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PERIODIC UNFOLDING FOR LATTICE STRUCTURES

RICCARDO FALCONI*, GEORGES GRISOt, AND JULIA ORLIK?

Abstract. This paper deals with the periodic unfolding for sequences defined on one dimensional
lattices in RYV. In order to port the known results of the periodic unfolding in RN to lattices, the
investigation of functions defined as interpolation on lattice nodes play the main role. The asymptotic
behavior for sequences defined on periodic lattices with information until the first and until the second
order derivatives are shown. In the end, a direct application of the results is given by homogenizing
a 4th order Dirichlet problem defined on a periodic lattice.

Key words. Periodic Unfolding Method, homogenization, lattice graphs, anisotropic Sobolev
spaces, thin structures

AMS subject classifications. 31C25, 35B27, 46E35, 49J45

1. Introduction. In the present, starting from the results obtained in [8, 14]
about the periodic unfolding method for sequences defined on bounded domains in
RY, we show in detail how to port such results to one-dimensional periodic lattice
structures, spotting the obstacles we encountered and the tools we came up with to
overcome them.

Given a small parameter ¢ and a bounded domain Q C RY with Lipschitz boundary,
we consider the periodic paving of  made with cells of size e. In [8, Section 1.4]
it is extensively investigated the asymptotic behavior of sequences {¢.}. uniformly
bounded in W1P(Q) and in WP (), while the entirety of [14] is devoted to sequences
anisotropically bounded on W1P(Q). In this paper, we first introduce the periodic
lattice S. C RN as one-dimensional arbitrary grids defined on the ¢ cells and periodi-
cally repeated for each cell of 2. The main idea to port the periodic unfolding results
from Q C RY to S. is based on extending the sequences bounded on S. by different
interpolation on the lattice nodes, applying the unfolding results in R" and then re-
stricting the convergences to the lattice itself. Specifically, the ()1 interpolation on
lattice nodes (already introduced in [12, 13]) allows to show the asymptotic behavior
of sequences uniformly bounded in W1?(S.) and anisotropically on W1P(S,), while
for sequences bounded in W2P(S.) some more work is involved due to the lack of
mixed derivatives. Starting from different assumption strengths and leading to differ-
ent regularity of the unfolded limit fields, two methods are developed (one involving
extensions by a special @3 interpolation and another involving the obtained results
for sequences bounded in W1P(S.)). The sufficient assumptions on the sequences to
ensure weak convergence in the space, as well as the rescaling factors for the unfolding
operator for lattices according to the space dimension N and the LP norm are proved.
In the end, a direct application of such lemmas is done by homogenizing via unfolding
the fourth order homogeneous Dirichlet problem defined on a lattice structure

Find u. € HJ(S.) N H*(S.) such that:

[Abuttods = [ goovdst [ fods. voe HIS)NHAS.)
55 Ss Ss
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2 R. FALCONI, G. GRISO, J. ORLIK

The homogenization via unfolding method, an equivalent to the two-scale convergence,
has been exhaustively explained in [8] and it is a constant reference throughout this
work. The method itself has, among many others, found application in the homog-
enization for thin periodic structures like periodically perforated shells (see [9]) and
textiles made of long curved beams (see [10, 11]). About the homogenization in the
frame of lattice structures one can look, for an instance, into [1, 2, 4, 5, 6, 7].

The present provides the main tools concerning the unfolding for lattice structures
and gives a rigorous base for up-coming papers dealing with thin structures made
from lattices. Among them, we would like to cite the homogenization via unfolding
for stable lattice structures made of beams (see [12, 13]) and the upcoming unstable
case [15], where it is additionally taken into consideration the problem of an aniso-
tropically bounded sequence. More generally, such tools can be applied to many other
problems related to partial differential equations on domains involving periodic grids,
lattices, thin frames and glued fiber structures.

