25 104.23 ± 16.23 40.82 ± 7.98 −0.34 −0.89
50 6.40 ± 1.59 452.53 ± 200.45 174.61 ± 244.19 173.99 ± 69.35 49.36 ± 105.88 − −
51 (∗) 6.04 ± 1.76 332.04 ± 66.28 231.01 ± 91.76 145.52 ± 40.04 51.86 ± 8.26 −0.45 −1.02
52 4.60 ± 1.30 323.68 ± 27.13 252.34 ± 69.15 187.14 ± 11.54 67.46 ± 4.56 −0.31 −0.90
53 4.59 ± 1.19 402.38 ± 97.36 43.27 ± 273.87 61.92 ± 42.72 −30.77 ± 74.99 − −

Notes. IDs in Col. 1 follow Table 1, with multiple sources marked with an asterisk (*) and those not detected in LOFAR with a dagger (†). De-
boosted 850 µm flux densities are shown from the S2CLS catalogue, and radio flux densities are measured as described in Sect. 3.2. Here, α150−324
and α324−1400 are the low- and high-frequency radio spectral indices, respectively, as described in Sect. 4.
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15−40 per cent (e.g. Barger et al. 2012; Chen et al. 2013; Hodge
et al. 2013; Michałowski et al. 2017), so our observed multiplic-
ity is consistent with previous observations. It is possible that
we missed multiples in the case that their angular separation is
smaller than the resolution of our radio imaging; however, this
is likely to affect only a small number of sources in our sample.
Of those that are visibly multiples within the S2CLS beam based
on the radio images, we identified cases in which the secondary
source is likely a foreground contaminant by visually inspect-
ing cutouts of the source at radio, IR, and optical wavelengths.
We subsequently treated these as we did the single sources (see
Sect. 3.2), ensuring that the identified counterpart is identified
in source extraction. This does neglect the case in which several
sources contribute submillimetre flux and only one of which has
a detectable radio counterpart, a possibility that could arise if,
for example, a high redshift submillimetre source is by chance
aligned with a low redshift source. However, our final selected
sample has a median redshift of z = 2.61 (see discussion in
Sect. 4 for more details of the redshift distribution), which is con-
sistent with SMG populations (Chapman et al. 2005; Casey et al.
2014, Sect. 4 and references therein), and so it is unlikely that low
redshift interlopers contaminate our sample significantly. There
is also the possibility that the submillimetre fluxes are boosted by
low luminosity sources that do not have significant radio emis-
sion – in this case, for any significant contribution we would
expect a detectable radio source given the FIRC, so this also
seems unlikely. Without high-resolution submillimetre imaging
we are unable to distinguish between a single source and the
above cases, and so we continue with the assumption that in all
bar one of our sources we may attribute the observed submil-
limetre flux to a single radio source in the LOFAR catalogue.

There are two notable sources – sources 8 and 16 – that are
bright S2CLS detections but do not have significantly detected
counterparts in any of the radio, optical, or IR images. We spec-
ulate that these may be very high redshift (z > 4) galaxies and
discuss them in more detail in Sect. 3.3.

3.2. Radio fluxes

To measure the source flux density at the four radio frequencies,
we used the Source Extraction and Photometry (SEP; Barbary
2016) Python package, an application of SExtractor (Bertin &
Arnouts 1996) for Python. We made the assumption that all
sources are point-like across all radio frequencies, given that
inspection of the sources at the highest angular resolution (1.4
arcesc at 1.4 GHz) reveals no indication of resolved structure
across the sample.

Using SEP, we measured flux densities in each of the four
radio frequencies for the 41 LOFAR-detected sources described
in the previous section. These flux densities are consistent with
those presented in the LOFAR catalogue. We used the LOFAR
catalogue coordinates from the positional cross-match with the
S2CLS source list as described above as the source coordi-
nates, given the higher angular resolution of LOFAR. At each
radio frequency, we examined the source identification resulting
from SEP and ensured that the brightest source within the SEP
detection ellipse is the expected counterpart to the LOFAR posi-
tion so that any multiples are not incorrectly identified as the
counterpart. We then took the peak pixel value from within the
SEP source ellipse to be the source flux density. Uncertainties
on these measured flux densities were calculated using the
off-source pixel-to-pixel rms.

