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RÉSUMÉ.— Effet du paillage et des abris-serres sur la survie et la croissance de plants de Chêne-liège 

(Quercus suber L.) durant quatre saison de croissance.— Cinq modalités de paillage (Pin pignon, Lentisque, 
mélange de Pin pignon et de Lentisque (paillages organiques), gravier (paillage inorganique) et témoin), ainsi que 

trois modalités d’abris-serres (non aérés, aérés et témoins) ont été testées. Aucun des deux types d’abris-serres aéré 

et non aéré n’a eu d’effet significatif sur le taux de survie des plants, alors qu’ils ont significativement augmenté la 
croissance en hauteur moyenne des plants, par rapport au témoin, respectivement de 74-104 % et 93-106 % durant 

les quatre années. Contrairement à la croissance en hauteur, le diamètre moyen de la tige à la base des plants des 

abris-serres aéré et non-aéré a été significativement plus petit que celui du témoin, durant toute la période d’étude, 
respectivement de 23-31 % et 38-42 %. Les abris-serres ont significativement affecté le microclimat autour des 

plants par augmentation ou diminution de la température, de l’humidité relative et du déficit de pression de vapeur 

de l’air. Ils ont réduit, par ailleurs, le taux de photosynthèse, et donc la production en biomasse totale, en raison du 
faible niveau lumineux. L’augmentation de la largeur et l’aération des abris pourraient aider à diminuer la 

température et augmenter la transmission de la lumière, ce qui pourrait les rendre plus favorables à la croissance 

des plants. Le paillage n’a pas eu d’effet significatif sur la croissance des plants durant toute la période d’étude. 
L’utilisation combinée des abris-serres et du paillage n’a pas amélioré la croissance des plants. 

SUMMARY.— We evaluated the effect of mulching and tree shelters on survival and growth of planted Cork 
oak (Quercus suber L.) seedlings during four growing seasons. Five mulch types (Italian Stone Pine, Lentisk, and 

a combination of Italian Stone Pine and Lentisk (organic mulches), gravel (inorganic mulch) and no mulch) and 

three tree shelter types (non-vented, vented and control) were tested. Tree shelters did not have a significant effect 

on seedling survival rate during the study period, whereas both vented and non-vented shelters significantly 

increased seedling mean height during the four years by 74-104 % and 93-106 %, respectively, compared to 
unsheltered seedlings (control). Contrary to height growth, mean basal diameter in vented and non-vented shelters 

was significantly lower by 23-31 % and 38-42 %, respectively, than in controls in all the years. Tree shelters 

significantly affected the microclimate surrounding the seedlings by increasing/decreasing temperature, relative 
humidity and vapour pressure deficit. Both shelters reduced photosynthesis rate, and therefore total biomass, as a 

result of low light availability. Increasing shelter width and aeration may help to decrease temperature and 

increase light transmission, which could make shelters more conducive to seedling growth. Mulching had no 
significant effects on seedlings growth during the study. The combined use of mulching and tree shelters did not 
improve seedling growth. 

________________________________________________ 

Cork oak (Quercus suber L.) is an outstanding sclerophyllous species in Mediterranean forest 

ecosystems. In Tunisia, it is well represented in the north-west of the country (70 000 ha), where 

local inhabitants graze livestock. It plays an important ecological role, supporting a diversified 

floristic and faunal assemblage. It also plays a considerable socio-economic role in the life of the 

rural population of the area and contributes to the national economy through production and export 

of cork, conferring cork oak with a particular place amongst forest species in Tunisia. 

Unfortunately, this precious and fragile forest heritage undergoes a continual degradation under 

the effects of numerous factors of deterioration including poor natural regeneration, the 

physiological exhaustion of old trees, acorn gathering and predation, and repetitive forest fires. 

Fifty-seven thousand ha of cork oak forest were lost during 1934-2003, corresponding to 826 ha/yr 

and 39 % of its total area (Nsibi et al., 2006). Early attempts with artificial regeneration of cork 
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oak to compensate the lack of natural regeneration have not been successful. Lack of success was 

mainly related to overgrazing, the inability of cork oak to compete efficiently with the surrounding 

vegetation (Hasnaoui, 1992), and slow juvenile growth rates. 

Efforts to shield seedlings from animal browse led to the invention of individual seedling 

browsing protectors or tree shelters (Tuley, 1985) which are cylindrical or square, translucent, 

polypropylene tubes of varying heights with single or double walls. Besides their protective role 

from browsing, tree shelters are reported to reduce herbicide contact with protected trees (Švihra et 

al., 1993; Bergez & Dupraz, 2000) and promote seedling survival (Potter, 1991) and height growth 

(Oliet et al., 2005; McCreary et al., 2002; Pemán et al., 2010) by creating a more favourable 

microenvironment surrounding the plant (Tuley, 1985; Potter, 1988, 1991). While tree shelters 

have in most cases a positive effect on height growth, their effect on diameter growth is dependent 

on species and shelter type (Sharrow, 2001; Sharew & Hairston-Strang, 2005). 