The paper is organized as follows. In section 2, the standard notation and tools for
the classical homogenization via unfolding method in periodic domains Q C RY are
listed. In section 3, we recall the main results concerning the periodic unfolding for
sequences defined as @)1 interpolated on the vertexes of the e cells paving Q and
bounded uniformly and anisotropically on W1?(Q), whose properties will be needed
in the next sections. In section 4, we give a rigorous definition of one-dimensional
lattice structure S C €2, build the unfolding operator for lattices and give its main
properties. In section 5, we show the asymptotic behavior of sequences asymptot-
ically and uniformly bounded in W'P(S.). We first do it for functions defined as
()1 interpolated on lattice nodes, showing that for such sequences, the unfolding for
lattices is the mere extension of the functions from S. to RY by @, interpolation,
application of the known results in section 3 and then restriction of the convergences
to the lattice itself. Later, we extend the results to Sobolev spaces by first decom-
posing them into ) interpolated part and reminder term. In section 6, we show the
asymptotic behavior of sequences asymptotically and uniformly bounded in W27 (S,).
The nature of a sequence bounded on a lattice leads to the lack of mixed derivatives,
since the derivation only makes sense in the lattice directions. To overcome such
deficiency, two approach are considered, one by a procedure analogous to section 5
but with a decomposition on (3 interpolation on lattice nodes and reminder term,
and one by using twice (on the sequence and on the sequence gradient) the proved
for functions bounded in W1P(S.). At last, in section 7 we consider the fourth order
Dirichlet problem shown above. Using the results in the previous sections, existence
and uniqueness of the limit problem are shown and through the homogenization via
unfolding, the cell problems and the macroscopic limit problem are found.

2. Preliminaries and notation. Let RY be the euclidean space with usual
basis (eq,...,eyx) and Y = (0,1)" the open unit parallelotope associated with this
basis. For a.e. z € R, we set the unique decomposition z = [z]y + {2}y such that

N
[Z]y = Zkiei, k= (k’l, .. .,kN) (S ZN and {Z}y =z— [Z]y ey.
=1

Let {e} be a sequence of strictly positive parameters going to 0. We scale our paving
by € writing

(2.1) xze{g}y—i—a{g}y for a.e. z € RY.

This manuscript is for review purposes only.
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PERIODIC UNFOLDING FOR LATTICE STRUCTURES 3

Let now Q be a bounded domain in RY with Lipschitz boundary. We consider
E.={¢ezV |e(¢+Y)CQ}

and set

(2.2) Q. iint{ U a(§+?)}, A =0\ Q..

£EE.
We recall the definitions of classical unfolding operator and mean value operator.

DEFINITION 2.1. (see [8, Definition 1.2]) For every measurable function ¢ on Q,
the unfolding operator T is defined as follows:

(6) = ¢(6{§}Y + 5y) for a.e. (z,y) € ﬁs xY,
0 for a.e. (z,y) € Ac X Y.

7

Note that such an operator acts on functions defined in 2 by operating on their
restriction to €.

DEFINITION 2.2. (see [8, Definition 1.10]) For every measurable function (E on
LY (Q x Y), the mean value operator My is defined as follows:

-~

My (¢)(z) = % /Y $(x,y)dy, for a.e. x € Q.

Let p € [1,+0c]. From [8, Propositions 1.8 and 1.11], we recall the properties of these
operators:

IT-@)lr@xv) < IV 176l for every ¢ € LP(9),
My (D)o < Y] 7@l rxy)  for every ¢ e LP(Qx Y).
Since we will deal with Sobolev spaces, we give hereafter some definitions:
WoR(Y) = {p e W'P(Y) | ¢ is periodic with respect to y;, i € {1,...,N}},

per

Wyl oY) = {6 € Wo(Y) | My (¢) =0},

per,0

L WP (Y) = {pe LP(QAxY) | Vyp e LP(Ax Y)V}.

Now, let (N7, N3) be in N x N* such that N = Nj + N3. We split the space by setting
Ny
RNl — {x/ GRN ’ xlzzxiei’ xZ; GR},
i=1

N
RNz = {x” e RV ‘ = Z i€, T; € R},
i=N1+1

Ny
V' = {z/eRN ‘ v = viei, yi € (0,1)},

i=1

N
vy — {y// c RN ’ yll — Z Yi€i, Yi € (0,1)}
i=Ni+1

This manuscript is for review purposes only.



4 R. FALCONI, G. GRISO, J. ORLIK

and
ZNl :ZelGB...éBZeNl, ZNQZZGN1+1@...@ZGN.

One has
RY = RV @ RNz, Y=Y aY", N =7MN g 7Nz,
For every z € RV and y € Y, we write
$:$I+$//€RN1€BRN2, y:y’+y”€Y'€BY”.

