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PERIODIC UNFOLDING FOR ANISOTROPICALLY BOUNDED1

SEQUENCES2

RICCARDO FALCONI∗, GEORGES GRISO† , AND JULIA ORLIK‡3

Abstract. This paper is focused on the asymptotic behavior of sequences of functions, whose4
partial derivatives estimates in one or more directions are highly contrasted with respect to the5
periodic parameter ε. In particular, a direct application for the homogenization of a homogeneous6
Dirichlet problem defined on an anisotropic structure is presented. In general, the obtained results7
can be applied to thin structures where the behavior is different according to the observed direction.8

Key words. Periodic unfolding method, homogenization, anisotropic Sobolev spaces, Dirichlet9
problem10

AMS subject classifications. 31C25, 35B27, 46E35, 49J4511

1. Introduction. The aim of this paper is to extend some of the results already
developed in [1, 6, 13] about the periodic unfolding method to new classes of functions,
the so-called ”anisotropically bounded”, including a direct application of the obtained
results.
Given a small parameter ε and a bounded domain Ω ⊂ RN with Lipschitz boundary,
we consider the periodic paving of Ω made with cells of size ε. In [13, Section 1.4], it is
extensively investigated the asymptotic behavior of sequences {φε}ε ⊂W 1,p(Ω) whose
gradient is isotropically bounded, that are, sequences whose gradient is bounded by
the same order regardless of the direction observed. In this sense, the asymptotic
behavior of sequences {φε}ε such that

‖φε‖Lp(Ω) + ε‖∇φε‖Lp(Ω) ≤ C and ‖φε‖Lp(Ω) + ‖∇φε‖Lp(Ω) ≤ C
are shown in detail. In the present, we focus on the periodic unfolding for sequences12

whose assumptions on the gradient bound are anisotropic, e.g. where at least one or13

more directions are privileged and have more information than the others. In partic-14

ular, we define a domain partition for every x ∈ Ω by setting x = (x′, x′′), where the15

variable x′ corresponds to the first N1 < N directions, and we show the asymptotic16

behavior of sequences {φε}ε such that17

18

(i) ‖φε‖Lp(Ω) + ε‖∇x′φε‖Lp(Ω) ≤ C;19

(ii) ‖φε‖Lp(Ω) + ‖∇x′φε‖Lp(Ω) ≤ C;20

(iii) ‖φε‖Lp(Ω) + ‖∇x′φε‖Lp(Ω) + ε‖∇x′′φε‖Lp(Ω) ≤ C;21

(iv) ‖φε‖Lp(Ω) + ‖∇x′φε‖Lp(Ω) + ε‖∇x′′(∇x′φε)‖Lp(Ω) ≤ C.22

23

These results allow to extend some more complex lemmas concerning the periodic24

unfolding (see for an instance [13, Lemma 11.11]) to this new classes of functions. In25

the end, a direct application of such lemmas is done by homogenizing via unfolding26

the homogeneous Dirichlet problem27 
Find uε ∈ H1

0 (Ω) such that:∫
Ω

Aε

(
∇x′uε
ε∇x′′uε

)
·
(
∇x′φ
ε∇x′′φ

)
dx =

∫
Ω

f φ dx, ∀φ ∈ H1
0 (Ω),

28

whose nature is anisotropic.29
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2 R. FALCONI, G. GRISO, J. ORLIK

30

The homogenization via unfolding method, an equivalent to the two-scale con-31

vergence, has been presented the first time by D. Cioranescu and al. in [1], with32

further development in [2, 3, 4, 6] and extensively in [13]. Such method has largely33

found application (see e.g. [5, 7, 8, 9, 10, 11, 12]) and also for thin periodic structures34

like periodically perforated shells (see [18]), textiles made of long curved beams (see35

[15, 16]) and stable lattice structures made of beams (see [14, 17]).36

The present paper provides additional tools for up-coming papers dealing with a wider37

range of periodic thin structures. Among them, we cite [20], where the assumption38

of loose contact between fibers on a textile made of beams arises different gradient39

estimates with respect to the observed direction, and [19], where the same peculiarity40

applies but on periodic lattice structures. More generally, such tools can be applied41

to many other problems related to partial differential equations on domains involving42

periodic grids, lattices, thin frames and fiber structures.43

44

The paper is organized as follows. In section 2, the standard notation for the45

classical homogenization via unfolding method on bounded domains Ω ∈ RN with46

Lipschitz boundary are listed. In section 3, we set a domain partition x = (x′, x′′)47

for every x ∈ Ω and from [13, Chap. 7], we recall the unfolding with parameters48

and prove the main properties. In section 4, we give the asymptotic behavior for49

the classes of sequences bounded anisotropically (i)-(iv) described above. The aim of50

section 5 is to extend [13, Lemma 11.11] to the anisotropic case. Different anisotropic51

assumptions arise different regularity of the limit fields. Such results are fundamental52

if one considers the key role that such a Lemma has in the study of elasticity problem53

for thin structures (see [16, 18]). At last, in section 6, we consider the Dirichlet prob-54

lem shown above. Using the results in the previous sections, existence and uniqueness55

of the limit problem are shown and through the homogenization via unfolding, the56

cell problems and the macroscopic limit problem are found.57

2. Preliminaries and notation. Let RN be the euclidean space with usual
basis (e1, . . . , eN ) and Y = (0, 1)N the open unit parallelotope associated with this
basis. For a.e. z ∈ RN , we set the unique decomposition z = [z]Y + {z}Y such that

[z]Y
.
=

N∑
i=1

kiei, ki ∈ ZN and {z}Y
.
= z − [z]Y ∈ Y.

Let {ε} be a sequence of strictly positive parameters going to 0. We scale our paving58

by ε writing59

(2.1) x = ε
[x
ε

]
Y

+ ε
{x
ε

}
Y

for a.e. x ∈ RN .60

Let now Ω be a bounded domain in RN with Lipschitz boundary. We consider the61

covering62

Ξε
.
=
{
ξ ∈ ZN

∣∣ ε(ξ + Y ) ⊂ Ω
}

63

and set64

Ω̂ε
.
= int

{ ⋃
ξ∈Ξε

ε(ξ + Y )
}
, Λε

.
= Ω \ Ω̂ε.65

We recall the definitions of classical unfolding operator and mean value operator.66
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PERIODIC UNFOLDING FOR ANISOTROPICALLY BOUNDED SEQUENCES 3

Definition 2.1. (see [13, Definition 1.2]) For every measurable function φ on

Ω̂ε, the unfolding operator Tε is defined as follows:

Tε(φ)
.
=

φ
(
ε
[x
ε

]
Y

+ εy
)

for a.e. (x, y) ∈ Ω̂ε × Y,

0 for a.e. (x, y) ∈ Λε × Y.

Note that such an operator acts on functions defined in Ω by operating on their67

restriction to Ω̂ε.68

Definition 2.2. (see [13, Definition 1.10]) For every measurable function φ̂ on
L1(Ω× Y ), the mean value operator MY is defined as follows:

MY (φ̂)(x)
.
=

1

|Y |

∫
Y

φ̂(x, y)dy, for a.e. x ∈ Ω.

Let p ∈ [1,+∞]. From [13, Propositions 1.8 and 1.11], we recall the properties of69

these operators:70

‖Tε(φ)‖Lp(Ω×Y ) ≤ |Y |
1
p ‖φ‖Lp(Ω) for every φ ∈ Lp(Ω),

‖MY (φ̂)‖Lp(Ω) ≤ |Y |−
1
p ‖φ̂‖Lp(Ω×Y ) for every φ̂ ∈ Lp(Ω× Y ).

