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PERIODIC UNFOLDING FOR ANISOTROPICALLY BOUNDED
SEQUENCES

RICCARDO FALCONI*, GEORGES GRISOf, AND JULIA ORLIK?*

Abstract. This paper is focused on the asymptotic behavior of sequences of functions, whose
partial derivatives estimates in one or more directions are highly contrasted with respect to the
periodic parameter . In particular, a direct application for the homogenization of a homogeneous
Dirichlet problem defined on an anisotropic structure is presented. In general, the obtained results
can be applied to thin structures where the behavior is different according to the observed direction.

Key words. Periodic unfolding method, homogenization, anisotropic Sobolev spaces, Dirichlet
problem

AMS subject classifications. 31C25, 35B27, 46E35, 49J45

1. Introduction. The aim of this paper is to extend some of the results already

developed in [1, 6, 13] about the periodic unfolding method to new classes of functions,
the so-called ” anisotropically bounded”, including a direct application of the obtained
results.
Given a small parameter ¢ and a bounded domain Q C RY with Lipschitz boundary,
we consider the periodic paving of 2 made with cells of size . In [13, Section 1.4], it is
extensively investigated the asymptotic behavior of sequences {¢. }. C WP(Q) whose
gradient is isotropically bounded, that are, sequences whose gradient is bounded by
the same order regardless of the direction observed. In this sense, the asymptotic
behavior of sequences {¢.}. such that

lécllLe) +ellVoelr) <C and  ||¢c|rr) + [[V@ell1r) < C

are shown in detail. In the present, we focus on the periodic unfolding for sequences

whose assumptions on the gradient bound are anisotropic, e.g. where at least one or
more directions are privileged and have more information than the others. In partic-
ular, we define a domain partition for every x € Q by setting = = (2, 2"), where the
variable z’ corresponds to the first Ny < N directions, and we show the asymptotic
behavior of sequences {¢.}. such that

(i
(i

(iii

Pl L) + €l VardellLr) < C;

DcllLr () + [IVar dellr o) < C;

Pellr(@) + [IVar @ellr @) + €l Var ¢ellLr @) < C;
|fellr) + IVardellr ) + €l Var (Varde)l o) < C.

~—_ ~— ~— ~—

(iv

These results allow to extend some more complex lemmas concerning the periodic
unfolding (see for an instance [13, Lemma 11.11]) to this new classes of functions. In
the end, a direct application of such lemmas is done by homogenizing via unfolding
the homogeneous Dirichlet problem

Find u. € HJ () such that:

Ve V¢ B
/QAE <€unu5> ' (EVIH¢> dx = /Qf¢dx, Vo € Hi(Q),

whose nature is anisotropic.
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2 R. FALCONI, G. GRISO, J. ORLIK

The homogenization via unfolding method, an equivalent to the two-scale con-

vergence, has been presented the first time by D. Cioranescu and al. in [1], with
further development in [2, 3, 4, 6] and extensively in [13]. Such method has largely
found application (see e.g. [5, 7, 8,9, 10, 11, 12]) and also for thin periodic structures
like periodically perforated shells (see [18]), textiles made of long curved beams (see
[15, 16]) and stable lattice structures made of beams (see [14, 17]).
The present paper provides additional tools for up-coming papers dealing with a wider
range of periodic thin structures. Among them, we cite [20], where the assumption
of loose contact between fibers on a textile made of beams arises different gradient
estimates with respect to the observed direction, and [19], where the same peculiarity
applies but on periodic lattice structures. More generally, such tools can be applied
to many other problems related to partial differential equations on domains involving
periodic grids, lattices, thin frames and fiber structures.

The paper is organized as follows. In section 2, the standard notation for the
classical homogenization via unfolding method on bounded domains Q € RV with
Lipschitz boundary are listed. In section 3, we set a domain partition = (z/,2")
for every z € Q and from [13, Chap. 7], we recall the unfolding with parameters
and prove the main properties. In section 4, we give the asymptotic behavior for
the classes of sequences bounded anisotropically (i)-(iv) described above. The aim of
section 5 is to extend [13, Lemma 11.11] to the anisotropic case. Different anisotropic
assumptions arise different regularity of the limit fields. Such results are fundamental
if one considers the key role that such a Lemma has in the study of elasticity problem
for thin structures (see [16, 18]). At last, in section 6, we consider the Dirichlet prob-
lem shown above. Using the results in the previous sections, existence and uniqueness
of the limit problem are shown and through the homogenization via unfolding, the
cell problems and the macroscopic limit problem are found.

2. Preliminaries and notation. Let RY be the euclidean space with usual
basis (eq,...,eyx) and Y = (0,1)" the open unit parallelotope associated with this
basis. For a.e. z € R, we set the unique decomposition z = [z]y + {2}y such that

N
[2]y = Zkiei, ki eZVN and {z}y =z—[z]y €Y.

i=1

Let {e} be a sequence of strictly positive parameters going to 0. We scale our paving
by € writing

(2.1) x:zs[g}y—i—s{g}y for a.e. x € RY.

Let now Q be a bounded domain in RY with Lipschitz boundary. We consider the
covering

E.={¢ezV |e(¢+Y)C}

and set

Qeiint{ U a(§+?)}, A =0\ Q..

£EE.

We recall the definitions of classical unfolding operator and mean value operator.

This manuscript is for review purposes only.