From mow on, however, we find easier to refer to such partition with the vectorial

notation
z=(2/,2") e RV x RNz, y=(y,y") ey xY".

Similarly to (2.1), we apply the paving to a.e. 2’ € R and 2" € R? setting

/ ! / !/

voe[T] e (ZY L wa [2]emm, {Z) ev
ey’ ey’ e ly’ ey’

" 1 1 "

X X X xr
o = s[—} +5{—} . with {7] e 7Nz, {7} ey,
6 Y// E Y// E Y// 6 Y//

DEFINITION 2.3. For every ;5 € LY(Q x Y), the partial mean value operators are
defined as follows:

~ 1 P
MY’(QS)(Z‘?yN) = W/ d)(xay/ay”)dy,? fO’f' a.e. (xay”) € Q x YH7
Y/
N n o 1 N roon " ’ ’
My @) = o [ Sy ). for e (@) Qx Y
Denote

LP(Q,Vy) = {p € LP(Q) | Voo € LP(Q)N ],
LP(Q,Var) ={¢ € LP(Q) | Vare € LP(Q)N?},
LP(Q, Vs WP (Y") = {6 € LP(Qx Y") | Vo € LP(Q x )M,
Vyrd € LP(Q x Y")N2 Y,
LP(Q, Vo, WEP(Y') = {6 € LP(QA X Y') | Vong € LP(Q x Y')N2,
Vb e LP(Qx YN},
LPOQXY",WW(Y') = e LP(QAxY) | Vyde LP(Q x V)N,
LPOQX Y ;WH(Y") = {6 e IP(QXY) | Vg € LP(Q x YV)N2 )

We endow these spaces with the respective norms:

I lzew,) = I e + IVar ()l e @yna s

I Nzr,v,) = I - llze@) + I Var Ol o) ve
- Nze@. v, wreqrmy) = - lee@xyry + 11IVar Ol e @xy s + 1V (llne@xy e,
| Nze@,v,wreory = 1 ller@xyry + Ve ()l e @@xynve + 1Vy O)lle@xyym
|- lze@xyrswroyny) = I ler@xy) + [IVy Ol Le@xy)yvi s
|- lr@@xyrwreynyy = [+ lee@xyy + 1Vyr ()llr@xyyve -

This manuscript is for review purposes only.
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PERIODIC UNFOLDING FOR LATTICE STRUCTURES 5

3. Periodic unfolding in RY for sequences defined as ); interpolates.
The periodic unfolding for this class of functions has two main advantages. The first
is that less hypothesis are required for the sequences to ensure weak convergence. The
second is that the convergences can be restricted to subspaces with lower dimension
and it will be fundamental in the next sections, where lattice structures are taken into
account.

Define the spaces

QI(Y)i{qS € W1’°°(Y)’¢ is the Q1 interpolation of its values on the vertexes of Y},
;,er(Y) = {qb € QYY) | ¢ is periodic with respect to y;, i € {1,... ,N}},
per0(Y) = {6 € Qpe, (V) | My (¢) = 0}.

Denote

[T

(3.1) ﬁsédm{ dg+§3}
e

si{gezN’s(erY)nQ;é@}.

[m

Note that the covering 2. is now a connected open set and from (2.2) we have
Q. cQc ..

Hence, we need to extend the definition of the classical unfolding operator (2.1) to
functions defined in the following neighborhood of €:

{zeRY | dist(x,Q) < ediam(Y)}.

DEFINITION 3.1. For every measurable function ¢ on ﬁe, the unfolding operator
T s defined as follows:

T ) = ¢(5 [g} y + Ey) for a.e. (z,y) € ﬁe x Y.

Every measurable function defined in £ can be extend to Q. by setting it to 0 in

Q. N (RY\ Q). Now, assume {®.}. to be a sequence uniformly bounded in LP(£.),
p € (1,400). Then, the sequence {7 (®.)}. is uniformly bounded in LP(2. x Y)
and thus in L?(Q x Y). Hence, there exists a subsequence of {e}, still denoted {e},
and ® € LP(Q2 x Y') such that

TN @) jgxy — & weakly in  LP(Q x ).
For simplicity, we will omit the restriction and always write the above convergence as

TN D) — ® weaklyin LP(QxY).