71

Since we will deal with Sobolev spaces, we give hereafter some definitions:

W 1,p
per(Y )

.
=
{
φ ∈W 1,p(Y )

∣∣ φ is periodic with respect to yi, i ∈ {1, . . . , N}
}
,

W 1,p
per,0(Y )

.
=
{
φ ∈W 1,p

per(Y )
∣∣MY (φ) = 0

}
,

Lp(Ω;W 1,p(Y ))
.
=
{
φ ∈ Lp(Ω× Y )

∣∣ ∇yφ ∈ Lp(Ω× Y )N
}
.

3. The unfolding with parameters. We start by giving a rigorous definition72

of the domain split. Let (N1, N2) be in N× N∗ and such that N = N1 +N2. Denote73

RN1 =
{
x′ ∈ RN

∣∣∣ x′ =

N1∑
i=1

xiei, xi ∈ R
}
,74

RN2 =
{
x′′ ∈ RN

∣∣∣ x′′ =

N∑
i=N1+1

xiei, xi ∈ R
}
,75

Y ′ =
{
y′ ∈ RN

∣∣∣ y′ =

N1∑
i=1

yiei, yi ∈ (0, 1)
}
,76

Y ′′ =
{
y′′ ∈ RN

∣∣∣ y′′ =

N∑
i=N1+1

yiei, yi ∈ (0, 1)
}

77

78

and
ZN1 = Ze1 ⊕ . . .⊕ ZeN1

, ZN2 = ZeN1+1 ⊕ . . .⊕ ZeN .

One has

RN = RN1 ⊕ RN2 , Y = Y ′ ⊕ Y ′′, ZN = ZN1 ⊕ ZN2 .

For every x ∈ RN and y ∈ Y , we write

x = x′ + x′′ ∈ RN1 ⊕ RN2 , y = y′ + y′′ ∈ Y ′ ⊕ Y ′′.

This manuscript is for review purposes only.



4 R. FALCONI, G. GRISO, J. ORLIK

From now on, however, we find easier to refer to such partition with the vectorial
notation

x = (x′, x′′) ∈ RN1 × RN2 , y = (y′, y′′) ∈ Y ′ × Y ′′.

Similarly to (2.1), we apply the paving to a.e. x′ ∈ RN1 and x′′ ∈ RN2 setting

x′ = ε
[x′
ε

]
Y ′

+ ε
{x′
ε

}
Y ′
, with

[x′
ε

]
Y ′
∈ ZN1 ,

{x′
ε

}
Y ′
∈ Y ′,

x′′ = ε
[x′′
ε

]
Y ′′

+ ε
{x′′
ε

}
Y ′′
, with

[x′′
ε

]
Y ′′
∈ ZN2 ,

{x′′
ε

}
Y ′′
∈ Y ′′.

79

Definition 3.1. For every φ̂ ∈ L1(Ω× Y ), the partial mean value operators are80

defined as follows:81

MY ′(φ̂)(x, y′′)
.
=

1

|Y ′|

∫
Y ′
φ̂(x, y′, y′′)dy′, for a.e. (x, y′′) ∈ Ω× Y ′′,82

MY ′′(φ̂)(x, y′)
.
=

1

|Y ′′|

∫
Y ′′

φ̂(x, y′, y′′)dy′′, for a.e. (x, y′) ∈ Ω× Y ′.83
84

Denote85

(3.1)

Lp(Ω,∇x′)
.
=
{
φ ∈ Lp(Ω)

∣∣ ∇x′φ ∈ Lp(Ω)N1
}
,

Lp(Ω,∇x′′)
.
=
{
φ ∈ Lp(Ω)

∣∣ ∇x′′φ ∈ Lp(Ω)N2
}
,

Lp(Ω,∇x′ ;W 1,p(Y ′′))
.
=
{
φ̃ ∈ Lp(Ω× Y ′′)

∣∣ ∇x′ φ̃ ∈ Lp(Ω× Y ′′)N1 ,

∇y′′ φ̃ ∈ Lp(Ω× Y ′′)N2
}
,

Lp(Ω,∇x′′ ;W 1,p(Y ′))
.
=
{
φ̃ ∈ Lp(Ω× Y ′)

∣∣ ∇x′′ φ̃ ∈ Lp(Ω× Y ′)N2 ,

∇y′ φ̃ ∈ Lp(Ω× Y ′)N1
}
,

Lp(Ω× Y ′′;W 1,p(Y ′))
.
=
{
φ̂ ∈ Lp(Ω× Y )

∣∣ ∇y′ φ̂ ∈ Lp(Ω× Y )N1
}
,

Lp(Ω× Y ′;W 1,p(Y ′′))
.
=
{
φ̂ ∈ Lp(Ω× Y )

∣∣ ∇y′′ φ̂ ∈ Lp(Ω× Y )N2
}
.

86

We endow these spaces with the respective norms:87

(3.2)
‖ · ‖Lp(Ω,∇x′ )

.
= ‖ · ‖Lp(Ω) + ‖∇x′(·)‖Lp(Ω)N1 ,

‖ · ‖Lp(Ω,∇x′′ )
.
= ‖ · ‖Lp(Ω) + ‖∇x′′(·)‖Lp(Ω)N2 ,

‖ · ‖Lp(Ω,∇x′ ;W
1,p(Y ′′))

.
= ‖ · ‖Lp(Ω×Y ′′) + ‖∇x′(·)‖Lp(Ω×Y ′′)N1 + ‖∇y′′(·)‖Lp(Ω×Y ′′)N2 ,

‖ · ‖Lp(Ω,∇x′′ ;W
1,p(Y ′))

.
= ‖ · ‖Lp(Ω×Y ′) + ‖∇x′′(·)‖Lp(Ω×Y ′)N2 + ‖∇y′(·)‖Lp(Ω×Y ′)N1 ,

‖ · ‖Lp(Ω×Y ′′;W 1,p(Y ′))
.
= ‖ · ‖Lp(Ω×Y ) + ‖∇y′(·)‖Lp(Ω×Y )N1 ,

‖ · ‖Lp(Ω×Y ′;W 1,p(Y ′′))
.
= ‖ · ‖Lp(Ω×Y ) + ‖∇y′′(·)‖Lp(Ω×Y )N2 .

88

We recall the unfolding with parameters tools already developed in [13, Chap. 7] and89

we define two partial unfolding operators.90

Definition 3.2. For every measurable function φ on Ω, the unfolding operator
T ′′ε is defined as follows:

T ′′ε (φ)(x′, x′′, y′′) =

φ
(
x′, ε

[x′′
ε

]
Y ′′

+ εy′′
)

for a.e. (x′, x′′, y′′) ∈ Ω̂ε × Y ′′,

0 for a.e. (x′, x′′, y′′) ∈ Λε × Y ′′.
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For every measurable function ψ on Ω × Y ′′, the unfolding operator T ′ε is defined as
follows:

T ′ε (ψ)(x′, x′′, y′, y′′) =

ψ
(
ε
[x′
ε

]
Y ′

+ εy′, x′′, y′′
)

for a.e. (x′, x′′, y′, y′′) ∈ Ω̂ε × Y,

0 for a.e. (x′, x′′, y′, y′′) ∈ Λε × Y.