PERIODIC UNFOLDING FOR ANISOTROPICALLY BOUNDED SEQUENCES 3

DEFINITION 2.1. (see [13, Definition 1.2]) For every measurable function ¢ on
Qc, the unfolding operator T¢ is defined as follows:

(6) = ¢(€[gy +sy) for a.e. (z,y) € Qe x Y,
0 for a.e. (z,y) € A. X Y.

7

67 Note that such an operator acts on functions defined in € by operating on their
68 restriction to (..

DEFINITION 2.2. (see [13, Definition 1.10]) For every measurable function gg on
LY(Q x Y), the mean value operator My is defined as follows:

MY((;)(*T) = % /Y qAﬁ(x,y)dy, for a.e. x € Q.

69 Let p € [1,400]. From [13, Propositions 1.8 and 1.11], we recall the properties of
70 these operators:

IT-@)r@xv) < IV 17 6]y for every ¢ € LP(9),
My (D)o < Y] 7|@llLrxyy  for every ¢ e LP(Q x Y).
Since we will deal with Sobolev spaces, we give hereafter some definitions:
WI}C:Q(Y) = {(;S e WhP(Y) | ¢ is periodic with respect to y;, i € {1,.. .,N}},
Wyiro(Y) = {6 € Won(¥) | My (9) =0},
LP(QWHP(Y) ={p € LP(AxY) | V,0 € LP(2 x V)V

2 3. The unfolding with parameters. We start by giving a rigorous definition
73 of the domain split. Let (N1, N3) be in N x N* and such that N = N; + Ns. Denote

Ny
74 RN = {m’ e RN ‘ 2 = Zifiei, z; € R}v
=1

N
75 RNz = {x” e RN ‘ 2 = E i€, T; € R}7
i=N1+1

Ny
76 Y = {y’ e RV ‘ y = Zyﬁn y; € (0, 1)}’

=1
N
77 Y = {y// € RN ’ y// = Z Yi€i, Yi € (0’ 1)}
78 i=N1+1

and
ZN1:Ze1@...EBZeN1, ZN2:Z6N1+1@...®Z9N.

One has
RY = RM ¢ R, Y=Y aY", ZN = 7N g 72,
For every z € RN and y € Y, we write

r=2' 42" eRMaRM, y=y+y’ecY oY

This manuscript is for review purposes only.



4 R. FALCONI, G. GRISO, J. ORLIK

From now on, however, we find easier to refer to such partition with the vectorial
notation

z=(2/,2") e RM x RM2, y=(,y")eY xY".
Similarly to (2.1), we apply the paving to a.e. 2’ € R and 2" € RV? setting

/ / / /

voe[Z] wedT) 0w [2] enm, (U] ev,
ely’ ey’ ely’ eJy’

7 1" 1 "

woe [T T (2] eme, [T ey
E Y// 6‘ Y// 6 Y// 5‘ Y//

80 DEFINITION 3.1. For every q/b\ € LY(Q x Y), the partial mean value operators are
81 defined as follows:

79

82 My (3)(z,y") |Y’\ / oz, y")dy for a.e. (x,y") e QxY",
83 My (d)(z,y) = - oz, y")dy", for a.e. (x,y') e QxY".
84 |Y | Y//

85 Denote

LP(Q, V) ={¢ € LP(Q) | Voo € LP()N },
LP(Q, Vo) = {¢ € LP(Q) | Varg € LP(Q)N2],
LP(Q Vs WHP(Y")) = {p € LP(Qx Y") | Vg € LP(Q x V)M,
Vg€ LP(Qx Y")N2 ),

86 (3.1
3.1) LAV, WHP(Y')) = {$p € LP(Q X Y') | Vg € LP(Q x Y')N2,
Vb e LP(Qx YN,
LPOQXY" ;W (Y') = {¢ e LP(Qx Y) | Vyd € LP(Q x V)V,

LP(Q x Y’;Wl»p(Y” ={6ecP(QxY)|Vyde LP(QxY)N2].

87  We endow these spaces with the respective norms:

(3.2)
I lze@w,) = I lze@) + 1V (Ol o )n s
| Nze@,w, = I llze) + [Var ()l zo@yma
. |- Ner@ v, wieqmy) = |- ler@xyry + Ve Ol r@xyryy + Vg (Ol Le@xyryva
|- Nee@,v,mwreqry) = |- lee@xyry + [ Var Ol Lr@xynyve + 1Vy (Ollze@xy s,
|- lze@xyswioyny) = |- ler@xy) + [IVy Ol Le@xy)yvis
|- lr@@xyrswreynyy = | - lee@xyy + 1Vyr ()llr@xyyve

89 We recall the unfolding with parameters tools already developed in [13, Chap. 7] and
90 we define two partial unfolding operators.

DEFINITION 3.2. For every measurable function ¢ on ), the unfolding operator
T!' is defined as follows:

"

gb(a:’,a[m—}y + sy”) for ace. (', 2", y") € Qe x Y,
5 "
0 for a.e. (2’2" y") € Ae x Y.

T (9) (', 2", y") =

This manuscript is for review purposes only.
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PERIODIC UNFOLDING FOR ANISOTROPICALLY BOUNDED SEQUENCES 5

For every measurable function 1) on Q x Y, the unfolding operator T is defined as
follows:

/

1/)(5[%}1// + 69’,:6”,1/') for a.e. (', 2",yy") € Qo x Y,

0 for a.e. (2',2",y',y") € A x Y.