In this sense, all the results obtained in [8, 14] are easily transposed to this operator.
Define the space of (; interpolated functions on 2. by

Q;(ﬁs) = {CID € Wl’oo(ﬁs) | Deyey € Q' (e€ +€Y) for every & € Es}

This manuscript is for review purposes only.
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6 R. FALCONI, G. GRISO, J. ORLIK

Due to the @)1 interpolation character, for every function ® € Q;((NZE) we remind that
there exist a constant depending only on p such that

C
(3~2) qu)”w(ﬁs) < ;H(I)Hm(ﬁsy
We have the following.
LEMMA 3.2. Let {®.}. be a sequence in Q;(ﬁs) that satisfies
H¢5||LP(§E) + Hvz’@e”m(ﬁs) <C,

where the constant does not depend on €. _
Then, there exist a subsequence of {}, denoted {e}, and ® € LP(Q,V,;Q,.,.(Y")),

B € LP(Q x Y";QL,, (V) N LP(2Q1(Y)), satisfying My+(®) = 0 a.e. in Qx Y,
such that

., =P weakly in LP(Q, V),

TN (D) — & weakly in  LP(Q;QY(Y)),

T (Vo ®,) — Vi d + Vy,&) weakly in  LP(Q x V)M,

1 - ~
g(’ﬁfzt(‘bg) — My o TEH D)) = V@ - y/° + & weakly in LP(Q2 xY),

where ® = My« (®) and y'® =y — My (y').
The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. First, since the sequence {®.}. belongs to Q! (€2.) we get (see (3.2))
”(I)EHLP(QE) + ”VI’(I)E”LP(ﬁa) + €||VI”@E||LP(§E) <C.
The constant does not depend on €. The statement follows by [14, Lemma 4.3] and
the fact that {7:°“*(®.)}. C LP(Q; QY (Y)). 0
As a direct consequence, we have the following corollary.

COROLLARY 3.3. Let {®.}. be a sequence in QL(S0.) satisfying
H‘I’ellwl,p@) < Oa

where the constant does not depend on €.
Then, there exist a subsequence of {}, denoted {e}, and functions ® € WHP(Q),

e LP(QL,, ,(Y)) such that

per,0
Do — P weakly in Whr(Q),
TN (@) = @ weakly in LP(;QY(Y)),
TN (VD) — VO + Vy&) weakly in  LP() x Y)N7

%(T:mt(@s) — My o TEH(®,)) = VO -y* + &  weakly in  LP(Q x Y),

where y'¢ =y — My (y').
The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. The proof directly follow from Lemma 3.2 in the particular case Ny = N
and Ny = 0. As an equivalent proof, the statement follows by [8, Corollary 1.37 and
Theorem 1.41] and the fact that {7:°%(®.)}. € LP(Q; Q1(Y)). O

This manuscript is for review purposes only.
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4. The periodic lattice structure. We start by giving a rigorous definition of
1-dimensional periodic lattice structure in R¥.
Let i € {1,...,N} and let Ki,...,Kn € N*. Set

N
K=[J{0,....K} c NV, K;={keK|k =0},
A N A A~
K=][{0.....K; -1}, K;={keK|k =0}
i=1
We denote K the set of points in the closure of the unit cell Y by

ICi{A(k eRN(A :iK e, keK}c?.

keR
where Yk is the cell defined by
al 1
Yi = 1;[1 (0.5), 1= 5

We denote S@ the set of all segments whose direction is e; by

S = | [Ak), Ak) +e], SO = | [Alk), A(k) + ]

keK; keK;
Hence, the lattice structure in the unit cell Y is defined by
S.=Jscy, s=Js"cy.

i=1 i=1

Given 2 C R¥, we cover it as in (3.1) by a union of ¢ cells. The periodic lattice
structure is therefore defined by

So=J (e6+e8) c Q.. K= | (e€+¢K),

€€, £€E,

S =[] (e +e8M).

¢eE.
Denote S the running point of S and s that of S.. That gives (i € {1,...,N})

S =A(k)+te; inSD tel0,1],keK,,
s=cl+cAk)+ete; mSP te0,1], keK,, ¢ €E..

