# PERIODIC UNFOLDING FOR LATTICE STRUCTURES 

Georges Griso, Riccardo Falconi, Julia Orlik

## To cite this version:

Georges Griso, Riccardo Falconi, Julia Orlik. PERIODIC UNFOLDING FOR LATTICE STRUCTURES. 2020. hal-03532516

HAL Id: hal-03532516

## https://hal.science/hal-03532516

Preprint submitted on 18 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# PERIODIC UNFOLDING FOR LATTICE STRUCTURES 

RICCARDO FALCONI*, GEORGES GRISO ${ }^{\dagger}$, AND JULIA ORLIK ${ }^{\ddagger}$


#### Abstract

This paper deals with the periodic unfolding for sequences defined on one dimensional lattices in $\mathbb{R}^{N}$. In order to port the known results of the periodic unfolding in $\mathbb{R}^{N}$ to lattices, the investigation of functions defined as interpolation on lattice nodes play the main role. The asymptotic behavior for sequences defined on periodic lattices with information until the first and until the second order derivatives are shown. In the end, a direct application of the results is given by homogenizing a 4 th order Dirichlet problem defined on a periodic lattice.


Key words. Periodic Unfolding Method, homogenization, lattice graphs, anisotropic Sobolev spaces, thin structures

AMS subject classifications. 31C25, 35B27, 46E35, 49J45

1. Introduction. In the present, starting from the results obtained in [8, 14] about the periodic unfolding method for sequences defined on bounded domains in $\mathbb{R}^{N}$, we show in detail how to port such results to one-dimensional periodic lattice structures, spotting the obstacles we encountered and the tools we came up with to overcome them.
Given a small parameter $\varepsilon$ and a bounded domain $\Omega \subset \mathbb{R}^{N}$ with Lipschitz boundary, we consider the periodic paving of $\Omega$ made with cells of size $\varepsilon$. In [8, Section 1.4] it is extensively investigated the asymptotic behavior of sequences $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ uniformly bounded in $W^{1, p}(\Omega)$ and in $W^{2, p}(\Omega)$, while the entirety of [14] is devoted to sequences anisotropically bounded on $W^{1, p}(\Omega)$. In this paper, we first introduce the periodic lattice $\mathcal{S}_{\varepsilon} \subset \mathbb{R}^{N}$ as one-dimensional arbitrary grids defined on the $\varepsilon$ cells and periodically repeated for each cell of $\Omega$. The main idea to port the periodic unfolding results from $\Omega \subset \mathbb{R}^{N}$ to $\mathcal{S}_{\varepsilon}$ is based on extending the sequences bounded on $\mathcal{S}_{\varepsilon}$ by different interpolation on the lattice nodes, applying the unfolding results in $\mathbb{R}^{N}$ and then restricting the convergences to the lattice itself. Specifically, the $Q_{1}$ interpolation on lattice nodes (already introduced in $[12,13]$ ) allows to show the asymptotic behavior of sequences uniformly bounded in $W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$ and anisotropically on $W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$, while for sequences bounded in $W^{2, p}\left(\mathcal{S}_{\varepsilon}\right)$ some more work is involved due to the lack of mixed derivatives. Starting from different assumption strengths and leading to different regularity of the unfolded limit fields, two methods are developed (one involving extensions by a special $Q_{3}$ interpolation and another involving the obtained results for sequences bounded in $W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$ ). The sufficient assumptions on the sequences to ensure weak convergence in the space, as well as the rescaling factors for the unfolding operator for lattices according to the space dimension $N$ and the $L^{p}$ norm are proved. In the end, a direct application of such lemmas is done by homogenizing via unfolding the fourth order homogeneous Dirichlet problem defined on a lattice structure

$$
\left\{\begin{array}{l}
\text { Find } u_{\varepsilon} \in H_{0}^{1}\left(\mathcal{S}_{\varepsilon}\right) \cap H^{2}\left(\mathcal{S}_{\varepsilon}\right) \text { such that: } \\
\int_{\mathcal{S}_{\varepsilon}} A_{\varepsilon} \partial_{\mathbf{s}}^{2} u_{\varepsilon} \partial_{\mathbf{s}}^{2} \phi d \mathbf{s}=\int_{\mathcal{S}_{\varepsilon}} g_{\varepsilon} \partial_{\mathbf{s}} \phi d \mathbf{s}+\int_{\mathcal{S}_{\varepsilon}} f_{\varepsilon} \phi d \mathbf{s}, \quad \forall \phi \in H_{0}^{1}\left(\mathcal{S}_{\varepsilon}\right) \cap H^{2}\left(\mathcal{S}_{\varepsilon}\right) .
\end{array}\right.
$$

[^0]The homogenization via unfolding method, an equivalent to the two-scale convergence, has been exhaustively explained in [8] and it is a constant reference throughout this work. The method itself has, among many others, found application in the homogenization for thin periodic structures like periodically perforated shells (see [9]) and textiles made of long curved beams (see [10, 11]). About the homogenization in the frame of lattice structures one can look, for an instance, into [1, 2, 4, 5, 6, 7].
The present provides the main tools concerning the unfolding for lattice structures and gives a rigorous base for up-coming papers dealing with thin structures made from lattices. Among them, we would like to cite the homogenization via unfolding for stable lattice structures made of beams (see [12, 13]) and the upcoming unstable case [15], where it is additionally taken into consideration the problem of an anisotropically bounded sequence. More generally, such tools can be applied to many other problems related to partial differential equations on domains involving periodic grids, lattices, thin frames and glued fiber structures.
The paper is organized as follows. In section 2, the standard notation and tools for the classical homogenization via unfolding method in periodic domains $\Omega \subset \mathbb{R}^{N}$ are listed. In section 3, we recall the main results concerning the periodic unfolding for sequences defined as $Q_{1}$ interpolated on the vertexes of the $\varepsilon$ cells paving $\Omega$ and bounded uniformly and anisotropically on $W^{1, p}(\Omega)$, whose properties will be needed in the next sections. In section 4, we give a rigorous definition of one-dimensional lattice structure $\mathcal{S}_{\varepsilon} \subset \Omega$, build the unfolding operator for lattices and give its main properties. In section 5 , we show the asymptotic behavior of sequences asymptotically and uniformly bounded in $W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$. We first do it for functions defined as $Q_{1}$ interpolated on lattice nodes, showing that for such sequences, the unfolding for lattices is the mere extension of the functions from $\mathcal{S}_{\varepsilon}$ to $\mathbb{R}^{N}$ by $Q_{1}$ interpolation, application of the known results in section 3 and then restriction of the convergences to the lattice itself. Later, we extend the results to Sobolev spaces by first decomposing them into $Q_{1}$ interpolated part and reminder term. In section 6 , we show the asymptotic behavior of sequences asymptotically and uniformly bounded in $W^{2, p}\left(\mathcal{S}_{\varepsilon}\right)$. The nature of a sequence bounded on a lattice leads to the lack of mixed derivatives, since the derivation only makes sense in the lattice directions. To overcome such deficiency, two approach are considered, one by a procedure analogous to section 5 but with a decomposition on $Q_{3}$ interpolation on lattice nodes and reminder term, and one by using twice (on the sequence and on the sequence gradient) the proved for functions bounded in $W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$. At last, in section 7 we consider the fourth order Dirichlet problem shown above. Using the results in the previous sections, existence and uniqueness of the limit problem are shown and through the homogenization via unfolding, the cell problems and the macroscopic limit problem are found.
2. Preliminaries and notation. Let $\mathbb{R}^{N}$ be the euclidean space with usual basis $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}\right)$ and $Y=(0,1)^{N}$ the open unit parallelotope associated with this basis. For a.e. $z \in \mathbb{R}^{N}$, we set the unique decomposition $z=[z]_{Y}+\{z\}_{Y}$ such that

$$
[z]_{Y} \doteq \sum_{i=1}^{N} k_{i} \mathbf{e}_{i}, \quad k=\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{Z}^{N} \quad \text { and } \quad\{z\}_{Y} \doteq z-[z]_{Y} \in Y
$$

Let $\{\varepsilon\}$ be a sequence of strictly positive parameters going to 0 . We scale our paving by $\varepsilon$ writing

$$
\begin{equation*}
x=\varepsilon\left[\frac{x}{\varepsilon}\right]_{Y}+\varepsilon\left\{\frac{x}{\varepsilon}\right\}_{Y} \quad \text { for a.e. } x \in \mathbb{R}^{N} . \tag{2.1}
\end{equation*}
$$

Let now $\Omega$ be a bounded domain in $\mathbb{R}^{N}$ with Lipschitz boundary. We consider

$$
\Xi_{\varepsilon} \doteq\left\{\xi \in \mathbb{Z}^{N} \mid \varepsilon(\xi+Y) \subset \Omega\right\}
$$

and set

$$
\begin{equation*}
\widehat{\Omega}_{\varepsilon} \doteq \operatorname{int}\left\{\bigcup_{\xi \in \Xi_{\varepsilon}} \varepsilon(\xi+\bar{Y})\right\}, \quad \Lambda_{\varepsilon} \doteq \Omega \backslash \widehat{\Omega}_{\varepsilon} \tag{2.2}
\end{equation*}
$$

We recall the definitions of classical unfolding operator and mean value operator.
Definition 2.1. (see [8, Definition 1.2]) For every measurable function $\phi$ on $\Omega$, the unfolding operator $\mathcal{T}_{\varepsilon}$ is defined as follows:

$$
\mathcal{T}_{\varepsilon}(\phi) \doteq \begin{cases}\phi\left(\varepsilon\left[\frac{x}{\varepsilon}\right]_{Y}+\varepsilon y\right) & \text { for a.e. }(x, y) \in \widehat{\Omega}_{\varepsilon} \times Y \\ 0 & \text { for a.e. }(x, y) \in \Lambda_{\varepsilon} \times Y\end{cases}
$$

Note that such an operator acts on functions defined in $\Omega$ by operating on their restriction to $\widehat{\Omega}_{\varepsilon}$.

Definition 2.2. (see [8, Definition 1.10]) For every measurable function $\widehat{\phi}$ on $L^{1}(\Omega \times Y)$, the mean value operator $\mathcal{M}_{Y}$ is defined as follows:

$$
\mathcal{M}_{Y}(\widehat{\phi})(x) \doteq \frac{1}{|Y|} \int_{Y} \widehat{\phi}(x, y) d y, \quad \text { for a.e. } x \in \Omega
$$

Let $p \in[1,+\infty]$. From [8, Propositions 1.8 and 1.11], we recall the properties of these operators:

$$
\begin{aligned}
& \left\|\mathcal{T}_{\varepsilon}(\phi)\right\|_{L^{p}(\Omega \times Y)} \leq|Y|^{\frac{1}{p}}\|\phi\|_{L^{p}(\Omega)} \quad \text { for every } \phi \in L^{p}(\Omega) \\
& \left\|\mathcal{M}_{Y}(\widehat{\phi})\right\|_{L^{p}(\Omega)} \leq|Y|^{-\frac{1}{p}}\|\widehat{\phi}\|_{L^{p}(\Omega \times Y)} \quad \text { for every } \widehat{\phi} \in L^{p}(\Omega \times Y)
\end{aligned}
$$

Since we will deal with Sobolev spaces, we give hereafter some definitions:

$$
\begin{aligned}
W_{p e r}^{1, p}(Y) & \doteq\left\{\phi \in W^{1, p}(Y) \mid \phi \text { is periodic with respect to } y_{i}, i \in\{1, \ldots, N\}\right\} \\
W_{p e r, 0}^{1, p}(Y) & \doteq\left\{\phi \in W_{p e r}^{1, p}(Y) \mid \mathcal{M}_{Y}(\phi)=0\right\} \\
L^{p}\left(\Omega ; W^{1, p}(Y)\right) & \doteq\left\{\phi \in L^{p}(\Omega \times Y) \mid \nabla_{y} \phi \in L^{p}(\Omega \times Y)^{N}\right\}
\end{aligned}
$$

Now, let $\left(N_{1}, N_{2}\right)$ be in $\mathbb{N} \times \mathbb{N}^{*}$ such that $N=N_{1}+N_{2}$. We split the space by setting

$$
\begin{aligned}
& \mathbb{R}^{N_{1}}=\left\{x^{\prime} \in \mathbb{R}^{N} \mid x^{\prime}=\sum_{i=1}^{N_{1}} x_{i} \mathbf{e}_{i}, x_{i} \in \mathbb{R}\right\} \\
& \mathbb{R}^{N_{2}}=\left\{x^{\prime \prime} \in \mathbb{R}^{N} \mid x^{\prime \prime}=\sum_{i=N_{1}+1}^{N} x_{i} \mathbf{e}_{i}, \quad x_{i} \in \mathbb{R}\right\} \\
& Y^{\prime}=\left\{y^{\prime} \in \mathbb{R}^{N} \mid y^{\prime}=\sum_{i=1}^{N_{1}} y_{i} \mathbf{e}_{i}, y_{i} \in(0,1)\right\} \\
& Y^{\prime \prime}=\left\{y^{\prime \prime} \in \mathbb{R}^{N} \mid y^{\prime \prime}=\sum_{i=N_{1}+1}^{N} y_{i} \mathbf{e}_{i}, \quad y_{i} \in(0,1)\right\}
\end{aligned}
$$

and

$$
\mathbb{Z}^{N_{1}}=\mathbb{Z} \mathbf{e}_{1} \oplus \ldots \oplus \mathbb{Z} \mathbf{e}_{N_{1}}, \quad \mathbb{Z}^{N_{2}}=\mathbb{Z} \mathbf{e}_{N_{1}+1} \oplus \ldots \oplus \mathbb{Z} \mathbf{e}_{N}
$$

One has

$$
\mathbb{R}^{N}=\mathbb{R}^{N_{1}} \oplus \mathbb{R}^{N_{2}}, \quad Y=Y^{\prime} \oplus Y^{\prime \prime}, \quad \mathbb{Z}^{N}=\mathbb{Z}^{N_{1}} \oplus \mathbb{Z}^{N_{2}}
$$

For every $x \in \mathbb{R}^{N}$ and $y \in Y$, we write

$$
x=x^{\prime}+x^{\prime \prime} \in \mathbb{R}^{N_{1}} \oplus \mathbb{R}^{N_{2}}, \quad y=y^{\prime}+y^{\prime \prime} \in Y^{\prime} \oplus Y^{\prime \prime}
$$

From now on, however, we find easier to refer to such partition with the vectorial notation

$$
x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}, \quad y=\left(y^{\prime}, y^{\prime \prime}\right) \in Y^{\prime} \times Y^{\prime \prime}
$$

Similarly to (2.1), we apply the paving to a.e. $x^{\prime} \in \mathbb{R}^{N_{1}}$ and $x^{\prime \prime} \in \mathbb{R}^{N_{2}}$ setting

$$
\begin{aligned}
& x^{\prime}=\varepsilon\left[\frac{x^{\prime}}{\varepsilon}\right]_{Y^{\prime}}+\varepsilon\left\{\frac{x^{\prime}}{\varepsilon}\right\}_{Y^{\prime}}, \quad \text { with }\left[\frac{x^{\prime}}{\varepsilon}\right]_{Y^{\prime}} \in \mathbb{Z}^{N_{1}}, \quad\left\{\frac{x^{\prime}}{\varepsilon}\right\}_{Y^{\prime}} \in Y^{\prime}, \\
& x^{\prime \prime}=\varepsilon\left[\frac{x^{\prime \prime}}{\varepsilon}\right]_{Y^{\prime \prime}}+\varepsilon\left\{\frac{x^{\prime \prime}}{\varepsilon}\right\}_{Y^{\prime \prime}}, \quad \text { with }\left[\frac{x^{\prime \prime}}{\varepsilon}\right]_{Y^{\prime \prime}} \in \mathbb{Z}^{N_{2}}, \quad\left\{\frac{x^{\prime \prime}}{\varepsilon}\right\}_{Y^{\prime \prime}} \in Y^{\prime \prime} .
\end{aligned}
$$

Definition 2.3. For every $\widehat{\phi} \in L^{1}(\Omega \times Y)$, the partial mean value operators are defined as follows:

$$
\begin{array}{ll}
\mathcal{M}_{Y^{\prime}}(\widehat{\phi})\left(x, y^{\prime \prime}\right) \doteq \frac{1}{\left|Y^{\prime}\right|} \int_{Y^{\prime}} \widehat{\phi}\left(x, y^{\prime}, y^{\prime \prime}\right) d y^{\prime}, \quad \text { for a.e. }\left(x, y^{\prime \prime}\right) \in \Omega \times Y^{\prime \prime} \\
\mathcal{M}_{Y^{\prime \prime}}(\widehat{\phi})\left(x, y^{\prime}\right) \doteq \frac{1}{\left|Y^{\prime \prime}\right|} \int_{Y^{\prime \prime}} \widehat{\phi}\left(x, y^{\prime}, y^{\prime \prime}\right) d y^{\prime \prime}, \quad \text { for a.e. }\left(x, y^{\prime}\right) \in \Omega \times Y^{\prime}
\end{array}
$$

Denote

$$
\begin{aligned}
& L^{p}\left(\Omega, \nabla_{x^{\prime}}\right) \doteq\left\{\phi \in L^{p}(\Omega) \mid \nabla_{x^{\prime}} \phi \in L^{p}(\Omega)^{N_{1}}\right\} \\
& L^{p}\left(\Omega, \nabla_{x^{\prime \prime}}\right) \doteq\left\{\phi \in L^{p}(\Omega) \mid \nabla_{x^{\prime \prime}} \phi \in L^{p}(\Omega)^{N_{2}}\right\} \\
& L^{p}\left(\Omega, \nabla_{x^{\prime}} ; W^{1, p}\left(Y^{\prime \prime}\right)\right) \doteq\left\{\widetilde{\phi} \in L^{p}\left(\Omega \times Y^{\prime \prime}\right) \mid \nabla_{x^{\prime}} \widetilde{\phi} \in L^{p}\left(\Omega \times Y^{\prime \prime}\right)^{N_{1}}\right. \\
&\left.\nabla_{y^{\prime \prime}} \widetilde{\phi} \in L^{p}\left(\Omega \times Y^{\prime \prime}\right)^{N_{2}}\right\}, \\
& L^{p}\left(\Omega, \nabla_{x^{\prime \prime}} ; W^{1, p}\left(Y^{\prime}\right)\right) \doteq\left\{\widetilde{\phi} \in L^{p}\left(\Omega \times Y^{\prime}\right) \mid \nabla_{x^{\prime \prime}} \widetilde{\phi} \in L^{p}\left(\Omega \times Y^{\prime}\right)^{N_{2}}\right. \\
&\left.\nabla_{y^{\prime}} \widetilde{\phi} \in L^{p}\left(\Omega \times Y^{\prime}\right)^{N_{1}}\right\} \\
& L^{p}\left(\Omega \times Y^{\prime \prime} ; W^{1, p}\left(Y^{\prime}\right)\right) \doteq\left\{\widehat{\phi} \in L^{p}(\Omega \times Y) \mid \nabla_{y^{\prime}} \widehat{\phi} \in L^{p}(\Omega \times Y)^{N_{1}}\right\} \\
& L^{p}\left(\Omega \times Y^{\prime} ; W^{1, p}\left(Y^{\prime \prime}\right)\right) \doteq\left\{\widehat{\phi} \in L^{p}(\Omega \times Y) \mid \nabla_{y^{\prime \prime}} \widehat{\phi} \in L^{p}(\Omega \times Y)^{N_{2}}\right\}
\end{aligned}
$$