T W)@, 2",y y") =

Note that in the partial unfolding operator 7/ (¢) the variable &’ plays the role of a
parameter, while in T (¢)) the role of parameters is played by the variables (z”,y").

LEMMA 3.3. One has
(3.3) To=T/oT!. My =My oMyn.
Moreover, for every ¢ € L' (2, V) one has
(3.4) VoT(¢) =T (Vo)  ace in Q. x Y.

Proof. Let ¢ be measurable on 2. We have that
1 !/ 1

et =T (o(e 2]+ o)) = ole[2], v e[Z], v o)

3 9

= ¢(5{§]Y + 5y) =T(o)(z,y) for ae. (z,y) € Q. x Y.

For (z,y) € Ac X Y the result is obvious.
Let ¢ be in L'(2 x Y). We have

PN 1 " /A7 "
My/ o MY” (¢)($) = MY’ (W /Y” gb(:v,y Y )dy )

1 ~ 1 =R
~ v L L dat iy = [ Gy

= My (¢)(z) fora.e. xeQ.
Let now ¢ be in L'(Q, V,/). We have

" "
T

VT @)y = Var (o2 e[ Z] + o)) = Vao(a e[ Z] | +ey”)
T (Vo) (z,y") forae. (z,y") € Q. xY". O

4. Asymptotic behavior of anisotropically bounded sequences. We start
with sequences bounded in LP(£2, V), p € [1,+0o0], whose gradient is bounded with
order et in LP(Q) in the first V7 directions.

LEMMA 4.1. Let {¢.}. be a sequence in LP(Q2, V), p € (1,+00), satisfying

pellzr (@) + €l Ve dell Loy < C,

where the constant does not depend on €. R
Then, there exist a subsequence of {e}, still denoted {e}, and a function ¢ in the space
LP(Q x Y";WLP(Y")) such that

per

P — ¢ weakly in  LP(Q),

To(pe) = ¢ weakly in  LP (€ x Yy Wlm(yl))

This manuscript is for review purposes only.
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6 R. FALCONI, G. GRISO, J. ORLIK

where ¢ = My((}ﬁ\)
The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. The proof is similar to [13, Theorem 1.36]. O
An analogous result holds for sequences uniformly bounded in LP(Q, V), p € [1, +00].
LEMMA 4.2. Let {¢.}. be a sequence in LP(Q2, V), p € (1,+00), such that

lpellzr(@,v,) < C.

Then, there exist a subsequence of {e}, still denoted {e}, and ¢ € LP(Q x Y", V),
peLP(QxY"; Wpléfyo(Y’)) such that

b — @ weakly in  LP(Q, V),

To(de) = ¢ weakly in LP(Qx Y";WHP(Y')),

Te(Varde) = Voo + Vy/$ weakly in  LP(Q x V)N,
1 ~ ~
g(ﬁ(@sa) ~ My 0T(¢)) = Vuwd -y + ¢ weakly in LP(Q x V)M

where ¢ = My (¢) and y'° =y — My (y)).
The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. The proof is similar to [13, Corollary 1.37] and [13, Theorem 1.41]. |

Now, we consider the sequences in WP(Q), p € [1, 40|, whose gradient is estimated
with different order according to the considered direction.

LEMMA 4.3. Let {¢.}. be a sequence in WP(Q), p € (1,+00), satisfying

(4.1) Pellr@,v,) +elVardelLra) < C;

where the constant does not depend on €.
Then, there exist a subsequence of {e}, still denoted {e}, and functions

¢ € LP(Q, Vo WER(Y™)) and ¢ € LP(Q x Y, WEP (V)

per per,0
such that
P — ¢ weakly in  LP(Q, V),
Te(¢:) =& weakly in LP(QW'P(Y),
Te(Varpe) = me$+ VWZ weakly in  LP(Q x Y)Nl,
(To(¢e) — My 0 To($2)) = Vard -y + ¢ weakly in  LP(Q x V)M

m | =

where ¢ = My (¢) and y' =y’ — My (/).
The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. From (4.1), up to a subsequence of {e}, still denoted {e}, one has the
existence of ¢ € LP(Q, V,+) such that (4.2); holds.

This manuscript is for review purposes only.
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Set {®.}. = {7 (¢)}. This sequence belongs to LP(Qz, Vs WHP(Y")) and from
estimate (4.1) and equality (3.4), it satisfies

(4'3) H(I)E”Lp(ﬁayvm,;wl,p(yu)) < 07

where the constant does not depend on . _
Up to a subsequence of {e}, still denoted {e}, there exists ¢ € LP(Q; WLE(Y")) and

per

® € LP(Qx Y")™ (the periodicity of ¢ is proved as in [13, Theorem 1.36]) such that
Plg o yn — (E weakly in  LP(Q; WhP(Y")),
Vz/@glﬁgxyu — (i Weakly in LP(Q X }//I)]\/'1 )

Let g be in C2°(Q x Y")N1. For ¢ sufficiently small such that supp(g) C Q- x Y, we
have

/ Vm’q)slﬁ <y "9 dxdy” = / Ve ®e - g dxdy”
Qxy” c

QXY

= —/ & .V, gdedy’ = —/ D1y o yn Vargdady.
Qxy” :

QXY

Then, passing to the limit yields
/ ® - gdrdy” = —/ ¢ Vagdady', VYgeCQxY")N,
QXY QxY"