Note that in the partial unfolding operator T ′′ε (φ) the variable x′ plays the role of a91

parameter, while in T ′ε (ψ) the role of parameters is played by the variables (x′′, y′′).92

Lemma 3.3. One has93

(3.3) Tε = T ′ε ◦ T ′′ε , MY =MY ′ ◦MY ′′ .94

Moreover, for every φ ∈ L1(Ω,∇x′) one has95

(3.4) ∇x′T ′′ε (φ) = T ′′ε (∇x′φ) a.e. in Ω̂ε × Y ′′.96

Proof. Let φ be measurable on Ω. We have that97

T ′ε ◦ T ′′ε (φ)(x, y) = T ′ε
(
φ
(
x′, ε

[x′′
ε

]
Y ′′

+ εy′′
))

= φ
(
ε
[x′
ε

]
Y ′

+ εy′, ε
[x′′
ε

]
Y ′′

+ εy′′
)

98

= φ
(
ε
[x
ε

]
Y

+ εy
)

= Tε(φ)(x, y) for a.e. (x, y) ∈ Ω̂ε × Y.99
100

For (x, y) ∈ Λε × Y the result is obvious.101

Let φ̂ be in L1(Ω× Y ). We have102

MY ′ ◦MY ′′(φ̂)(x) =MY ′

( 1

|Y ′′|

∫
Y ′′

φ̂(x, y′, y′′)dy′′
)

103

=
1

|Y ′||Y ′′|

∫
Y ′

∫
Y ′′

φ̂(x, y′, y′′)dy′′dy′ =
1

|Y |

∫
Y

φ̂(x, y)dy104

=MY (φ̂)(x) for a.e. x ∈ Ω.105106

Let now φ be in L1(Ω,∇x′). We have107

∇x′T ′′ε (φ)(x, y′′) = ∇x′
(
φ
(
x′, ε

[x′′
ε

]
Y ′′

+ εy′′
))

= ∇x′φ
(
x′, ε

[x′′
ε

]
Y ′′

+ εy′′
)

108

= T ′′ε (∇x′φ)(x, y′′) for a.e. (x, y′′) ∈ Ω̂ε × Y ′′.109110

4. Asymptotic behavior of anisotropically bounded sequences. We start111

with sequences bounded in Lp(Ω,∇x′), p ∈ [1,+∞], whose gradient is bounded with112

order ε−1 in Lp(Ω) in the first N1 directions.113

Lemma 4.1. Let {φε}ε be a sequence in Lp(Ω,∇x′), p ∈ (1,+∞), satisfying114

‖φε‖Lp(Ω) + ε‖∇x′φε‖Lp(Ω) ≤ C,115

where the constant does not depend on ε.116

Then, there exist a subsequence of {ε}, still denoted {ε}, and a function φ̂ in the space117

Lp(Ω× Y ′′;W 1,p
per(Y

′)) such that118

φε ⇀ φ weakly in Lp(Ω),

Tε(φε) ⇀ φ̂ weakly in Lp(Ω× Y ′′;W 1,p(Y ′))
119
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6 R. FALCONI, G. GRISO, J. ORLIK

where φ =MY (φ̂).120

The same results hold for p = +∞ with weak topology replaced by weak-* topology in121

the corresponding spaces.122

Proof. The proof is similar to [13, Theorem 1.36].123

An analogous result holds for sequences uniformly bounded in Lp(Ω,∇x′), p ∈ [1,+∞].124

Lemma 4.2. Let {φε}ε be a sequence in Lp(Ω,∇x′), p ∈ (1,+∞), such that125

‖φε‖Lp(Ω,∇x′ )
≤ C.126

Then, there exist a subsequence of {ε}, still denoted {ε}, and φ̃ ∈ Lp(Ω × Y ′′,∇x′),127

φ̂ ∈ Lp(Ω× Y ′′;W 1,p
per,0(Y ′)) such that128

φε ⇀ φ weakly in Lp(Ω,∇x′),

Tε(φε) ⇀ φ̃ weakly in Lp(Ω× Y ′′;W 1,p(Y ′)),

Tε(∇x′φε) ⇀ ∇x′ φ̃+∇y′ φ̂ weakly in Lp(Ω× Y )N1 ,

1

ε

(
Tε(φε)−MY ′ ◦ Tε(φε)

)
⇀ ∇x′ φ̃ · y′c + φ̂ weakly in Lp(Ω× Y )N1

129

where φ =MY ′′(φ̃) and y′c
.
= y′ −MY ′(y

′).130

The same results hold for p = +∞ with weak topology replaced by weak-* topology in131

the corresponding spaces.132

Proof. The proof is similar to [13, Corollary 1.37] and [13, Theorem 1.41].133

Now, we consider the sequences in W 1,p(Ω), p ∈ [1,+∞], whose gradient is estimated134

with different order according to the considered direction.135

Lemma 4.3. Let {φε}ε be a sequence in W 1,p(Ω), p ∈ (1,+∞), satisfying136

(4.1) ‖φε‖Lp(Ω,∇x′ )
+ ε‖∇x′′φε‖Lp(Ω) ≤ C,137

where the constant does not depend on ε.
Then, there exist a subsequence of {ε}, still denoted {ε}, and functions

φ̃ ∈ Lp(Ω,∇x′ ;W 1,p
per(Y

′′)) and φ̂ ∈ Lp(Ω× Y ′′;W 1,p
per,0(Y ′))

such that138

(4.2)

φε ⇀ φ weakly in Lp(Ω,∇x′),

Tε(φε) ⇀ φ̃ weakly in Lp(Ω;W 1,p(Y )),

Tε(∇x′φε) ⇀ ∇x′ φ̃+∇y′ φ̂ weakly in Lp(Ω× Y )N1 ,

1

ε

(
Tε(φε)−MY ′ ◦ Tε(φε)

)
⇀ ∇x′ φ̃ · y′c + φ̂ weakly in Lp(Ω× Y )N1

139

where φ =MY ′′(φ̃) and y′c
.
= y′ −MY ′(y

′).140

The same results hold for p = +∞ with weak topology replaced by weak-* topology in141

the corresponding spaces.142

Proof. From (4.1), up to a subsequence of {ε}, still denoted {ε}, one has the143

existence of φ ∈ Lp(Ω,∇x′) such that (4.2)1 holds.144
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PERIODIC UNFOLDING FOR ANISOTROPICALLY BOUNDED SEQUENCES 7

Set {Φε}ε = {T ′′ε (φε)}ε. This sequence belongs to Lp(Ω̂ε,∇x′ ;W 1,p(Y ′′)) and from145

estimate (4.1) and equality (3.4), it satisfies146

(4.3) ‖Φε‖Lp(Ω̂ε,∇x′ ;W
1,p(Y ′′)) ≤ C,147

where the constant does not depend on ε.
Up to a subsequence of {ε}, still denoted {ε}, there exists φ̃ ∈ Lp(Ω;W 1,p

per(Y
′′)) and

Φ̃ ∈ Lp(Ω× Y ′′)N1 (the periodicity of φ̃ is proved as in [13, Theorem 1.36]) such that

Φε1Ω̂ε×Y ′′ ⇀ φ̃ weakly in Lp(Ω;W 1,p(Y ′′)),

∇x′Φε1Ω̂ε×Y ′′ ⇀ Φ̃ weakly in Lp(Ω× Y ′′)N1 .

Let g be in C∞c (Ω× Y ′′)N1 . For ε sufficiently small such that supp(g) ⊂ Ω̂ε × Y ′′, we148

have149 ∫
Ω×Y ′′

∇x′Φε1Ω̂ε×Y ′′ · g dxdy
′′ =

∫
Ω̂ε×Y ′′

∇x′Φε · g dxdy′′150

= −
∫

Ω̂ε×Y ′′
Φε∇x′g dxdy′′ = −

∫
Ω×Y ′′

Φε1Ω̂ε×Y ′′∇x′g dxdy
′′.151

152

Then, passing to the limit yields∫
Ω×Y ′′

Φ̃ · g dxdy′′ = −
∫

Ω×Y ′′
φ̃ · ∇x′g dxdy′′, ∀g ∈ C∞c (Ω× Y ′′)N1 .