We endow these spaces with the respective norms:

$$
\begin{aligned}
& \|\cdot\|_{L^{p}\left(\Omega, \nabla_{x^{\prime}}\right)} \doteq\|\cdot\|_{L^{p}(\Omega)}+\left\|\nabla_{x^{\prime}} \cdot\right\|_{\left.L_{L^{p}(\Omega)}\right)^{N_{1}}}, \\
& \|\cdot\|_{L^{p}\left(\Omega, \nabla_{x^{\prime \prime}}\right)} \doteq\|\cdot\|_{L^{p}(\Omega)}+\left\|\nabla_{x^{\prime \prime}}(\cdot)\right\|_{L^{p}(\Omega)^{N_{2}}}, \\
& \|\cdot\|_{L^{p}\left(\Omega, \nabla_{\alpha^{\prime}} ; W^{W_{1}, p}\left(Y^{\prime \prime}\right)\right)} \doteq\|\cdot\|_{L^{p}\left(\Omega \times Y^{\prime \prime}\right)}+\left\|\nabla_{x^{\prime}} \cdot(\cdot)\right\|_{L^{p}\left(\Omega \times Y^{\prime \prime}\right)^{N_{1}}}+\left\|\nabla_{y^{\prime \prime}}(\cdot)\right\|_{L^{p}\left(\Omega \times Y^{\prime \prime}\right)^{N_{2}}}, \\
& \|\cdot\|_{L^{p}\left(\Omega, \nabla_{x^{\prime \prime}} ; W^{1, p}\left(Y^{\prime}\right)\right)} \doteq\|\cdot\|_{L^{p}\left(\Omega \times Y^{\prime}\right)}+\left\|\nabla_{x^{\prime \prime}}(\cdot)\right\|_{L^{p}\left(\Omega \times Y^{\prime}\right)^{N_{2}}}+\left\|\nabla_{y^{\prime}}(\cdot)\right\|_{L^{p}\left(\Omega \times Y^{\prime}\right)^{N_{1}}}, \\
& \|\cdot\|_{L^{p}\left(\Omega \times Y^{\prime \prime} ; W^{1, p}\left(Y^{\prime}\right)\right)} \doteq\|\cdot\|_{L^{p}(\Omega \times Y)}+\left\|\nabla_{y^{\prime}} \cdot(\cdot)\right\|_{L^{p}(\Omega \times Y)^{N_{1}}}, \\
& \|\cdot\|_{L^{p}\left(\Omega \times Y^{\prime} ; W^{1, p}\left(Y^{\prime \prime}\right)\right)} \doteq\|\cdot\|_{L^{p}(\Omega \times Y)}+\left\|\nabla_{y^{\prime \prime}}(\cdot)\right\|_{L^{p}(\Omega \times Y)^{N_{2}}} .
\end{aligned}
$$

3. Periodic unfolding in $\mathbb{R}^{N}$ for sequences defined as $Q_{1}$ interpolates. The periodic unfolding for this class of functions has two main advantages. The first is that less hypothesis are required for the sequences to ensure weak convergence. The second is that the convergences can be restricted to subspaces with lower dimension and it will be fundamental in the next sections, where lattice structures are taken into account.
Define the spaces
$Q^{1}(Y) \doteq\left\{\phi \in W^{1, \infty}(Y) \mid \phi\right.$ is the $Q_{1}$ interpolation of its values on the vertexes of $\left.\bar{Y}\right\}$, $Q_{p e r}^{1}(Y) \doteq\left\{\phi \in Q^{1}(Y) \mid \phi\right.$ is periodic with respect to $\left.y_{i}, i \in\{1, \ldots, N\}\right\}$, $Q_{p e r, 0}^{1}(Y) \doteq\left\{\phi \in Q_{p e r}^{1}(Y) \mid \mathcal{M}_{Y}(\phi)=0\right\}$.

Denote

$$
\begin{equation*}
\widetilde{\Omega}_{\varepsilon} \doteq \operatorname{int}\left\{\bigcup_{\xi \in \widetilde{\Xi}_{\varepsilon}} \varepsilon(\xi+\bar{Y})\right\}, \quad \widetilde{\Xi}_{\varepsilon} \doteq\left\{\xi \in \mathbb{Z}^{N} \mid \varepsilon(\xi+Y) \cap \Omega \neq \emptyset\right\} \tag{3.1}
\end{equation*}
$$

Note that the covering $\widetilde{\Omega}_{\varepsilon}$ is now a connected open set and from (2.2) we have

$$
\widehat{\Omega}_{\varepsilon} \subset \Omega \subset \widetilde{\Omega}_{\varepsilon}
$$

Hence, we need to extend the definition of the classical unfolding operator (2.1) to functions defined in the following neighborhood of $\Omega$ :

$$
\left\{x \in \mathbb{R}^{N} \mid \operatorname{dist}(x, \Omega)<\varepsilon \operatorname{diam}(Y)\right\} .
$$

Definition 3.1. For every measurable function $\phi$ on $\widetilde{\Omega}_{\varepsilon}$, the unfolding operator $\mathcal{T}_{\varepsilon}^{\text {ext }}$ is defined as follows:

$$
\mathcal{T}_{\varepsilon}^{e x t}(\phi) \doteq \phi\left(\varepsilon\left[\frac{x}{\varepsilon}\right]_{Y}+\varepsilon y\right) \quad \text { for a.e. }(x, y) \in \widetilde{\Omega}_{\varepsilon} \times Y
$$

Every measurable function defined in $\Omega$ can be extend to $\widetilde{\Omega}_{\varepsilon}$ by setting it to 0 in $\widetilde{\Omega}_{\varepsilon} \cap\left(\mathbb{R}^{N} \backslash \bar{\Omega}\right)$. Now, assume $\left\{\Phi_{\varepsilon}\right\}_{\varepsilon}$ to be a sequence uniformly bounded in $L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)$, $p \in(1,+\infty)$. Then, the sequence $\left\{\mathcal{T}_{\varepsilon}^{e x t}\left(\Phi_{\varepsilon}\right)\right\}_{\varepsilon}$ is uniformly bounded in $L^{p}\left(\widetilde{\Omega}_{\varepsilon} \times Y\right)$ and thus in $L^{p}(\Omega \times Y)$. Hence, there exists a subsequence of $\{\varepsilon\}$, still denoted $\{\varepsilon\}$, and $\widehat{\Phi} \in L^{p}(\Omega \times Y)$ such that

$$
\mathcal{T}_{\varepsilon}{ }^{\text {ext }}\left(\Phi_{\varepsilon}\right)_{\mid \Omega \times Y} \rightharpoonup \widehat{\Phi} \quad \text { weakly in } \quad L^{p}(\Omega \times Y)
$$

For simplicity, we will omit the restriction and always write the above convergence as

$$
\mathcal{T}_{\varepsilon}^{\text {ext }}\left(\Phi_{\varepsilon}\right) \rightharpoonup \widehat{\Phi} \quad \text { weakly in } \quad L^{p}(\Omega \times Y)
$$

In this sense, all the results obtained in [8, 14] are easily transposed to this operator. Define the space of $Q_{1}$ interpolated functions on $\widetilde{\Omega}_{\varepsilon}$ by

$$
Q_{\varepsilon}^{1}\left(\widetilde{\Omega}_{\varepsilon}\right) \doteq\left\{\Phi \in W^{1, \infty}\left(\widetilde{\Omega}_{\varepsilon}\right) \mid \Phi_{\mid \varepsilon \xi+\varepsilon Y} \in Q^{1}(\varepsilon \xi+\varepsilon Y) \text { for every } \xi \in \widetilde{\Xi}_{\varepsilon}\right\}
$$

Due to the $Q_{1}$ interpolation character, for every function $\Phi \in Q_{\varepsilon}^{1}\left(\widetilde{\Omega}_{\varepsilon}\right)$ we remind that there exist a constant depending only on $p$ such that

$$
\begin{equation*}
\|\nabla \Phi\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)} \leq \frac{C}{\varepsilon}\|\Phi\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)} \tag{3.2}
\end{equation*}
$$

We have the following.
Lemma 3.2. Let $\left\{\Phi_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $Q_{\varepsilon}^{1}\left(\widetilde{\Omega}_{\varepsilon}\right)$ that satisfies

$$
\left\|\Phi_{\varepsilon}\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)}+\left\|\nabla_{x^{\prime}} \Phi_{\varepsilon}\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)} \leq C
$$

where the constant does not depend on $\varepsilon$.
Then, there exist a subsequence of $\{\varepsilon\}$, denoted $\{\varepsilon\}$, and $\widetilde{\Phi} \in L^{p}\left(\Omega, \nabla_{x^{\prime}} ; Q_{p e r}^{1}\left(Y^{\prime \prime}\right)\right)$, $\widehat{\Phi} \in L^{p}\left(\Omega \times Y^{\prime \prime} ; Q_{p e r}^{1}\left(Y^{\prime}\right)\right) \cap L^{p}\left(\Omega ; Q^{1}(Y)\right)$, satisfying $\mathcal{M}_{Y^{\prime}}(\widehat{\Phi})=0$ a.e. in $\Omega \times Y^{\prime \prime}$, such that

$$
\begin{aligned}
& \Phi_{\left.\varepsilon\right|_{\Omega}} \rightharpoonup \Phi \quad \text { weakly in } \quad L^{p}\left(\Omega, \nabla_{x^{\prime}}\right) \\
& \mathcal{T}_{\varepsilon}^{\text {ext }}\left(\Phi_{\varepsilon}\right) \rightharpoonup \widetilde{\Phi} \quad \text { weakly in } \quad L^{p}\left(\Omega ; Q^{1}(Y)\right), \\
& \mathcal{T}_{\varepsilon}^{\text {ext }}\left(\nabla_{x^{\prime}} \Phi_{\varepsilon}\right) \rightharpoonup \nabla_{x^{\prime}} \widetilde{\Phi}+\nabla_{y^{\prime}} \widehat{\Phi} \quad \text { weakly in } \quad L^{p}(\Omega \times Y)^{N_{1}} \\
& \frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}^{\text {ext }}\left(\Phi_{\varepsilon}\right)-\mathcal{M}_{Y^{\prime}} \circ \mathcal{T}_{\varepsilon}^{\text {ext }}\left(\Phi_{\varepsilon}\right)\right) \rightharpoonup \nabla_{x^{\prime}} \widetilde{\Phi} \cdot y^{\prime c}+\widehat{\Phi} \quad \text { weakly in } \quad L^{p}(\Omega \times Y),
\end{aligned}
$$

where $\Phi=\mathcal{M}_{Y^{\prime \prime}}(\widetilde{\Phi})$ and $y^{\prime c} \doteq y^{\prime}-\mathcal{M}_{Y^{\prime}}\left(y^{\prime}\right)$.
The same results hold for $p=+\infty$ with weak topology replaced by weak-* topology in the corresponding spaces.

Proof. First, since the sequence $\left\{\Phi_{\varepsilon}\right\}_{\varepsilon}$ belongs to $Q_{\varepsilon}^{1}\left(\widetilde{\Omega}_{\varepsilon}\right)$ we get (see (3.2))

$$
\left\|\Phi_{\varepsilon}\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)}+\left\|\nabla_{x^{\prime}} \Phi_{\varepsilon}\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)}+\varepsilon\left\|\nabla_{x^{\prime \prime}} \Phi_{\varepsilon}\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)} \leq C
$$

The constant does not depend on $\varepsilon$. The statement follows by [14, Lemma 4.3] and the fact that $\left\{\mathcal{T}_{\varepsilon}^{e x t}\left(\Phi_{\varepsilon}\right)\right\}_{\varepsilon} \subset L^{p}\left(\widetilde{\Omega}_{\varepsilon} ; Q^{1}(Y)\right)$.
As a direct consequence, we have the following corollary.
Corollary 3.3. Let $\left\{\Phi_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $Q_{\varepsilon}^{1}\left(\widetilde{\Omega}_{\varepsilon}\right)$ satisfying

$$
\left\|\Phi_{\varepsilon}\right\|_{W^{1, p}\left(\widetilde{\Omega}_{\varepsilon}\right)} \leq C
$$

where the constant does not depend on $\varepsilon$.
Then, there exist a subsequence of $\{\varepsilon\}$, denoted $\{\varepsilon\}$, and functions $\Phi \in W^{1, p}(\Omega)$, $\widehat{\Phi} \in L^{p}\left(\Omega ; Q_{p e r, 0}^{1}(Y)\right)$ such that

$$
\begin{aligned}
& \Phi_{\varepsilon \mid \Omega} \rightharpoonup \Phi \quad \text { weakly in } \quad W^{1, p}(\Omega), \\
& \mathcal{T}_{\varepsilon}^{\text {ext }}\left(\Phi_{\varepsilon}\right) \rightharpoonup \Phi \quad \text { weakly in } \quad L^{p}\left(\Omega ; Q^{1}(Y)\right), \\
& \mathcal{T}_{\varepsilon}^{e x t}\left(\nabla \Phi_{\varepsilon}\right) \rightharpoonup \nabla \Phi+\nabla_{y} \widehat{\Phi} \quad \text { weakly in } \quad L^{p}(\Omega \times Y)^{N}, \\
& \frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}^{\text {ext }}\left(\Phi_{\varepsilon}\right)-\mathcal{M}_{Y} \circ \mathcal{T}_{\varepsilon}^{e x t}\left(\Phi_{\varepsilon}\right)\right) \rightharpoonup \nabla \Phi \cdot y^{\prime c}+\widehat{\Phi} \quad \text { weakly in } \quad L^{p}(\Omega \times Y),
\end{aligned}
$$

where $y^{\prime c} \doteq y^{\prime}-\mathcal{M}_{Y^{\prime}}\left(y^{\prime}\right)$.
The same results hold for $p=+\infty$ with weak topology replaced by weak-* topology in the corresponding spaces.

Proof. The proof directly follow from Lemma 3.2 in the particular case $N_{1}=N$ and $N_{2}=0$. As an equivalent proof, the statement follows by [8, Corollary 1.37 and Theorem 1.41] and the fact that $\left\{\mathcal{T}_{\varepsilon}^{e x t}\left(\Phi_{\varepsilon}\right)\right\}_{\varepsilon} \in L^{p}\left(\widetilde{\Omega}_{\varepsilon} ; Q^{1}(Y)\right)$.
4. The periodic lattice structure. We start by giving a rigorous definition of 1-dimensional periodic lattice structure in $\mathbb{R}^{N}$.
Let $i \in\{1, \ldots, N\}$ and let $K_{1}, \ldots, K_{N} \in \mathbb{N}^{*}$. Set

$$
\begin{aligned}
& \mathbf{K} \doteq \prod_{i=1}^{N}\left\{0, \ldots, K_{i}\right\} \subset \mathbb{N}^{N}, \quad \mathbf{K}_{i} \doteq\left\{k \in \mathbf{K} \mid k_{i}=0\right\} \\
& \widehat{\mathbf{K}} \doteq \prod_{i=1}^{N}\left\{0, \ldots, K_{i}-1\right\}, \quad \widehat{\mathbf{K}}_{i} \doteq\left\{k \in \widehat{\mathbf{K}} \mid k_{i}=0\right\}
\end{aligned}
$$

We denote $\mathcal{K}$ the set of points in the closure of the unit cell $\bar{Y}$ by

$$
\mathcal{K} \doteq\left\{A(k) \in \mathbb{R}^{N} \left\lvert\, A(k)=\sum_{i=1}^{N} \frac{k_{i}}{K_{i}} \mathbf{e}_{i}\right., \quad k \in \mathbf{K}\right\} \subset \bar{Y}
$$

In this sense, the whole unit cell $\bar{Y}$ has the following split

$$
\bar{Y}=\sum_{k \in \widehat{\mathbf{K}}} A(k)+\bar{Y}_{K}
$$

where $Y_{K}$ is the cell defined by

$$
Y_{K} \doteq \prod_{i=1}^{N}\left(0, l_{i}\right), \quad l_{i}=\frac{1}{K_{i}}
$$

We denote $\mathcal{S}^{(i)}$ the set of all segments whose direction is $\mathbf{e}_{i}$ by

$$
\mathcal{S}_{c}^{(i)} \doteq \bigcup_{k \in \mathbf{K}_{i}}\left[A(k), A(k)+\mathbf{e}_{i}\right], \quad \mathcal{S}^{(i)} \doteq \bigcup_{k \in \widehat{\mathbf{K}}_{i}}\left[A(k), A(k)+\mathbf{e}_{i}\right]
$$

Hence, the lattice structure in the unit cell $\bar{Y}$ is defined by

$$
\mathcal{S}_{c} \doteq \bigcup_{i=1}^{N} \mathcal{S}_{c}^{(i)} \subset \bar{Y}, \quad \mathcal{S} \doteq \bigcup_{i=1}^{N} \mathcal{S}^{(i)} \subset \bar{Y}
$$

Given $\Omega \subset \mathbb{R}^{N}$, we cover it as in (3.1) by a union of $\varepsilon$ cells. The periodic lattice structure is therefore defined by

$$
\begin{aligned}
& \mathcal{S}_{\varepsilon} \doteq \bigcup_{\xi \in \widetilde{\Xi}_{\varepsilon}}\left(\varepsilon \xi+\varepsilon \mathcal{S}_{c}\right) \subset \widetilde{\Omega}_{\varepsilon}, \quad \mathcal{K}_{\varepsilon} \doteq \bigcup_{\xi \in \widetilde{\Xi}_{\varepsilon}}(\varepsilon \xi+\varepsilon \mathcal{K}) \\
& \mathcal{S}_{\varepsilon}^{(i)} \doteq \bigcup_{\xi \in \widetilde{\Xi}_{\varepsilon}}\left(\varepsilon \xi+\varepsilon \mathcal{S}_{c}^{(i)}\right)
\end{aligned}
$$

Denote $\mathbf{S}$ the running point of $\mathcal{S}$ and $\mathbf{s}$ that of $\mathcal{S}_{\varepsilon}$. That gives $(i \in\{1, \ldots, N\})$

$$
\begin{aligned}
& \mathbf{S}=A(k)+t \mathbf{e}_{i} \quad \text { in } \mathcal{S}^{(i)}, t \in[0,1], k \in \widehat{\mathbf{K}}_{i} \\
& \mathbf{s}=\varepsilon \xi+\varepsilon A(k)+\varepsilon t \mathbf{e}_{i} \quad \text { in } \mathcal{S}_{\varepsilon}^{(i)}, t \in[0,1], k \in \widehat{\mathbf{K}}_{i}, \xi \in \widetilde{\Xi}_{\varepsilon}
\end{aligned}
$$

Let $\mathcal{C}(\mathcal{S})$ and $\mathcal{C}\left(\mathcal{S}_{\varepsilon}\right)$ be the spaces of continuous functions defined on $\mathcal{S}$ and $\mathcal{S}_{\varepsilon}$ respectively. For $p \in[1,+\infty]$, we denote the spaces of functions defined on the lattice by $(i \in\{1, \ldots, N\})$

$$
\begin{aligned}
W^{1, p}\left(\mathcal{S}^{(i)}\right) & \doteq\left\{\phi \in L^{p}\left(\mathcal{S}^{(i)}\right) \mid \partial_{\mathbf{S}} \phi \in L^{p}\left(\mathcal{S}^{(i)}\right)\right\} \\
W^{1, p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right) & \doteq\left\{\phi \in L^{p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right) \mid \partial_{\mathbf{s}} \phi \in L^{p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)\right\} \\
W^{1, p}(\mathcal{S}) & \doteq\left\{\phi \in \mathcal{C}(\mathcal{S}) \mid \partial_{\mathbf{s}} \phi \in L^{p}(\mathcal{S})\right\} \\
W^{1, p}\left(\mathcal{S}_{\varepsilon}\right) & \doteq\left\{\phi \in \mathcal{C}\left(\mathcal{S}_{\varepsilon}\right) \mid \partial_{\mathbf{s}} \phi \in L^{p}\left(\mathcal{S}_{\varepsilon}\right)\right\}
\end{aligned}
$$

and for $k \in \mathbb{N} \backslash\{0,1\}$

$$
\begin{aligned}
W^{k, p}\left(\mathcal{S}^{(i)}\right) & \doteq\left\{\phi \in W^{k-1, p}\left(\mathcal{S}^{(i)}\right) \mid \partial_{\mathbf{S}} \phi \in W^{k-1, p}\left(\mathcal{S}^{(i)}\right)\right\} \\
W^{k, p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right) & \doteq\left\{\phi \in W^{k-1, p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right) \mid \partial_{\mathbf{s}} \phi \in W^{k-1, p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)\right\} \\
W^{k, p}(\mathcal{S}) & \doteq\left\{\phi \in \mathcal{C}(\mathcal{S}) \mid \partial_{\mathbf{S}} \phi_{\mid \mathcal{S}^{(j)}} \in W^{k-1, p}\left(\mathcal{S}^{(j)}\right), j \in\{1, \ldots, N\}\right\} \\
W^{k, p}\left(\mathcal{S}_{\varepsilon}\right) & \doteq\left\{\phi \in \mathcal{C}\left(\mathcal{S}_{\varepsilon}\right) \mid \partial_{\mathbf{s}} \phi_{\mid \mathcal{S}_{\varepsilon}^{(j)}} \in W^{k-1, p}\left(\mathcal{S}_{\varepsilon}^{(j)}\right), j \in\{1, \ldots, N\}\right\} .
\end{aligned}
$$

4.1. The unfolding operator for periodic lattices. We are now in the position to define an equivalent formulation of the unfolding operator and mean value operator (see Definition 2.1 and 2.2) for lattice structures.