Of the ten sources that break up into multiple components
at higher resolution, several contain sources that are likely to

Fig. 2. Cutouts of sources 8 and 16 at radio frequencies, with S2CLS
850 µm. There are clear artefacts in the LOFAR image, which result
from nearby bright sources. While low S/N detections look possible
in several bands, these sources lie below the 5σ detection threshold in
all bands other than 850 µm. The orange circle shows the 15 arcsec
SCUBA-2 beam FWHM.

be foreground galaxies based on their bright optical luminosi-
ties. Comparing luminosities across the full range of multi-
wavelength images, we were able to determine the high redshift
counterpart in nine of these ten images. In these cases, the source
SMG can be identified in the LOFAR image, and thus we anal-
ysed these as described above, using the LOFAR coordinates for
reference. In the one case where there is no clear single coun-
terpart and there may be truly blended emission from several
co-located galaxies, further analysis would require a method of
partitioning fluxes that we did not attempt, and thus we excluded
the affected source from the sample.

3.3. Non-detections

Two S2CLS detections – S2CLSJ104554+584754 and
S2CLSJ104501+590403, sources 8 and 16, respectively, in
our sample – are below the 5σ detection threshold in the
LOFAR map. Inspecting these sources in all other available
wavelengths, we also find them to be below the 5σ detection
thresholds across the optical and IR as well as at all other radio
frequencies (see Fig. 2).

While eight sources appear in the S2CLS catalogue that
do not have counterparts in the LOFAR catalogue, these two
sources are of particular interest due to their high signal-to-
noise ratios (S/Ns). With S/Ns of 8.14 and 7.14, respectively,
they are very unlikely to be false detections, the false detec-
tion rate in S2CLS being less than 0.001 per cent for a > 7σ
source. We focused on these two bright S2CLS sources as they
are most likely to be real sources, and we did not attempt a
further analysis of the fainter sources without significant multi-
wavelength counterparts due to the probability of them being
false detections.

A number of possible factors could lead to these bright sub-
millimetre sources with very faint fluxes at other wavelengths:
it is possible that these submillimetre detections are the result
of blending of several faint sources with an angular separation
smaller than the SCUBA-2 beam but larger than at other wave-
lengths. However, if we assume that these are indeed single
sources, then these objects are either extremely reddened or they
are at very high redshift (z > 4). Most likely, we are observing
a combination of both redshift and reddening effects (Hughes
et al. 1998; Walter et al. 2012), and thus these lone SCUBA-2
detections are candidate high redshift sources.

To estimate a limiting lower redshift at which these sources
must be located to be detected at 850 µm and below the detection
threshold at other wavelengths given the depths of the vari-
ous surveys, we determined the detection thresholds in each
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Fig. 3. Calculating the lower limits on redshifts for sources 8 (left) and 16 (right), both of which are detected at 850 µm and at no other wavelength
in this study. Using the 5σ detection thresholds (marked as downward pointing arrows) at optical through to FIR wavelengths, and the detection at
850 µm, we redshift the Michałowski et al. (2010) template SED until it lies below the limiting fluxes. In this way we determine limits of z = 5.4
and z = 4.7 for sources 8 and 16, respectively.

of the images in which there is no detection. For the optical
through to near infrared, we used 5σ detection thresholds from
position-dependent depth maps (Shirley et al. 2019). For the
Herschel Photodetector Array Camera and Spectrometer (PACS)
and Spectral and Photometric Imaging Receive (SPIRE) images,
we used the documented 5σ survey depths from Oliver et al.
(2012). For Spitzer MIPS, we used the survey depths from the
SWIRE second data release (DR2; Surace et al. 2005)2.

As a simple illustration, we used the averaged SMG template
SED from Michałowski et al. (2010) as an assumed, underlying
SED for these two sources. Normalising at the observed 850 µm
flux density, we redshifted the template until it lay below the
detection thresholds of each wavelength (see Fig. 3). Thus we
obtained a lower limit on the redshift of each source.