Regardless of protection against herbivores, the success of plantation establishment depends 

largely on management after planting; particularly weed control (Albouchi & Abbassi, 2000), soil 

preparation and technique of plantation (Varela, 2013; Varela & Amandier, 2015). Mulching is a 

weed control method widely used in agriculture and horticulture. More recently, the use of 

mulching has been studied in forestry applications, including establishment of hardwood and 

conifer plantations (Adams, 1997; Haywood, 2000; Green et al., 2003). Mulches are beneficial to 

forest plantations because of their capacity to reduce vegetative competition (Green et al., 2003), 

to conserve soil moisture, and to increase the availability of key soil resources such as nitrogen 

(Truax & Gagnon, 1993). Mulches can be either organic or inorganic. Organic mulches are 

composed of cork mulch (see Piazzetta, 2013), wood, bark, or leaves singly or in combination, 

while inorganic mulches include gravel, pebbles, or polyethylene film. 

Experiments examining the effect of tree shelters are often of a short duration not exceeding 

generally one (Navarro Cerrillo et al., 2005; Taylor et al., 2009; Mechergui et al., 2012) or two 

growing seasons (Leroy & Caraglio, 2003; Jiménez et al., 2005; Mariotti et al., 2015). Less 

information is available for longer durations. In addition, the effects of tree shelters and mulching 

have frequently been examined in separate experiments, but rarely in concert. Furthermore, 

classically measured parameters in studying the effect of treatments on oak growth (i.e., height, 

basal diameter, and biomass growth (Costello et al., 1996; McCreary & Tecklin, 1997)) do not 

account for the typically rhythmic pattern of height growth in oak species (Reich et al., 1980; 

Champagnat et al., 1986; Harmer 1990; Mechergui et al., 2012). The study of this growth pattern 

involves the division of the main stem into growth units, and provides useful information on this 

growth response characterization. 

The goal of this study was 1) to evaluate the effectiveness of tree shelters and mulching in 

establishing of an autochthonous species, cork oak (Quercus suber L.), and 2) to determine i) the 

most appropriate mulch and/or tree shelter type(s), ii) if increased height growth by tree shelters, 

often cited in the literature, is temporary or persistent and iii) if tree shelters require improvements 

in their design based on their effect on photosynthetic activity of plant. This paper presents 4-year 

results of a study of tree shelters and mulching established in north-western Tunisia. 

MATERIALS AND METHODS 

STUDY AREA 

The study was undertaken at the M’hibeus national forest (9°07′52′′N, 37°06′05′′E, 200 m a.s.l.) in north-western 
Tunisia (Sejnane forest subdivision), from February 2009 to December 2012. The climate is Mediterranean with an annual 

average temperature of 18.2 °C (1975–2004). Average maximum and minimum temperatures are 34.4 °C and 5.6 °C, 

respectively. The average annual rainfall is 911.1 mm, with 77 % of the total rainfall falling in winter and autumn and only 
4 % in summer. Soil organic matter content was 5.74 % in A-horizon, 2.43 % in B-horizon and 0.78 % in C-horizon. The 
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site was cleared of maquis vegetation mainly dominated by Calicotome villosa (Poir.) Link, Cistus monspeliensis L., 

Myrtus communis L., and Pistacia lentiscus L. 

PLANT MATERIAL 

Three hundred 1-year-old seedlings of cork oak (Quercus suber L.) were hand planted on the site, in February 2009, 

at 4 m × 4 m spacing in an area of 4800 m2. Seedlings had been grown in a local Sejnane nursery, in containers of a 
diameter of 12 cm and 30 cm of depth, filled with a mixture of 50–50 % (v/v) blue-leaved wattle (Acacia saligna (Labill.) 

Wendl. f.) and Italian stone pine (Pinus pinea L.) bark composts. Prior to planting, all vegetation line was cut close to 

ground level. Manual hoeing around each planted seedling prepared a surface of 1 m2 for the mulch sheeting. The prepared 
surface around each seedling was 3 cm deep to fix the mulch and avoid removal by wind or runoff. Seedlings were watered 

after planting with 5 L per seedling. The experimental site was fenced to restrict herbivore access. Initial values measured 

just after plantation varied between 28.6 to 105 cm for height growth, with an overall mean of 65.1 ± 0.71 cm (± S.E) and 
between 3.1 to 11.6 mm for basal diameter, with an overall mean 7.5 ± 0.08 mm. They were not significantly different 

among the two controlled factors (mulch and shelter types) or interactions. 