This means that Φ̃ = ∇x′ φ̃ a.e. in Ω× Y ′′, thus ∇x′ φ̃ ∈ Lp(Ω× Y ′′)N1 and therefore

φ̃ ∈ Lp(Ω,∇x′ ;W 1,p
per(Y

′′)).
Now, we transform the sequence {Φε}ε using the unfolding operator T ′ε , Y ′′ being a
set of parameters.
From the above convergence and estimate (4.3), up to a subsequence of {ε}, still de-

noted {ε}, [13, Corollary 1.37] and [13, Theorem 1.41] give φ̂ ∈ Lp(Ω×Y ′′;W 1,p
per,0(Y ′))

such that (using the rule (3.3)1)

Tε(φε) = T ′ε (Φε) ⇀ φ̃ weakly in Lp(Ω;W 1,p(Y ′ × Y ′′)),

Tε(∇x′φε) = T ′ε (∇x′Φε) ⇀ ∇x′ φ̃+∇y′ φ̂ weakly in Lp(Ω× Y ′ × Y ′′)N1 ,

1

ε

(
Tε(φε)−MY ′(Tε(φε))

)
=

1

ε

(
T ′ε (Φε)−MY ′(T ′ε (Φε))

)
⇀ ∇x′ φ̃ · y′c + φ̂

weakly in Lp(Ω× Y ′ × Y ′′).

This ends the proof of (4.2).153

As the lemma below shows, an analogous asymptotic behavior is achieved starting154

from sequences uniformly bounded in Lp(Ω,∇x′), p ∈ [1,+∞], with some assumptions155

on the gradient derivatives.156

Lemma 4.4. Let {φε}ε be a sequence in Lp(Ω,∇x′), p ∈ (1,+∞), satisfying157

(4.4) ‖φε‖Lp(Ω,∇x′ )
+ ε
∥∥∇x′′(∇x′φε)∥∥Lp(Ω)

≤ C,158

where the constant does not depend on ε.
Then, there exist a subsequence of {ε}, still denoted {ε}, functions

φ̃ ∈ Lp(Ω,∇x′ ;W 1,p
per(Y

′′)) and ψ̂ ∈ Lp(Ω;W 1,p
per(Y ))
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such that MY ′
(
ψ̂
)

= 0 a.e. in Ω× Y ′′,

∇x′ φ̃ ∈ Lp(Ω;W 1,p
per(Y

′′))N1 , ∇y′ψ̂ ∈ Lp(Ω× Y ′;W 1,p
per(Y

′′))N1

and we have159

(4.5)

φε ⇀ φ weakly in Lp(Ω,∇x′),

Tε(φε) ⇀ φ̃ weakly in Lp(Ω;W 1,p(Y )),

Tε(∇x′φε) ⇀ ∇x′ φ̃+∇y′ψ̂ weakly in Lp(Ω× Y ′;W 1,p(Y ′′))N1

160

where φ =MY ′′(φ̃).161

The same results hold for p = +∞ with weak topology replaced by weak-* topology in162

the corresponding spaces.163

Proof. By estimate (4.4)1 and Lemma 4.2, there exists a subsequence of {ε}, still164

denoted {ε}, and functions φ̃ ∈ Lp(Ω × Y ′′,∇x′), φ̂ ∈ Lp(Ω × Y ′′;W 1,p
per,0(Y ′)) such165

that166

(4.6)

φε ⇀ φ weakly in Lp(Ω,∇x′),

Tε(φε) ⇀ φ̃ weakly in Lp(Ω× Y ′′;W 1,p(Y ′)),

Tε(∇x′φε) ⇀ ∇x′ φ̃+∇y′ φ̂ weakly in Lp(Ω× Y )N1 .

167

Set {ψε}ε
.
= {∇x′φε}ε. By estimate (4.4), this sequence satisfies

‖ψε‖Lp(Ω) + ε
∥∥∇x′′ψε∥∥Lp(Ω)

≤ C,

where the constant does not depend on ε.
Hence, applying Lemma 4.1 to the above sequence (but swapping Y ′ and Y ′′), there

exists a function ψ̂ ∈ Lp(Ω× Y ′;W 1,p
per(Y

′′))N1 such that

Tε(∇x′φε) = Tε(ψε) ⇀ ψ̂ weakly in Lp(Ω× Y ′;W 1,p(Y ′′))N1 .

This, together with convergence (4.6)3 implies that the quantity ∇x′ φ̃+∇y′ φ̂ belongs

to Lp(Ω × Y ′;W 1,p
per(Y

′′))N1 . Since φ̃ does not depend on y′ and φ̂ is periodic with
respect to y′, we have that

∇x′ φ̃ =MY ′(∇x′ φ̃) +MY ′(∇y′ φ̂) =MY ′(ψ̂),

thus ∇x′ φ̃ ∈ Lp(Ω;W 1,p
per(Y

′′))N1 and therefore φ̃ ∈ Lp(Ω,∇x′ ;W 1,p
per(Y

′′)).168

Moreover, the quantity ∇y′ φ̂ belongs to Lp(Ω × Y ′;W 1,p
per(Y

′′))N1 and thus Lemma169

7.2 implies that there exists φ̂ ∈ Lp(Ω;W 1,p
per(Y )) with ∇y′φ̂ = ∇y′ φ̂ such that (4.5)3170

hold. The proof follows by replacing φ̂ by the function ψ̂ = φ̂ −MY ′(φ̂), which171

belongs to the space Lp(Ω;W 1,p
per(Y )).172

5. Other unfolding results for anisotropically bounded sequences. In173

this section we want to extend the lemma below to the anisotropic case.174

Lemma 5.1. (see [13, Lemma 11.11]) Let {(uε, vε)}ε be a sequence converging175

weakly to (u, v) in W 1,p(Ω) ×W 1,p(Ω)N , p ∈ (1,+∞). Moreover, assume that there176

exist Z ∈ Lp(Ω)N and v̂ ∈ Lp(Ω;W 1,p
per,0(Y ))N such that177

1

ε
(∇uε + vε) ⇀ Z weakly in Lp(Ω)N ,

Tε(∇vε) ⇀ ∇v +∇y v̂ weakly in Lp(Ω× Y )N×N .
178
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Then, u belongs to W 2,p(Ω). Moreover, there exist a subsequence of {ε}, still denoted179

{ε}, and u ∈ Lp(Ω;W 1,p
per,0(Y )) such that180

1

ε
Tε(∇uε + vε) ⇀ Z +∇yu + v̂ weakly in Lp(Ω× Y )N .181

As an immediate consequence, one has the following.182

Corollary 5.2. Let O be an open set in Rk, k ≥ 1. Let {(uε, vε)}ε be a sequence183

converging weakly to (u, v) in Lp(O;W 1,p(Ω)) × Lp(O;W 1,p(Ω))N , p ∈ (1,+∞).184

Moreover, assume that there exist Z ∈ Lp(O × Ω)N and v̂ ∈ Lp(O × Ω;W 1,p
per,0(Y ))N185

such that186

1

ε
(∇uε + vε) ⇀ Z weakly in Lp(O × Ω)N ,

Tε(∇vε) ⇀ ∇v +∇y v̂ weakly in Lp(O × Ω× Y )N×N .
187

Then, u belongs to Lp(O;W 2,p(Ω)). Furthermore, there exist a subsequence of {ε},188

still denoted {ε}, and u ∈ Lp(O × Ω;W 1,p
per,0(Y )) such that:189

1

ε
Tε(∇uε + vε) ⇀ Z +∇yu + v̂ weakly in Lp(O × Ω× Y )N .190

Define the spaces191

Lp(Ω× Y ′′, D2
x′)

.
=
{
φ̃ and ∇x′ φ̃ ∈ Lp(Ω× Y ′′,∇x′)N1

}
,192

Lp(Ω, D2
x′ ;W

1,p
per(Y

′′))
.
=
{
φ̃ and ∇x′ φ̃ ∈ Lp(Ω,∇x′ ;W 1,p

per(Y
′′))N1

}
,193194

endowed with the respective norms:195

‖ · ‖Lp(Ω×Y ′′,D2
x′ )