This results in limiting redshifts of z = 5.4 for source 8 and
z = 4.7 for source 16, both of which are plausible for highly
star-forming galaxies selected at 850 µm. Given the simplistic
nature of our fitting procedure, and the assumptions about the
underlying SED shape, we cannot give robust redshift limits on
these sources; however, this is an indication of an approximate
redshift that is consistent with our hypothesis that these are two
submillimetre-bright, optically and radio-dim sources located at
high redshift. Further investigation of these sources with submil-
limetre or millimetre instruments to obtain spectral line emission
would be required to more accurately determine the redshifts of
these objects.

3.4. Optical to submillimetre spectral energy distributions

As described in Sect. 3.2, in the majority of cases there is a
clear, single LOFAR counterpart to the submillimetre source.
Therefore, to construct the SED we can simply use the LOFAR

2 Values for survey depths can be found at the following
URL: http://spider.ipac.caltech.edu/staff/jason/swire/
astronomers/program.html

catalogue source and the corresponding flux densities and uncer-
tainties at all optical and IR wavelengths provided in the LOFAR
added-value catalogue (Kondapally et al. 2021) and the radio flux
densities measured using the method described in Sect. 3.2.

Figure 4 shows an example SED for a source in our sam-
ple. We over-plot the Michałowski et al. (2010) template SED
normalised at the observed frame 850 µm flux density and trans-
formed to the photometric redshift of each source. This provides
a visual comparison to a typical high redshift dusty star-forming
galaxy SED, and we can see that the SEDs of sources in this
study are broadly similar across the full wavelength range. As
several sources in our sample are outside of Herschel survey area
coverage, and therefore do not have data available with which
to constrain the peak of dust spectrum, we did not conduct a
full SED-fitting process but simply used the normalised star-
forming galaxy templates. While this is not as robust as a fit to
the observed SEDs, in the majority of cases the template traces
the observed data adequately.

3.5. The far-infrared to radio correlation (FIRC)

As a quick check to confirm that none of our sources stand out
as radio-loud AGN, we calculated estimates of FIR luminosity
for our sources and plotted them on the FIRC. We used a very
simple method, integrating the Michałowski et al. (2010) average
SMG template flux between 8 and 1000 µm in the rest frame. We
then normalised this against the observed-frame 850 µm lumi-
nosity. While this is a naive approach and inevitably introduces
some uncertainty, the Michałowski et al. (2010) template SED is
qualitatively similar enough across the wavelength range in con-
sideration to provide a reasonable estimate of the FIR luminosity
of the sources.

The radio luminosity is calculated using the observed
1.4 GHz flux density, K-corrected according to the LOFAR cat-
alogue redshift following Lν = S ν × 4π × D2

l × (1 + z)α−1. For
each source, we used the value of the radio spectral index, α,
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Fig. 4. Observed-frame SEDs of four example sources from our sample. Blue points show the flux densities across the spectrum, with radio flux
densities measured as described in Sect. 3.2 and optical–FIR from the LOFAR catalogue. Uncertainties are plotted, though in many cases they
are smaller than the size of the plotted points. The average SMG template from Michałowski et al. (2010) (orange) is over-plotted, normalised at
the observed-frame 850 µm SCUBA-2 data point. We show several examples to demonstrate that, in most cases, the template traces the IR dust
spectrum well (though in others, less well) but that due to the lack of Herschel data covering the peak of the dust spectrum in several sources, we
use this normalised template to estimate FIR luminosities instead of template fitting.

resulting from a power law fit to the high-frequency radio spec-
trum (324 MHz–1.4 GHz) of the form S ν ∝ να (see Sect. 4). We
plot our sample on the FIRC following Ivison et al. (2010), and
over-plot their results in green for comparison (Fig. 5).