This means that ® = V¢ a.e. in Q x Y, thus Vg ¢ € LP(Q x Y”)™1 and therefore
¢ € LP(Q,Vy; Wple’f(Y”)).
Now, we transform the sequence {®.}. using the unfolding operator 7/, Y being a

set of parameters.
From the above convergence and estimate (4.3), up to a subsequence of {e}, still de-

noted {e}, [13, Corollary 1.37] and [13, Theorem 1.41] give ¢ € LP(QxY"; W;gf,o(Y’))
such that (using the rule (3.3);)

T(pe) = T/(®:) = ¢ weakly in  LP(Q;WHP(Y' x Y)),
Te(Vede) = T/ (Va®.) = Vud+Vyéd  weaklyin LP(Q x Y’ x Y")N,
1 ~ ~
(TE(Qbs) - My (Ts(ﬁbe») = E(E/((I)e) — My (7;'({)6))) —Vuo- ylc +¢
weakly in LP(Q2 x Y/ x Y").

o | =

This ends the proof of (4.2). |

As the lemma below shows, an analogous asymptotic behavior is achieved starting
from sequences uniformly bounded in LP(Q, V), p € [1, +00], with some assumptions
on the gradient derivatives.

LEMMA 4.4. Let {¢:}. be a sequence in LP(Q2, V), p € (1,400), satisfying
(a.4) -l @90 + <[ F2 (V6 | i < €.

where the constant does not depend on €.
Then, there exist a subsequence of {e}, still denoted {e}, functions

b€ LP(Q, Vo WEP(Y")) and 1 € LP(Q; WL2(Y))

per per

This manuscript is for review purposes only.
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8 R. FALCONI, G. GRISO, J. ORLIK

such that My ({b\) =0ae mQxY",

Vard € LMW ()N, Yyt € LP(Q x Y Wy (V)™
and we have
P — @ weakly in  LP(Q, V),
(4.5) Te(e) = ¢ weakly in  LP(Q;WHP(Y)),
To(Varde) = Voo + vy/@E weakly in  LP(Q x Y'; WhP(Y"))M
where ¢ = ./\/ly//(g).
The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. By estimate (4.4); and Lemma 4.2, there exists a subsequence of {e}, still
denoted {e}, and functions ¢ € LP(2 x Y" V), ¢ € LP(Q x Y”;W;cif,o(Y’)) such
that

P — @ weakly in  LP(Q, V),
(4.6) To(¢e) = ¢ weakly in  LP(Q x Y"; WHP(Y')),
Te(Vade) = Ved+Vyd  weaklyin  LP(Q x V)N,
Set {¢c}. = {Va¢c}e. By estimate (4.4), this sequence satisfies
||11Z)6HLP(Q) + €||VZ”¢EHLP(Q) < C7

where the constant does not depend on €.
Hence, applying Lemma 4.1 to the above sequence (but swapping Y’ and Y"), there

exists a function ¢ € LP(Q x Y'; WLE(Y"))™M such that

per

To(Vard) = Te(tbe) =& weakly in  LP(Q x Y/; WhP(Y"))Nt,
This, together with convergence (4.6)3 implies that the quantity Vxlg + Vy/ngS belongs
to LP(Q x Y/; WLE(Y"))N1. Since ¢ does not depend on 3’ and ¢ is periodic with

per
respect to 3/, we have that

Vard = My (Vor§) + My (Vi §) = My (),
thus V¢ € LP(Q; WLP(Y"))M and therefore 6 e LP(Q, Vs WLP(Y)).

per per
Moreover, the quantity Vyfa belongs to LP(Q x Y'; W 2(Y”))M and thus Lemma
7.2 implies that there exists ¢ € LP(2; W)L (Y)) with Vyfgg = Vy/qg such that (4.5)3
hold. The proof follows by replacing @ by the function ¥ = ¢ — My~ (65)7 which
belongs to the space LP(€; WLE(Y)). 0

5. Other unfolding results for anisotropically bounded sequences. In
this section we want to extend the lemma below to the anisotropic case.

LEMMA 5.1. (see [13, Lemma 11.11]) Let {(uc,v:)}e be a sequence converging
weakly to (u,v) in WHP(Q) x WEP(Q)N p € (1,+00). Moreover, assume that there
exist Z € LP(Q)N and 0 € LP(Q; WP (Y)Y such that

per,0

é(VuE +v.) = Z  weakly in  LP(Q)V,
Te(Vve) = Vo + V, 0 weakly in  LP(Q x Y)N*V,

This manuscript is for review purposes only.
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Then, u belongs to W2P(Q). Moreover, there exist a subsequence of {e}, still denoted
{e}, and w e LP(Q; WP (V) such that

per,0
1
g’Tg(Vug +v.) =~ Z+V,u+7 weakly in LP(Q x Y)N.

As an immediate consequence, one has the following.

COROLLARY 5.2. Let O be an open set in R¥, k > 1. Let {(u.,v:)}. be a sequence
converging weakly to (u,v) in LP(O; WHP(Q)) x LP(O; WLP(Q)N | p € (1,+00).
Moreover, assume that there exist Z € LP(O x Q)N and © € LP(O x ; W;}ézr),O(Y))N
such that

1
E(Vu8 +v.) = Z  weakly in LP(O x Q)N
Te(Vos) = Vo +V, 0 weakly in LP(O x Q x Y)V*N,

Then, u belongs to LP(O; W?P(2)). Furthermore, there exist a subsequence of {¢},
still denoted {}, and w € LP(O x ;WP (Y)) such that:

per,0
1
ETE(Vu6 +v.) = Z+Vu+0 weakly in LP(O x Qx V)N,

Define the spaces

LPQXY" D) = {pand Vyd € LP(Q x Y, V)N,
LP(Q, D2 Wpb(Y")) = {¢ and Vg € LP(Q, Var; Wl (Y")M ],

per per

endowed with the respective norms:

I+ lzr@xyr,p2,) = I+ zo@xyry + Ve (llo@xymym + D5 (o @y

” ' ”LP(Q,Di,;Wl:P(Y”)) = || ’ HLP(QxY”,Di,) + ||Vy”(')||LP(Q><Y")N2-

We are ready to extend Lemma 5.1 to the class of anisotropically bounded sequences.