.
= ‖ · ‖Lp(Ω×Y ′′) + ‖∇x′(·)‖Lp(Ω×Y ′′)N1 + ‖D2

x′(·)‖Lp(Ω×Y ′′)N1×N1 ,196

‖ · ‖Lp(Ω,D2
x′ ;W

1,p(Y ′′))
.
= ‖ · ‖Lp(Ω×Y ′′,D2

x′ )
+ ‖∇y′′(·)‖Lp(Ω×Y ′′)N2 .197

198

We are ready to extend Lemma 5.1 to the class of anisotropically bounded sequences.199

Lemma 5.3. Let {(uε, vε)}ε be a sequence in the space Lp(Ω,∇x′)×Lp(Ω,∇x′)N1 ,200

p ∈ (1,+∞), satisfying201

(5.1) ‖uε‖Lp(Ω,∇x′ )
≤ C, ‖vε‖Lp(Ω,∇x′ )

≤ C,202

where the constant does not depend on ε.203

Moreover, assume that there exist Z ∈ Lp(Ω)N1 such that204

(5.2)
1

ε
(∇x′uε + vε) ⇀ Z weakly in Lp(Ω)N1 .205

Then, there exist a subsequence of {ε}, still denoted {ε}, and Z̃ ∈ Lp(Ω×Y ′′)N1 with206

MY ′′(Z̃) = Z, u ∈ Lp(Ω × Y ′′;W 1,p
per,0(Y ′)), ũ ∈ Lp(Ω × Y ′′, D2

x′) and a function207

v̂ ∈ Lp(Ω× Y ′′;W 1,p
per,0(Y ′))N1 such that208

(5.3)
Tε(∇x′vε) ⇀ −D2

x′ ũ+∇y′ v̂ weakly in Lp(Ω× Y )N1×N1 ,

1

ε
Tε(∇x′uε + vε) ⇀ Z̃ +∇y′u + v̂ weakly in Lp(Ω× Y )N1 .

209
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Proof. We first apply the unfolding operator Tε to both sequences {uε} and {vε}.210

By Lemma 4.2 and estimates (5.1), there exist a subsequence of {ε}, still denoted211

{ε}, ũ ∈ Lp(Ω × Y ′′,∇x′), ṽ ∈ Lp(Ω × Y ′′,∇x′)N1 , û ∈ Lp(Ω × Y ′′;W 1,p
per,0(Y ′)),212

v̂ ∈ Lp(Ω× Y ′′;W 1,p
per,0(Y ′))N1 such that213

(5.4)

Tε(uε) ⇀ ũ weakly in Lp(Ω× Y ′′;W 1,p(Y ′)),

Tε(∇x′uε) ⇀ ∇x′ ũ+∇y′ û weakly in Lp(Ω× Y )N1 ,

Tε(vε) ⇀ ṽ weakly in Lp(Ω× Y ′′;W 1,p(Y ′))N1 ,

Tε(∇x′vε) ⇀ ∇x′ ṽ +∇y′ v̂ weakly in Lp(Ω× Y )N1×N1 .

214

By convergence (5.2), there exist a subsequence of {ε}, still denoted {ε}, and functions215

Ẑ ∈ Lp(Ω× Y )N1 with MY (Ẑ) = Z such that216

(5.5)
1

ε
Tε(∇x′uε + vε) ⇀ Ẑ weakly in Lp(Ω× Y )N1 .217

From convergences (5.4)2,3 and (5.5) we get

∇x′ ũ+∇y′ û+ ṽ = 0 a.e. in Ω× Y.

Applying MY ′ to the above equality and since û ∈ Lp(Ω × Y ′′;W 1,p
per,0(Y ′)), while

ũ ∈ Lp(Ω×Y ′′,∇x′), ṽ ∈ Lp(Ω×Y ′′,∇x′)N1 , we get that ∇x′ ũ+ ṽ = 0 a.e. in Ω×Y ′′.
Hence, ∇y′ û = 0 and thus û = 0 because it belongs to Lp(Ω× Y ′′;W 1,p

per,0(Y ′)). As a
consequence, one has

ũ ∈ Lp(Ω× Y ′′, D2
x′).

Set Uε = T ′′ε (uε), Vε = T ′′ε (vε). Again by convergence (5.2), there exist a subsequence218

of {ε}, still denoted {ε}, and Z̃ ∈ Lp(Ω× Y ′′)N1 such that219

1

ε
∇x′Uε + Vε ⇀ Z̃ weakly in Lp(Ω× Y ′′)N1 .220

Then, due to convergence (5.5) we have Z̃ =MY ′(Ẑ).221

Now, let ω′ and ω′′ be two open sets such that222

(5.6) ω′ ⊂ RN1 , ω′′ ⊂ RN2 and ω′ × ω′′ ⊂ Ω.223

First, observe that

Uε ∈ Lp(ω′′ × Y ′′;W 1,p(ω′)), Vε ∈ Lp(ω′′ × Y ′′;W 1,p(ω′))N1 .

By the above convergence and (5.4)4, one has

1

ε
∇x′Uε + Vε ⇀ Z̃ weakly in Lp(ω′ × ω′′ × Y ′′)N1 ,

Tε(∇x′vε) = T ′ε (∇x′Vε) ⇀ ∇x′ ṽ +∇y′ v̂ weakly in Lp(ω′ × ω′′ × Y ′ × Y ′′)N1×N1 .

Lemma 5.2 claims that up to a subsequence, there exists uω′×ω′′ , which belongs to224

Lp(ω′ × ω′′ × Y ′′;W 1,p
per,0(Y ′)), such that the following convergence holds:225

1

ε
T ′ε (∇x′Uε + Vε) ⇀ Z̃ +∇y′ üω′×ω′′ + v̂ weakly in Lp(ω′ × ω′′ × Y ′ × Y ′′)N1 .226
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Taking into account convergence (5.5) we get

Ẑ = Z̃ +∇y′ üω′×ω′′ + v̂ in ω′ × ω′′ × Y.

Since one can cover Ω by a countable family of open subsets ω′ × ω′′ satisfying (5.6),227

there exists u in Lp(Ω×Y ′′;W 1,p
per,0(Y ′)) such that Ẑ − Z̃ − v̂ = ∇y′u. This completes228

the proof of (5.3).229

With some more assumptions, we can improve the regularity of the limit functions.230

Lemma 5.4. Let {(uε, vε)}ε be a sequence in Lp(Ω,∇x′) × Lp(Ω,∇x′)N1 , with231

p ∈ (1,+∞), satisfying the assumptions in Lemma 5.3. Moreover, assume that232

(5.7)
∥∥∇x′′(∇x′uε + vε

)∥∥
Lp(Ω)

+ ε
∥∥∇x′′(∇x′vε)∥∥Lp(Ω)

≤ C,233

where the constant does not depend on ε.234

Then, there exist a subsequence of {ε}, still denoted {ε}, Z̃ ∈ Lp(Ω;W 1,p
per(Y

′′
))N1 ,235

v̂ ∈ Lp(Ω;W 1,p
per,0(Y ))N1 , U ∈ Lp(Ω;W 1,p

per,0(Y )) and ũ ∈ Lp(Ω, D2
x′ ;W

1,p
per(Y

′′)) such236

that237

Tε(∇x′vε) ⇀ −D2
x′ ũ+∇y′ v̂ weakly in Lp(Ω× Y )N1×N1 ,

1

ε
Tε(∇x′uε + vε) ⇀ Z̃ +∇y′U + v̂ weakly in Lp(Ω× Y )N1 .

238

Proof. From Lemma 5.3, there exist a subsequence of {ε}, still denoted {ε}, and239

Z̃ ∈ Lp(Ω× Y ′′)N1 , u ∈ Lp(Ω× Y ′′;W 1,p
per,0(Y ′)), ũ ∈ Lp(Ω× Y ′′, D2

x′) and a function240

v̂ ∈ Lp(Ω× Y ′′;W 1,p
per,0(Y ′))N1 such that241

Tε(∇x′vε) ⇀ −D2
x′ ũ+∇y′ v̂ weakly in Lp(Ω× Y )N1×N1 ,

1

ε
Tε(∇x′uε + vε) ⇀ Z̃ +∇y′u + v̂ weakly in Lp(Ω× Y )N1 .