EXPERIMENTAL DESIGN AND TREATMENTS 

The trial was a split-plot design with main plots in randomized blocks with four replications (or blocks). Each block 
had 75 seedlings allocated between the following treatments: five mulch and three tree shelter types (5 mulch types × 3 tree 

shelter types × 5 seedlings). Seedlings were planted in a rectangular block (60 × 20 m). Mulch types were the main plots 

and tree shelter types were the subplots. Each subplot was a five-seedling row. Rows were adjacent. Tested mulches were: 
1) Italian Stone Pine (Pinus pinea L.); 2) Lentisk (Pistacia lentiscus L.); 3) combined mulch of Italian Stone Pine and 

Lentisk (50–50%) (organic mulches); 4) gravel (inorganic mulch) and 5) untreated control (no mulch). Organic mulches 

consisted of prunings, 20 to 40 cm long and 5 to 20 mm thick. Mulches were not oven-dried before use due to the risk of 
rapid disintegration during the major rainfall season, which may lead to an accelerated rate of decomposition (Oelbermann 

et al., 2004). Moreover, the use of fresh biomass is also more representative of natural decay processes when these 

mulching materials are applied to the soil surface (Fang et al., 2008). Inorganic mulch consisted of gravel (calibration: 4-16 
mm) from a quarry in Bizerte. All mulches were applied in an approximately 3-cm thick layer to an area of 1 × 1 m square 

around individual seedlings (see Mechergui et al., 2012). The three tree shelter types were: (1) ‘Non-vented’ tree shelter, 
(2) ‘Vented’ tree shelter, and (3) Control with no shelters. The non-vented tree shelters (Tubex ‘L’ Standard®) were 

translucent green (Tubex Co., South Wales, UK). The wall of the tree shelter is totally airtight and the entrance of fresh air 

is only possible through the top of the tree shelter. The vented tree shelters (Tubex ‘E’ Equilibre®) were ventilated by ten 
1-cm-wide round holes at their base, creating a ‘‘chimney effect’’. Both vented and non-vented tree shelters are circular, 

1.8-m tall, 8.0–12.0 cm wide, UV stabilized polypropylene with twin-walls. They were buried 5 cm into the soil 

immediately after planting to prevent air movement through the shelter bottom that could cause desiccation. They were 
then secured to a 1.8 m untreated eucalyptus stakes anchored 20 cm into the soil. Mesh caps were placed over them to keep 

birds out. 

GROWTH MEASUREMENTS 

Measurements were made in the 300 seedlings. Height and basal stem diameter were measured and recorded at the 
time of planting (February 2009) and at the end of each growing season (December, 2009, 2010, 2011 and 2012). As 

survival was very high (97 %, only 9 of 300 seedlings died), treatments were not analysed for survival differences. Heights 

were recorded from the base of the seedling to the end of the longest shoot held straight. Diameter measurements were 
taken at the base of the seedling, approximately 2 cm above the ground, using electronic callipers. 

After tree shelters were removed, the ability of a seeding to support itself without a stake was evaluated by 

determining whether the seedling would stand on its own or bend and touch the ground. 
Oak height growth occurs in a rhythmic pattern with periods of uninterrupted terminal bud growth (flushes) 

alternating with periods of bud development and apparent rest (Harmer, 1990; Mechergui et al., 2012). During each growth 

flush, a distinct portion of the stem called the growth unit (GU) is established. It is composed of nodes, on which are 
inserted basal scales or foliage leaves, and internodes (Chaar et al., 1997). GUs occurred during a given growth season 

form a portion of the stem named annual shoot. The following growth components were recorded at the end of the growing 

season: length and number of internodes per GU, number of GUs established by the main stem, and length of the GU and 

annual shoot. 

At the end of year 4, 2 seedlings per block were randomly selected from each treatment (total of 120 seedlings) and 
harvested to determine seedling biomass. Leaves were removed from stems, stems were severed at the root-collar, and all 

roots were then rinsed free of soil. Weight of the above- and below-ground biomass were then determined after drying at 70 

°C for 6 days. Shoot : root ratio was calculated for each seedling from dry weights of the biomass components. 
The effect of the tree shelters on the number branches produced was assessed in 4 seedlings, grown with and without 

tree shelters, randomly selected. 

Measurements of photosynthesis rate, as detailed by Oliet & Jacobs (2007), were performed in spring of the fourth 
year (2012) on a total of 4 plants randomly chosen from each shelter treatment (1 plant/block/shelter type) on a fully 
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expanded, recently mature leaf, using a portable photosynthesis system (LI-6400XT, LI-COR Biosciences, Lincoln, NE, 

USA). 

MICROCLIMATE MEASUREMENTS 

The microclimatic conditions inside the tree shelters were studied, in the course of the fifth year (2013), by measuring 

air temperature, relative humidity, light transmission, CO2 concentration and vapour pressure deficit which were then 
compared with measurements made on control treatment (outside). Temperature and relative humidity were measured 

using digital thermo-hygrometers MAX-MIN (TFA®, Kat.Nr.30.5015) suspended by monofilament fishing line at 50 cm 

height above soil level. The measurement period was from 1-3-2013 to 30-11-2013. Light intensity was measured using a 
LIGHT METER (Model: DVM1300), while CO2 was measured using a CO2 METER (Model: GC-2028). To measure the 

light intensity and CO2 concentration in the shelter windows were cut in the wall of the shelter and hermetically taped 

during the measurements. Measurements of light intensity were made without seedlings inside tree shelters, at 40, 80, 120 
and 160 cm above the ground, in order to make a better characterization of the light ambient inside tree shelter during the 

growing period (Pemán et al., 2010). Data were recorded in lux, and then transformed in μmol of photons m-2s-1 to quantify 

photosynthetically active radiation (PAR) according to the method of Thimijan & Heins (1985). Measurements of CO2 
concentration were made at 40, 80, and 120 cm above the ground. Data were recorded on the spring, summer and autumn 

from 8h to 18h each 2 hours (three times per season). Vapour pressure deficit (VPD) was calculated using air temperature 