We notice immediately that, despite differences in the loca-
tion of our sources on the FIRC compared to Ivison et al. (2010)
(likely due to our FIR estimation method and selection effects, as
discussed below), none of our sources appear significantly below
the FIRC, and therefore we may assume that our sources do not
host radio-loud AGN, or at least that their spectra are dominated
by contributions from star formation. Selecting only the bright-
est submillimetre sources from a flux-limited sample introduces
selection effects such that we bias our sample towards the FIR-
bright, radio-faint population; therefore, we do not attempt to
comment on the distribution of our sources with regards to the
normalisation of the FIRC and its dependence on other galaxy
properties, such as redshift, temperature, and stellar mass, as
extensively studied by, for example, Yun et al. (2001), Ivison
et al. (2010), Smith et al. (2014), and Read et al. (2018). The
depth of the radio surveys used in our sample also impacts the

FIRC here: many older studies are based on much shallower sur-
veys, and the FIRC is plotted only for objects detected in both
bands. With shallow survey flux limits, this biases the selec-
tion to only the brightest sources in both IR and radio. Here,
selecting with S2CLS, we deliberately probed only the bright-
est, most star-forming IR galaxies, but with the depth of the
VLA surveys we are able to detect the faint radio counterparts
of these submillimetre-bright objects to lower flux limits than
previous work. These faint radio sources detected in our sample
have the resulting effect that the distribution of our sources in
Fig. 5 has a scatter that lies above the traditional FIRC. How-
ever, despite our sources filling a relatively small range of FIR
luminosities, they span a wide range of radio luminosities, allow-
ing us to study the variation in the radio properties of highly
star-forming galaxies. Calculating upper limits on the radio lumi-
nosities of the two sources with no radio detections, as described
in Sect. 3.3, we find that these sources also lie in the same region
on the FIRC as the rest of our sample, suggesting that these are
likely to be normal star-forming galaxies at very high redshift, as
hypothesised.
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Fig. 5. Far-infrared to radio correlation. Sources in our sample with
extremely flat low-frequency radio spectral indices are plotted with
light-coloured squares, and the positions of the ‘normal’ sources are
plotted with dark circles. The FIRC relation calculated from our data
following Eq. (1) is plotted as a dark dashed line, while the shaded
region shows the 1σ and 3σ variances, respectively. Data from Ivison
et al. (2010) are plotted in green crosses for comparison, with the FIRC
from that work plotted as a dotted green line.

We calculated the FIRC parameter, qIR, which parameterises
the FIRC, as follows:

qIR = log
(

S 8−1000µm/3.75 × 1012

W m−2

)
− log

( S 1.4 GHz

W m−2Hz−1

)
. (1)

We obtained a mean value of qIR = 2.24±0.29 for the objects
in our sample. This is consistent with the comparable value of
2.41 ± 0.2 obtained by Ivison et al. (2010), despite our very sim-
ple method for estimating FIR luminosities and the selection
effects discussed above.

To explore the range of the radio properties of these sources,
we look in more detail at the radio spectra in the following
section.

4. Radio spectra

The simplest approach to modelling the radio SED is to fit a
power law, S ν ∝ να, and allow the spectral index, α, to vary.
Fitting a power law across all available radio data for each source,
we measured a median3 spectral index across the whole sample
of −0.86 ± 0.06, consistent with values of α in previous stud-
ies (Condon 1992; Sirothia et al. 2009; Mauch et al. 2013). If we
divide the SED into two sections, low frequency (150–324 MHz)
and high frequency (324 MHz–1.4 GHz), we find median spec-
tral indices of −0.56 ± 0.16 at low frequency and −0.97 ± 0.15
at high frequency. This choice of dividing frequency (324 MHz)
is still firmly in the traditional low-frequency regime; however, if
we were to split the sample at a higher frequency (e.g. 610 MHz),
we would risk averaging over the part of the spectrum where we
might see the effects of spectral flattening most prominently. In

3 Median errors calculated following Gott et al. (2001).

addition, our radio data span the range 150 MHz–1.4 GHz, and
we did not include any higher frequency radio data in our analy-
sis, so our use of the terms ‘low frequency’ and ‘high frequency’
are purely relative in this case. The lower average spectral index
at low frequency reveals an average spectral flattening, but across
the sample we see a range of different spectral shapes in the
radio regime (Fig. 6). Extremely star-forming galaxies have been
found to have steeper spectral indices in our high-frequency
range than in previous studies (Galvin et al. 2018), and models
by Lacki & Thompson (2010) also predict steeper synchrotron
spectra in high redshift ‘puffy’ SMGs than in compact starbursts.