242

By hypothesis (5.7), Lemma 4.1 (swapping Y ′ and Y ′′) and the proof of Lemma 4.4
one has

Tε(∇x′vε) ⇀ −D2
x′ ũ+∇y′ v̂ weakly in Lp(Ω× Y )N1×N1 ,

1

ε
Tε(∇x′uε + vε) ⇀ Z̃ +∇y′u + v̂ ∈ Lp(Ω× Y ′;W 1,p

per(Y
′′))N1

with Z̃ ∈ Lp(Ω× Y ′′)N1 , ũ ∈ Lp(Ω, D2
x′ ;W

1,p
per(Y

′′)) and v̂ ∈ Lp(Ω;W 1,p
per(Y ))N1 satis-

fying MY ′(v̂) = 0 a.e. in Ω× Y ′′.
Since, v̂ satisfies MY ′(v̂) = 0 a.e. in Ω× Y ′′ and MY ′(∇y′u) = 0 a.e. in Ω× Y ′′ by
periodicity of u, we obtain

Z̃ =MY ′(Z̃) ∈ Lp(Ω;W 1,p
per(Y

′′))N1 .

Hence ∇y′u lies in Lp(Ω×Y ′;W 1,p
per(Y

′′
))N1 . Lemma 7.2 in Appendix gives a function243

U ∈ Lp(Ω;W 1,p
per,0(Y )) such that ∇y′U = ∇y′u. The proof is complete.244

6. Application: homogenization of a homogeneous Dirichlet problem.245

We want to give a direct application of the periodic unfolding for anisotropically246

bounded sequences.247

Let O be an open subset of RN and let α, β ∈ R with 0 < α < β. Denote M(α, β,O)248

the set of N ×N matrices A = (aij)1≤i,j≤N with coefficients in L∞(O) such that for249

every λ ∈ RN and for a.e. x ∈ O, the following inequalities hold:250
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(i) (A(x)λ, λ) ≥ α|λ|2;251

(ii) |A(x)λ|2 ≤ β(A(x)λ, λ).252

Let A be be in M(α, β, Y ) and let {Aε}ε be the sequence of matrices belonging to253

M(α, β,Ω) defined by254

Aε
.
= A

({x
ε

}
Y

)
a.e. x ∈ Ω.255

Let f be a function in L2(Ω).256

Consider the homogeneous Dirichlet problem in variational formulation:257

(6.1)


Find uε ∈ H1

0 (Ω) such that:∫
Ω

Aε

(
∇x′uε
ε∇x′′uε

)
·
(
∇x′φ
ε∇x′′φ

)
dx =

∫
Ω

f φ dx, ∀φ ∈ H1
0 (Ω).

258

By the Poincaré inequality and the fact that uε ∈ H1
0 (Ω), we have that

‖uε‖L2(Ω) ≤ C‖∇x′uε‖L2(Ω).

Thus, problem (6.1) admits a unique solution by the Lax−Milgram theorem and the
following inequality holds:

α
(
‖∇x′uε‖2L2(Ω) + ε2‖∇x′′uε‖2L2(Ω)

)
≤ ‖f‖L2(Ω)‖uε‖L2(Ω) ≤ C‖f‖L2(Ω)‖∇x′uε‖L2(Ω).

Hence259

(6.2) ‖uε‖L2(Ω) + ‖∇x′uε‖L2(Ω) + ε‖∇x′′uε‖L2(Ω) ≤ C‖f‖L2(Ω),260

where the constant does not depend on ε.
Set

H1
0,per(Ω× Y ′′) =

{
φ ∈ H1(Ω× Y ′′) | φ(x, y′′) = 0 for a.e. (x, y′′) ∈ ∂Ω× Y ′′

and φ(x, ·) is Y ′′ periodic for a.e. x ∈ Ω
}
.

Denote L2
0(Ω,∇x′) (resp. L2

0(Ω,∇x′ ;H1
per(Y

′′))) the closure of H1
0 (Ω) (resp. of261

H1
0,per(Ω × Y ′′)) in L2(Ω) (resp. L2(Ω × Y ′′)) for the norm of L2(Ω,∇x′) (resp.262

L2(Ω,∇x′ ;H1
per(Y

′′))), see (3.1)-(3.2).263

Below, we give the periodic homogenization via unfolding.264

Theorem 6.1. Let uε be the solution of problem (6.1).265

There exist ũ ∈ L2
0(Ω,∇x′ ;H1

per(Y
′′)) and û ∈ L2(Ω× Y ′′;H1

per,0(Y ′)) such that266

(6.3)

uε ⇀MY (ũ) weakly in L2
0(Ω,∇x′),

Tε(uε) ⇀ ũ weakly in L2(Ω;H1(Y )),

Tε(∇x′uε)→ ∇x′ ũ+∇y′ û strongly in L2(Ω× Y )N1 ,

εTε(∇x′′uε)→ ∇y′′ ũ strongly in L2(Ω× Y )N2 .

267

The couple (ũ, û) is the unique solution of problem268

(6.4)



∫
Ω×Y

A(y)

(
∇x′ ũ(x, y′′) +∇y′ û(x, y)

∇y′′ ũ(x, y′′)

)
·

(
∇x′ φ̃(x, y′′) +∇y′ φ̂(x, y)

∇y′′ φ̃(x, y′′)

)
dxdy

= |Y ′|
∫

Ω×Y ′′
f(x)φ̃(x, y′′)dxdy′′,

∀φ̃ ∈ L2
0(Ω,∇x′ ;H1

per,0(Y ′′)) and ∀φ̂ ∈ L2(Ω× Y ′′;H1
per,0(Y ′)).

269
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Proof. Step 1. We show (6.4) and the weak convergences (6.3).270

The solution uε of (6.1) satisfies (6.2). Hence, up to a subsequence of {ε}, still denoted271

{ε}, Lemma 4.3 gives ũ ∈ L2
0(Ω,∇x′ ;H1

per(Y
′′)) and û ∈ L2(Ω× Y ′′;H1

per,0(Y ′)) such272

that273

(6.5)

uε ⇀MY (ũ) weakly in L2
0(Ω,∇x′),

Tε(uε) ⇀ ũ weakly in L2(Ω;H1(Y )),

Tε(∇x′uε) ⇀ ∇x′ ũ+∇y′ û weakly in L2(Ω× Y )N1 .

274

Moreover, from convergence (6.5)2 we also get that

εTε(∇x′′uε) = ∇y′′Tε(uε) ⇀ ∇y′′ ũ weakly in L2(Ω× Y ′′)N2 .

Now, we choose the test functions275

• φ̃ in C1(Ω× Y ′′) ∩ L2
0(Ω,∇x′ ;H1

per(Y
′′)),276

• Φ in C1
c (Ω× Y ′′) ,277

• φ̂ in H1
per,0(Y ′).278

Set

φε(x)
.
= φ̃

(
x,
x′′

ε

)
+ εΦ

(
x,
x′′

ε

)
φ̂
(x′
ε

)
, a.e. x ∈ Ω.

Applying the unfolding operator to the sequence {φε}ε, we get that279

Tε(φε)→ φ̃ strongly in L2(Ω;H1(Y )),

Tε(∇x′φε)→ ∇x′ φ̃+ Φ∇y′ φ̂ strongly in L2(Ω× Y )N1 ,

εTε(∇x′′φε)→ ∇y′′ φ̃ strongly in L2(Ω× Y )N2 .