This manuscript is for review purposes only.
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8 R. FALCONI, G. GRISO, J. ORLIK

Let C(S) and C(S.) be the spaces of continuous functions defined on S and S; respec-
tively. For p € [1,400], we denote the spaces of functions defined on the lattice by
(te{1,...,N})
Whr(SW) = {¢ € LP(SW) | 05 € LP(S)},
WhP(SH) = {¢ € LP(SY) | 0sp € LP(S))},
WP(8) = {¢ € C(S) | 9sp € LP(S)},
WHP(S.) = {p € C(S:) | 950 € LP(S.)}
and for k € N\ {0,1}

WhP(SW) = L e Whr(SW) | 05 € WHHP(SW)},

WEP(SH) = {¢ € WFP(SD) | 85 € WELP(SI)},
W’”’(S) {p€C(S) | Ospsi € WHP(SY)), je{l,...,N}},
WhP(S.) = {6 € C(S:) | 0ty 500 € WHHP(SY)), je{L,... . N}}.

4.1. The unfolding operator for periodic lattices. We are now in the po-
sition to define an equivalent formulation of the unfolding operator and mean value
operator (see Definition 2.1 and 2.2) for lattice structures.

DEFINITION 4.1. For every measurable function ¢ on S., the unfolding operator
TS is defined as follows:

TE(6)(@,8) = 6(=[ 2] +28) forae. (2,8) €0 xS,

For every function $ on LN(SW), i € {1,..., N}, the mean value operator Mg, on
direction e; is defined as follows:

~ A(k)""et —~ A
Mo (9)(S) = / Bz, $)dS!, VS € [A(k), A(K) +ei], Vk € K.
A(k)

Observe that in the above definition of 7.5, the map (z,S) — ¢ [E] + €8S from (NZE xS

€
into S. is almost everywhere one to one. This is not the case if we replace S by S..
Below, we give the main property of 7.

PROPOSITION 4.2. For every ¢ € LP(S.), p € [1,+o<], one has

Noiooo1
175G,y < &7 1Y I6ll1n(s,)-
Proof. We start with p = 1. Let ¢ be in L'(S.). We have

[ imwsiwas= [ [ 75w s
QxS Q)

Qe =1
Z |€§+EY|Z Z / (e€ + cA(k) +et)|dt
=1 keK,
—5N|Y|Z 3 / 16(c€ + cA(k) + et) |dt
1= 1k€K

Ny [ Jots)las

This manuscript is for review purposes only.
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PERIODIC UNFOLDING FOR LATTICE STRUCTURES 9

The case p € (1, +00) follows by definition of LP norm. The case p = +o0 is trivial.O

5. Periodic unfolding for sequences defined on lattices with information
on the first order derivatives.

5.1. Asymptotic behavior of bounded sequences defined as (); interpo-
lated on lattice nodes. On S. (resp. S) we define the space Q'(S.) (resp. Q(S))
by

Qs = {oec(s)

(resp. Q*(S) = {qb €C(S) ‘ ¢ is affine between two contiguous points of IC})

¢ is affine between two contiguous points of KE},

Similarly we define the spaces Q@ (S.), Q' (S/) and Q*(S"), Q' (S"), Qper(S), Qper(S'),
L(8") (see (5.5)).
A function belonging to Q(S.) is determined only by its values on the set of
nodes K. and thus can be naturally extended to a function defined in SNZE.

DEFINITION 5.1. For every function 1 € Q'(S.), its extension Q.(v) belonging

to WH>°(Q.) is defined by Q1 interpolation on each parallelotope & + cA(k) + eYx
belonging to € + €Y for every £ € Z. and k € K.

Define the spaces

Qk. (@) = {w e wh(@)

W|€£+€A(k)+sﬁ is the Q7 interpolate of its values

on the vertexes of ¢ +cA(k) + eYg, Vk € K, V¢ e Es},
Qr(Y) = {\p € Whe(Y) ‘ WAk 175 1s the Q1 interpolate of its values

on the vertexes of A(k)+ Yk, Vk € IA{}

Similarly we define the spaces Qk(Y"), QL(Y"), Qk per (V)s @ per (V'), @k e, (V7).
By definition, the extension operator Q. is both one to one and onto from Q!(S.) to
Q. (). Its inverse is given by the restriction |s. from Qk_(Qe) to Q'(S:).
Below, we show the main properties of this operator.