(Tair, °C), dew point temperature (Tdew, °C), and relative humidity (RH) (%) according to the procedures of Murray (1967).  
VPD = es-ea (kPa), where: 

es (saturation vapour pressure) = 0.611 exp (17.27 Tair / 237.3 + Tair) 

ea (actual vapour pressure) = 0.611 exp (17.27 Tdew / 237.3 + Tdew) 

 

DATA ANALYSIS 

Quantitative variables such as biomass, height growth, basal diameter, height/diameter ratio, annual shoot, growth unit 
(GU), and length and number of internodes were analysed as a split-plot arrangement with Whole plots in Randomized 

Blocks using PROC MIXED of Statistical Analysis System (SAS Institute Inc., Cary, NC, Version 9.2). The two factors 

Mulch type and Tree shelter type and their interaction were modulated as fixed effects, and Block, Block × Mulch type as 

random effects. To eliminate browsing effect on seedlings growth, browsed seedlings were excluded from statistical 

analyses. For height, diameter and height-to-diameter ratio, the initial value of the variable-measured just after planting was 

treated as a covariate measured on the small-size experimental unit (seedling), and an analysis of covariance (ANCOVA) 
was then conducted (Littell et al., 2006). 

Quantitative variables associated with temperature, relative humidity, light intensity, CO2 concentration, vapour 
pressure deficit, photosynthesis rate and number of branches were subjected to a one-way ANOVA (tree shelter type). For 

each analysis, when the ANCOVA or ANOVA was significant, statistically significant differences between means were 

identified using Tukey–Kramer multiple comparison test, at p ≤ 0.05. 
Seedling posture (qualitative variable) was expressed in proportions (%). A comparison of mean proportions was then 

performed thanks to χ2-test by using the PROC FREQ procedure. Differences were considered significant at p ≤ 0.05. 

RESULTS 

MICROCLIMATIC CHARACTERISTICS 

As shown in Tab. I, maximum temperature (diurnal temperature) was, on average, 

significantly higher inside tree shelters, while minimum temperature (night temperature) was 

significantly higher outside. This trend was observed during all the growing season (spring, 

summer and autumn). Inside tree shelters maximum temperature was always significantly higher 

in non-vented than in vented tree shelters, while minimum temperature was similar in both shelter 

types throughout the growing season. Average maximum RH (night RH) did not show clear 

tendencies differences between inside and outside tree shelters, while average minimum RH 

(diurnal RH) was significantly lower inside tree shelters during the entire growing season (Tab. I). 

Excepting summer, the period for which differences between shelter treatments were not 
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significant, maximum relative humidity was significantly higher in vented than in non-vented tree 

shelters. This trend was observed for minimum RH throughout the growing season. 
 

TABLE I 

Maximum (Max) and minimum (Min) temperatures (T (°C)), vapour pressure deficit (VPD (kPa)), maximum (Max) and 
minimum (Min) relative humidity (RH (%)), and CO2 concentration inside (NV, non-vented; V, vented) and outside (C, 

control) tree shelters recorded in spring, summer and autumn 

 

Season Tree shelter type Max T (°C) Min T (°C) Max RH (%) Min RH (%) VPD (kPa) CO2 (ppm) 

Spring 

NV 31.8a 10.0a 82.8a 54.4a 0.82a 425.8a 

V 28.8b 10.1a 85.2b 59.7b 0.64b 418.1a 

C 20.8c 12.4b 86.2b 69.3c 0.45c 407.9b 

Summer 

NV     42.9a 17.0a 79.5a 30.0a 1.98a 430.7a 

V 41b 17.1a 79.6a 33.2b 1.82a 407.1b 

C 32.2c 20.4b 76.7a 47.6c 1.37b 396.7c 

Autumn 

NV 37.5a 15.2a 84.2a 46.6a 1.3a 428.2a 

V 33.6b 15.2a 87.3b 57.0b 0.92b 412.6b 

C 24.7c 18.0b 83.8a 70.5c 0.64c 402.3c 

For a given season, means marked with different letters were significantly different according to the Tukey–Kramer multiple comparison test, at p ≤ 0.05 level. CO2 

concentration was measured from 8h to 18h each 2 hours at 40, 80, and 120 cm above the ground where each value is the mean of 72 replicates taken in spring, 

summer and autumn of the fifth year (2013), while the other variables were measured each 24 h, from 1 March to 30 November from the same year. 
 

Average VPD was significantly higher inside than outside tree shelters, during the entire 

growing season (Tab. I). Inside tree shelters, VPD was always higher inside non-vented than 

inside vented tree shelters with significant differences during spring and autumn. 

Mean CO2 concentration was significantly higher inside than outside tree shelters, across all 

measurement periods (Table I). CO2 concentration inside tree shelters was always higher for non-

vented than for vented tree shelters, with significant differences during summer and autumn. 