Definition 4.1. For every measurable function $\phi$ on $\mathcal{S}_{\varepsilon}$, the unfolding operator $\mathcal{T}_{\varepsilon}^{\mathcal{S}}$ is defined as follows:

$$
\mathcal{T}_{\varepsilon}^{\mathcal{S}}(\phi)(x, \mathbf{S})=\phi\left(\varepsilon\left[\frac{x}{\varepsilon}\right]+\varepsilon \mathbf{S}\right) \quad \text { for a.e. }(x, \mathbf{S}) \in \widetilde{\Omega}_{\varepsilon} \times \mathcal{S}
$$

For every function $\widehat{\phi}$ on $L^{1}\left(\mathcal{S}^{(i)}\right), i \in\{1, \ldots, N\}$, the mean value operator $\mathcal{M}_{\mathcal{S}^{(i)}}$ on direction $\mathbf{e}_{i}$ is defined as follows:

$$
\mathcal{M}_{\mathcal{S}^{(i)}}(\widehat{\phi})(\mathbf{S}) \doteq \int_{A(k)}^{A(k)+\mathbf{e}_{i}} \widehat{\phi}\left(x, \mathbf{S}^{\prime}\right) d \mathbf{S}^{\prime}, \quad \forall \mathbf{S} \in\left[A(k), A(k)+\mathbf{e}_{i}\right], \quad \forall k \in \widehat{\mathbf{K}}_{i}
$$

Observe that in the above definition of $\mathcal{T}_{\varepsilon}^{\mathcal{S}}$, the map $(x, \mathbf{S}) \longmapsto \varepsilon\left[\frac{x}{\varepsilon}\right]+\varepsilon \mathbf{S}$ from $\widetilde{\Omega}_{\varepsilon} \times \mathcal{S}$ into $\mathcal{S}_{\varepsilon}$ is almost everywhere one to one. This is not the case if we replace $\mathcal{S}$ by $\mathcal{S}_{c}$. Below, we give the main property of $\mathcal{T}_{\varepsilon}^{\mathcal{S}}$.

Proposition 4.2. For every $\phi \in L^{p}\left(\mathcal{S}_{\varepsilon}\right), p \in[1,+\infty]$, one has

$$
\left\|\mathcal{T}_{\varepsilon}^{\mathcal{S}}(\phi)\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon} \times \mathcal{S}\right)} \leq \varepsilon^{\frac{N-1}{p}}|Y|^{\frac{1}{p}}\|\phi\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}
$$

Proof. We start with $p=1$. Let $\phi$ be in $L^{1}\left(\mathcal{S}_{\varepsilon}\right)$. We have

$$
\begin{aligned}
\int_{\tilde{\Omega}_{\varepsilon} \times \mathcal{S}}\left|\mathcal{T}_{\varepsilon}^{\mathcal{S}}(\phi)(x, \mathbf{S})\right| d x d \mathbf{S} & =\int_{\tilde{\Omega}_{\varepsilon}} \sum_{i=1}^{N} \int_{\mathcal{S}^{(i)}}\left|\mathcal{T}_{\varepsilon}^{\mathcal{S}}(\phi)(x, \mathbf{S})\right| d x d \mathbf{S} \\
& =\sum_{\xi=\widetilde{\Xi}_{\varepsilon}}|\varepsilon \xi+\varepsilon Y| \sum_{i=1}^{N} \sum_{k \in \widehat{\mathbf{K}}_{i}} \int_{0}^{1}|\phi(\varepsilon \xi+\varepsilon A(k)+\varepsilon t)| d t \\
& =\varepsilon^{N}|Y| \sum_{i=1}^{N} \sum_{k \in \widehat{\mathbf{K}}_{i}} \int_{0}^{1}|\phi(\varepsilon \xi+\varepsilon A(k)+\varepsilon t)| d t \\
& \leq \varepsilon^{N-1}|Y| \int_{\mathcal{S}_{\varepsilon}}|\phi(\mathbf{s})| d \mathbf{s}
\end{aligned}
$$

The case $p \in(1,+\infty)$ follows by definition of $L^{p}$ norm. The case $p=+\infty$ is trivial.
5. Periodic unfolding for sequences defined on lattices with information on the first order derivatives.
5.1. Asymptotic behavior of bounded sequences defined as $Q_{1}$ interpolated on lattice nodes. On $\mathcal{S}_{\varepsilon}($ resp. $\mathcal{S})$ we define the space $Q^{1}\left(\mathcal{S}_{\varepsilon}\right)\left(\right.$ resp. $\left.Q^{1}(\mathcal{S})\right)$ by

$$
Q^{1}\left(\mathcal{S}_{\varepsilon}\right) \doteq\left\{\phi \in \mathcal{C}\left(\mathcal{S}_{\varepsilon}\right) \mid \phi \text { is affine between two contiguous points of } \mathcal{K}_{\varepsilon}\right\}
$$

(resp. $Q^{1}(\mathcal{S}) \doteq\{\phi \in \mathcal{C}(\mathcal{S}) \mid \phi$ is affine between two contiguous points of $\mathcal{K}\}$ ).
Similarly we define the spaces $Q^{1}\left(\mathcal{S}_{\varepsilon}^{\prime}\right), Q^{1}\left(\mathcal{S}_{\varepsilon}^{\prime \prime}\right)$ and $Q^{1}\left(\mathcal{S}^{\prime}\right), Q^{1}\left(\mathcal{S}^{\prime \prime}\right), Q_{p e r}^{1}(\mathcal{S}), Q_{p e r}^{1}\left(\mathcal{S}^{\prime}\right)$, $Q_{p e r}^{1}\left(\mathcal{S}^{\prime \prime}\right)($ see (5.5)).

A function belonging to $Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$ is determined only by its values on the set of nodes $\mathcal{K}_{\varepsilon}$ and thus can be naturally extended to a function defined in $\widetilde{\Omega}_{\varepsilon}$.

Definition 5.1. For every function $\psi \in Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$, its extension $\mathfrak{Q}_{\varepsilon}(\psi)$ belonging to $W^{1, \infty}\left(\widetilde{\Omega}_{\varepsilon}\right)$ is defined by $Q_{1}$ interpolation on each parallelotope $\varepsilon \xi+\varepsilon A(k)+\varepsilon \overline{Y_{K}}$ belonging to $\varepsilon \xi+\varepsilon \bar{Y}$ for every $\xi \in \widetilde{\Xi}_{\varepsilon}$ and $k \in \widehat{\mathbf{K}}$.
Define the spaces
$Q_{\mathcal{K}_{\varepsilon}}^{1}\left(\widetilde{\Omega}_{\varepsilon}\right) \doteq\left\{\Psi \in W^{1, \infty}\left(\widetilde{\Omega}_{\varepsilon}\right) \mid \Psi_{\mid \varepsilon \xi+\varepsilon A(k)+\varepsilon \overline{Y_{K}}}\right.$ is the $Q_{1}$ interpolate of its values on the vertexes of $\left.\varepsilon \xi+\varepsilon A(k)+\varepsilon \overline{Y_{K}}, \forall k \in \widehat{\mathbf{K}}, \forall \xi \in \widetilde{\Xi}_{\varepsilon}\right\}$, $Q_{\mathcal{K}}^{1}(Y) \doteq\left\{\Psi \in W^{1, \infty}(Y) \mid \Psi_{\mid A(k)+\overline{Y_{K}}}\right.$ is the $Q_{1}$ interpolate of its values on the vertexes of $\left.A(k)+\overline{Y_{K}}, \forall k \in \widehat{\mathbf{K}}\right\}$.

Similarly we define the spaces $Q_{\mathcal{K}}^{1}\left(Y^{\prime}\right), Q_{\mathcal{K}}^{1}\left(Y^{\prime \prime}\right), Q_{\mathcal{K}, p e r}^{1}(Y), Q_{\mathcal{K}, p e r}^{1}\left(Y^{\prime}\right), Q_{\mathcal{K}, p e r}^{1}\left(Y^{\prime \prime}\right)$. By definition, the extension operator $\mathfrak{Q}_{\varepsilon}$ is both one to one and onto from $Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$ to $Q_{\mathcal{K}_{\varepsilon}}^{1}\left(\widetilde{\Omega}_{\varepsilon}\right)$. Its inverse is given by the restriction $\mid \mathcal{S}_{\varepsilon}$ from $Q_{\mathcal{K}_{\varepsilon}}^{1}\left(\widetilde{\Omega}_{\varepsilon}\right)$ to $Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$. Below, we show the main properties of this operator.

Lemma 5.2. For every $\psi \in Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$, one has $(p \in[1,+\infty], i \in\{1, \ldots, N\})$

$$
\begin{equation*}
\left\|\mathfrak{Q}_{\varepsilon}(\psi)\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{N-1}{p}}\|\psi\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}, \quad\left\|\partial_{i} \mathfrak{Q}_{\varepsilon}(\psi)\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{N-1}{p}}\left\|\partial_{\mathbf{s}} \psi\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)} \tag{5.1}
\end{equation*}
$$

where the constants do not depend on $\varepsilon$.
Proof. We will only consider the case $p \in[1,+\infty)$, since the case $p=+\infty$ is trivial. First, remind that for every function $\phi$ defined as $Q_{1}$ interpolate of its values on the vertexes of the nodes in $\mathcal{K}$, we have $(i \in\{1, \ldots, N\})$

$$
\begin{align*}
& c\|\phi\|_{L^{p}(Y)} \leq\left(\sum_{k \in \mathbf{K}}|\phi(A(k))|^{p}\right)^{1 / p} \leq C\|\phi\|_{L^{p}(\mathcal{S})},  \tag{5.2}\\
& c\left\|\partial_{y_{i}} \phi\right\|_{L^{p}(Y)} \leq\left\|\partial_{\mathbf{S}} \phi\right\|_{L^{p}\left(\mathcal{S}^{(i)}\right)}
\end{align*}
$$

where the constants do not depend on $p$.

We now prove $(5.1)_{1}$. For every $\psi \in Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$, set $\Psi=\mathfrak{Q}_{\varepsilon}(\psi)$. From (5.2) $1_{1}$ and an affine change of variables, we easily get

$$
\begin{aligned}
& \int_{\tilde{\Omega}_{\varepsilon}}|\Psi(x)|^{p} d x=\sum_{\xi \in \widetilde{\Xi}_{\varepsilon}} \int_{\varepsilon \xi+\varepsilon Y}|\Psi(x)|^{p} d x=\varepsilon^{N} \sum_{\xi \in \tilde{\Xi}_{\varepsilon}} \int_{Y}|\Psi(\varepsilon \xi+\varepsilon y)|^{p} d y \\
& \leq \varepsilon^{N} \sum_{\xi \in \tilde{\Xi}_{\varepsilon}} \int_{\mathcal{S}}|\Psi(\varepsilon \xi+\varepsilon \mathbf{S})|^{p} d \mathbf{S} \leq \varepsilon^{N-1} \int_{\mathcal{S}_{\varepsilon}}|\Psi(\mathbf{s})|^{p} d \mathbf{s}
\end{aligned}
$$

and thus $(5.1)_{1}$ holds since $\Psi_{\mid \mathcal{S}_{\varepsilon}}=\psi$.
We prove now $(5.1)_{2}$. Let $i$ be in $\{1, \ldots, N\}$. From (5.2) $)_{2}$ and an affine change of variables, we have

$$
\begin{aligned}
\int_{\widetilde{\Omega}_{\varepsilon}}\left|\partial_{i} \Psi(x)\right|^{p} d x & =\sum_{\xi \in \widetilde{\Xi}_{\varepsilon}} \int_{\varepsilon \xi+\varepsilon Y}\left|\frac{\partial}{\partial x_{i}} \Psi(x)\right|^{p} d x=\varepsilon^{N-p} \sum_{\xi \in \tilde{\Xi}_{\varepsilon}} \int_{Y}\left|\frac{\partial}{\partial y_{i}} \Psi(\varepsilon \xi+\varepsilon y)\right|^{p} d y \\
& \leq \varepsilon^{N-p} \sum_{\xi \in \tilde{\Xi}_{\varepsilon}} \int_{\mathcal{S}^{(i)}}\left|\partial_{\mathbf{S}} \Psi(\varepsilon \xi+\varepsilon \mathbf{S})\right|^{p} d \mathbf{S} \leq \varepsilon^{N-1} \int_{\mathcal{S}_{\varepsilon}^{(i)}}\left|\partial_{\mathbf{s}} \Psi(\mathbf{s})\right|^{p} d \mathbf{s}
\end{aligned}
$$

And thus $(5.1)_{2}$ holds since $\Psi_{\mid \mathcal{S}_{\varepsilon}^{(i)}}=\psi_{\mid \mathcal{S}_{\varepsilon}^{(i)}}$.
Note now that for every $\psi \in Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$, the unfolding on the lattice is equivalent to first extending $\psi$ to $\Psi=\mathfrak{Q}_{\varepsilon}(\psi)$ (see Definition 5.1 ), then applying the unfolding results in $\mathbb{R}^{N}$ and lastly restricting the convergences to the lattice again, as the following commutative diagrams show $(i \in\{1, \ldots, N\})$ :

$$
\left\{\begin{align*}
\mathcal{T}_{\varepsilon}^{\mathcal{S}}(\psi) & =\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\Psi_{\mid \mathcal{S}_{\varepsilon}}\right)=\mathcal{T}_{\varepsilon}^{e x t}(\Psi)_{\mid \tilde{\Omega}_{\varepsilon} \times \mathcal{S}}  \tag{5.3}\\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \psi\right) & =\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \Psi_{\mid \mathcal{S}_{\varepsilon}^{(i)}}\right)=\mathcal{T}_{\varepsilon}^{e x t}\left(\partial_{i} \Psi\right)_{\mid \tilde{\Omega}_{\varepsilon} \times \mathcal{S}^{(i)}}
\end{align*}\right.
$$

We can finally show the asymptotic behavior of sequences which belong to $Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$ and we start with the following.

Lemma 5.3. Let $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$ satisfying $(p \in(1,+\infty))$

$$
\left\|\phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\varepsilon\left\|\partial_{\mathbf{s}} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{1-N}{p}}
$$

where the constant does not depend on $\varepsilon$.
Then, there exist a subsequence of $\{\varepsilon\}$, denoted $\{\varepsilon\}$, and $\widehat{\phi} \in L^{p}\left(\Omega ; W_{p e r}^{1, p}(\mathcal{S})\right)$ such that

$$
\begin{equation*}
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightharpoonup \widehat{\phi} \quad \text { weakly in } \quad L^{p}\left(\Omega ; W^{1, p}(\mathcal{S})\right) . .^{1} \tag{5.4}
\end{equation*}
$$

The same results hold for $p=+\infty$ with weak topology replaced by weak-* topology in the corresponding spaces.

Proof. The sequence $\left\{\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\right\}_{\varepsilon}$ satisfies

$$
\left\|\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon} ; W^{1, p}(\mathcal{S})\right)} \leq C \quad \Longrightarrow \quad\left\|\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\right\|_{L^{p}\left(\Omega ; W^{1, p}(\mathcal{S})\right)} \leq C
$$

$$
\begin{aligned}
& { }^{1} \text { As for } \mathcal{T}_{\varepsilon}{ }^{e x t} \text {, this convergence must be understood } \\
& \qquad \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)_{\mid \Omega \times \mathcal{S}} \rightharpoonup \widehat{\phi} \quad \text { weakly in } \quad L^{p}\left(\Omega ; W^{1, p}(\mathcal{S})\right) .
\end{aligned}
$$

It will be the same for all convergences involving the unfolding operator $\mathcal{T}_{\varepsilon}^{\mathcal{S}}$.