280

Taking φε as test function in (6.1), then transforming by unfolding and passing to the281

limit give (6.4) with (φ̃,Φφ̂). By density argumentation, we extend such results for282

all φ̃ ∈ L2
0(Ω,∇x′ ;H1

per(Y
′′)) and all φ̂ ∈ L2(Ω × Y ′′;H1

per,0(Y ′)). Since the solution283

is unique the whole sequences converge to their limit.284

Step 2. We prove that convergences (6.3)3,4 are strong.285

First, setting φ = uε in (6.1), then transforming by unfolding and using the weak286

lower semicontinuity yield287 ∫
Ω×Y

A

(
∇x′ ũ+∇y′ û
∇y′′ ũ

)
·
(
∇x′ ũ+∇y′ û
∇y′′ ũ

)
dxdy

≤ lim inf
ε→0

∫
Ω×Y

A

(
Tε(∇x′uε)
εTε(∇x′′uε)

)
·
(
Tε(∇x′uε)
εTε(∇x′′uε)

)
dxdy

= lim inf
ε→0

(∫
Ω
Aε

(
∇x′uε
ε∇x′′uε

)
·
(
∇x′uε
ε∇x′′uε

)
dxdy −

∫
Λε

Aε

(
∇x′uε
ε∇x′′uε

)
·
(
∇x′uε
ε∇x′′uε

)
dxdy

)
≤ lim sup

ε→0

(∫
Ω
Aε

(
∇x′uε
ε∇x′′uε

)
·
(
∇x′uε
ε∇x′′uε

)
dxdy −

∫
Λε

Aε

(
∇x′uε
ε∇x′′uε

)
·
(
∇x′uε
ε∇x′′uε

)
dxdy

)
≤ lim sup

ε→0

∫
Ω
Aε

(
∇x′uε
ε∇x′′uε

)
·
(
∇x′uε
ε∇x′′uε

)
dxdy = lim sup

ε→0

∫
Ω
f uε dx,

= lim
ε→0

∫
Ω×Y

Tε(f)Tε(uε) dx =

∫
Ω×Y

f ũ dxdy

=

∫
Ω×Y

A

(
∇x′ ũ+∇y′ û
∇y′′ ũ

)
·
(
∇x′ ũ+∇y′ û
∇y′′ ũ

)
dxdy,

288
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from which it follows that289 ∫
Λε

Aε

(
∇x′uε
ε∇x′′uε

)
·
(
∇x′uε
ε∇x′′uε

)
dxdy = 0290

and291

lim
ε→0

∫
Ω×Y

A

(
Tε(∇x′uε)
εTε(∇x′′uε)

)
·
(
Tε(∇x′uε)
εTε(∇x′′uε)

)
dxdy

= lim
ε→0

∫
Ω

Aε

(
∇x′uε
ε∇x′′uε

)
·
(
∇x′uε
ε∇x′′uε

)
dxdy

=

∫
Ω×Y

A

(
∇x′ ũ+∇y′ û
∇y′′ ũ

)
·
(
∇x′ ũ+∇y′ û
∇y′′ ũ

)
dxdy.

292

Since the map Ψ ∈ L2(Ω× Y )N 7−→

√∫
Ω×Y

AΨ ·Ψ dxdy is a norm equivalent to the293

usual norm of L2(Ω× Y )N , we get294

lim
ε→0

∫
Ω×Y

∣∣∣∣ ( Tε(∇x′uε)εTε(∇x′′uε)

) ∣∣∣∣2dxdy =

∫
Ω×Y

∣∣∣∣ (∇x′ ũ+∇y′ û
∇y′′ ũ

) ∣∣∣∣2dxdy.295

This, together with the fact that (6.5)2,3 already converge weakly, ensures the strong296

convergences (6.3)3,4. The proof is therefore complete.297

Set

A =

(
A1 A2

A3 A4

)
where298

• A1 is a N1 ×N1 matrix with entries in L∞(Y ),299

• A2 is a N1 ×N2 matrix with entries in L∞(Y ),300

• A3 is a N2 ×N1 matrix with entries in L∞(Y ),301

• A4 is a N2 ×N2 matrix with entries in L∞(Y ).302

We define the correctors χ̂k, k ∈ {1, . . . , N}, as the unique solutions in the space303

L∞(Y ′′, H1
per,0(Y ′)) of the cell problems:304

(6.6)


∫
Y ′
A1(y′, ·)∇y′ χ̂k(y′, ·) · ∇y′ŵ(y′)dy′ = −

∫
Y ′
A(y′, ·) ek ·

(
∇y′ŵ(y′)

0

)
dy′,

∀ŵ ∈ H1
per,0(Y ′).

305

By the Lax−Milgram theorem applied in Hilbert space L2(Y ′′, H1
per,0(Y ′)), we obtain306

the existence and uniqueness of the solution of (6.6) for every k ∈ {1, . . . , N}.307

Since A belongs to M(α, β, Y ) we get for every k ∈ {1, . . . , N}:308

‖∇y′ χ̂k(·, y′′)‖H1(Y ′) ≤
β

α
. for a.e. y′′ ∈ Y ′′.309

As a consequence χ̂k ∈ L∞(Y ′′, H1
per,0(Y ′))1 for every k ∈ {1, . . . , N} and

‖χ̂k‖L∞(Y ′′;H1(Y ′)) ≤ C.

310

1One can prove that χ̂k also belongs to L∞(Y ).
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Proposition 6.2. The function ũ0 is the unique solution of the following homog-311

enized problem:312

(6.7)


∫

Ω×Y ′′
Ahom

(
∇x′ ũ0

∇y′′ ũ0

)
·

(
∇x′ φ̃
∇y′′ φ̃

)
dxdy′′ =

∫
Ω×Y ′′

f φ̃ dxdy′′,

∀φ̃ ∈ L2
0(Ω,∇x′ ;H1

per(Y
′′)).

313

The homogenizing operator Ahom ∈ L∞(Y ′′)N×N is defined by314

(6.8) Ahom
.
=

1

|Y ′|

∫
Y ′

(
A+

(
A1

A3

)
∇y′χ

)
(y′, ·) dy′,315

where χ̂ =
(
χ̂1 χ̂2 . . . χ̂N1 χ̂N1+1 . . . χ̂N

)
and thus ∇y′χ̂ is the N1 × N316

matrix317

∇y′χ̂
.
=
(
∇y′ χ̂1 ∇y′ χ̂2 . . . ∇y′ χ̂N1

∇y′ χ̂N1+1 . . . ∇y′ χ̂N
)
.318

Proof. Equation (6.4) with φ̃ = 0 leads to:319

(6.9)



∫
Ω×Y ′×Y ′′

A(y′, y′′)

(
∇y′ û(x, y′, y′′)

0

)
·
(
∇y′ φ̂(x, y′, y′′)

0

)
dxdy′dy′′

= −
∫

Ω×Y ′×Y ′′
A(y′, y′′)

(
∇x′ ũ(x, y′′)
∇y′′ ũ(x, y′′)

)
·
(
∇y′ φ̂(x, y′, y′′)

0

)
dxdy′dy′′,

∀φ̂ ∈ L2(Ω× Y ′′;H1
per,0(Y ′)),

320

from which the form of the cell problems (6.6) follows.
By (6.9), we can write û as

û(x, y′, y′′) =

N1∑
k=1

χ̂k(y′, y′′)∂kũ(x, y′′) +

N∑
k=N1+1

χ̂k(y′, y′′)∂yk ũ(x, y′′)

for a.e. (x, y′, y′′) ∈ Ω× Y ′ × Y ′′.