LEMMA 5.2. For every ¢ € Q'(S.), one has (p € [1,+], i € {1,...,N})

(5~1) HDE(w)HLp(ﬁE) < C€T7H¢||LP(SE% ||3¢QE(1/))||LP(§E) < CeT?H@stLp(SEu)),

where the constants do not depend on .

Proof. We will only consider the case p € [1,400), since the case p = +o0 is
trivial. First, remind that for every function ¢ defined as ()1 interpolate of its values
on the vertexes of the nodes in K, we have (i € {1,...,N})

1/p
cllpllLrvy < ( Z |¢(A(k))|p) ey
(5.2) =
clloy.dllrr vy < [|0s8]| 1o (s,

where the constants do not depend on p.

This manuscript is for review purposes only.
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10 R. FALCONI, G. GRISO, J. ORLIK

We now prove (5.1);. For every ¢ € Q(S.), set ¥ = Q.(¢). From (5.2); and an
affine change of variables, we easily get

[ Wi = 3 / W()Pdr =¥ 3 / (et + 2y)Pdy
Q. = Jel+eY = JY
IS8 ECE.
NZ/|\I!6£+5S PdS < eN- 1/ W (s)[Pds
ge—‘s

and thus (5.1); holds since ¥|s_ = ).

We prove now (5.1)2. Let ¢ be in {1,...,N}. From (5.2); and an affine change of
variables, we have

P B 0 P
/ 10,0 (z |pdx—523 /&Ey‘axl x)‘ dz = eV Pgéj/y]ayi\p(eusy)] dy
< gN-p Z /Sm |as\1/(e§+eS)jpds < stl/ |0s0(s)|" ds.

€€,

And thus (5.1)2 holds since ‘Iflsm = wlsm. O

Note now that for every ¢ € Q*(S.), the unfolding on the lattice is equivalent to first
extending ¢ to ¥ = 9.(¢)) (see Definition 5.1), then applying the unfolding results
in RY and lastly restricting the convergences to the lattice again, as the following
commutative diagrams show (i € {1,..., N}):

{ TES(?/)) = 7-68(\II|55) = Tseg:t(‘ll)ﬁaxs»

(5-3) exr
Tas(asw) = TES (6S\I/|Sz<i)) =7 t(ai\Il)@sxs(i)'

We can finally show the asymptotic behavior of sequences which belong to Q*(S.)
and we start with the following.

LEMMA 5.3. Let {¢:}e be a sequence in WYP(S,) satisfying (p € (1,+00))

1-n
Pl ir(s.) +€llOsbellpr(s.y < Ce v,

where the constant does not depend on ¢. R
Then, there exist a subsequence of {e}, denoted {e}, and ¢ € LP(Q; W, L(S)) such
that

(5.4) TS () = ¢ weakly in  LP(Q; WHP(S)).!

The same results hold for p = 400 with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. The sequence {T.°(¢.)}. satisfies

||Tss(¢s)||m(§€;w1,p(5)) <C = 172 (6| Loswrin(s)) < C-

LAs for T2¢*t, this convergence must be understood
TE(¢)jaxs = ¢ weakly in  LP(WHP(S)).

It will be the same for all convergences involving the unfolding operator 7.°.

This manuscript is for review purposes only.
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PERIODIC UNFOLDING FOR LATTICE STRUCTURES 11

The constant does not depend on &. N
Hence, there exist a subsequence of {e}, denoted {¢}, and ¢ € LP(Q; WLE(S)) such

per
that convergence (5.4) holds. The periodicity of ¢ is proved as in [8, Theorem 1.36].0
We consider now sequences whose gradient is anisotropically bounded on the lattice.