The constant does not depend on $\varepsilon$.
Hence, there exist a subsequence of $\{\varepsilon\}$, denoted $\{\varepsilon\}$, and $\widehat{\phi} \in L^{p}\left(\Omega ; W_{p e r}^{1, p}(\mathcal{S})\right)$ such that convergence (5.4) holds. The periodicity of $\widehat{\phi}$ is proved as in [8, Theorem 1.36].ם We consider now sequences whose gradient is anisotropically bounded on the lattice. Accordingly to Section 2, we apply the decomposition of the space $\mathbb{R}^{N}=\mathbb{R}^{N_{1}} \oplus \mathbb{R}^{N_{2}}$ and define

$$
\begin{array}{lll}
\mathcal{S}^{\prime} \doteq \bigcup_{i=1}^{N_{1}} \mathcal{S}^{(i)}, & \mathcal{S}_{c}^{\prime} \doteq \bigcup_{i=1}^{N_{1}} \mathcal{S}_{c}^{(i)}, & \mathcal{S}_{\varepsilon}^{\prime} \doteq \bigcup_{\xi \in \widetilde{\Xi}_{\varepsilon}}\left(\varepsilon \xi+\varepsilon \mathcal{S}_{c}^{\prime}\right), \\
\mathcal{S}^{\prime \prime} \doteq \bigcup_{i=N_{1}+1}^{N} \mathcal{S}^{(i)}, & \mathcal{S}_{c}^{\prime \prime} \doteq \bigcup_{i=N_{1}+1}^{N} \mathcal{S}_{c}^{(i)}, & \mathcal{S}_{\varepsilon}^{\prime \prime} \doteq \bigcup_{\xi \in \widetilde{\Xi}_{\varepsilon}}\left(\varepsilon \xi+\varepsilon \mathcal{S}_{c}^{\prime \prime}\right) \tag{5.5}
\end{array}
$$

We have the following.
Lemma 5.4. Let $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$ satisfying $(p \in(1,+\infty))$

$$
\left\|\phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime}\right)} \leq C \varepsilon^{\frac{1-N}{p}}
$$

where the constant does not depend on $\varepsilon$.
Then, there exist a subsequence of $\{\varepsilon\}$, denoted $\{\varepsilon\}$, and $\tilde{\phi} \in L^{p}\left(\Omega, \nabla_{x^{\prime}} ; Q_{p e r}^{1}\left(\mathcal{S}^{\prime \prime}\right)\right)$, $\widehat{\phi} \in L^{p}\left(\Omega ; Q_{p e r}^{1}(\mathcal{S})\right)$, such that $\left(i \in\left\{1, \ldots, N_{1}\right\}\right)$

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightharpoonup \widetilde{\phi} \quad \text { weakly in } \quad L^{p}\left(\Omega ; Q^{1}(\mathcal{S})\right) \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i} \widetilde{\phi}+\partial_{\mathbf{S}} \widehat{\phi} \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right), \\
& \frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)-\mathcal{M}_{\mathcal{S}^{(i)}} \circ \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\right) \rightharpoonup \partial_{i} \widetilde{\phi} \mathbf{S}^{c}+\widehat{\phi}-\mathcal{M}_{\mathcal{S}^{(i)}}(\widehat{\phi}) \\
& \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right),
\end{aligned}
$$

where $\mathbf{S}^{c} \doteq\left(\mathbf{S}-\mathcal{M}_{\mathcal{S}^{(i)}}(\mathbf{S})\right) \cdot \mathbf{e}_{i}{ }^{2}$.
The same results hold for $p=+\infty$ with weak topology replaced by weak-* topology in the corresponding spaces.

Proof. We extend the sequence $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ to the sequence $\left\{\Phi_{\varepsilon}\right\}_{\varepsilon}=\left\{\mathfrak{Q}_{\varepsilon}\left(\phi_{\varepsilon}\right)\right\}_{\varepsilon}$ belonging to $Q_{\mathcal{K}_{\varepsilon}}^{1}\left(\widetilde{\Omega}_{\varepsilon}\right)$. By Lemma 5.2 and the $Q_{1}$ property (3.2), we get

$$
\left\|\Phi_{\varepsilon}\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)}+\left\|\nabla_{x^{\prime}} \Phi_{\varepsilon}\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)}+\varepsilon\left\|\nabla_{x^{\prime \prime}} \Phi_{\varepsilon}\right\|_{L^{p}\left(\widetilde{\Omega}_{\varepsilon}\right)} \leq C
$$

where the constant does not depend on $\varepsilon$.
By construction, the sequence $\left\{\Phi_{\varepsilon}\right\}_{\varepsilon}$ belongs to $Q_{\mathcal{K}_{\varepsilon}}^{1}\left(\widetilde{\Omega}_{\varepsilon}\right)$ and thus $\left\{\mathcal{T}_{\varepsilon}^{e x t}\left(\Phi_{\varepsilon}\right)\right\}_{\varepsilon}$ belongs to $L^{p}\left(\widetilde{\Omega}_{\varepsilon} ; Q^{1}(Y)\right)$.
Hence, Lemma 3.2 imply that there exist functions $\widetilde{\Phi} \in L^{p}\left(\Omega, \nabla_{x^{\prime}} ; Q_{\mathcal{K}, p e r}^{1}\left(Y^{\prime \prime}\right)\right)$ and $\widehat{\Phi} \in L^{p}\left(\Omega \times Y^{\prime \prime} ; Q_{\mathcal{K}, p e r}^{1}\left(Y^{\prime}\right)\right) \cap L^{p}\left(\Omega ; Q_{\mathcal{K}}^{1}(Y)\right)$ satisfying $\mathcal{M}_{Y^{\prime}}(\widehat{\Phi})=0$ a.e. in $\Omega \times Y^{\prime \prime}$, such that

$$
\begin{aligned}
& \Phi_{\varepsilon \mid \Omega} \rightharpoonup \Phi \quad \text { weakly in } \quad L^{p}\left(\Omega, \nabla_{x^{\prime}}\right) \\
& \mathcal{T}_{\varepsilon}^{e x t}\left(\Phi_{\varepsilon}\right) \rightharpoonup \widetilde{\Phi} \quad \text { weakly in } \quad L^{p}\left(\Omega ; Q_{\mathcal{K}}^{1}(Y)\right) \\
& \mathcal{T}_{\varepsilon}^{e x t}\left(\nabla_{x^{\prime}} \Phi_{\varepsilon}\right) \rightharpoonup \nabla_{x^{\prime}} \widetilde{\Phi}+\nabla_{y^{\prime}} \widehat{\Phi} \quad \text { weakly in } \quad L^{p}(\Omega \times Y)^{N_{1}}
\end{aligned}
$$

[^1]where $\Phi=\mathcal{M}_{Y^{\prime \prime}}(\widetilde{\Phi})$.
Using the relations (5.3), we can restrict the above convergences from $\Omega \times Y$ to the subset $\Omega \times \mathcal{S}$ (and from $\Omega \times Y^{\prime}, \Omega \times Y^{\prime \prime}$ to $\Omega \times \mathcal{S}^{\prime}, \Omega \times \mathcal{S}^{\prime \prime}$ respectively). Hence, $\widetilde{\phi}=\widetilde{\Phi}_{\mid \Omega \times \mathcal{S}}$ and thus $\widetilde{\phi} \in L^{p}\left(\Omega, \nabla_{x^{\prime}} ; Q_{p e r}^{1}\left(\mathcal{S}^{\prime \prime}\right)\right)$. Now, let us consider $\widehat{\Phi}_{\mid \Omega \times \mathcal{S}^{\prime}}$, we extend this function as an affine function between two contiguous nodes in $\mathcal{S}^{\prime \prime}$, this gives a function $\widehat{\phi}$ belonging to $L^{p}\left(\Omega ; Q_{p e r}^{1}(\mathcal{S})\right)$ (see Figure 1). This proves convergences $(5.6)_{1,2}$, while $(5.6)_{3}$ is an immediate consequence of the Poincaré-Wirtinger inequality and $(5.6)_{2}$.


FIG. 1. Construction of the periodic function $\widehat{\phi}$ for $N=2$ and $\left(K_{1}, K_{2}\right)=(3,2)$. On the left, the reference cell and the lattice $\mathcal{S} \doteq \mathcal{S}^{(1)} \cup \mathcal{S}^{(2)}$ and the nodes $A(k)$, where $k$ belongs to $\mathbf{K} \doteq\{0,1,2,3\} \times\{0,1,2\}$. On the center, the $Q_{1}$ interpolated on the lattice nodes $\widehat{\Phi}$ and its restriction to $\mathcal{S}^{(1)}$ (horizontal lines). On the right, the function $\widehat{\phi}$ given by $\widehat{\Phi}_{\mid \Omega \times \mathcal{S}^{(1)}}$ and the $Q_{1}$ interpolation along the segments in $\mathcal{S}^{(2)}$ (vertical lines).

Now, we show the asymptotic behavior of sequences in $Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$ which are uniformly bounded in $W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$.

Corollary 5.5. Let $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $Q^{1}\left(\mathcal{S}_{\varepsilon}\right)$ satisfying $(p \in(1,+\infty))$

$$
\left\|\phi_{\varepsilon}\right\|_{W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{1-N}{p}}
$$

where the constant does not depend on $\varepsilon$.
Then, there exist a subsequence of $\{\varepsilon\}$, still denoted $\{\varepsilon\}$, and functions $\phi \in W^{1, p}(\Omega)$ and $\widehat{\phi} \in L^{p}\left(\Omega ; Q_{p e r, 0}^{1}(\mathcal{S})\right)$ such that $(i \in\{1, \ldots, N\})$

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightharpoonup \phi \quad \text { weakly in } \quad L^{p}\left(\Omega ; Q^{1}(\mathcal{S})\right) \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i} \phi+\partial_{\mathbf{S}} \widehat{\phi} \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right)
\end{aligned}
$$

The same results hold for $p=+\infty$ with weak topology replaced by weak-* topology in the corresponding spaces.

Proof. The proof directly follows from Lemma 5.4 in the particular case $\mathcal{S}^{\prime}=\mathcal{S}$ and $\mathcal{S}^{\prime \prime}=\emptyset$.
5.2. Asymptotic behavior of sequences bounded anisotropically and uniformly in $W^{1, p}$. Denote ( $p \in[1,+\infty], i \in\{1, \ldots, N\}$ )

$$
\begin{aligned}
\mathcal{W}_{0, \mathcal{K}}^{1, p}(\mathcal{S}) & =\left\{\phi \in W^{1, p}(\mathcal{S}) \mid \phi=0 \text { on } \mathcal{K}\right\} \\
\mathcal{W}_{0, \mathcal{K}_{\varepsilon}}^{1, p}\left(\mathcal{S}_{\varepsilon}\right) & =\left\{\phi \in W^{1, p}\left(\mathcal{S}_{\varepsilon}\right) \mid \phi=0 \text { on } \mathcal{K}_{\varepsilon}\right\}
\end{aligned}
$$

Every function $\phi$ in $W^{1, p}(\mathcal{S})$ (resp. $\psi \in W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$ ) is defined on the set of nodes $\mathcal{K}$ (resp. $\mathcal{K}_{\varepsilon}$ ) and therefore can be decomposed as

$$
\begin{align*}
\phi & =\phi_{a}+\phi_{0}, & \phi_{a} \in Q^{1}(\mathcal{S}), \quad \phi_{0} \in \mathcal{W}_{0, \mathcal{K}}^{1, p}(\mathcal{S}) \\
\text { (resp. } & \psi=\psi_{a}+\psi_{0}, & \left.\psi_{a} \in Q^{1}\left(\mathcal{S}_{\varepsilon}\right), \quad \psi_{0} \in \mathcal{W}_{0, \mathcal{K}_{\varepsilon}}^{1, p}\left(\mathcal{S}_{\varepsilon}\right)\right), \tag{5.7}
\end{align*}
$$

where $\phi_{a}, \psi_{a}$ are the affine function defined as $Q_{1}$ interpolation on the nodes, and $\phi_{0}$, $\psi_{0}$ the reminder term which is zero on every node.

Lemma 5.6. There exists a constant $C>0$, which does not depend on $\varepsilon$, such that $(i \in\{1, \ldots, N\})$

$$
\begin{array}{ll}
\forall \phi \in W^{1, p}(\mathcal{S}), & \left\|\partial_{\mathbf{S}} \phi_{a}\right\|_{L^{p}\left(\mathcal{S}^{(i)}\right)}+\left\|\partial_{\mathbf{S}} \phi_{0}\right\|_{L^{p}\left(\mathcal{S}^{(i)}\right)} \leq C\left\|\partial_{\mathbf{S}} \phi\right\|_{L^{p}\left(\mathcal{S}^{(i)}\right)}, \\
\forall \psi \in W^{1, p}\left(\mathcal{S}_{\varepsilon}\right), & \left\|\partial_{\mathbf{s}} \psi_{a}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)}+\left\|\partial_{\mathbf{s}} \psi_{0}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)} \leq C\left\|\partial_{\mathbf{s}} \psi\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)}  \tag{5.8}\\
& \left\|\psi_{0}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)} \leq C \varepsilon\left\|\partial_{\mathbf{s}} \psi\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)}
\end{array}
$$

Proof. Step 1. First, we recall a simple result. Let $\psi$ be in the space $W^{1, p}(0,1)$ $(p \in[1,+\infty])$. Denote $\psi_{a}$ the affine function

$$
\psi_{a}(t) \doteq \psi(0)+t(\psi(1)-\psi(0)), \quad t \in[0,1]
$$

One has

$$
\begin{equation*}
\left\|\psi_{a}^{\prime}\right\|_{L^{p}(0,1)} \leq\left\|\psi^{\prime}\right\|_{L^{p}(0,1)}, \quad\left\|\psi-\psi_{a}\right\|_{L^{p}(0,1)} \leq 2\left\|\psi^{\prime}\right\|_{L^{p}(0,1)} \tag{5.9}
\end{equation*}
$$

Step 2. We prove the statements of the Lemma.
We start with $(5.8)_{1}$. By construction, $\mathcal{S}^{(i)}$ is the union of a finite number of segments whose extremities belong to $\mathbf{K}$. Hence, inequality (5.9) ${ }_{1}$ and an affine change of variables leads to $(i \in\{1, \ldots, N\})$

$$
\begin{aligned}
&\left\|\partial_{\mathbf{S}} \phi_{a}\right\|_{L^{p}\left(\mathcal{S}^{(i)}\right)} \leq\left\|\partial_{\mathbf{S}} \phi\right\|_{L^{p}\left(\mathcal{S}^{(i)}\right)} \\
&\left\|\partial_{\mathbf{S}} \phi_{0}\right\|_{L^{p}\left(\mathcal{S}^{(i)}\right)} \leq\left\|\partial_{\mathbf{S}} \phi_{a}\right\|_{L^{p}\left(\mathcal{S}^{(i)}\right)}+\left\|\partial_{\mathbf{S}} \phi\right\|_{L^{p}\left(\mathcal{S}^{(i)}\right)} \leq 2\left\|\partial_{\mathbf{S}} \phi\right\|_{L^{p}\left(\mathcal{S}^{(i)}\right)}
\end{aligned}
$$

and thus $(5.8)_{1}$ is proved. Estimate $(5.8)_{2}$ follows by $(5.8)_{1}$ and an affine change of variables, while $(5.8)_{3}$ follows by $(5.8)_{2}$ and again a change of variables. The constant does not depend on $\varepsilon$ since $\mathcal{S}^{(i)}$ has a finite number of segments.

We show now the asymptotic behavior of sequences that are anisotropically bounded.
Lemma 5.7. Let $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$ satisfying $(p \in(1,+\infty))$

$$
\begin{equation*}
\left\|\phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime}\right)}+\varepsilon\left\|\partial_{\mathbf{s}} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime \prime}\right)} \leq C \varepsilon^{\frac{1-N}{p}} \tag{5.10}
\end{equation*}
$$

where the constant does not depend on $\varepsilon$.
Then, there exist a subsequence of $\{\varepsilon\}$, denoted $\{\varepsilon\}$, and $\widetilde{\phi} \in L^{p}\left(\Omega, \nabla_{x^{\prime}} ; W_{p e r}^{1, p}\left(\mathcal{S}^{\prime \prime}\right)\right)$, $\widehat{\phi} \in L^{p}\left(\Omega ; W_{p e r}^{1, p}(\mathcal{S})\right)$, such that $\left(i \in\left\{1, \ldots, N_{1}\right\}\right)$

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightharpoonup \widetilde{\phi} \quad \text { weakly in } \quad L^{p}\left(\Omega ; W^{1, p}(\mathcal{S})\right) \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i} \widetilde{\phi}+\partial_{\mathbf{S}} \widehat{\phi} \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right), \\
& \frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)-\mathcal{M}_{\mathcal{S}^{(i)}} \circ \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\right) \rightharpoonup \partial_{i} \widetilde{\phi} \mathbf{S}^{c}+\widehat{\phi}-\mathcal{M}_{\mathcal{S}^{(i)}}(\widehat{\phi}) \\
& \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right),
\end{aligned}
$$

where $\mathbf{S}^{c} \doteq\left(\mathbf{S}-\mathcal{M}_{\mathcal{S}^{(i)}}(\mathbf{S})\right) \cdot \mathbf{e}_{i}$.
The same results hold for $p=+\infty$ with weak topology replaced by weak-* topology in the corresponding spaces.