Replacing û by the above equality in (6.4) and gathering all the y′ dependent terms,321

we get the form (6.8) of the homogenizing operator Ahom.322

Since A ∈ L∞(Y )N×N and the χ̂k’s are in L∞(Y ′′;H1(Y ′)), it is clear that Ahom323

belongs to L∞(Y ′′)N×N .324

We prove now that Ahom is coercive. Let ξ
.
= (ξ1, ξ2) be a vector with fixed entries325

in RN = RN1 × RN2 . By construction of the homogenizing operator, we have326

Ahomξ · ξ = Ahom
(
ξ1
ξ2

)
·
(
ξ1
ξ2

)
327

=
1

|Y ′|

∫
Y ′

(
A+

(
A1

A3

)
∇y′χ(y′, ·)

)(
ξ1
ξ2

)
·
(
ξ1
ξ2

)
dy′328

=
1

|Y ′|

∫
Y ′
A

(
ξ1 +∇y′ χ̂ξ

ξ2

)
·
(
ξ1
ξ2

)
dy′329

=
1

|Y ′|

∫
Y ′
A

(
ξ1 +∇y′ χ̂ξ

ξ2

)
·
(
ξ1 +∇y′ χ̂ξ

ξ2

)
dy′330

− 1

|Y ′|

∫
Y ′
A

(
ξ1 +∇y′ χ̂ξ

ξ2

)
·
(
∇y′ χ̂ξ

0

)
dy′,331

332
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where χ̂ξ(y′, y′′)
.
=

N∑
k=1

χ̂k(y′, y′′)ξk. Observe that by the cell problems (6.6), the333

second term in the last equality is equal to zero.334

Now, the coercivity of the matrix A and the fact that χ̂ξ ∈ L∞(Y ′′, H1
per,0(Y ′)), imply335

that336

Ahom(y′′)ξ · ξ =
1

|Y ′|

∫
Y ′
A

(
ξ1 +∇y′ χ̂ξ

ξ2

)
·
(
ξ1 +∇y′ χ̂ξ

ξ2

)
dy′337

≥ α
(
‖ξ1 +∇y′ χ̂ξ(y′′, ·)‖2L2(Y ′) + |ξ2|2

)
338

= α
(
|ξ1|2 + |ξ2|2 + ‖∇y′ χ̂ξ(y′′, ·)‖2L2(Y ′)

)
≥ α|ξ|2, for a.e. y′′ ∈ Y ′′,339

340

which proves that Ahom is coercive.341

Replacing the form of Ahom on the original problem (6.4), we get (6.7). By the342

boundedness and coercivity of Ahom and by the fact that the function ũ belongs to343

L2
0(Ω,∇x′ ;H1

per(Y
′′)), the above problem admits a unique solution ũ0 by the Poincaré344

inequality and the Lax−Milgram theorem.345

7. Appendix.346

Lemma 7.1. Let u be in Lp(Y
′′
;W 1,p(Y ′)) (p ∈ (1,+∞)) such that

∇y′u ∈ Lp(Y ′;W 1,p(Y
′′
))N1 .

Then u = u−MY ′(u) belongs to W 1,p(Y )2. It satisfies347

(7.1) ∇y′u = ∇y′u a.e. in Y348

and349

(7.2) ‖u‖W 1,p(Y ) ≤ C
(
‖∇y′u‖Lp(Y ′×Y ′′) + ‖∇y′′(∇y′u)‖Lp(Y ′×Y ′′)

)
.350

351

Proof. Step 1. First, assume u ∈ C2(Y ).352

Set u = u −MY ′(u). It is clear that (7.1) is satisfied. We prove now the estimate353

(7.2) of u.354

By definition of u, (7.1) and the Poincaré-Wirtinger Inequality we have355

(7.3)
‖u‖Lp(Y ′×Y ′′) = ‖u−MY ′(u)‖Lp(Y ′×Y ′′) ≤ C‖∇y′u‖Lp(Y ′×Y ′′),

‖∇y′u‖Lp(Y ′×Y ′′) = ‖∇y′u‖Lp(Y ′×Y ′′).
356

Observe that MY ′(∇y′′u) = ∇y′′MY ′(u) = 0.357

Then, again by equality (7.1) and the Poincaré-Wirtinger Inequality, we get358

(7.4)

‖∇y′′u‖Lp(Y ′×Y ′′) = ‖∇y′′u−MY ′(∇y′′u)‖Lp(Y ′×Y ′′)

≤ C‖∇y′(∇y′′u)‖Lp(Y ′×Y ′′) = ‖∇y′′(∇y′u)‖Lp(Y ′×Y ′′)

= ‖∇y′′(∇y′u)‖Lp(Y ′×Y ′′).

359

Hence, by estimates (7.3)-(7.4) we obtain (7.2).
Step 2. Now, suppose u in Lp(Y

′′
;W 1,p(Y ′)) and ∇y′u in Lp(Y ′;W 1,p(Y

′′
))N1 . Since

2It also belongs to W 1,p(Y ′;W 1,p(Y
′′

)).
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C2(Y ) is dense in this subspace of Lp(Y
′′
;W 1,p(Y ′)), there exists a sequence of func-

tions un ∈ C2(Y ) such that

un → u strongly in Lp(Y
′′
;W 1,p(Y ′))),

MY ′(un)→MY ′(u) strongly in Lp(Y
′′
),

∇y′un → ∇y′u strongly in Lp(Y ′;W 1,p(Y
′′
))N1 .

The corresponding sequence {un} (given by Step 1) satisfies∇y′un = ∇y′un, moreover
it belongs to C2(Y ) and is bounded in W 1,p(Y ) (from (7.2)). Passing to the limit gives
u ∈W 1,p(Y ) such that

un → u strongly in W 1,p(Y ), ∇y′u = ∇y′u a.e. in Y.

Finally, observe that u = u−MY ′(u).360

Lemma 7.2. Let u be in Lp(Y
′′
;W 1,p

per(Y
′)) (p ∈ (1,+∞)) such that

∇y′u ∈ Lp(Y ′;W 1,p
per(Y

′′
))N1 .

Then, there exists U ∈W 1,p
per(Y ) such that361

(7.5) ∇y′U = ∇y′u a.e. in Y.362

Proof. Since u in Lp(Y
′′
;W 1,p

per(Y
′)) and ∇y′u ∈ Lp(Y ′;W 1,p

per(Y
′′
))N1 , the above

Lemma 7.1 shows that the function u = u − MY ′(u) belongs to W 1,p(Y ). It is
obvious that u is periodic with respect to the variables y1, . . . , yN1

. One also has
∇y′u = ∇y′u ∈ Lp(Y ′;W 1,p

per(Y
′′
))N1 . Denote

Yi =
{
y ∈ Y | yi = 0, yj ∈ (0, 1), j ∈ {1, . . . , N} j 6= i

}
, i ∈ {1, . . . , N},

Y
′′

i =
{
y ∈ Y ′′ | yi = 0, yj ∈ (0, 1), j ∈ {N1 + 1, . . . , N} j 6= i

}
, i ∈ {N1 + 1, . . . , N}.

Since ∇y′u = ∇y′u and is yj periodic, j ∈ {N1 + 1, . . . , N}, one gets

∇y′u|Yj+ej
−∇y′u|Yj

= ∇y′u|Yj+ej
−∇y′u|Yj

= 0 a.e. in Yj .

Hence
u|Yj+ej

− u|Yj
∈W 1−1/p,p(Y

′′

j ), j ∈ {N1 + 1, . . . , N}.
Besides, one has

u|Yj+ej
− u|Yj

= 0, j ∈ {1, . . . , N1}.
Then, following the same lines of the proofs of [13, Proposition 13.34 and Lemmas
13.35-13.36], there exits U ∈W 1,p

per(Y ) such that

U− u ∈W 1,p(Y
′′
)

and we have363
364

‖U− u‖W 1,p(Y ) ≤ C
N∑

j=N1+1

‖u|Yj+ej
− u|Yj

‖W 1−1/p,p(Y
′′
j )365

≤ C
(
‖∇y′u‖Lp(Y ) + ‖∇y′u‖Lp(Y ′;W 1,p(Y ′′ ))

)
.366

367

The function U satisfies (7.5).368
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