This variety suggests that there is not one single set of phys-
ical conditions responsible for the shape of the radio spectrum,
but that it is more likely that a variety of physical conditions
contribute to the observed diversity of radio spectral shapes.
With only four observed frequencies, we did not attempt to fit
a more complex model but instead examined how the slope of
the spectrum changes with frequency. We constructed a radio
colour–colour plot using the observed-frame radio flux densities
at 150 MHz, 324 MHz, and 1.4 GHz. Defining a colour, equiv-
alent to the local spectral index, as the relationship between the
two flux densities,

α =
log(S ν1/S ν2 )
log(ν1/ν2)

, (2)

we plot the low-frequency colour (αlow, ν1 = 150 MHz, ν2 =
324 MHz) against high-frequency colour (αhigh, ν1 =
324 MHz, ν2 = 1.4 GHz) to obtain a diagnostic plot from
which we may read a measure of spectral curvature (Fig. 7).
A non-negligible number of sources have significantly flatter
low-frequency spectral slopes than expected from typical
estimates of power-law-type radio spectra with α ' −0.8.

We selected the nine sources with αlow > −0.25 (marked in
Fig. 7 with a dashed red line) to investigate further and per-
formed a number of comparisons to see whether this extremely
flat αlow sub-sample differs from the parent sample in any
observational parameters. We note that conventionally a more
conservative cut is made in spectral index to define flat-spectrum
sources (typically α = −0.5); however, we divided our sample as
such so as to investigate the most extreme spectral flattening.
Taking a more traditional division between flat and steep spec-
trum sources at α = −0.5 does not, however, significantly affect
our conclusions, and in fact a flat-spectrum sample with α >
−0.5 is comparable to the extremely flat-spectrum α > −0.25
sample in terms of luminosity and redshift distribution (as in
Fig. 8) as well as the other properties explored in this study.

As an initial check, we confirmed that the distribution of
these sources is similar to that of the parent sample in both lumi-
nosity and redshift (Fig. 8). The extremely flat-spectrum sample
is statistically indistinguishably distributed from the parent sam-
ple in both, with a Kolmogarov-Smirnov two-sample test (KS
test) giving p-values of p = 0.98 and p = 0.61 for IR luminosity
and redshift, respectively.

Next we investigated the MIR colours of these sources. If the
difference in radio spectral shape is correlated with a difference
in dust temperatures, we might expect to see this sub-sample in
a distinct region of an MIR colour–colour diagram. Mid-infrared
colour photometry can be used as a diagnostic to identify the
presence of AGN in star-forming galaxies (Laurent et al. 2000).
The MIR spectrum of a star-forming galaxy is typically driven by
emission from warm dust (T ∼ 25–50 K) heated by H II regions
associated with recent star formation, as well as photodissocia-
tion regions giving rise to sharply peaked emission features from
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polycyclic aromatic hydrocarbons (PAHs). A luminous AGN
will contribute significantly to the short-wavelength emission of
the MIR spectrum via dust in the AGN torus being heated to
much higher temperatures of up to T ∼ 1500 K. Colour–colour
plots constructed from Spitzer Infrared Array Camera (IRAC)
photometry can be used to distinguish whether the dominant
contribution is from AGN, in which case the MIR colours will be
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Fig. 8. Normalised histograms showing the distribution of sources in
IR luminosity and redshift, with the full sample shown in dark and the
extremely flat-spectrum sources shown in a light outline. The median of
each sample is also shown, with a dashed line showing the median of
the full sample and a dotted line showing the median of the extremely
flat-spectrum sample.

very red (Lacy et al. 2004). We plot the positions of our sources
in MIR colour–colour plots using the 3.6, 4.5, 5.8, and 8 µm
IRAC flux densities (Fig. 9).