Proof. Given $\left\{\phi_{\varepsilon}\right\}_{\varepsilon} \subset W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$, we decompose $\phi_{\varepsilon}$ as in (5.7) and get

$$
\phi_{\varepsilon}=\phi_{a, \varepsilon}+\phi_{0, \varepsilon}, \quad \phi_{a, \varepsilon} \in Q^{1}\left(\mathcal{S}_{\varepsilon}\right), \quad \phi_{0, \varepsilon} \in \mathcal{W}_{0, \mathcal{K}_{\varepsilon}}^{1, p}\left(\mathcal{S}_{\varepsilon}\right)
$$

By Lemma 5.6 and hypothesis (5.10) we have

$$
\begin{align*}
& \left\|\phi_{0, \varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime}\right)}+\varepsilon\left\|\partial_{\mathbf{s}} \phi_{0, \varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime}\right)} \leq C \varepsilon\left\|\partial_{\mathbf{s}} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime}\right)} \leq C \varepsilon^{\frac{1-N}{p}+1} \\
& \left\|\phi_{0, \varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime \prime}\right)}+\varepsilon\left\|\partial_{\mathbf{s}} \phi_{0, \varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime \prime}\right)} \leq C \varepsilon\left\|\partial_{\mathbf{s}} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime \prime}\right)} \leq C \varepsilon^{\frac{1-N}{p}}  \tag{5.12}\\
& \left\|\phi_{a, \varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{S}} \phi_{a, \varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime}\right)}+\varepsilon\left\|\partial_{\mathbf{S}} \phi_{a, \varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{\prime \prime}\right)} \leq C \varepsilon^{\frac{1-N}{p}}
\end{align*}
$$

where the constant does not depend on $\varepsilon$.
By estimates (5.12) ${ }_{1,2}$ and [8, Theorem 1.36] applied on each line of $\mathcal{S}_{\varepsilon}$, there exist a subsequence of $\{\varepsilon\}$, still denoted $\{\varepsilon\}$, and functions $\widehat{\phi}_{0}^{\prime} \in L^{p}\left(\Omega ; \mathcal{W}_{0, \mathcal{K}, \text { per }}^{1, p}\left(\mathcal{S}^{\prime}\right)\right)$ $\left(\mathcal{W}_{0, \mathcal{K}, p e r}^{1, p}\left(\mathcal{S}^{\prime}\right) \doteq \mathcal{W}_{0, \mathcal{K}}^{1, p}\left(\mathcal{S}^{\prime}\right) \cap \mathcal{W}_{p e r}^{1, p}\left(\mathcal{S}^{\prime}\right)\right)$ and $\widehat{\phi}_{0}^{\prime \prime} \in L^{p}\left(\Omega ; \mathcal{W}_{0, \mathcal{K}, p e r}^{1, p}\left(\mathcal{S}^{\prime \prime}\right)\right)$ such that

$$
\begin{array}{lll}
\frac{1}{\varepsilon} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{0, \varepsilon}\right) \rightharpoonup \widehat{\phi}_{0}^{\prime} & \text { weakly in } & L^{p}\left(\Omega ; W^{1, p}\left(\mathcal{S}^{\prime}\right)\right) \\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{0, \varepsilon}\right) \rightharpoonup \widehat{\phi}_{0}^{\prime \prime} & \text { weakly in } & L^{p}\left(\Omega ; W^{1, p}\left(\mathcal{S}^{\prime \prime}\right)\right)
\end{array}
$$

By estimates $(5.12)_{3}$ and Lemma 5.4, there exist a subsequence, still denoted $\{\varepsilon\}$, and functions $\widetilde{\phi}_{a} \in L^{p}\left(\Omega, \nabla_{x^{\prime}} ; Q_{p e r}^{1}\left(\mathcal{S}^{\prime \prime}\right)\right), \widehat{\phi}_{a} \in L^{p}\left(\Omega ; Q_{p e r}^{1}(\mathcal{S})\right)$ such that $\left(i \in\left\{1, \ldots, N_{1}\right\}\right)$

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{a, \varepsilon}\right) \rightarrow \widetilde{\phi}_{a} \quad \text { strongly in } \quad L^{p}\left(\Omega ; Q^{1}(\mathcal{S})\right), \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{a, \varepsilon}\right) \rightharpoonup \partial_{i} \widetilde{\phi}_{a}+\partial_{\mathbf{S}} \widehat{\phi}_{a} \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right) .
\end{aligned}
$$

Hence $\left(i \in\left\{1, \ldots, N_{1}\right\}, j \in\left\{N_{1}+1, \ldots, N\right\}\right)$

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightarrow \widetilde{\phi}_{a} \quad \text { strongly in } \quad L^{p}\left(\Omega ; W^{1, p}\left(\mathcal{S}^{\prime}\right)\right) \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightharpoonup \widetilde{\phi}_{a}+\widehat{\phi}_{0}^{\prime \prime} \quad \text { weakly in } \quad L^{p}\left(\Omega ; W^{1, p}\left(\mathcal{S}^{\prime \prime}\right)\right) \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i} \widetilde{\phi}_{a}+\partial_{\mathbf{S}}\left(\widehat{\phi}_{a}+\widehat{\phi}_{0}^{\prime}\right) \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right)
\end{aligned}
$$

Setting $\widetilde{\phi} \doteq \widetilde{\phi}_{a}+\widetilde{\phi}_{0}^{\prime \prime}$, we get that $\widetilde{\phi}$ belongs to $L^{p}\left(\Omega, \nabla_{x^{\prime}} ; W_{p e r}^{1, p}\left(\mathcal{S}^{\prime \prime}\right)\right)$. Then, we set $\widehat{\phi} \doteq \widehat{\phi}_{a}+\widehat{\phi}_{0}^{\prime}$, this function belongs to $L^{p}\left(\Omega ; W_{p e r}^{1, p}(\mathcal{S})\right)$. Convergence $(5.11)_{3}$ is an immediate consequence of $(5.11)_{2}$. The proof is complete.
As a direct consequence, it follows the asymptotic behavior of the uniformly bounded sequences.

Corollary 5.8. Let $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$ satisfying $(p \in(1,+\infty))$

$$
\left\|\phi_{\varepsilon}\right\|_{W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{1-N}{p}}
$$

where the constant does not depend on $\varepsilon$.
Then, there exist a subsequence of $\{\varepsilon\}$, still denoted $\{\varepsilon\}$, and functions $\phi \in W^{1, p}(\Omega)$ and $\widehat{\phi} \in L^{p}\left(\Omega ; W_{p e r, 0}^{1, p}(\mathcal{S})\right)$ such that $(i \in\{1, \ldots, N\})$

$$
\begin{array}{ll}
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightarrow \phi \quad \text { strongly in } \quad L^{p}\left(\Omega ; W^{1, p}(\mathcal{S})\right), \\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i} \phi+\partial_{\mathbf{S}} \widehat{\phi} \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right) .
\end{array}
$$

$$
\begin{align*}
\forall \phi \in W^{2, p}(0,1), & \left\|\phi_{p}^{\prime \prime}\right\|_{L^{p}(0,1)} \leq C\left\|\phi^{\prime \prime}\right\|_{L^{p}(0,1)} \\
& \left\|\phi_{p}^{\prime}\right\|_{L^{p}(0,1)} \leq C\left\|\phi^{\prime}\right\|_{W^{1, p}(0,1)}  \tag{6.2}\\
& \left\|\phi_{p}\right\|_{L^{p}(0,1)} \leq C\|\phi\|_{W^{2, p}(0,1)} \\
& \left\|\phi_{0}\right\|_{W^{2, p}(0,1)} \leq C\left\|\phi^{\prime \prime}\right\|_{L^{p}(0,1)}
\end{align*}
$$

Proof. Given $\phi$ be in $W^{2, p}(0,1)$, it is clear that the decomposition is unique. Indeed, condition (6.1) implies that the function $\phi_{p}$ must satisfy

$$
\phi_{p}(0)=\phi(0), \quad \phi_{p}(1)=\phi(1), \quad \phi_{p}^{\prime}(0)=\phi^{\prime}(0), \quad \phi_{p}^{\prime}(1)=\phi^{\prime}(1)
$$

and therefore the 4 coefficients of the cubic polynomial are uniquely determined.
Now, we observe that

$$
\begin{aligned}
& \phi_{p}^{\prime}(t)=\left(\phi(1)-\phi(0)-\frac{1}{2}\left(\phi^{\prime}(0)+\phi^{\prime}(1)\right)\right) 6 t(1-t)+\left(\phi^{\prime}(1)-\phi^{\prime}(0)\right) t+\phi^{\prime}(0) \\
& \phi_{p}^{\prime \prime}(t)=\left(\phi(1)-\phi(0)-\frac{1}{2}\left(\phi^{\prime}(0)+\phi^{\prime}(1)\right)\right) 6(1-2 t)+\left(\phi^{\prime}(1)-\phi^{\prime}(0)\right)
\end{aligned}
$$

Then, we easily obtain the estimates $(6.2)_{1,2,3}$. Estimate (6.2) $)_{4}$ follows by assumption (6.1), the Poincaré inequality applied twice and estimate $(6.2)_{1}$.

Define the spaces $(p \in[1,+\infty])$

$$
\begin{aligned}
\mathcal{W}_{0, \mathcal{K}}^{2, p}(\mathcal{S}) & =\left\{\phi \in W^{2, p}(\mathcal{S}) \mid \phi=\partial_{\mathbf{S}} \phi=0 \text { on } \mathcal{K}\right\} \\
\mathcal{W}_{0, \mathcal{K}_{\varepsilon}}^{2, p}\left(\mathcal{S}_{\varepsilon}\right) & =\left\{\psi \in W^{2, p}\left(\mathcal{S}_{\varepsilon}\right) \mid \psi=\partial_{\mathbf{s}} \psi=0 \quad \text { on } \mathcal{K}_{\varepsilon}\right\}
\end{aligned}
$$

Remind that for any $\phi \in W^{2, p}(\mathcal{S})$ (resp. $\psi \in W^{2, p}\left(\mathcal{S}_{\varepsilon}\right)$ ), its derivatives $\partial_{\mathbf{S}} \phi$ (resp. $\partial_{\mathbf{s}} \psi$ ) in direction $\mathbf{e}_{i}$ are functions belonging to $W^{1, p}\left(\mathcal{S}^{(i)}\right)$ (resp. $W^{1, p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)$ ), for every $i \in\{1, \ldots, N\}$ and therefore defined on every node of the structure $\mathcal{S}$ (resp. $\left.\mathcal{S}_{\varepsilon}\right)$. Hence, they can be extended by $Q_{1}$ interpolation on the small segments of $\mathcal{S}^{(j)}$ (resp. $\mathcal{S}_{\varepsilon}^{(j)}$ ) for every $j \in\{1, \ldots, N\}, j \neq i$. We denote these extensions by $\partial_{i} \phi$ (resp. $\left.\partial_{i} \psi\right)$, for every $i \in\{1, \ldots, N\}$.

Lemma 6.2. For every $\phi \in W^{2, p}(\mathcal{S})$, there exist two functions $\Phi_{p} \in W^{2, p}(Y)$ and $\phi_{0} \in \mathcal{W}_{0, \mathcal{K}}^{2, p}(\mathcal{S})$ such that

$$
\begin{equation*}
\phi=\Phi_{p}+\phi_{0} \quad \text { a.e. in } \mathcal{S} \tag{6.3}
\end{equation*}
$$

where $\Phi_{p \mid \mathcal{S}}$ is a cubic polynomial on every small segment of $\mathcal{S}$.
Moreover, there exists a constant $C>0$ such that

$$
\begin{align*}
& \left\|D^{2} \Phi_{p}\right\|_{L^{p}(Y)} \leq C \sum_{i=1}^{N}\left\|\partial_{\mathbf{S}}\left(\partial_{i} \phi\right)\right\|_{L^{p}(\mathcal{S})} \\
& \left\|\nabla \Phi_{p}\right\|_{L^{p}(Y)} \leq C\left(\left\|\partial_{\mathbf{S}} \phi\right\|_{L^{p}(\mathcal{S})}+\sum_{i=1}^{N}\left\|\partial_{\mathbf{S}}\left(\partial_{i} \phi\right)\right\|_{L^{p}(\mathcal{S})}\right)  \tag{6.4}\\
& \left\|\Phi_{p}\right\|_{L^{p}(Y)} \leq C\left(\|\phi\|_{L^{p}(\mathcal{S})}+\left\|\partial_{\mathbf{S}} \phi\right\|_{L^{p}(\mathcal{S})}+\sum_{i=1}^{N}\left\|\partial_{\mathbf{S}}\left(\partial_{i} \phi\right)\right\|_{L^{p}(\mathcal{S})}\right)
\end{align*}
$$

and that

$$
\begin{equation*}
\left\|\phi_{0}\right\|_{L^{2}(\mathcal{S})}+\left\|\partial_{\mathbf{S}} \phi_{0}\right\|_{L^{2}(\mathcal{S})}+\left\|\partial_{\mathbf{S}}^{2} \phi_{0}\right\|_{L^{2}(\mathcal{S})} \leq C\left\|\partial_{\mathbf{S}}^{2} \phi\right\|_{L^{p}(\mathcal{S})} \tag{6.5}
\end{equation*}
$$

Proof. We will only prove the case $N=2$, since the extension to higher dimension is done by an analogous argumentation.
Step 1. A first result.
Denote $Q_{0}, Q_{1}, d Q_{0}$ and $d Q_{1}$ the following polynomial functions $(t \in[0,1])$
$Q_{0}(t)=(2 t+1)(t-1)^{2}, \quad Q_{1}(t)=t^{2}(3-2 t), \quad d Q_{0}(t)=t(t-1)^{2}, \quad d Q_{1}(t)=t^{2}(t-1)$.
Let $\phi$ be a function continuous on $\partial Z, Z=(0,1)^{2}$, and of class $W^{2, p}$ on every edge of $\bar{Z}$. We define the polynomial function $\Phi \in W^{2, \infty}(Z)$ by

$$
\begin{aligned}
& \quad \Phi(t)=\phi(0,0) P_{00}(t)+\phi(0,1) P_{0,1}(t)+\phi(1,0) P_{1,0}(t)+\phi(1,1) P_{1,1}(t) \\
& + \\
& +\partial_{1} \phi(0,0) d_{1} P_{00}(t)+\partial_{1} \phi(1,0) d_{1} P_{10}(t)+\partial_{1} \phi(0,1) d_{1} P_{01}(t)+\partial_{1} \phi(1,1) d_{1} P_{11}(t) \\
& + \\
& \partial_{2} \phi(0,0) d_{2} P_{00}(t)+\partial_{2} \phi(0,1) d_{2} P_{01}(t)+\partial_{2} \phi(1,0) d_{2} P_{10}(t)+\partial_{2} \phi(1,1) d_{2} P_{11}(t)
\end{aligned}
$$

where for all $t=\left(t_{1}, t_{2}\right) \in[0,1]^{2}$

$$
\begin{array}{rlrl}
P_{00}(t) & =Q_{0}\left(t_{1}\right) Q_{0}\left(t_{2}\right), & & P_{01}(t)=Q_{0}\left(t_{1}\right) Q_{1}\left(t_{2}\right), \\
P_{10}(t) & =Q_{1}\left(t_{1}\right) Q_{0}\left(t_{2}\right), & & P_{11}(t)=Q_{1}\left(t_{1}\right) Q_{1}\left(t_{2}\right), \\
d_{1} P_{00} & =d Q_{0}\left(t_{1}\right) Q_{0}\left(t_{2}\right), & & d_{1} P_{10}=d Q_{1}\left(t_{1}\right) Q_{0}\left(t_{2}\right), \\
d_{1} P_{01}=d Q_{0}\left(t_{1}\right) Q_{1}\left(t_{2}\right), & & d_{1} P_{11}=d Q_{1}\left(t_{1}\right) Q_{1}\left(t_{2}\right), \\
d_{2} P_{00}=Q_{0}\left(t_{1}\right) d Q_{0}\left(t_{2}\right), & & d_{2} P_{01}=Q_{0}\left(t_{1}\right) d Q_{1}\left(t_{2}\right), \\
d_{2} P_{10}=Q_{1}\left(t_{1}\right) d Q_{0}\left(t_{2}\right), & & d_{2} P_{11}=Q_{1}\left(t_{1}\right) d Q_{1}\left(t_{2}\right) .
\end{array}
$$

First, observe that the polynomial $\Phi$ can be rewritten as

$$
\begin{aligned}
\Phi(t) & =\left(\phi(0,0) Q_{0}\left(t_{1}\right)+\phi(1,0) Q_{1}\left(t_{1}\right)+\partial_{1} \phi(0,0) d Q_{0}\left(t_{1}\right)+\partial_{1} \phi(1,0) d Q_{1}\left(t_{1}\right)\right) Q_{0}\left(t_{2}\right) \\
& +\left(\phi(0,1) Q_{0}\left(t_{1}\right)+\phi(1,1) Q_{1}\left(t_{1}\right)+\partial_{1} \phi(0,1) d Q_{0}\left(t_{1}\right)+\partial_{1} \phi(1,1) d Q_{1}\left(t_{1}\right)\right) Q_{1}\left(t_{2}\right) \\
& +\left(\partial_{2} \phi(0,0) d Q_{0}\left(t_{2}\right)+\partial_{2} \phi(0,1) d Q_{1}\left(t_{2}\right)\right) Q_{0}\left(t_{1}\right) \\
& +\left(\partial_{2} \phi(1,0) d Q_{0}\left(t_{2}\right)+\partial_{2} \phi(1,1) d Q_{1}\left(t_{2}\right)\right) Q_{1}\left(t_{1}\right) .
\end{aligned}
$$

A straightforward calculation and Lemma (6.1) lead to

$$
\begin{aligned}
& \left\|D^{2} \Phi\right\|_{L^{p}(Z)} \\
& \leq \\
& \leq C\left(\sum_{i=1}^{2}\left\|\partial_{i i}^{2} \phi\right\|_{L^{p}\left((\partial Z)_{i}\right)}+\left|\partial_{2} \phi(1,0)-\partial_{2} \phi(0,0)\right|+\left|\partial_{2} \phi(1,1)-\partial_{2} \phi(0,1)\right|\right. \\
& \left.\quad+\left|\partial_{1} \phi(0,1)-\partial_{1} \phi(0,0)\right|+\left|\partial_{1} \phi(1,1)-\partial_{1} \phi(1,0)\right|\right) \\
& \leq \\
& =C \sum_{i=1}^{2}\left\|\partial_{\mathbf{S}}\left(\partial_{i} \phi\right)\right\|_{L^{p}\left((\partial Z)_{i}\right)} .
\end{aligned}
$$

where $(\partial Z)_{1}=(0,1) \times\{0,1\}$ and $(\partial Z)_{2}=\{0,1\} \times(0,1)$.
Observe also that $(i \in\{1,2\})$

$$
\begin{equation*}
\left\|\partial_{i i}^{2} \Phi\right\|_{L^{p}\left((\partial Z)_{i}\right)} \leq C\left\|\partial_{\mathbf{S}}^{2} \phi\right\|_{L^{p}\left((\partial Z)_{i}\right)} \tag{6.6}
\end{equation*}
$$

Then, we obtain

$$
\|\nabla \Phi\|_{L^{p}(Z)} \leq C\left(\left\|\partial_{\mathbf{S}} \phi\right\|_{L^{p}(\partial Z)}+\left\|D^{2} \Phi\right\|_{L^{p}(Z)}\right)
$$

and thus

$$
\|\Phi\|_{L^{p}(Z)} \leq C\left(\|\phi\|_{L^{p}(\partial Z)}+\|\nabla \Phi\|_{L^{p}(Z)}\right)
$$

Step 2. We prove the estimates (6.4) for $N=2$.
In every small rectangle build on the nodes of $\mathcal{S}$ we extend $\phi$ as described in Step 1. That gives a function $\Phi_{p} \in W^{2, p}(Y)$ satisfying (6.4) for $N=2$. Estimate (6.5) follows by applying the Poincare inequality twice and the fact that (see (6.6))

$$
\left\|\partial_{\mathbf{S}}^{2} \phi_{0}\right\|_{L^{p}(\mathcal{S})} \leq \sum_{i=1}^{2}\left\|\partial_{i i}^{2} \Phi\right\|_{L^{p}\left((\partial Z)_{i}\right)}+\left\|\partial_{\mathbf{S}}^{2} \phi\right\|_{L^{p}(\mathcal{S})} \leq C\left\|\partial_{\mathbf{S}}^{2} \phi\right\|_{L^{p}(\mathcal{S})} .
$$

The proof is complete.

We can finally show the asymptotic behavior of sequences bounded in $W^{2, p}\left(\mathcal{S}_{\varepsilon}\right)$, whose derivatives of the gradient extension from the lattice to the whole space are also bounded.