Radiation was significantly reduced by tree shelters during all periods of measurement (P < 

0.0001); the fitted curve of the Michaelis-Menten model between total radiation outside and inside 

the shelters using data from all the periods of measurement (spring, summer and autumn) showed 

that photosynthetically active radiation (PAR) received by sheltered seedlings was always below 

238 and 350 μmol of photons/m2/s in non-vented and vented tree shelters, respectively, even when 

environmental PAR reached 2063.6 μmol of photons/m2/s (Fig. 1). Inside tree shelters, there were 

no significant differences in PAR in both shelter types during the entire periods of measurement. 
 

 
 
Figure 1.— PAR inside non-vented (NV) and vented (V) tree shelters according the PAR recorded in the control treatment 

(C). The fitted function corresponds to Michaelis-Menten model (PARin = (PARmax × PARext)/ (Km + PARext)), where PARin 

= PAR inside shelters, PARext = PAR outside shelters, PARmax = maximum inside PAR, Km = outside PAR value which 
produces half of the PARmax inside. 
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GROWTH 

All quantitative variables measured at stem level (height, diameter, height-to-diameter ratio, 

annual shoot, growth unit and length and number of internodes) were significantly affected by tree 

shelter type (Tab. II). However, they were independent of mulch type. Mulch × tree shelter 

interaction had a significant effect on diameter growth and annual shoot. 
 

TABLE II 

Tests of fixed effects (P > F) on height growth (H), diameter (D), Height-to-diameter ratio (H/D), annual shoot (AS), 

growth unit (GU), length (LI) and number (NI) of internodes. M, T = types of mulches and tree shelters, respectively 
 

Year Fixed effects H D H/D AS GU LI NI 

1 

M 0.2890 0.1011 0.2954 0.1528 0.2550 0.3043 0.1879 

T <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* 

M × T 0.1607 0.0005* 0.5787 0.0035* 0.2201 0.3816 0.5821 

2 

M 0.4072 0.0573 0.6457 0.8340 0.9279 0.5225 0.9036 

T <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* 

M × T 0.8837 0.0065* 0.4436 0.9911 0.9862 0.8916 0.8867 

3 

M 0.3137 0.1229 0.1951 0.2911 0.2312 0.8554 0.1398 

T <0.0001* <0.0001* <0.0001* 0.0289* 0.0062* 0.2125 0.0004* 

M × T 0.3774 0.2599 0.5261 0.5647 0.3469 0.1384 0.2816 

4 

M 0.2769 0.1484 0.2679 0.4395 0.4209 0.8757 0.3993 

T <0.0001* <0.0001* <0.0001* 0.0926 0.1216 0.7039 0.1100 

M × T 0.1639 0.2233 0.1988 0.4728 0.2654 0.1341 0.4038 

Values marked with an asterisk indicate the presence of a significant effect at the p ≤ 0.05 level. 
 

 

 

Figure 2.— Height (A), diameter (B) and H/D ratio (C) according to date of measurement (just after plantation and at the 

end of each year) and tree shelter type (NV, non-vented; V, vented; C, control): adjusted mean ± S.E (standard error). For a 

given year, means marked with different letters are significantly different according to the Tukey–Kramer multiple 
comparison test, at p ≤ 0.05 level. 
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Over the four years of the study, the average height in sheltered seedlings was always 

significantly higher than that in the unsheltered control (Fig. 2A). The gain in height growth 

induced by non-vented and vented tree shelters, during the four years, varied from 93 to 106 % 

and 74 to 104 %, respectively. The average height reached by seedlings in non-vented and vented 

tree shelters after only one year of plantation was significantly higher than that reached by the 

control after four years of the plantation, by 63 and 46.6 %, respectively. In sheltered seedlings, 

those in non-vented tree shelters were significantly taller than those in vented tree shelters during 

the first year; for the other years, differences were not significant. 

Diameter growth followed an opposite trend to that described for height growth for every 

year; thus, the average diameter in sheltered seedlings was significantly smaller than that in the 

unsheltered control (Fig. 2B). The reduction of the basal diameter due to non-vented and vented 

tree shelters, during the four years, varied from 38 to 42 % and 23 to 31 %, respectively. In 

sheltered seedlings basal diameter was, each year, smaller in non-vented than in vented tree 

shelters, but differences were significant only for the first two years.  
 

 

Figure 3.— Diameter during the first (A) and second (B) years, after planting, according to mulch (G, gravel; L, lentisk; 
L+P, lentisk + Italian stone pine; P, Italian stone pine; C, control) and tree shelter (NV, non-vented; V, vented; C, control) 

types: adjusted mean ± S.E  For a given year, means marked with different letters are significantly different according to 

the Tukey–Kramer multiple comparison test, at p ≤ 0.05 level. 
 

One year after planting, basal diameter in non-vented tree shelters was similar under the 

different mulches (Fig. 3). In vented tree shelters basal diameter was significantly improved under 

gravel mulch, while that in the control treatment (unsheltered seedlings) was significantly 

improved under lentisk mulch compared to the non-mulched control. The following year basal 

diameter in each of both shelter types (vented and non-vented shelters) was similar under the 

different mulches, while that in the control treatment was significantly improved under lentisk 
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mulch. In the course of the last two years, the interaction mulch × tree shelter was not significant; 

thus, seedling diameter in each shelter type was similar for the different mulch types (data not 

shown). 