We followed Donley et al. (2012) and over-plotted the region
defined therein to identify galaxies hosting AGN using their IR
colours. Our main interest in investigating the MIR colours is to
determine whether the difference in radio spectral slope could
result from AGN contributions. We have already established that
there is no clear signature of radio-loud AGN in any sources;
however, by inspecting the MIR colours we can probe their dust
temperature distributions, which could reveal AGN activity with
low radio luminosities that could affect the shape of the radio
spectrum. A number of our sources lie within this region, sug-
gesting that these sources may contain AGN. There are also a
number of other mechanisms that could affect the MIR prop-
erties in addition to AGN activity – it should be noted that we
cannot disentangle any differences in MIR emission due to the
relative timescales of star-formation and AGN activity, nor that
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of the merger stage. The range of redshifts across the sample
will also result in a spread of MIR colours due to the loca-
tion of PAH features in the observed frame. Nevertheless, there
is no clear distributional difference between the extremely flat-
spectrum sample and the rest of the sample – a KS test giving
p = 0.4 in the S 5.8/S 3.6 colour and p = 0.95 in the S 8.0/S 4.5
colour – with neither sample clearly occupying a distinct region
in the colour–colour plot, suggesting that the cause of this radio
spectral flattening must be something other than simply AGN
contributions to the spectrum. As the sample is of only a small
number of sources, it is difficult to make a statistically robust
statement on their distribution; however, there is nothing to sug-
gest that the extremely flat-spectrum sources are special in any
way as regards their IR properties.

As there are no discernible statistically significant differ-
ences between the extremely flat αlow sources and the rest of the
sample in our observable properties, we propose that this dif-
ference in radio spectral shape may be related to properties of
the galaxies that we are unable to detect with our unresolved,
galaxy-averaged observations.

Low-frequency flattening of radio spectra

There are several possible scenarios in which the low-frequency
radio spectral slope is flattened relative to an α = −0.7 power
law spectrum resulting from the conditions of the ISM, as
observed in the nine sources described in Sect. 4. Synchrotron
self-absorption can play a role in flattening the low-frequency
spectrum; however, as the galaxies in our sample do not have
AGN-dominated spectra, this is unlikely to make a significant
contribution. In the case of low-luminosity AGN contribution,
the level of flattening observed in our extremely flat-spectrum
sources could only be obtained with a combination of the max-
imum possible AGN fractional contribution and self-absorption
tuned to occur exactly at our breaking frequency of 324 MHz.
This would be an unlikely coincidence, and as such we conclude
that it is unlikely for AGN contributions alone to cause the
observed flattening. A more likely possibility is that, if the
source of synchrotron emission is embedded in an ISM that is

sufficiently dense and clumpy, free–free absorption begins to
have a significant effect as we observe the lower-frequency spec-
trum. Nearby star-forming galaxies have been observed to have
significant free–free absorbed spectra and clumpy star-forming
regions (e.g. Lenc & Tingay 2009; Rampadarath et al. 2014) but
it is only now with the deep low-frequency radio data that have
become available with LOFAR that we are able to investigate
this at high redshift.

To model free–free absorbed spectra, we assumed typical
properties of the ISM of SMGs and computed the effect this has
on an α = −0.7 power law spectrum at the median (estimated)
redshift z = 2.6 of the sample. We calculated the optical depth
τ =

∫
κdl at the rest-frame frequencies that correspond to our

observed frequencies for a galaxy at the median redshift of the
sample (z = 2.6), where κ is the free–free absorption coefficient
as defined by Condon (1992):

(
κ

pc−1

)
= 3.3 × 10−7

( ne

cm−3

)2 ( Te

104K

)−1.35 (
ν

GHz

)−2.1
, (3)

where ne is electron density and Te electron temperature.
Estimates of electron densities in star-forming galaxies from
emission line diagnostics are poorly constrained and range
from 10 to 400 cm−3 (Parkin et al. 2013; Farrah et al. 2013;
Masters et al. 2014; Kaasinen et al. 2017). We assumed an elec-
tron density of ne = 50 cm−3, which is on the low end of
star-forming electron density estimates – however, as the length
scale of relevance is inversely proportional to n2

e for an equiv-
alent level of absorption, if we were to assume a higher value
of ne we would find length scales that are smaller by a factor of
∆n2