Theorem 6.3. Let $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $W^{2, p}\left(\mathcal{S}_{\varepsilon}\right), p \in(1,+\infty)$, satisfying

$$
\begin{equation*}
\left\|\phi_{\varepsilon}\right\|_{L^{2}\left(S_{\varepsilon}\right)}+\left\|\partial_{\mathrm{s}} \phi_{\varepsilon}\right\|_{L^{2}\left(S_{\varepsilon}\right)}+\sum_{i=1}^{N}\left\|\partial_{\mathrm{s}}\left(\partial_{i} \phi_{\varepsilon}\right)\right\|_{L^{2}\left(S_{\varepsilon}\right)} \leq C \varepsilon^{\frac{1-N}{p}} . \tag{6.7}
\end{equation*}
$$

Then, there exist a subsequence of $\{\varepsilon\}$, still denoted $\{\varepsilon\}$, and functions $\phi \in W^{2, p}(\Omega)$ and $\widehat{\phi} \in L^{p}\left(\Omega ; W_{\text {per }}^{2, p}(\mathcal{S})\right)$ such that $(i \in\{1, \ldots, N\})$

$$
\begin{aligned}
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) & \rightarrow \phi \quad \text { strongly in } \quad L^{p}\left(\Omega ; W^{2, p}(\mathcal{S})\right) \\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) & \rightarrow \partial_{i} \phi \quad \text { strongly in } \quad L^{p}\left(\Omega ; W^{1, p}\left(\mathcal{S}^{(i)}\right)\right), \\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} \phi_{\varepsilon}\right) & \rightharpoonup \partial_{i i}^{2} \phi+\partial_{\mathbf{S}}^{2} \widehat{\phi} \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right)
\end{aligned}
$$

Proof. Given $\left\{\phi_{\varepsilon}\right\}_{\varepsilon} \subset W^{2, p}\left(\mathcal{S}_{\varepsilon}\right)$, we decompose $\phi_{\varepsilon}(\varepsilon \xi+\varepsilon \mathbf{S}), \xi \in \widetilde{\Xi}_{\varepsilon}, \mathbf{S} \in \mathcal{S}$, as in (6.3) and get

$$
\phi_{\varepsilon}=\Phi_{p, \varepsilon}+\phi_{0, \varepsilon}, \quad \Phi_{p, \varepsilon} \in W^{2, p}\left(\widetilde{\Omega}_{\varepsilon}\right), \quad \phi_{0, \varepsilon} \in \mathcal{W}_{0, \mathcal{K}_{\varepsilon}}^{2, p}\left(\mathcal{S}_{\varepsilon}\right)
$$

We first consider the sequence $\left\{\phi_{0, \varepsilon}\right\}_{\varepsilon}$ belonging to $\mathcal{W}_{0, \mathcal{K}_{\varepsilon}}^{2, p}\left(\mathcal{S}_{\varepsilon}\right)$. By estimate (6.5) together with an affine change of variables and (6.7), we have

$$
\left\|\phi_{0, \varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\varepsilon\left\|\partial_{\mathbf{s}} \phi_{0, \varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\varepsilon^{2}\left\|\partial_{\mathbf{s}}^{2} \phi_{0, \varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)} \leq C \varepsilon^{2}\left\|\partial_{\mathbf{s}}^{2} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{1-N}{p}+2}
$$

where the constant does not depend on $\varepsilon$. Hence, there exist a subsequence, still denoted $\{\varepsilon\}$, and a function $\widehat{\phi}_{0} \in L^{p}\left(\Omega ; \mathcal{W}_{0, \mathcal{K}, p e r}^{2, p}(\mathcal{S})\right)$ such that

$$
\begin{equation*}
\frac{1}{\varepsilon^{2}} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{0, \varepsilon}\right) \rightharpoonup \widehat{\phi}_{0} \quad \text { weakly in } \quad L^{2}\left(\Omega ; W^{2, p}(\mathcal{S})\right) \tag{6.8}
\end{equation*}
$$

Now we consider the sequence $\left\{\Phi_{p, \varepsilon}\right\}_{\varepsilon}$. By estimates (6.4) together with an affine change of variables and hypothesis (6.7) we have

$$
\left\|\Phi_{p, \varepsilon}\right\|_{W^{2, p}\left(\widetilde{\Omega}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{N-1}{p}}\left(\left\|\phi_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}} \phi_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}+\sum_{i=1}^{N}\left\|\partial_{\mathbf{s}}\left(\partial_{i} \phi_{\varepsilon}\right)\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}\right) \leq C
$$

Hence, by [8, Theorem 1.47], there exist a subsequence, still denoted $\{\varepsilon\}$, and functions $\phi \in W^{2, p}(\Omega)$ and $\widehat{\Phi}_{p} \in L^{p}\left(\Omega ; W_{p e r}^{2, p}(Y)\right)$ such that

$$
\begin{aligned}
& \Phi_{p, \varepsilon \mid \Omega} \rightharpoonup \phi \quad \text { weakly in } \quad W^{2, p}(\Omega) \\
& \mathcal{T}_{\varepsilon}\left(\Phi_{p, \varepsilon}\right) \rightarrow \phi \quad \text { strongly in } \quad L^{p}\left(\Omega ; W^{2, p}(Y)\right), \\
& \mathcal{T}_{\varepsilon}\left(\nabla \Phi_{p, \varepsilon}\right) \rightarrow \nabla \phi \quad \text { strongly in } \quad L^{p}\left(\Omega ; W^{1, p}(Y)\right)^{N}, \\
& \mathcal{T}_{\varepsilon}\left(D^{2} \Phi_{p, \varepsilon}\right) \rightharpoonup D^{2} \phi+D_{y}^{2} \widehat{\Phi}_{p} \quad \text { weakly in } \quad L^{p}(\Omega \times Y)^{N \times N} .
\end{aligned}
$$

Note that the following relations hold $(i \in\{1, \ldots, N\})$ :

$$
\left\{\begin{array}{l}
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{p, \varepsilon}\right)=\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\Phi_{p, \varepsilon \mid \mathcal{S}_{\varepsilon}}\right)=\mathcal{T}_{\varepsilon}^{e x t}\left(\Phi_{p, \varepsilon}\right)_{\mid \widetilde{\Omega}_{\varepsilon} \times \mathcal{S}} \\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{p, \varepsilon}\right)_{\mid \widetilde{\Omega}_{\varepsilon} \times \mathcal{S}^{(i)}}=\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \Phi_{p, \varepsilon \mid \mathcal{S}_{\varepsilon}^{(i)}}\right)=\mathcal{T}_{\varepsilon}^{\text {ext }}\left(\partial_{i} \Phi_{p, \varepsilon}\right)_{\widetilde{\Omega}_{\varepsilon} \times \mathcal{S}^{(i)}} \\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} \phi_{p, \varepsilon}\right)_{\mid \tilde{\Omega}_{\varepsilon} \times \mathcal{S}^{(i)}}=\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} \Phi_{p, \varepsilon \mid \mathcal{S}_{\varepsilon}^{(i)}}\right)=\mathcal{T}_{\varepsilon}^{\text {ext }}\left(\partial_{i}^{2} \Phi_{p, \varepsilon}\right)_{\widetilde{\Omega}_{\varepsilon} \times \mathcal{S}^{(i)}} .
\end{array}\right.
$$

Hence, we can restrict the above convergences from $\Omega \times Y$ to the subsets $\Omega \times \mathcal{S}$ and $\Omega \times \mathcal{S}^{(i)}$, for every $i \in\{1, \ldots, N\}$. Hence, there exists $\widehat{\phi}_{p}=\widehat{\Phi}_{p \mid \Omega \times \mathcal{S}} \in L^{p}\left(\Omega ; W_{p e r}^{2, p}(\mathcal{S})\right)$ such that $(i \in\{1, \ldots, N\})$

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{p, \varepsilon}\right) \rightarrow \phi \quad \text { strongly in } \quad L^{p}\left(\Omega ; W^{2, p}(\mathcal{S})\right), \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{p, \varepsilon}\right) \rightarrow \partial_{i} \phi \quad \text { strongly in } \quad L^{p}\left(\Omega ; W^{1, p}\left(\mathcal{S}^{(i)}\right)\right), \\
& \mathcal{T}_{\varepsilon}^{\mathcal{E}}\left(\partial_{\mathbf{s}}^{2} \phi_{p, \varepsilon}\right) \rightharpoonup \partial_{i i}^{2} \phi+\partial_{\mathbf{S}}^{2} \widehat{\phi}_{p} \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right),
\end{aligned}
$$

where the strong convergences are preserved due to the polynomial character of the function $\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{p, \varepsilon}\right)$ with respect to the second variable.
Hence, by the above convergences and (6.8) we get ( $i \in\{1, \ldots, N\}$ )

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightarrow \phi \quad \text { strongly in } \quad L^{2}\left(\Omega ; W^{2, p}(\mathcal{S})\right) \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) \rightarrow \partial_{i} \phi \quad \text { strongly in } \quad L^{2}\left(\Omega ; W^{1, p}\left(\mathcal{S}^{(i)}\right)\right) \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i i}^{2} \phi+\partial_{\mathbf{S}}^{2}\left(\widehat{\phi}_{p}+\widehat{\phi}_{0}\right) \quad \text { weakly in } \quad L^{2}\left(\Omega \times \mathcal{S}^{(i)}\right)
\end{aligned}
$$

Hence, the proof follows by setting $\widehat{\phi} \doteq \widehat{\phi}_{p}+\widehat{\phi}_{0}$, which belongs to $L^{2}\left(\Omega ; W_{p e r}^{2, p}(\mathcal{S})\right)$.
6.2. Unfolding via known results for sequences of functions uniformly bounded in $W^{1, p}$. We consider the sequences in $W^{2, p}\left(\mathcal{S}_{\varepsilon}\right)$ as sequences in $W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)$ with partial derivatives belonging to $W^{1, p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)$, for each $i \in\{1, \ldots, N\}$. In this sense, we can apply the results obtained in section 5 . Even though no gradient extension is needed, the additional work must be done to show that the $N$ different limit functions, one for each partial derivative, are in fact a unique function restricted to each line.
From [3, Chapter 9], we recall that $(p \in(1,+\infty))$ :
(i) if $u \in W^{1, p}(\Omega)$ satisfies $\Delta u \in L^{p}(\Omega)$ then $u \in W^{1, p}(\Omega) \cap W_{l o c}^{2, p}(\Omega)^{3}$;
(ii) if $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ with a $\mathcal{C}^{1,1}$ boundary and if $u \in W_{0}^{1, p}(\Omega)$ satisfies $\Delta u \in L^{p}(\Omega)$ then $u \in W_{0}^{1, p}(\Omega) \cap W^{2, p}(\Omega)$.

Denote $(p \in[1,+\infty])$

$$
\mathcal{W}^{2, p}(\Omega) \doteq\left\{\phi \in W^{1, p}(\Omega) \cap W_{l o c}^{2, p}(\Omega) \mid \partial_{i i}^{2} \in L^{p}(\Omega) \text { for every } i \in\{1, \ldots, N\}\right\} .
$$

We endow $\mathcal{W}^{2, p}(\Omega)$ with the following norm

$$
\|\phi\|_{\mathcal{W}^{2, p}}(\Omega) \doteq\|\phi\|_{W^{1, p}(\Omega)}+\sum_{i=1}^{N}\left\|\partial_{i i}^{2} \phi\right\|_{L^{p}(\Omega)}
$$

Theorem 6.4. Let $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $W^{2, p}\left(\mathcal{S}_{\varepsilon}\right)$, $p \in(1,+\infty)$, satisfying

$$
\begin{equation*}
\left\|\phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}}^{2} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{1-N}{p}} \tag{6.9}
\end{equation*}
$$

Then, there exist a subsequence of $\{\varepsilon\}$, still denoted $\{\varepsilon\}$, and functions $\phi \in \mathcal{W}^{2, p}(\Omega)$

[^2]and $\widehat{\phi} \in L^{p}\left(\Omega ; W_{p e r, 0}^{2, p}(\mathcal{S})\right)$ such that $(i \in\{1, \ldots, N\})$
\[

$$
\begin{array}{cc}
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightarrow \phi \quad \text { strongly in } & L^{p}\left(\Omega ; W^{1, p}(\mathcal{S})\right), \\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i} \phi \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right),  \tag{6.10}\\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i i}^{2} \phi+\partial_{\mathbf{S}}^{2} \widehat{\phi} \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right) .
\end{array}
$$
\]

The same results hold for $p=+\infty$ with weak topology replaced by weak-* topology in the corresponding spaces.

Proof. Step 1. We prove convergences (6.10) $)_{1,2}$.
By estimate (6.9), the sequence $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ satisfies

$$
\left\|\phi_{\varepsilon}\right\|_{W^{1, p}\left(\mathcal{S}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{1-N}{p}}
$$

and thus by Corollary 5.8 , there exist $\phi \in W^{1, p}(\Omega)$ and $\widehat{\phi} \in L^{p}\left(\Omega ; W_{\text {per }, 0}^{1, p}(\mathcal{S})\right)$ such that

$$
\begin{align*}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightarrow \phi \quad \text { strongly in } L^{p}\left(\Omega ; W^{1, p}(\mathcal{S})\right), \\
& \mathcal{T}_{\varepsilon}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i} \phi+\partial_{\mathbf{S}} \widehat{\phi} \quad \text { weakly in } L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right), \quad i \in\{1, \ldots, N\} . \tag{6.11}
\end{align*}
$$

Now, we consider the sequences $\left\{\psi_{\varepsilon}^{(i)}\right\}_{\varepsilon}=\left\{\partial_{\mathbf{s}} \phi_{\varepsilon \mid \mathcal{S}_{\varepsilon}^{(i)}}\right\}_{\varepsilon}, i \in\{1, \ldots, N\}$. From estimate (6.9) we have

$$
\left\|\psi_{\varepsilon}^{(i)}\right\|_{W^{1, p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)} \leq C \varepsilon^{\frac{1-N}{p}}
$$

Since $\psi_{\varepsilon}^{(i)}, i \in\{1, \ldots, N\}$, is defined on every node of $\mathcal{S}_{\varepsilon}$, we extend it as a function affine on every small segments in $\mathcal{S}_{\varepsilon}^{(j)}, j \in\{1, \ldots, N\} \backslash\{i\}$. We still denote this extension $\psi_{\varepsilon}^{(i)}$. It satisfies
$\left\|\psi_{\varepsilon}^{(i)}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}} \psi_{\varepsilon}^{(i)}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{(i)}\right)}+\varepsilon\left\|\partial_{\mathbf{s}} \psi_{\varepsilon}^{(i)}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}^{[i]}\right)} \leq C \varepsilon^{\frac{1-N}{p}}, \quad$ where $\quad \mathcal{S}_{\varepsilon}^{[i]}=\bigcup_{j=1, j \neq i}^{N} \mathcal{S}_{\varepsilon}^{(j)}$.
Observe that a function defined and constant on every line of $\mathcal{S}^{(i)}$ can be extended to a function periodic on $\mathcal{S}$ and affine between two contiguous nodes of $\mathcal{S}^{(j)}$, where $j \in\{1, \ldots, N\} \backslash\{i\}$. Lemma 5.7 gives a subsequence of $\{\varepsilon\}$, still denoted $\{\varepsilon\}$, and functions $\widetilde{\psi}^{(i)} \in L^{p}\left(\Omega, \partial_{i} ; W_{p e r}^{1, p}\left(\mathcal{S}^{[i]}\right)\right), \widehat{\psi}^{(i)} \in L^{p}\left(\Omega ; W_{p e r}^{1, p}(\mathcal{S})\right)$. Here, due to the above remark, we assume that $\boldsymbol{\mathcal { M }}_{\mathcal{S}^{(i)}}\left(\widehat{\psi}^{(i)}\right)=0$ a.e. in $\Omega \times \mathcal{S}^{(i)}$.
Thus, one has $(i \in\{1, \ldots, N\})$

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\psi_{\varepsilon}^{(i)}\right) \rightharpoonup \widetilde{\psi}^{(i)} \quad \text { weakly in } \quad L^{p}\left(\Omega ; W^{1, p}(\mathcal{S})\right), \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \psi_{\varepsilon}^{(i)}\right) \rightharpoonup \partial_{i} \widetilde{\psi}^{(i)}+\partial_{\mathbf{s}} \widehat{\psi}^{(i)} \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right)
\end{aligned}
$$

The above second convergence and $(6.11)_{2}$ yield

$$
\partial_{i} \phi+\partial_{\mathbf{S}} \widehat{\phi}=\widetilde{\psi}^{(i)} \quad \text { a.e. in } \Omega \times \mathcal{S}^{(i)}, \quad i \in\{1, \ldots, N\}
$$

Since $\widetilde{\psi}^{(i)}$ does not depend on $\mathbf{S}$ in $\mathcal{S}^{(i)}$ and $\widehat{\phi}$ is periodic with respect to $\mathbf{S}$ in $\mathcal{S}^{(i)}$ we have $\partial_{i} \phi=\widetilde{\psi}^{(i)}$ and $\partial_{\mathbf{S}} \widehat{\phi}=0$ a.e. $\Omega \times \mathcal{S}^{(i)}$ for every $i \in\{1, \ldots, N\}$.

Hence, $\widetilde{\psi}^{(i)}$ belongs to $L^{p}\left(\Omega, \partial_{i}\right)$ and thus $\partial_{i} \phi \in L^{p}\left(\Omega, \partial_{i}\right)$. Now, since $\Delta \phi \in L^{p}(\Omega)$ we have $\phi \in \mathcal{W}^{2, p}(\Omega)$. Therefore, the following convergences hold:

$$
\begin{aligned}
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightarrow \phi \quad \text { strongly in } \quad L^{p}\left(\Omega ; W^{2, p}(\mathcal{S})\right), \\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i} \phi \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right), \\
\mathcal{T}_{\varepsilon}^{\mathcal{E}}\left(\partial_{\mathbf{s}}^{2} \phi_{\varepsilon}\right) \rightharpoonup \partial_{i i}^{2} \phi+\partial_{\mathbf{S}} \widehat{\psi}^{(i)} \quad \text { weakly in } \quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right) .
\end{aligned}
$$

Moreover, we also have that, for each $i \in\{1, \ldots, N\}$ :
(6.12) $\frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right)-\mathcal{M}_{\mathcal{S}^{(i)}} \circ \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right)\right) \rightharpoonup \partial_{i i}^{2} \phi \mathbf{S}^{c}+\widehat{\psi}^{(i)} \quad$ weakly in $\quad L^{p}\left(\Omega \times \mathcal{S}^{(i)}\right)$.

Step 2. We prove the convergence $(6.10)_{3}$.
We have to prove the existence of $\widehat{\phi} \in L^{p}\left(\Omega ; W_{p e r, 0}^{2, p}(\mathcal{S})\right)$ such that

$$
\begin{cases}\partial_{\mathbf{S}} \widehat{\phi}=\widehat{\psi}^{(1)} & \text { a.e. in } \Omega \times \mathcal{S}^{(1)} \\ \vdots \\ \partial_{\mathbf{S}} \widehat{\phi}=\widehat{\psi}^{(N)} & \text { a.e. in } \Omega \times \mathcal{S}^{(N)}\end{cases}
$$

A necessary and sufficient condition to get existence of the function $\widehat{\phi}$ is (remind that $\left.A\left(k+\mathbf{e}_{i}\right)=A(k)+l_{i} \mathbf{e}_{i}\right)$

$$
\begin{align*}
& \int_{A(k)}^{A\left(k+\mathbf{e}_{i}\right)} \widehat{\psi}^{(i)}(\cdot, \mathbf{S}) d \mathbf{S}+\int_{A\left(k+\mathbf{e}_{i}\right)}^{A\left(k+\mathbf{e}_{i}+\mathbf{e}_{j}\right)} \widehat{\psi}^{(j)}(\cdot, \mathbf{S}) d \mathbf{S}  \tag{6.13}\\
\forall k \in \widehat{\mathbf{K}}, \quad & \int_{A(k)}^{A\left(k+\mathbf{e}_{j}\right)} \widehat{\psi}^{(j)}(\cdot, \mathbf{S}) d \mathbf{S}+\int_{A\left(k+\mathbf{e}_{j}\right)}^{A\left(k+\mathbf{e}_{i}+\mathbf{e}_{j}\right)} \widehat{\psi}^{(i)}(\cdot, \mathbf{S}) d \mathbf{S}
\end{align*}
$$

a.e. in $\Omega$.