Differences in height and diameter growth between sheltered and unsheltered seedlings 

affected H/D ratio. This ratio was, on average, significantly greater in sheltered than in unsheltered 

seedlings in each year of the study (Fig. 2C). In sheltered seedlings, the H/D ratio was 

significantly greater in non-vented than in vented tree shelters throughout the study. 
 

 

Figure 4.— Length of annual shoot (A) and growth unit (GU) (B) and length (C) and number (D) of internodes according 

to date of measurement (year) and tree shelter type (NV, non-vented; V, vented; C, control): adjusted mean ± S.E. For a 

given year, means marked with different letters are significantly different according to the Tukey–Kramer multiple 
comparison test, at p ≤ 0.05 level. 

 

Annual shoots were, on average, significantly longer in sheltered than in unsheltered 

seedlings during the first two years for non-vented tree shelters, and during the three years for 

vented tree shelters (Fig. 4A). There were no differences for the remaining years (year 3 and 4 for 

the non-vented shelters, and year 4 for the vented ones). In sheltered seedlings, annual shoot length 

was significantly greater in non-vented than in vented tree shelters during the first year; the other 

years, differences were not significant. The same trends were observed for the GU (Fig. 4B). 

Figure 5 represents annual shoot length in sheltered and unsheltered seedlings under the 

different mulches, in the course of the first year. In sheltered seedlings with non-vented tree 

shelters as in unsheltered ones mean length of annual shoots was significantly increased under 

lentisk mulch, while that of annual shoots in vented tree shelters was significantly increased under 

gravel mulch compared to the unmulched control. In the following years, annual shoot length in 

each shelter type (non-vented, vented and control) was similar under the different mulch types 

(data not shown). 

One and two years after planting length of internodes was significantly greater in sheltered 

than in unsheltered seedlings, while no significant differences were noted during the following 

years (Fig. 4C). With regard to the number of internodes, it was significantly higher in sheltered 

than in unsheltered seedlings until the third year; the following year, differences were not 
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significant (Fig. 4D). In sheltered seedlings, both length and number of internodes were similar in 

both shelter types during the four years. 
 

 

Figure 5.— Annual shoot length during the first year, after planting, according to mulch (G, gravel; L, lentisk; L+P, lentisk 

+ Italian stone pine; P, Italian stone pine; C, control) and tree shelter (NV, non-vented; V, vented; C, control) types: 

adjusted mean ± S.E. For a given shelter type, means marked with different letters are significantly different according to 
the Tukey–Kramer multiple comparison test, at p ≤ 0.05 level. 

 

 

Figure 6. Above-ground biomass (AGB) and below-ground biomass (BGB) (A) and total biomass (B) of seedlings 
belonging to non-vented tree shelters (NV), vented tree shelters (V) and control (C) treatments, four years after plantation. 

Mean ± S.E. Means marked with different letters were significantly different according to the Tukey-Kramer multiple 

comparison test, at p ≤ 0.05 level. 
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Both above- and below-ground biomass were significantly (P < 0.0001) affected by tree 

shelter type. By contrast, neither mulch type nor its interaction with tree shelter type had a 

significant effect on above-ground biomass (P = 0.3373, 0.4087, respectively) or below-ground 

biomass (P = 0.2021, 0.4770, respectively). 

The shoot : root ratio was not significantly affected neither by the mulch type (P = 0.5483) or 

the tree shelter type (P = 0.2058) nor by the interaction of these two factors (P = 0.3423). 

The effect of mulch type (P = 0.2888) and its interaction with tree shelter type (P = 0.4104) 

on total biomass was not significant, but the effect of tree shelter type was (P < 0.0001). 

After four years, both above and below-ground biomasses were significantly lower in 

sheltered than in unsheltered seedlings (Fig. 6). There were no significant differences between 

sheltered seedlings for both above- and below-ground biomass. The same trends were observed for 

total biomass growth (Fig. 6). 

Total number of branches per seedling was significantly (P = 0.0006) reduced in both vented 

(770.4 ± 342.2) and non-vented (497 ± 342.2) tree shelters, compared to unsheltered seedlings 

(2885.8 ± 342.2). The difference between the two types of tree shelters was not significant. 

PHOTOSYNTHESIS RATE 

Photosynthesis rate was significantly affected by tree shelter type (P = 0.0021). Unsheltered 

seedlings had the highest value (10 ± 3.7 μmol CO2 m-2s-1), followed by those in vented tree 

shelters (6.4 ± 1.7 μmol CO2 m-2s-1); the lowest value was found in non-vented tree shelters (4.3 ± 

3.3 μmol CO2 m-2s-1). The difference between sheltered seedlings was not significant. 

SEEDLING POSTURE AND BROWSING 

Only sheltered seedlings suffered stability problems; all unsheltered seedlings were able to 

support themselves during the entire experiment (Tab. III). The percentage of seedlings unable to 

support themselves after removal of the tree shelter was significantly higher in non-vented than in 

vented tree shelters during the first two years; no significant differences were detected in following 

years. 
 