LEMMA 5.3. Let {(u.,v.)}e be a sequence in the space LP(2, V) x LP (2, V4 )N,
p € (1,400), satisfying

(5.1) luellrov,) <C lvellrv,,) <G,

where the constant does not depend on €.
Moreover, assume that there exist Z € LP(Q)N* such that

1
(5.2) ~ (Ve +v.) = 2 weakly in  LP(Q)N.
€

Then, there exist a subsequence of {e}, still denoted {e}, and Z € LP(Q x Y")N with
Myn(Z) = Z, ue LP(Ux Y"; WP (Y"), & € LP(Q x Y",D2,) and a function

per,0

veLP(QAXY; W;?O(Y’))Nl such that

Te(Vpve) = — DU+ V0 weakly in  LP(Q x V)Nt >N

(5.3) 1 ~ R . N
EE(V,;/ug +v.) = Z4+Vyu+v weakly in LP(Q2 xY)™.

This manuscript is for review purposes only.
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10 R. FALCONI, G. GRISO, J. ORLIK

Proof. We first apply the unfolding operator 7¢ to both sequences {u.} and {v.}.
By Lemma 4.2 and estimates (5.1), there exist a subsequence of {€}, still denoted
{e}, U € LP(AX Y" V), T € LP(QA X Y" Vo)1, 4 € LP(Q x Y, WEE (Y7)),

per,0
veLP(QxY"; W;?O(Y’))Nl such that

Te (ue
Te(Varue
Te(ve
Te(Varve

— 7% weakly in LP(Q x Y";W'P(Y)),

—~ Vi + Vi weakly in LP(Q x V)M,

— 7 weakly in LP(Q x Y, WhP(Y')N,

~ V04V, 0 weakly in LP(Q x Y)N1xN1,

(5.4)

—_ — — ~—

By convergence (5.2), there exist a subsequence of {e}, still denoted {e}, and functions
Z e LP(Q x V)V with My (Z) = Z such that

1 ~
(5.5) ng(Vx/uE +v.) = Z weakly in LP(Q x Y)N,
From convergences (5.4)2 3 and (5.5) we get
Vou+Vyu+0=0 ae in QxY.

Applying My~ to the above equality and since u € LP(Q x Y, W;}élr)7o(yl))7 while

UELP(QAXY" V), v € LP(QxY" V)N we get that V,/i+7 =0 a.e. in Qx Y.
Hence, V,u = 0 and thus @ = 0 because it belongs to LP(Q2 x Y, Wpléf,’,o(Y’)). As a
consequence, one has

ue LP(QxY" D2).

Set U. = T (ue), Vo = T'(ve). Again by convergence (5.2), there exist a subsequence
of {e}, still denoted {¢}, and Z € LP(Q x Y"")N such that

1 ~
“VupU.4+V. = Z weakly in LP(Q x Y")M.,
€

Then, due to convergence (5.5) we have Z = My (Z).
Now, let w’ and w” be two open sets such that

(5.6) W CRM D WCRM and W x W C Q.
First, observe that
U € LP(W" x Y WHP(W'), Ve € LP(w" x Y WP (')
By the above convergence and (5.4)4, one has
éVI/UE +V. = Z weakly in LP(w' x " x YN,
Te(Vove) = T (Ve Vo) = Vet + Vo weakly in - LP(w' x w” x Y/ x Y")N1xN

Lemma 5.2 claims that up to a subsequence, there exists i, x., which belongs to

LP(w x W xY"; Wple’?O(Y’ )), such that the following convergence holds:

1 = ~ .
T/ (VU4 Vo) = Z4 Vy iy xw +0 weakly in - LP(w' x 0" x Y’ x YN,
€
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Taking into account convergence (5.5) we get
Z= Z+Vy/ﬂw/><w// +7 in W xW'xY.

Since one can cover {2 by a countable family of open subsets w’ x w” satisfying (5.6),

there exists u in LP(Q x Y; Wper o(Y")) such that Z-Z-7= V,u. This completes

the proof of (5.3). o
With some more assumptions, we can improve the regularity of the limit functions.

LEMMA 5.4. Let {(u-,v.)}e be a sequence in LP(Q, V) x LP(Q, V)N, with
€ (1,+00), satisfying the assumptions in Lemma 5.3. Moreover, assume that

(5.7) HVI” (Varue +ve) HLP(Q) + EHVI” (Varve) ||LP(Q) <G
where the constant does not depend on €.