Since on a line belonging to $\mathcal{S}^{(i)}$, one has (see Lemma 5.4) $\mathbf{S}^{c}=t-\frac{1}{2}, t \in[0,1]$, the above equality (6.13) is equivalent to $\forall k \in \widehat{\mathbf{K}}$,

$$
\begin{align*}
& \int_{A(k)}^{A\left(k+\mathbf{e}_{i}\right)}\left(\partial_{i i}^{2} \phi \mathbf{S}^{c}+\widehat{\psi}^{(i)}(\cdot, \mathbf{S})\right) d \mathbf{S}+\int_{A\left(k+\mathbf{e}_{i}\right)}^{A\left(k+\mathbf{e}_{i}+\mathbf{e}_{j}\right)}\left(\partial_{j j}^{2} \phi \mathbf{S}^{c}+\widehat{\psi}^{(j)}(\cdot, \mathbf{S})\right) d \mathbf{S} \\
= & \int_{A(k)}^{A\left(k+\mathbf{e}_{j}\right)}\left(\partial_{j j}^{2} \phi \mathbf{S}^{c}+\widehat{\psi}^{(j)}(\cdot, \mathbf{S})\right) d \mathbf{S}+\int_{A\left(k+\mathbf{e}_{j}\right)}^{A\left(k+\mathbf{e}_{i}+\mathbf{e}_{j}\right)}\left(\partial_{i i}^{2} \phi \mathbf{S}^{c}+\widehat{\psi}^{(i)}(\cdot, \mathbf{S})\right) d \mathbf{S} \tag{6.14}
\end{align*}
$$

a.e. in $\Omega$.

Convergence (6.12) gives (remind that $\partial_{i i}^{2} \phi$ does not depends on $\mathbf{S}$ )

$$
\begin{aligned}
& \int_{A(k)}^{A\left(k+\mathbf{e}_{i}\right)} \frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right)-\boldsymbol{M}_{\mathcal{S}^{(i)}} \circ \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right)\right) d \mathbf{S} \\
\forall k \in \widehat{\mathbf{K}} \quad \rightarrow & \int_{A(k)}^{A\left(k+\mathbf{e}_{i}\right)}\left(\partial_{i i}^{2} \phi \mathbf{S}^{c}+\widehat{\psi}^{(i)}\right) d \mathbf{S} \\
= & \partial_{i i}^{2} \phi \int_{k_{i} l_{i}}^{\left(k_{i}+1\right) l_{i}}\left(t-\frac{1}{2}\right) d t+\int_{A(k)}^{A\left(k+\mathbf{e}_{i}\right)} \widehat{\psi}^{(i)}(x, \mathbf{S}) d \mathbf{S} . .
\end{aligned}
$$

$$
\begin{align*}
& \int_{A(k)}^{A\left(k+\mathbf{e}_{j}\right)} \frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right)-\mathcal{M}_{\mathcal{S}^{(j)}} \circ \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right)\right) d \mathbf{S}  \tag{6.16}\\
+ & \int_{A\left(k+\mathbf{e}_{j}\right)}^{A\left(k+\mathbf{e}_{j}+\mathbf{e}_{i}\right)} \frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right)-\mathcal{M}_{\mathcal{S}^{(i)}} \circ \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right)\right) d \mathbf{S} .
\end{align*}
$$

admit the same limit or equivalently that the limit of their difference is 0 .
First we note that

$$
\begin{aligned}
\int_{A(k)}^{A\left(k+\mathbf{e}_{i}\right)} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{S}} \phi_{\varepsilon}\right) d \mathbf{S} & =\frac{1}{\varepsilon} \int_{A(k)}^{A\left(k+\mathbf{e}_{i}\right)} \partial_{\mathbf{S}} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) d \mathbf{S} \\
& =\frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k+\mathbf{e}_{i}\right)\right)-\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)(\cdot, A(k))\right) \text { a.e. in } \widetilde{\Omega}_{\varepsilon}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \frac{1}{\varepsilon}\left(\int_{A(k)}^{A\left(k+\mathbf{e}_{i}\right)} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) d \mathbf{S}+\int_{A\left(k+\mathbf{e}_{i}\right)}^{A\left(k+\mathbf{e}_{j}+\mathbf{e}_{i}\right)} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) d \mathbf{S}\right) \\
= & \frac{1}{\varepsilon}\left(\int_{A(k)}^{A\left(k+\mathbf{e}_{j}\right)} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) d \mathbf{S}+\int_{A\left(k+\mathbf{e}_{j}\right)}^{A\left(k+\mathbf{e}_{i}+\mathbf{e}_{j}\right)} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) d \mathbf{S}\right) \text { a.e. in } \widetilde{\Omega}_{\varepsilon} .
\end{aligned}
$$

Now, recall that the function $\mathcal{M}_{\mathcal{S}^{(i)}} \circ \mathcal{T}_{\mathcal{\varepsilon}}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right)$ is defined on $\widetilde{\Omega}_{\varepsilon} \times \mathcal{S}^{(i)}$ and is constant on every line of $\mathcal{S}^{(i)}$. One has a.e. in $\widetilde{\Omega}_{\varepsilon}$

$$
\begin{aligned}
\mathcal{M}_{\mathcal{S}^{(i)}} \circ \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) & =\int_{A\left(k^{\prime}\right)}^{A\left(k^{\prime}\right)+\mathbf{e}_{i}} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) d \mathbf{S}=\frac{1}{\varepsilon} \int_{A\left(k^{\prime}\right)}^{A\left(k^{\prime}\right)+\mathbf{e}_{i}} \partial_{\mathbf{S}} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) d \mathbf{S} \\
& =\frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}\right)+\mathbf{e}_{i}\right)-\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}\right)\right)\right)
\end{aligned}
$$

on $\widetilde{\Omega}_{\varepsilon} \times\left[A\left(k^{\prime}\right), A\left(k^{\prime}\right)+\mathbf{e}_{i}\right], k^{\prime} \in \widehat{\mathbf{K}}_{i}$.
Hence

$$
\begin{aligned}
& \int_{A(k)}^{A\left(k+\mathbf{e}_{i}\right)} \mathcal{M}_{\mathcal{S}^{(i)}} \circ \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) d \mathbf{S} \\
= & \frac{l_{i}}{\varepsilon}\left(\mathcal{T}_{\varepsilon} \mathcal{S}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}\right)+\mathbf{e}_{i}\right)-\mathcal{T}_{\varepsilon} \mathcal{S}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}\right)\right)\right) \text { a.e. in } \widetilde{\Omega}_{\varepsilon},
\end{aligned}
$$

where $k^{\prime} \in \widehat{\mathbf{K}}_{i}$ is such that $k=k^{\prime}+k_{i} \mathbf{e}_{i}$. Hence, we get

$$
\begin{aligned}
& \frac{1}{\varepsilon}\left(\int_{A(k)}^{A\left(k+\mathbf{e}_{i}\right)} \mathcal{M}_{\mathcal{S}^{(i)}} \circ \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) d \mathbf{S}-\int_{A\left(k+\mathbf{e}_{j}\right)}^{A\left(k+\mathbf{e}_{j}+\mathbf{e}_{i}\right)} \mathcal{M}_{\mathcal{S}^{(i)}} \circ \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) d \mathbf{S}\right) \\
= & \frac{l_{i}}{\varepsilon^{2}}\left(\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}\right)+\mathbf{e}_{i}\right)-\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}\right)\right)\right. \\
- & \left.\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}+\mathbf{e}_{j}\right)+\mathbf{e}_{i}\right)+\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}+\mathbf{e}_{j}\right)\right)\right) \text { a.e. in } \widetilde{\Omega}_{\varepsilon}
\end{aligned}
$$

where $k^{\prime} \in \widehat{\mathbf{K}}_{i}$ is such that $k=k^{\prime}+k_{i} \mathbf{e}_{i}$.
Now, we can apply Lemma 8.1 and claim that the limit of the difference of the quantities in (6.15) and (6.16) is equal to 0 . This proves (6.14) for every $k \in \widehat{\mathbf{K}}$. As a consequence, there exists a unique $\widehat{\phi} \in L^{p}\left(\Omega ; W_{p e r, 0}^{2, p}(\mathcal{S})\right)$ such that convergence $(6.10)_{3}$ holds.
7. Application: homogenization of a fourth 4th order homogeneous Dirichlet problem on a periodic lattice structure. We can now give a direct application of the periodic unfolding for sequences in $H^{2}\left(\mathcal{S}_{\varepsilon}\right)$.
From now on, let $\Omega$ be a bounded domain in $\mathbb{R}^{N}$ with a $\mathcal{C}^{1,1}$ boundary. Let $\left\{A_{\varepsilon}\right\}_{\varepsilon}$ be the sequence of functions belonging to $L^{\infty}\left(\mathcal{S}_{\varepsilon}\right)$ defined by

$$
A_{\varepsilon}(\mathbf{s}) \doteq A\left(\left\{\frac{\mathbf{s}}{\varepsilon}\right\}\right) \quad \text { for a.e. } \mathbf{s} \in \mathcal{S}_{\varepsilon}
$$

where $A$ belongs to $L^{\infty}(\mathcal{S})$ satisfies

$$
\begin{equation*}
\exists(c, C) \in(0,+\infty)^{2} \quad \text { such that } \quad c \leq A(\mathbf{S}) \leq C \quad \text { for a.e. } \mathbf{S} \in \mathcal{S} \tag{7.1}
\end{equation*}
$$

and let $\left\{g_{\varepsilon}\right\}_{\varepsilon}$ and $\left\{f_{\varepsilon}\right\}_{\varepsilon}$ be sequences in $L^{2}\left(\mathcal{S}_{\varepsilon}\right)$.
Set the space

$$
H_{0}^{1}\left(\mathcal{S}_{\varepsilon}\right) \doteq\left\{\phi \in H^{1}\left(\mathcal{S}_{\varepsilon}\right) \mid \phi=0 \text { a.e. on } \partial \widetilde{\Omega}_{\varepsilon} \cap \mathcal{S}_{\varepsilon}\right\}
$$

By the Poincaré and Poincaré-Wirtinger inequalities, we have

$$
\forall \phi \in H_{0}^{1}\left(\mathcal{S}_{\varepsilon}\right) \cap H^{2}\left(\mathcal{S}_{\varepsilon}\right), \quad\|\phi\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)} \leq C\left\|\partial_{\mathbf{s}} \phi\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)} \leq C\left\|\partial_{\mathbf{s}}^{2} \phi\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}
$$

where the constants do not depend on the parameter $\varepsilon$ (note that $\mathcal{M}_{\mathcal{S}^{(i)}}\left(\partial_{\mathbf{s}} \phi\right)=0$ for every $i \in\{1, \ldots, N\}$ ).
Consider the 4th order homogeneous Dirichlet problem in variational formulation:

$$
\left\{\begin{array}{l}
\text { Find } u_{\varepsilon} \in H_{0}^{1}\left(\mathcal{S}_{\varepsilon}\right) \cap H^{2}\left(\mathcal{S}_{\varepsilon}\right) \text { such that: }  \tag{7.2}\\
\int_{\mathcal{S}_{\varepsilon}} A_{\varepsilon} \partial_{\mathbf{s}}^{2} u_{\varepsilon} \partial_{\mathbf{s}}^{2} \phi d \mathbf{s}=\int_{\mathcal{S}_{\varepsilon}} g_{\varepsilon} \partial_{\mathbf{s}} \phi d \mathbf{s}+\int_{\mathcal{S}_{\varepsilon}} f_{\varepsilon} \phi d \mathbf{s}, \quad \forall \phi \in H_{0}^{1}\left(\mathcal{S}_{\varepsilon}\right) \cap H^{2}\left(\mathcal{S}_{\varepsilon}\right) .
\end{array}\right.
$$

The Lax-Milgram theorem implies that the problem (7.2) has a unique solution. Moreover, one has

$$
\begin{aligned}
c\left\|\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}^{2} & \leq\left\|g_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}\left\|\partial_{\mathbf{s}} u_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|f_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}\left\|u_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)} \\
& \leq C\left(\left\|g_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|f_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}\right)\left\|\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}} u_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)} \leq C\left(\left\|g_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|f_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}\right) \tag{7.3}
\end{equation*}
$$

The constant does not depend on $\varepsilon$.
Below, we give the periodic homogenization via unfolding.

THEOREM 7.1. Let $u_{\varepsilon}$ be the solution of problem (7.2) and $\left\{g_{\varepsilon}\right\}_{\varepsilon},\left\{f_{\varepsilon}\right\}_{\varepsilon}$ satisfying

$$
\begin{array}{lll}
\varepsilon^{\frac{1-N}{2}} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(g_{\varepsilon}\right) \rightarrow g & \text { strongly in } & L^{2}(\Omega \times \mathcal{S}) \\
\varepsilon^{\frac{1-N}{2}} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(f_{\varepsilon}\right) \rightarrow f & \text { strongly in } & L^{2}(\Omega \times \mathcal{S}) \tag{7.4}
\end{array}
$$

Then, there exist functions $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and $\widehat{u} \in L^{2}\left(\Omega ; H_{p e r, 0}^{2}(\mathcal{S})\right)$ such that $(i \in\{1, \ldots, N\})$

$$
\begin{align*}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(u_{\varepsilon}\right) \rightarrow u \quad \text { strongly in } \quad L^{2}\left(\Omega ; H^{2}(\mathcal{S})\right) \\
& \mathcal{T}_{\varepsilon}{ }^{\mathcal{S}}\left(\partial_{\mathbf{s}} u_{\varepsilon}\right) \rightharpoonup \partial_{i} u \quad \text { weakly in } \quad L^{2}\left(\Omega ; H^{1}\left(\mathcal{S}^{(i)}\right)\right)  \tag{7.5}\\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right) \rightarrow \partial_{i i}^{2} u+\partial_{\mathbf{S}}^{2} \widehat{u} \quad \text { strongly in } \quad L^{2}\left(\Omega \times \mathcal{S}^{(i)}\right)
\end{align*}
$$

The couple $(u, \widehat{u})$ is the unique solution of problem

$$
\left\{\begin{array}{l}
\sum_{i=1}^{N} \frac{1}{|\mathcal{S}|} \int_{\Omega \times \mathcal{S}^{(i)}} A\left(\partial_{i i}^{2} u+\partial_{\mathbf{S}}^{2} \widehat{u}\right)\left(\partial_{i i}^{2} \phi+\partial_{\mathbf{S}}^{2} \widehat{\phi}\right) d x d \mathbf{S}  \tag{7.6}\\
=\int_{\Omega} G \cdot \nabla \phi d x+\int_{\Omega} F \phi d x \\
\forall \phi \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \text { and } \forall \widehat{\phi} \in L^{2}\left(\Omega ; H_{p e r, 0}^{2}(\mathcal{S})\right)
\end{array}\right.
$$

where

$$
G \doteq \sum_{i=1}^{N} \frac{1}{|\mathcal{S}|}\left(\int_{\mathcal{S}^{(i)}} g(\cdot, \mathbf{S}) d \mathbf{S}\right) \mathbf{e}_{i}, \quad F \doteq \frac{1}{|\mathcal{S}|} \int_{\mathcal{S}} f(\cdot, \mathbf{S}) d \mathbf{S}
$$

Proof. Step 1. We show (7.6).
The solution $u_{\varepsilon}$ of (7.2) satisfies (7.3). Due to the convergences (7.4) we have that

$$
\left\|u_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}} u_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right\|_{L^{2}\left(\mathcal{S}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{1-N}{2}}
$$

The constant does not depend on $\varepsilon$.
Hence, up to a subsequence of $\{\varepsilon\}$, still denoted $\{\varepsilon\}$, Theorem 6.4 gives functions $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and $\widehat{u} \in L^{p}\left(\Omega ; H_{p e r, 0}^{2}(\mathcal{S})\right)$ such that the following convergences hold $(i \in\{1, \ldots, N\})$ :

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(u_{\varepsilon}\right) \rightarrow u \quad \text { strongly in } \quad L^{2}\left(\Omega ; H^{2}(\mathcal{S})\right) \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} u_{\varepsilon}\right) \rightharpoonup \partial_{i} u \quad \text { weakly in } \quad L^{2}\left(\Omega ; H^{1}\left(\mathcal{S}^{(i)}\right)\right), \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right) \rightharpoonup \partial_{i i}^{2} u+\partial_{\mathbf{S}}^{2} \widehat{u} \quad \text { weakly in } \quad L^{2}\left(\Omega \times \mathcal{S}^{(i)}\right) .
\end{aligned}
$$

Now, we choose the test functions

- $\phi$ in $\mathcal{C}^{\infty}(\bar{\Omega}) \cap H_{0}^{1}(\Omega)$,
- $\Phi$ in $\mathcal{D}(\Omega)$,
- $\widehat{\phi}$ in $H_{p e r, 0}^{2}(\mathcal{S})$.