TABLE III 

Percentage (%) of plants unable to support themselves after the removal of the tree shelter at the end of each growing 

season. 

 

Tree shelter type 
Year 1 Year 2 Year 3 Year 4 

% of plants  

Non-vented 79.5a 94.1a 67.1a 34.1a 

Vented  57b 73b 59a 53a 

Control 0c 0c 0b 0b 

For a given year, percentages marked with different letters were significantly different according to the 𝜒2-test, at the p ≤ 0.05 level. 

 

While more than half (52.5 %) of the sheltered seedlings emerged from the top of tree shelters 

after the first year only unsheltered seedlings were injured by animal browsing. 

DISCUSSION 

Our results for microclimate inside tree shelters confirmed reports from previous studies, 

showing increased diurnal temperature (maximum temperature) (Dupraz, 1997; Bergez & Dupraz, 

2009), VPD (Bellot et al., 2002), CO2 concentration (Oliet & Jacobs, 2007), and reduced night 

temperature (minimum temperature) (Dupraz, 1997; Bergez & Dupraz, 2009) and light intensity 

(Famiani et al., 2007). In contrast with these studies, however, we did not find that tree shelters 
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increased air relative humidity; maximum relative humidity (night humidity) did not show clear 

tendencies differences between inside and outside tree shelters, and minimum relative humidity 

(diurnal humidity) was significantly lower inside tree shelters during the entire growing season. 

Navarro Cerrillo et al. (2005) found that tree shelters had no significant effect on air relative 

humidity. These discrepancies suggest variable influence of tree shelters on air relative humidity. 

The first photomorphological response to shade is shoot elongation (Smith, 1994). This could 

explain the increase in height growth inside tree shelters, where the light intensity was severely 

reduced. Under shaded conditions seedlings are forced to grow more in height to reach available 

light (Jacobs & Steinbeck, 2001), which could explain why the stimulation of shoot elongation 

was more important before rather than after emergence from the shelters (see fig. 2A). Light level 

was similar for both tree shelter types (vented and non-vented tree shelters). For that reason 

perhaps sheltered seedlings did not express differences in height growth. Mariotti et al. (2015) 

reported that tree shelters inhibited the apparition of branches in Quercus robur, which was 

attributed to a higher frequency of apical dominance and could explain the inhibition of branches 

for sheltered seedlings in our study. Oak is characterized by weak apical dominance, as noted for 

unsheltered seedlings, which gives rise to form defects (fork of the main axis, multiple lateral 

branches on the main axis, stems), and making pruning advisable. As reported by Mariotti et al. 

(2015), the use of tree shelters reduces the need to prune in early stages after establishment which 

is an advantage not offered by other types of protection against animal browsing (i.e., fence, tree 

guards, repulsive). Finally, it must be noted that the differences in apical dominance between 

sheltered and unsheltered seedlings is due to differences in light availability. Once seedlings 

emerged from the top of tree shelters, branch production recovered (personal observation). 

Contrary to height growth sheltered seedlings consistently showed a significantly smaller 

basal diameter than unsheltered counterparts, in agreement with others (McCreary et al., 2002; 

Jiménez et al., 2005; Pemán et al., 2010). The smaller diameter under low light was a result of 

forced directional growth and absence of wind-induced trunk movement to stimulate diameter 

growth (Harris et al., 1976). Peterson et al. (1994) noted that seedlings grown in shelters with 

ventilation holes exhibited increased diameters compared to seedlings grown in shelters without 

ventilation holes. In our study, this trend was observed during the first two years after planting. 

However, there were no significant differences between the two types of tree shelters (non-vented 

and vented tree shelters) during the last two years of study although diameter growth was always 

greater in vented tree shelters. This suggests that the positive effect of ventilation in tree shelters 

on diameter growth compared to non-ventilated tree shelters is temporary. After seedlings 

emerged from the tree shelters (in year 3, see Fig. 2A) diameter growth seems to be become more 

dependent on wind movement of main stem than on tree shelter type, which could explain 

differences in diameter growth observed between the two shelter types before seedlings 

emergence. 

The difference in height-to-diameter ratio between sheltered and unsheltered seedlings 

indicates that tree shelters adversely affected the balance between height and diameter growth. The 

increase of this ratio in sheltered compared to unsheltered seedlings suggests that increased height 

growth by tree shelters is due to the detriment of diameter growth. Unbalanced growth in sheltered 

seedlings is due to increased height growth and decreased diameter growth (sheltered seedlings 

had greater height and a smaller diameter, compared to the unsheltered control), in agreement with 

results published by IML & CRPF (2005). Inside tree shelters, seedlings in vented tree shelters had 

lower values of height-to-diameter ratio compared to those in non-vented tree shelters, during the 

entire period of study, and consequently had a more balanced height and diameter growth. 