Then, there exist a subsequence of {e}, still denoted {¢}, Z € LP(S; Wby "N,

v e LP( WerO( NN e LP(Sy We,,o( )) and w € LP(Q, D2,; WE(Y")) such
that

T-(Vyve) = — D2+ VvV weakly in  LP(§2 x y)Nix N
1 ~ .
gTs(Vm/us +v.) ~Z+ Vy+v  weakly in LP(Q x V)M

Proof. From Lemma 5.3, there eXist a subsequence of {e}, still denoted {e}, and
ZePQxY")N ue LP(QxY"; WP (Y"), T e LP(Q x Y, D?,) and a function

per,0
veLP(QxY"; WZW,O(Y/))N1 such that

To(Veve) = — D2+ Vo weakly in  LP(Q x V)N xN1
1 ~
gTa(Vfc’ue +ve) = Z+Vyu+v weaklyin LP(Q x V)M

By hypothesis (5.7), Lemma 4.1 (swapping Y’ and Y") and the proof of Lemma 4.4
one has

To(Vpv.) = — D3+ Vv weakly in  LP(Q x Y)N*N,

1 1
E’TE(VI/uE +0.) =~ Z+Vyu+velP(QxY' SWok (Y )M

with Z € LP(Q x V"), @ € LP(Q, D2; Wt
fying My (V) =0 a.e. in Q@ x Y.
Since, v satisfies My~ (V) =0 a.e. in @ x Y and My (V,u) =0 ae. in Q x Y" by
periodicity of u, we obtain

Z = My(Z) € LP(; W2 (Y")M

per

WLP(Y")) and v € LP(Q; WLE(Y))N satis-

per

Hence V,u lies in LP (2 x Y'; WLE(Y"))N1. Lemma 7.2 in Appendix gives a function

per

e LP(Q W, ((Y)) such that V8l = V. The proof is complete. u]
6. Application: homogenization of a homogeneous Dirichlet problem.

We want to give a direct application of the periodic unfolding for anisotropically

bounded sequences.

Let O be an open subset of RY and let o, 3 € R with 0 < o < 3. Denote M (o, 3,0)

the set of N x N matrices A = (a;;)1<s <~ With coefficients in L>°(O) such that for

every A € RN and for a.e. z € O, the following inequalities hold:
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(i) (A(z)A\A) > af A%
(i) [A(@)A]? < B(A(@)A,N).
Let A be be in M(«,3,Y) and let {A.}. be the sequence of matrices belonging to

M (e, B, 2) defined by
A, = A({g}y) a.e. r €.

Let f be a function in L?(12).
Consider the homogeneous Dirichlet problem in variational formulation:

Find u. € H} () such that:
/(;AE <‘€vx”u5> ' (EVIH >d$ / fd)dx V¢ S HO( )

By the Poincaré inequality and the fact that u. € Hg(£2), we have that
[uellz2(0) < ClIVaruel L2 (a)-
Thus, problem (6.1) admits a unique solution by the Lax—Milgram theorem and the
following inequality holds:
a(VaruelZzi) + € Varueliag)) < Ifllz2@lluellzz@) < ClfllL2@)IVar el L2

Hence
(6.2) uell2() + [ Varuell 2y + €l Varuel 22 (@) < Cllfll2 )

where the constant does not depend on .
Set

Hj,., QxY") ={pec H(QxY")|¢(z,y") =0 forae. (x,y")€dUxY”
and ¢(z,-) is Y" periodic for a.e. z € Q}.
Denote L§(2, Var) (resp. L§(Q, Ve H).(Y"))) the closure of Hj(Q) (resp. of

H0 per(Q X Y)) in L2(2) (resp. L*(Q x Y")) for the norm of L*(2, V) (resp.
L*(Q,V,; H),,.(Y"))), see (3.1)-(3.2).
Below, we give the periodic homogenization via unfolding.
THEOREM 6.1. Let u. be the solution of problem (6.1).

There exist U € L§(Q, Vo Hy, . (Y")) and G € L*(Q x Y"; H),, o

(Y")) such that
- ./\/ly(~) weakly in  L3(Q, V),

’7}( c) — weakly in L*(Q; HY(Y)),

T(V /ua) — Veu+Vyu strongly in  L*(Q x V)M

eTe(Varus) = Vyntt strongly in  L*(Q x V)N,

(6.3)

A~

The couple (u,u) is the unique solution of problem

vz’a(xa y//) + Vy/ﬁ(x, y)) . vm’g(xa y//l—’_ Vy/qAS(:m y)
oo (TP T (T

= Y| f(@)o(a,y")dzdy",
Qxy’”
Vo € LA(Q, Vo HY, o(Y") and Yo € LAH(Q x Y HL,, o(Y").
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Proof. Step 1. We show (6.4) and the weak convergences (6.3).

The solution u. of (6.1) satisfies (6.2). Hence, up to a subsequence of {¢}, still denoted
{e}, Lemma 4.3 gives & € L§(Q, Vor; H) (Y")) and u € L*(Q x Y"; H), o(Y")) such
that

ue = My (1) weakly in  L2(Q, V),
(6.5) To(ue) = u  weakly in L*(Q; H'(Y)),

Te(Vpus) = Vpu+V,ya  weakly in  L?(Q x V)M
Moreover, from convergence (6.5)2 we also get that

eTe(Varue) = Vyrn Te(ue) =Vt weakly in  L2(Q x Y")N2
Now, we ~choose the test functions
e oin CLOQXY")NLQ, V. HL (Y"),

per
o &inC (@ V"),
i (b in H, per O(Y/)

Set

" " /

7%> +€<I)(SC, %)&5(%—), a.e. x €.