Set

$$
\phi_{\varepsilon}(x) \doteq \varepsilon^{\frac{1-N}{2}}\left(\phi(\mathbf{s})+\varepsilon^{2} \Phi(\mathbf{s}) \widehat{\phi}\left(\frac{\mathbf{s}}{\varepsilon}\right)\right), \quad \text { a.e. } \quad \mathbf{s} \in \mathcal{S}_{\varepsilon}
$$

Applying the unfolding operator to the sequence $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$, we get that $(i \in\{1, \ldots, N\})$

$$
\begin{aligned}
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) \rightarrow \phi \quad \text { strongly in } \quad L^{2}\left(\Omega ; H^{2}(\mathcal{S})\right) \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) \rightarrow \partial_{i} \phi \quad \text { strongly in } \quad L^{2}\left(\Omega ; H^{1}\left(\mathcal{S}^{(i)}\right)\right) \\
& \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} \phi_{\varepsilon}\right) \rightarrow \partial_{i i}^{2} \phi+\Phi \partial_{\mathbf{S}}^{2} \widehat{\phi} \quad \text { strongly in } \quad L^{2}\left(\Omega \times \mathcal{S}^{(i)}\right) .
\end{aligned}
$$

Taking $\phi_{\varepsilon}$ as test function in (7.2), then transforming by unfolding and passing to the limit give (7.6) with $(\phi, \Phi \widehat{\phi})$. By density argumentation, we extend such results to all $\phi \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and $\widehat{\phi} \in L^{2}\left(\Omega ; H_{p e r, 0}^{2}(\mathcal{S})\right)$. Since the solution is unique, the whole sequences converge to their limit.
Step 2. We show that convergence $(7.5)_{3}$ is strong.
Taking $\phi=u_{\varepsilon}$ in (7.2), then transforming by unfolding and using the weak lower semicontinuity yield

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega \times \mathcal{S}^{(i)}} A\left|\partial_{i i}^{2} u+\partial_{\mathbf{S}}^{2} \widehat{u}\right|^{2} d x d \mathbf{S} \\
& \leq \liminf _{\varepsilon \rightarrow 0} \sum_{i=1}^{N} \int_{\Omega \times \mathcal{S}} \mathcal{T}_{\varepsilon}\left(A_{\varepsilon}\right)\left|\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right)\right|^{2} d x d \mathbf{S} \leq \liminf _{\varepsilon \rightarrow 0} \varepsilon^{N-1} \sum_{i=1}^{N} \int_{\mathcal{S}_{\varepsilon}} A_{\varepsilon}\left|\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right|^{2} d \mathbf{s} \\
& \leq \limsup _{\varepsilon \rightarrow 0} \varepsilon^{N-1} \sum_{i=1}^{N} \int_{\mathcal{S}_{\varepsilon}} A_{\varepsilon}\left|\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right|^{2} d \mathbf{s}=\limsup _{\varepsilon \rightarrow 0} \varepsilon^{N-1}\left(\int_{\mathcal{S}_{\varepsilon}} g_{\varepsilon} \partial_{\mathbf{s}} u_{\varepsilon} d \mathbf{s}+\int_{\mathcal{S}_{\varepsilon}} f_{\varepsilon} u_{\varepsilon} d \mathbf{s}\right) \\
& =|\mathcal{S}|\left(\int_{\Omega} G \cdot \nabla \phi d x+\int_{\Omega} F \phi d x\right)=\sum_{i=1}^{N} \int_{\Omega \times \mathcal{S}^{(i)}} A\left|\partial_{i i}^{2} u+\partial_{\mathbf{S}}^{2} \widehat{u}\right|^{2} d x d \mathbf{S} .
\end{aligned}
$$

Also observe that

$$
\begin{aligned}
& \liminf _{\varepsilon \rightarrow 0} \sum_{i=1}^{N} \int_{\Omega \times \mathcal{S}} \mathcal{T}_{\varepsilon}\left(A_{\varepsilon}\right)\left|\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right)\right|^{2} d x d \mathbf{S} \leq \limsup _{\varepsilon \rightarrow 0} \sum_{i=1}^{N} \int_{\Omega \times \mathcal{S}} \mathcal{T}_{\varepsilon}\left(A_{\varepsilon}\right)\left|\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right)\right|^{2} d x d \mathbf{S} \\
& \leq \limsup \varepsilon^{N-1} \sum_{i=1}^{N} \int_{\mathcal{S}_{\varepsilon}} A_{\varepsilon}\left|\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right|^{2} d \mathbf{s}
\end{aligned}
$$

From the above inequalities it follows that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \sum_{i=1}^{N} \int_{\mathcal{S}_{\varepsilon}} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(A_{\varepsilon}\right)\left|\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right)\right|^{2} d x d \mathbf{S} \\
= & \lim _{\varepsilon \rightarrow 0} \sum_{i=1}^{N} \int_{\mathcal{S}_{\varepsilon}} A_{\varepsilon}\left|\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right|^{2} d \mathbf{s}=\sum_{i=1}^{N} \int_{\Omega \times \mathcal{S}^{(i)}} A\left|\partial_{i i}^{2} u+\partial_{\mathbf{S}}^{2} \widehat{u}\right|^{2} d x d \mathbf{S} .
\end{aligned}
$$

Since the map $\Psi \in L^{2}(\Omega \times \mathcal{S}) \longmapsto \sqrt{\int_{\Omega \times \mathcal{S}} A|\Psi|^{2} d x d \mathbf{S}}$ is a norm equivalent to the usual norm of $L^{2}(\Omega \times \mathcal{S})$, we get

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega \times \mathcal{S}}\left|\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}}^{2} u_{\varepsilon}\right)\right|^{2} d x d \mathbf{S}=\int_{\Omega \times \mathcal{S}}\left|\partial_{i i}^{2} u+\partial_{\mathbf{S}}^{2} \widehat{u}\right|^{2} d x d \mathbf{S}
$$

This, together with the fact that $(7.5)_{3}$ already converge weakly, ensures the strong convergence.
We define the corrector $\widehat{\chi}_{k}, k \in\{1, \ldots, N\}$, as the unique solution in $H_{p e r, 0}^{2}(\mathcal{S})$ of the cell problem

$$
\begin{equation*}
\int_{\mathcal{S}} A\left(\mathbf{1}_{\mathcal{S}^{(k)}}+\partial_{\mathbf{S}}^{2} \widehat{\chi}_{k}\right) \partial_{\mathbf{S}}^{2} \widehat{w} d \mathbf{S}=0, \quad \forall \widehat{w} \in H_{p e r, 0}^{2}(\mathcal{S}) \tag{7.7}
\end{equation*}
$$

Replacing the above expression of $\widehat{u}$ in (7.6) and choosing

$$
\widehat{\phi}(x, \mathbf{S})=\sum_{k=1}^{N} \partial_{k k}^{2} \phi(x) \widehat{\chi}_{k}(\mathbf{S}), \quad \text { for a.e. }(x, \mathbf{S}) \in \Omega \times \mathcal{S}
$$

lead to the following left hand side of (7.6):

$$
\begin{aligned}
& \frac{1}{|\mathcal{S}|} \int_{\Omega \times \mathcal{S}} A\left(\sum_{i=1}^{N}\left(\mathbf{1}_{\mathcal{S}^{(i)}}+\partial_{\mathbf{S}}^{2} \widehat{\chi}_{i}\right) \partial_{i i}^{2} u\right)\left(\sum_{j=1}^{N}\left(\mathbf{1}_{\mathcal{S}^{(j)}}+\partial_{\mathbf{S}}^{2} \widehat{\chi}_{j}\right) \partial_{j j}^{2} \phi\right) d x d \mathbf{S} \\
& =\int_{\Omega} \sum_{i, j=1}^{N}\left(\frac{1}{|\mathcal{S}|} \int_{\mathcal{S}} A\left(\mathbf{1}_{\mathcal{S}^{(i)}}+\partial_{\mathbf{S}}^{2} \widehat{\chi}_{i}\right)\left(\mathbf{1}_{\mathcal{S}^{(j)}}+\partial_{\mathbf{S}}^{2} \widehat{\chi}_{j}\right) d \mathbf{S}\right) \partial_{i i}^{2} u \partial_{j j}^{2} \phi d x
\end{aligned}
$$

Taking into account (7.7), the above expression becomes $\int_{\Omega} A^{h o m} \partial^{2} u \cdot \partial^{2} \phi d x$ with the matrix $A^{h o m}$ given by (7.9).
We prove now that $A^{h o m}$ is coercive. Let $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{N}\right) \in \mathbb{R}^{N}$ be a vector with fixed entries. From (7.9) we first have

$$
\begin{aligned}
A^{h o m} \boldsymbol{\xi} \cdot \boldsymbol{\xi} & =\frac{1}{|\mathcal{S}|} \sum_{i, j=1}^{N} \int_{\mathcal{S}} A\left(\mathbf{1}_{\mathcal{S}^{(i)}}+\partial_{\mathbf{S}}^{2} \widehat{\chi}_{i}\right)\left(\mathbf{1}_{\mathcal{S}^{(j)}}+\partial_{\mathbf{S}}^{2} \widehat{\chi}_{j}\right) d \mathbf{S} \xi_{i} \xi_{j} \\
& =\frac{1}{|\mathcal{S}|} \int_{\mathcal{S}} A\left(\widetilde{\boldsymbol{\xi}}+\partial_{\mathbf{S}}^{2} \widehat{\chi} \boldsymbol{\xi}\right)^{2} d \mathbf{S}
\end{aligned}
$$

where

$$
\widetilde{\boldsymbol{\xi}} \doteq \sum_{i=1}^{N} \xi_{i} \mathbf{1}_{\mathcal{S}^{(i)}}, \quad \widehat{\chi}_{\boldsymbol{\xi}}=\sum_{k=1}^{N} \xi_{k} \widehat{\chi}_{k}, \quad \text { a.e. in } \mathcal{S} \text { and for all } \boldsymbol{\xi} \in \mathbb{R}^{N}
$$

Then, by hypothesis (7.1) on $A$, we get

$$
A^{h o m} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \frac{c}{|\mathcal{S}|}\left\|\widetilde{\boldsymbol{\xi}}+\partial_{\mathbf{S}}^{2} \widehat{\chi} \boldsymbol{\xi}\right\|_{L^{2}(\mathcal{S})}^{2}
$$

By the periodicity of $\partial_{\mathbf{S}} \widehat{\chi} \boldsymbol{\xi}$, for every $\boldsymbol{\xi} \in \mathbb{R}^{N}$ we get that

$$
\begin{aligned}
\left\|\widetilde{\boldsymbol{\xi}}+\partial_{\mathbf{S}}^{2} \widehat{\chi}_{\boldsymbol{\xi}}\right\|_{L^{2}(\mathcal{S})}^{2} & =\|\widetilde{\boldsymbol{\xi}}\|_{L^{2}(\mathcal{S})}^{2}+\left\|\partial_{\mathbf{S}}^{2} \widehat{\chi}_{\boldsymbol{\xi}}\right\|_{L^{2}(\mathcal{S})}^{2} \geq\|\widetilde{\boldsymbol{\xi}}\|_{L^{2}(\mathcal{S})}^{2} \\
& =\sum_{i=1}^{N}\left|\mathcal{S}^{(i)} \| \xi_{i}\right|^{2} \geq \min _{k}\left|\mathcal{S}^{(k)}\right| \sum_{i=1}^{N}\left|\xi_{i}\right|^{2}=\left(\min _{k}\left|\mathcal{S}^{(k)}\right|\right)|\boldsymbol{\xi}|^{2}
\end{aligned}
$$

Thus the coercivity of $A^{h o m}$ is proved since

$$
A^{h o m} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq c|\boldsymbol{\xi}|^{2}, \quad \forall \boldsymbol{\xi} \in \mathbb{R}^{N}
$$

By the coercivity of $A^{\text {hom }}$ and the fact that $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, problem (7.8) admits a unique solution.

## 8. Appendix.

Lemma 8.1. Let $\left\{\phi_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $W^{2, p}\left(\mathcal{S}_{\varepsilon}\right), p \in(1,+\infty)$, satisfying

$$
\left\|\phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)}+\left\|\partial_{\mathbf{s}}^{2} \phi_{\varepsilon}\right\|_{L^{p}\left(\mathcal{S}_{\varepsilon}\right)} \leq C \varepsilon^{\frac{1-N}{p}}
$$

For every $k^{\prime} \in \widehat{\mathbf{K}}$ we define in $\widetilde{\Omega}_{\varepsilon} \times \widehat{\mathbf{K}}_{i}$ the piecewise constant function $\Phi_{\varepsilon}^{(i, j)}$, where $(i, j) \in\{1, \ldots, N\}^{2}, i \neq j$, by

$$
\Phi_{\varepsilon}^{(i, j)}\left(\cdot, k^{\prime}\right) \doteq\left\{\begin{array}{c}
\frac{l_{i}}{\varepsilon^{2}}\left(\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}\right)+\mathbf{e}_{i}\right)-\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}\right)\right)\right. \\
\left.-\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}+\mathbf{e}_{j}\right)+\mathbf{e}_{i}\right)+\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right)\left(\cdot, A\left(k^{\prime}+\mathbf{e}_{j}\right)\right)\right) \\
\text { a.e. in } \widetilde{\Omega}_{\varepsilon} \times \widehat{\mathbf{K}}_{i} \\
0 \\
\text { a.e. in }\left(\mathbb{R}^{N} \backslash \widetilde{\Omega}_{\varepsilon}\right) \times \widehat{\mathbf{K}}_{i} .
\end{array}\right.
$$

Then, there exist a subsequence of $\{\varepsilon\}$, still denoted $\{\varepsilon\}$, and $\phi \in W^{1, p}(\Omega) \cap W_{l o c}^{2, p}(\Omega)$ such that $\left((i, j) \in\{1, \ldots, N\}^{2}, i \neq j, k^{\prime} \in \widehat{\mathbf{K}}_{i}\right)$

$$
\begin{align*}
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\phi_{\varepsilon}\right) & \rightarrow \phi \quad \text { strongly in } \quad L^{p}\left(\Omega ; W^{2, p}(\mathcal{S})\right) \\
\mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) & \rightharpoonup \partial_{j} \phi \quad \text { weakly in } \quad L^{p}\left(\Omega ; W^{1, p}\left(\mathcal{S}^{(j)}\right)\right),  \tag{8.1}\\
\Phi_{\varepsilon}^{(i, j)}\left(\cdot, k^{\prime}\right) & \rightharpoonup-l_{i} l_{j} \partial_{i j}^{2} \phi \quad \text { weakly in } \quad W^{-1, p}\left(\mathbb{R}^{N}\right) .
\end{align*}
$$

Proof. There exist a subsequence of $\{\varepsilon\}$, still denoted $\{\varepsilon\}$, and a function $\phi$ in the space $W^{1, p}(\Omega) \cap W_{l o c}^{2, p}(\Omega)$ such that convergences (8.1) $)_{1,2}$ hold (see Theorem 6.4).

Now, let $\psi$ be in $W^{1, p^{\prime}}\left(\mathbb{R}^{N}\right)$, one has

$$
\begin{aligned}
& \int_{\Omega} \psi(x) \Phi_{\varepsilon}^{(i, j)}\left(x, k^{\prime}\right) d x \\
& =\varepsilon^{N} \sum_{\xi \in \mathbb{Z}^{N}} \mathcal{M}_{Y}(\psi)(\varepsilon \xi) \frac{l_{i}}{\varepsilon^{2}}\left(\phi_{\varepsilon}\left(\varepsilon \xi+\varepsilon A\left(k^{\prime}\right)+\varepsilon \mathbf{e}_{i}\right)-\phi_{\varepsilon}\left(\varepsilon \xi+\varepsilon A\left(k^{\prime}\right)\right)\right. \\
& \left.\quad-\phi_{\varepsilon}\left(\varepsilon \xi+\varepsilon A\left(k^{\prime}+\varepsilon \mathbf{e}_{j}\right)+\varepsilon \mathbf{e}_{i}\right)+\phi_{\varepsilon}\left(\varepsilon \xi+\varepsilon A\left(k^{\prime}+\mathbf{e}_{j}\right)\right)\right) \\
& =\varepsilon^{N} l_{i} \sum_{\xi \in \mathbb{Z}^{N}} \frac{\mathcal{M}_{Y}(\psi)\left(\varepsilon \xi-\varepsilon \mathbf{e}_{i}\right)-\mathcal{M}_{Y}(\psi)(\varepsilon \xi)}{\varepsilon} \frac{\phi_{\varepsilon}\left(\varepsilon \xi+\varepsilon A\left(k^{\prime}\right)\right)-\phi_{\varepsilon}\left(\varepsilon \xi+\varepsilon A\left(k^{\prime}+\mathbf{e}_{j}\right)\right)}{\varepsilon} \\
& =l_{i} \int_{\Omega} \frac{\psi-\psi\left(\cdot-\varepsilon \mathbf{e}_{i}\right)}{\varepsilon}\left(\int_{A\left(k^{\prime}\right)}^{A\left(k^{\prime}+\mathbf{e}_{j}\right)} \mathcal{T}_{\varepsilon}^{\mathcal{S}}\left(\partial_{\mathbf{s}} \phi_{\varepsilon}\right) d \mathbf{S}\right) d x .
\end{aligned}
$$

Then, due to convergences $(8.1)_{2}$, we get

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} \psi(x) \Phi_{\varepsilon}^{(i, j)}\left(x, k^{\prime}\right) d x=l_{i} \int_{\Omega} \partial_{i} \psi\left(\int_{A\left(k^{\prime}\right)}^{A\left(k^{\prime}+\mathbf{e}_{j}\right)} \partial_{j} \phi d \mathbf{S}\right) d x=l_{i} l_{j} \int_{\Omega} \partial_{i} \psi \partial_{j} \phi d x
$$

Hence, $(8.1)_{3}$ is proved.

1] Abrate S.: Continuum modeling of lattice structures III, Shock Vibration Digest 23 (1991) 16-21.
[2] Caillerie D. and Moreau G.: Homogénéisation discrète: application aux treillis en forme de coque et à l'élasticité. Huitièmes entretiens du centre Jacques Cartier, Élasticité, viscoélasticité et contrôle optimal, aspects théoriques et numériques, Lyon, France 68, Décembre 1995.
[3] Gilbarg D. and Trudinger N. S.: Elliptic Partial Differential Equations of Second Order, Springer Verlag, Heldelberg, New York, 1997.
[4] Panasenko G. P.: Homogenization of lattice-like domains: L-convergence. Pitman research notes in mathematics series, (1998), 259-280.
[5] Lenczner M. and Senouci-Bereksi G.: Homogenization of electrical networks including voltage-to-voltage amplifiers, Math. Models and Methods in Appl. Sciences, 9, 6 (1999), 899-932.
[6] Casado-Diaz J., Luna-Laynez M., and Martin J. D.: An adaptation of the multi-scale methods for the analysis of very thin reticulated structures, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 223-228.
[7] Lenczner M. and Mercier D.: Homogenization of periodic electrical networks including voltage to current amplifiers, SIAM Multiscale Model. Simul., 2, 3 (2004), 359-397.
[8] Cioranescu D., Damlamian A. and Griso G.: The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems. Springer, Singapore (2018). 10.1007/978-981-13-3032-2.
[9] Griso G., Hauck M., Orlik J.: Asymptotic analysis for periodic perforated shells. ESAIM: M2AN. https://doi.org/10.1051/m2an/2020067
[10] Griso G., Orlik J., Wackerle S.: Asymptotic Behavior for Textiles in von-Kármán regime. J. Math. Pures Appl, 144, 164-193 (2020)
[11] Griso G., Orlik J., Wackerle S.: Homogenization of textiles. SIAM J. Math. Anal., $52(2)$, 1639-1689, (2020)
[12] Griso G., Khilkova L., Orlik J., Sivak O.: Homogenization of perforated elastic structures, J. Elast., 141, 181-225 (2020), DOI: 10.1007/s10659-020-09781
[13] Griso G., Khilkova L., Orlik J., Sivak O.: Asymptotic behavior of Stable Structures Made of Beams. J. Elast (2021). https://doi.org/10.1007/s10659-021-09816-w
[14] Falconi R., Griso G. and Orlik J.: Periodic unfolding for anisotropically bounded sequences (submitted)
[15] Griso G., Khilkova L., Orlik J.: Asymptotic behavior of unstable structures made of beams (submitted).


[^0]:    *Fraunhofer ITWM, 67663 Kaiserslautern, Germany, falconi@itwm.fhg.de
    ${ }^{\dagger}$ Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F75005 Paris, France, griso@ljll.math.upmc.fr
    ${ }^{\ddagger}$ Fraunhofer ITWM, 67663 Kaiserslautern, Germany, orlik@itwm.fhg.de

[^1]:    ${ }^{2}$ One has $\mathbf{S}=A(k)+t \mathbf{e}_{i}$ in the line $\left[A(k), A(k)+t \mathbf{e}_{i}\right], t \in[0,1], k \in \widehat{\mathbf{K}}_{i}$. Hence $\mathbf{S}^{c}=t-1 / 2$.

[^2]:    ${ }^{3}$ In fact, we have $\rho D^{2} u \in L^{p}(\Omega)^{N \times N}$ where $\rho(x)=\operatorname{dist}(x, \partial \Omega)$ for all $x \in \mathbb{R}^{N}$.