While height growth was significantly greater inside rather than outside tree shelters during 

the study, the main stem division into annual shoots and GUs showed that growth stimulus of tree 

shelters was lost as of the third year for non-vented tree shelters, and one year later for the vented 

ones. This indicates that the positive effect of tree shelters on height growth is temporary. This 
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means that the decrease in diameter growth in sheltered seedlings to benefit height growth is also 

temporary. The improvement of height growth during the first year in non-vented compared to 

vented tree shelters is due to an increase in both length of annual shoots and GU. Subsequently, 

there were no significant differences between the two shelter types in both length of annual shoots 

and GU, and consequently there were no significant differences in seedling final height. 

There were no significant differences between sheltered and unsheltered seedlings in shoot : 

root ratio after 4 years, suggesting that shelters do not adversely affect the balance between 

seedling shoot and root. This result is in agreement with McCreary et al. (2002) but contrasting 

with previous work in zeen oak (Mechergui, 2016), suggesting a species-dependent response in 

shoot : root with tree shelters. Lower total biomass in sheltered vs. unsheltered seedlings indicates 

that increased height growth inside tree shelters was not due to increases in dry matter production. 

Similar results were reported by Famiani et al. (2007) and Mechergui (2016). Poor biomass 

growth (total biomass) is a function of low photosynthesis rate (Dupraz, 1997), which could 

explain lower values of total biomass in sheltered seedlings where photosynthesis rate was 

negatively affected by tree shelters. The limiting factors of photosynthetic activity are CO2 air 

concentration, light, and temperature. We did not observe an increase in photosynthetic activity for 

cork oak under the decreased temperatures in vented compared to non-vented tree shelters, as was 

previously observed for zeen oak (Mechergui, 2016). Cork oak is known to be generally more 

tolerant to high temperatures than zeen oak (Vignes et al., 1985 in Alatou, 1990). This suggests 

that the reduction of photosynthetic activity for cork oak inside vented and even non-vented tree 

shelters was not linked to high temperatures or to CO2 concentration (which was higher inside than 

outside tree shelters), but rather to the reduced light levels inside these tree shelters. 

Tree shelters provided effective protection against browse damage, even after seedling 

emergence. By contrast, fencing to limit herbivore access was not efficient to protect seedlings 

against animals and browse damage was noted only in unsheltered seedlings. This indicates that 

seedling protection with tree shelters is more effective than use of a collective fence. 

During the four years, only sheltered seedlings suffered stability problem. Analogous results 

were reported by Sharpe et al. (1999) and Mechergui (2016). This problem may be more 

dependent on sheltered species than on shelter type (Mechergui, 2016), which may explain the 

lack of differences in stability between the two tree shelter types. On the other hand, its duration 

seems to vary between species; for example, only during the first year for zeen oak (Mechergui, 

2016). 

Mulching has been reported to be more beneficial on sites of poorer quality (Green et al., 

2003). In this study, mulching was applied on a fertile site (soil organic matter content on horizons 

A and B was 5.7 and 2.4 %, respectively), which probably led to no effects on seedlings growth 

during the study. With regard to the combined use of mulching and tree shelters, none of the 

mulches appeared more favourable than others to improve seedlings growth in both shelter types 

(vented and non-vented tree shelters). 

CONCLUSION 

The slow height growth of oak seedlings during early development (Taylor et al., 2006) 

extends the period of establishment and makes seedlings vulnerable to animal browsing. Our 

results show that tree shelters can greatly enhance seedling height growth and provide efficient 

protection from herbivores. Unsheltered seedlings were injured by goats, cows and Barbary red 

deer (Cervus elephus barbarus). The use of 1.8-m tall tree shelters effectively shields seedlings 

against these types of animals. 

Comparison of total biomass between sheltered and unsheltered seedlings showed that 

increased height growth inside tree shelters is not due to an increase in the amount of dry matter 
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produced (biomass growth was significantly lower in sheltered than in unsheltered seedlings). The 

increased height growth was also not at the expense of root growth (shoot : root ratio was not 

affected by shelters), but rather to a reallocation of growth from branches and stem diameter to the 

terminal leader. Branches result in knots within the stem that constitute a defect in both appearance 

and structural timber. The use of tree shelters could be, therefore, helpful to reduce the apparition 

of these knots on the main stem by inhibiting branch development. In addition, the production 

inside tree shelters of a straight and vertical stem may enhance cork quality by reducing the cork 

waste and extraction costs. 

Both non-vented and vented tree shelters were effective in protecting seedlings against animal 

browsing and stimulating height growth. However, vented shelters were superior to non-vented 

shelters for producing seedlings with balanced height and diameter growth. Positive effects of 

vented tree shelters on annual shoot and GU elongation were longer lasting than that of non-vented 

tree shelters (3 years vs. 2 years), but final height was similar in both shelter types. 

Reduction of photosynthesis rate (and therefore of the total biomass) in sheltered seedlings 

could be related to low light level as found in this study or to high temperatures as reported by 

Mechergui (2016) for zeen oak grown with non-vented tree shelters. The improvement of tree 

shelters design by increasing width and aeration (to decrease temperature and increase light 

transmission) could make them more conducive to seedling growth. 

The use of mulching alone or in combination with shelters appeared useless in this study 

probably because of their application on a fertile site. Future research should study the effect of 

mulch on poorer quality sites, where the control of vegetative competition could more favour 

seedling growth. 
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