€

b-(a) = 6 (a
Applying the unfolding operator to the sequence {¢.}., we get that

To(¢e) — ¢ strongly in  L2*(Q; HY(Y)),
Te(Vyrdpe) — Vad+ @Vy/gg strongly in  L?(Q x V)M
eTe(Varde) — vy”&? strongly in  L?(Q x Y)™2

Taking ¢, as test function in (6.1), then transforming by unfolding and passing to the
limit give (6.4) with (a, <I>qA5) By density argumentation, we extend such results for
all ¢ € LE(Q, Vur: H},.(Y")) and all b LXQxY"; s Hp..0(Y")). Since the solution
is unique the whole sequences converge to their limit.

Step 2. We prove that convergences (6.3)3 4 are strong.

First, setting ¢ = wu. in (6.1), then transforming by unfolding and using the weak
lower semicontinuity yield

Joet (o) (i) e
< lim inf QXyA (5772;((%22753)) (sTs(( Z//jﬁ;s))) dedy
=gt ([ 4 (i) (e, ) i = [ e (2te) - (e, ) o)
<tmsup ([ 4 (Ji ) (o) s - / e (i) (s, ) aea)

. Vo1 ue V1 ue . /
<l A e . v dxdy =1 dz,
- l?j:)lp/n € (Evz//’ltg> (EVZ//UE) pid l?jgp Q fus v

= lim 7’5(f)7;(u5)dx=/ fudzdy
=0 Jaxy Qxy
v,ﬁ-;-vlﬂ) (V ,E+V/ﬂ)
= Al °® Y . ® Y dzdy,
QXY ( Vy//u vy//u
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from which it follows that

Vz/us leus _
/As Aa <€Vm~u5) . <EV1;NU5) dl‘dy =0

and

. E(vw’ua) ,Te(vas’us)
limy QXyA(w;(vx”uE)) ' <€7}(V$nu8) drdy

. Ve Ve
o gl—r{(l) 0 4 <5Vzuu5) ' <€V$~u5> drdy
Veu+V /ﬁ) <Vz/ﬂ+v /ﬁ)
= A Y . Y dxdy.
/QxY < Vyru Vyru Y

Since the map ¥ € L?(Q x V)V — \/ AW - U dzxdy is a norm equivalent to the

QXY
usual norm of L2(Q x V)V, we get

2
Te(Varue) dxdy :/
eT(Varue) OxY
This, together with the fact that (6.5)2 3 already converge weakly, ensures the strong
convergences (6.3)3.4. The proof is therefore complete. 0

Set 1
_ 1 2
= )
where

e A; is a N7 x N1 matrix with entries in L (Y

e As is a N; x No matrix with entries in L (Y

e A3 is a Ny x N1 matrix with entries in L (Y),

e A, is a Ny x Ny matrix with entries in L (Y).
We define the correctors Xi, k € {1,..., N}, as the unique solutions in the space
L®(Y" H!,. o(Y")) of the cell problems:

lim

2
dxdy.
e=0 Joxy

(meﬂ + Vy/a)

Vi

)

)
),
)
)

per,0
~ R V.. oy
Al(y/7 ~)Vy/Xk(y/, ) . Vy/w(y/>dy/ [ A(y/’ ) e - < Yy 16}(?/ )) dyl,
6.6) 4 Jy y
v € H;enO(Yl)'

By the Lax—Milgram theorem applied in Hilbert space L?(Y", H;er,o(Y/)), we obtain

the existence and uniqueness of the solution of (6.6) for every k € {1,..., N}.
Since A belongs to M(«, 3,Y) we get for every k € {1,...,N}:
o 1" < é f "ey!
IV Xe (o y )y < = forae. " e Y7

As a consequence X, € L>®°(Y" H}

per,O(Y/))l for every k € {1,...,N} and

Xk 2o (v (vryy < C.

1One can prove that X}, also belongs to L™= (Y).
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PROPOSITION 6.2. The function ug is the unique solution of the following homog-
enized problem:

/ Ahom (Vzﬂio> Ve (b d:ndy” _/ fgdxdy”,
(6.7) Qxy” Vi Vy”¢ QXY
Vo € L§(Q, Vo Hp, (Y")).
The homogenizing operator Ah°™ € L>(Y"\N*N s defined by
1 A

) Ahom - A 1 , /. d !
(68) |Y/| Y’< +(A3> va)(y, ) Y,
where X = ()?1 X2 -+ XN; XNi+1 .- )?N) and thus VX is the Ny x N
matrix

Vy/)Q = (Vyo?l vy/SC\Q c.. Vy/SC\Nl Vy/)?NIH . vy/)/(\]\/) .

Proof. Equation (6.4) with é = 0 leads to:

/ A(y/,y”) <Vy/a(x’yl’y/l)> . (Vy/¢(x7ylay”>> d:vdy/dy”
QXY xY" 0 0

(6.9) / Al " (Vz’a(xvyn)) (Vz/&x y' y//)) ! daf!
- _ , ~ . > dxdy' dy”,
QXY’'xY" (y Y ) Vy”u(x7 y//) 0 y
Vgg € LQ(Q x Y H;er O(Y/))a

from which the form of the cell problems (6.6) follows.
By (6.9), we can write U as

Ny N
U,y ") =Y ey o,y )+ > Xk Y0y, y")
k=1 k=N1+1

for a.e. (z,9/,y") e QA xY' xY".

Replacing u by the above equality in (6.4) and gathering all the 3y’ dependent terms,
we get the form (6.8) of the homogenizing operator A™™.