e . This choice then gives us an approximate upper limit for
the length scales required for free–free absorption to flatten the
spectrum at low frequency, as observed. We assumed an electron
temperature of Te = 104 K (Downes et al. 1980). Of course, the
properties of the ISM in an individual galaxy will vary in density
and temperature across the galaxy’s extent as well as across our
sample, which covers a range of redshifts; we expect to see varia-
tion in the nature of the ISM. This simple model of the effects of
free–free absorption assumes a single slab of absorbing material;
due to the nature of our observations, it would be unrealistic to
attempt to model any more realistic distributions of dense gas in
the ISM. However, more complex distributions of gas mixed with
the radio-emitting plasma in simulations of free–free absorption
in radio spectra (e.g. Bicknell et al. 2018; Varenius et al. 2014)
produce very similar results overall.

Figure 10 shows the effect of free–free absorption on such a
spectrum, over absorbing columns of between zero and 300 pc.
In this model, the level of spectral flattening that we would be
able to observe occurs at rest-frame frequencies of <1 GHz,
which corresponds to observed-frame frequencies of .280 MHz
for the median redshift, z = 2.6, of our sample. This in part moti-
vated our choice of cutoff frequency to measure the spectral
slope as measuring at 610 MHz would average out the flatten-
ing we see most strongly at these lower frequencies. We return
to the radio colour–colour plot in Fig. 7 and plot the colours of
this model spectrum over these increasing absorbing columns.
This simple model demonstrates that, with our assumed elec-
tron densities and temperature, an absorbing column of several
hundred parsecs in size would be sufficient to flatten the low-
frequency radio spectral index to the degree that we observe in
several sources. As noted above, if we increase the electron den-
sity in our model, this would be consistent with smaller-scale
absorbing columns (approximately tens of parsecs).
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This spatial scale of dense, star-forming clumps is consistent
with the highest-resolution observations of SMGs (Swinbank
et al. 2010; Ikarashi et al. 2015; Dessauges-Zavadsky et al. 2019).
A number of studies imaging SMGs at the highest resolutions
have found evidence of clumpy substructure at spatial scales
of several hundred parsecs (e.g. Iono et al. 2016; Tadaki et al.
2018); however, for the most part it is only possible to resolve
down to scales of approximately tens of kiloparsecs in the hand-
ful of submillimetre sources that are strongly gravitationally
lensed and observed with interferometric instruments. One such
strongly lensed submillimetre source that has been well stud-
ied, SDP.81, displays a spatially non-uniform dust continuum,
with several bright 100−500 pc scale clumps (Rybak et al. 2015;
Hatsukade et al. 2015; Swinbank et al. 2015) and ‘knots’ (Tamura
et al. 2015) on <100 pc scales. The ‘Cosmic Snake’ is another –
with magnification affording resolved scales as small as 30 pc;
Dessauges-Zavadsky et al. (2019) find several molecular clouds
on scales between 30–210 pc.

These scales correspond approximately to the Jeans length
for the gas densities typical of star-forming galaxies (Shimakawa
et al. 2015; Hatsukade et al. 2015), with giant molecular gas
clouds collapsing as a result of Toomre instabilities (Toomre
1964). However, we caution the reader that there has been debate
as to whether observed ‘clumpy’ substructure is biased by effects
relating to interferometric observations. The case for ∼100 pc
scale substructure in the ‘Cosmic Eyelash’ (Swinbank et al.
2010) has recently been challenged, with work showing that the
inferred structure may be due to filtering and resolution effects
amplifying spurious features in low S/N interferometric images
(Cava et al. 2018; Gullberg et al. 2018; Ivison et al. 2020).