Since A € L=®(Y)N*N and the X3’s are in L=(Y"; H'(Y")), it is clear that Ahom
belongs to L>(Y")NxN,

We prove now that A" is coercive. Let & = (£1,&2) be a vector with fixed entries
in RN =RM x RM2. By construction of the homogenizing operator, we have

hom __ Ahom 61 . 51

e (0) ()

_ 1 Al / 51 51 !

=, (4+ (A ) Vot ")) (f) (&) @
v/

Y’ Sy

1 + v
_ |Yl| A (51 Y X€> y Xﬁ) dy’,
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N
333 where Xe(y',y") = Z)?k(y’,y”)fk. Observe that by the cell problems (6.6), the

k=1
334 second term in the last equality is equal to zero.

335 Now, the coercivity of the matrix A and the fact that xe € L>(Y", H},, ,(Y")), imply
336 that

337 Ahom(y//)€ . 5 _ 1 A (51 + vg/X{) . (51 + Vy/XE) dy/

|Y/| Y 52 52
338 > a(llé + VyXeW" iegrn +16I°)
319 = a(la + & + Ve ReW" N izry) > al€f, forae y €Y”,

341 which proves that A"°™ is coercive.

312 Replacing the form of A"*™ on the original problem (6.4), we get (6.7). By the
343 boundedness and coercivity of A"™ and by the fact that the function @ belongs to
344 LE(Q, Vi HY, (Y")), the above problem admits a unique solution g by the Poincaré

per
345 inequality and the Lax—Milgram theorem. |
346 7. Appendix.

LEMMA 7.1. Let u be in LP(Y ;WYP(Y")) (p € (1,+00)) such that
Vyue LP(Y;Whe(y" )M,

347 Then u = u — My (u) belongs to WHP(Y)?. It satisfies

348 (7.1) Vyu=Vyu a.e. inyY

349 and

350 (7.2) [ullwisry < C(IVyullmorxymy + [ Vyr (V) Loy cym)-
351

352 Proof. Step 1. First, assume u € C2(Y).

53 Set u = u — My (u). It is clear that (7.1) is satisfied. We prove now the estimate
354 (7.2) of u.
55 By definition of u, (7.1) and the Poincaré-Wirtinger Inequality we have

356 (7.3) ull Loy xyry = llu = My (W) Loy sy < ClIVyullLogrxyry,
||vy/u||Lp(Yl><Y/I) = ||vy/’u,HLp(Y/><yu).
357 Observe that My (Vi) = Vyr My (1) = 0.
358 Then, again by equality (7.1) and the Poincaré-Wirtinger Inequality, we get
IVyrulleyixyry = [[Vyr = My (V)| Loy <y
359 (7'4) < CHvy’(vy”u)HLP(Y’XY”) = Hvy” (Vy’u)”LP(Y/xY”)
= [[Vyr (Vy ) oy xyr)-
Hence, by estimates (7.3)-(7.4) we obtain (7.2).
Step 2. Now, suppose u in LP(Y ; WhP(Y”)) and V,u in LP(Y'; WHP(Y )M, Since

2]t also belongs to W1P(Y/; Whe(y")).
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C2(Y) is dense in this subspace of LP(Y " ; W1?(Y”)), there exists a sequence of func-
tions u,, € C2(Y) such that

Up — U strongly in LP(Y ;WP (Y"))),
My (up) = My (u) strongly in LP(Y ),
Vot = Vyu strongly in LP(Y'; WhP(Y )M,

The corresponding sequence {u,,} (given by Step 1) satisfies V,/u,, = V, u,,, moreover
it belongs to C2(Y) and is bounded in W1P(Y) (from (7.2)). Passing to the limit gives
u € WHP(Y) such that

u, —u strongly in W'?(Y),  Vyu=Vyu ae inY.
Finally, observe that u = u — My (u). |

LEMMA 7.2. Let u be in LP(Y"; WEE(Y")) (p € (1,+00)) such that

Vyue LP(Y , WhE(Y" )M
Then, there exists s € W)R(Y) such that
(7.5) Vi =Vyu a.e. inY.

Proof. Since u in LP(Y"; WE(Y')) and Vyu € LP(Y'; W;ég(Y”))Nl, the above
Lemma 7.1 shows that the function u = u — My~ (u) belongs to WLP(Y). Tt is
obvious that u is periodic with respect to the variables y1,...,yn,. One also has
Vyu=VyueLP(Y'; WY )N, Denote

}/z:{ye?|y1:03 yje(oa]-)aje{l?"'aN} ]#Z}v Z‘G{l,"'aN}a
Y/ ={yeY" |yi=0,y;€0,1), j € {N+1,....,N} j#i}, i€ {N;+1,...,N}.

Since Vyu = Vyu and is y; periodic, j € {N1 +1,..., N}, one gets
vyIU|yj+ej — Vy/u|yj = Vy/U|yj+ej — Vy/um =0 a.e. in }/j

Hence
Uy, 4o, — Uy, € WITVPP(Y) je Ny +1,...,N}.
Besides, one has
Uy, +e; — Wy; =0, je{l,...,N1}.
Then, following the same lines of the proofs of [13, Proposition 13.34 and Lemmas
13.35-13.36], there exits {4 € WLE(Y) such that

per
U—uewhry")

and we have

N
14— ullroy) SC D Iy te; — Wy, le—l/p,p(yj”)
j=N1+1
< C(IVyullrery + IVyull Loy iwre )
The function il satisfies (7.5). d
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