Our extreme low-frequency spectral flattened sample with
α > −0.25 consists of only nine of the 42 sources in the whole
sample, implying that if our assumption that this spectral flat-
tening is caused by free–free absorption is correct, the majority
of the population of submillimetre-bright sources might not be
expected to show strong evidence of dense, clumpy star-forming
regions on these scales. The effect of absorption on our unre-
solved galaxy-averaged observations must depend on the fraction
of low-frequency radio emission that is embedded within and
absorbed by high density gas; if a sufficient fraction is able to
escape, we will see this flattening to a lesser degree. Thus there

are several explanations for the lack of free–free absorption sig-
natures in the majority of our galaxy sample. It could be due to an
intrinsically smoother, more diffuse distribution of star-forming
material (as suggested in e.g. Hodge et al. 2016; Ivison et al.
2020). There is likely also a dependence on age – in younger
star-forming regions, the radio emission is more likely to still
be contained within a dense gaseous structure – and geometry
may also play a role. Effects of environment and the merger
stage may affect the distribution of gas in our galaxies, and we
spanned a large range in redshift over which we would expect the
nature of the ISM to evolve. Additionally, our estimated ∼100 pc
length scale is based on a conservatively low estimate of elec-
tron density, as previously discussed; higher assumed electron
densities would lead to clumps on scales below the resolution
limits of observations of even the most highly magnified lensed
sources.

Due to the serendipitous nature of locating gravitationally
lensed galaxies, there are very few sources in which observations
of sufficiently high resolution can be made to detect substructure
on the ∼100 pc scales implied by our calculation. Since only
∼20 per cent of sources in our sample display this low-frequency
radio spectral flattening, a much larger sample of hundreds of
galaxies observed at sub-kiloparsec scales would be required to
detect many sources with this substructure if our assumptions
are correct that this observed radio spectral flattening is due
to free–free absorption, and assuming that structure does exist
on scales large enough to be detected with current instrumental
capabilities.

5. Conclusions

Taking advantage of new, deep LOFAR images, we investi-
gated the low-frequency radio spectra of a sample of highly
star-forming galaxies selected at 850 µm from the S2CLS. Our
conclusions are as follows:
1. We find that this sample of SMGs displays a range of radio

luminosities and spectral shapes despite being selected at a
very narrow range of submillimetre fluxes, implying that the
radio properties of this sample do not follow a tight correla-
tion with the star-formation properties we might infer from
submillimetre observations alone.
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2. We find evidence of radio spectral flattening at low fre-
quencies (αlow = −0.47 ± 0.16 on average, and nine sources
with αlow < −0.25). These flat-spectrum sources are indis-
tinguishable from the full sample in their distributions of
redshift and IR luminosity, as well as in their IR colours. In
the absence of any clear observational differences between
sources with flat low-frequency spectra and the rest of the
sample, we infer that this must be due to underlying proper-
ties of the galaxies that we cannot observe in our unresolved
imaging. We suggest that this radio spectral flattening may
be due to free–free absorption arising from non-uniform,
clumpy distributions of ionised gas in which star formation
is embedded. Taking typical values of electron density and
temperature, we estimate that clumps must be of the order
of a few hundred parsecs in size (comparable to substruc-
ture that has been observed in strongly lensed submillimetre
sources) to account for the observed radio spectral curva-
ture. This presents an additional piece of evidence in favour
of clumpy star formation in high redshift galaxies that does
not depend on the angular resolution of morphological imag-
ing but can be detected in the galaxy-averaged properties
in the radio SED. Due to the serendipitous nature of imag-
ing lensed sources, there are few observations reaching high
enough resolution to detect structure on this scale, and so
larger samples of high-resolution images (e.g. using submil-
limetre interferometric instruments such as ALMA) would
be required to test whether the proportion of galaxies in our
sample that exhibit this radio spectral flattening (∼20 per
cent) is typical of the submillimetre population in general.

3. In addition to the range of radio spectra observed in this
sample, we also find two bright submillimetre sources (>7σ
detections) that are undetected at all other wavelengths, from
optical through to radio. We speculate that, due to sampling
the peak of the thermal dust emission spectrum at 850 µm,
these objects are located at high redshift (z > 4) and are
too faint due to cosmological dimming at all other observed
wavelengths. We propose them as interesting candidates for
(sub)millimetre interferometric follow-up to determine their
redshifts with certainty.

Finding this variety of spectral shapes and evidence of free–free
absorption in spectral flattening at low frequencies is consis-
tent with high-resolution observations of clumpy star-forming
regions in submillimetre galaxies. A larger sample of sub-
millimetre galaxies with low-frequency radio observations and
high-resolution interferometric follow-up would be beneficial to
further investigating the nature of this spectral flattening.
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