Accordingly to Section 2, we apply the decomposition of the space RY = RNt @ RN2
and define

N1 N1
s = s, si=Js®, St=J (¢ +eS)),
i=1 i=1 ¢eE.
(5.5) N N
s'= |J 89, sr= |J 80, 8=\ (sc+¢80).
i=N;+1 i=Ni+1 £€E,

We have the following.
LEMMA 5.4. Let {¢:}e be a sequence in Q'(S:) satisfying (p € (1,4+0))

1-N
H(bEHLP(SE) + ||6S¢8||Lf7(8;) <Cer,
where the constant does not depend on €. _
Then, there exist a subsequence of {e}, denoted {e}, and ¢ € LP(Q,Vy; Q,.,(S")),
b € LP(Q; Q! (8)), such that (i € {1,...,N1})

per
TS () =6 weakly in  LP(Q;QY(S)),
To5 (Bspe) — 0o+ Osd  weakly in. LP(Q x SD),

(5.6) o ~
(TS5 60) ~ Mo 0 T5(02)) = 0i38° + 6~ Mo (9)
weakly in  LP(Q x SW),

where 8¢ = (S — Mg (S)) - e;%.
The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. We extend the sequence {¢. }. to the sequence {®.}. = {Q:(¢.)}e belong-
ing to Q_(2%). By Lemma 5.2 and the Q; property (3.2), we get

”(I)SHLP(()E) + ||vx/¢6||LP(S~]E) +5||vx”q)a||Lp(ﬁ€) <C,

where the constant does not depend on ¢. _
By construction, the sequence {®.}. belongs to Q}CE () and thus {72°(®.)}. be-
longs to LP(Q; Q1(Y)).
Hence, Lemma 3.2 imply that there exist functions ® € LP(Q, V,/; Q}C,per(Y”)) and
® € LP(Q X Y";Qk e (Y1) N LP(Q; Q1 (Y)) satisfying My () = 0 a.e. in Q x Y,
such that

e weakly in  LP(Q2, V),

T (@) =B weakly i IP(Q QL(Y)),

TV ®,) = Vp® 4V, &  weakly in  LP(Q x V)M,

20ne has S = A(k) + te; in the line [A(k), A(k) + te;], t € [0,1], k € K;. Hence S¢ =t —1/2.

This manuscript is for review purposes only.
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where & = My (®).

Using the relations (5.3), we can restrict the above convergences from € x Y to
the subset 2 x S (and from € x Y, OxY"to QxS Qx8 respectlvely) Hence,
gb ‘I’|st and thus d) € LP(Q,Vy ,Qpe, (8")). Now, let us consider <I>|QX3/ we extend
this function as an affine function between two contiguous nodes in S§”, this gives
a function ¢ belonging to LP (@}, (S)) (see Figure 1). This proves convergences

(5.6)1,2, while (5.6)3 is an immediate consequence of the Poincaré-Wirtinger inequality
and (5.6)a. 0

(0,1)

. e H H H i , i
0,0) (1,0) (0,0) (0,0)

FiG. 1. Construction of the periodic function (}b\ for N = 2 and (K1,K2) = (3,2). On the
left, the reference cell and the lattice S = S U S®) and the nodes A(k), where k belongs to
K = {0,1,2,3} x {0,1,2}. On the center, the Q1 interpolated on the lattice nodes ® and its
restriction to S(1) (horizontal lines). On the right, the function ¢ given by CI)|Q><S(1) and the Q1

interpolation along the segments in S(2) (vertical lines).

Now, we show the asymptotic behavior of sequences in Q*(S.) which are uniformly
bounded in WP (S,).

COROLLARY 5.5. Let {¢.}. be a sequence in Q*(S.) satisfying (p € (1,+00))
=N
lpellwrn(sy < Ce v,

where the constant does not depend on €.
Then, there exist a subsequence of {e}, still denoted {e}, and functions ¢ € W1P((Q)

and ¢ € LP(Q; Qpero(S)) such that (i € {1,...,N})

T () =~ ¢ weakly in  LP(Q;QY(S)),

T8 (Dspe) — 0ip + dsb weakly in LP(Q x 8W).
The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. The proof directly follows from Lemma 5.4 in the particular case S’ = S
and & = (. O

5.2. Asymptotic behavior of sequences bounded anisotropically and
uniformly in W1?. Denote (p € [1,+00], i € {1,...,N})

Wl’,”CS {peW'P(S)| =0 onK},

)

R (S)={peW"(5)[¢=0 onK.}.

This manuscript is for review purposes only.
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Every function ¢ in W1P(S) (resp. 1 € W1P(S,)) is defined on the set of nodes K
(resp. K.) and therefore can be decomposed as

$=da+d0, 6. €QNS), doEWR(S),
(resp. ¥ =1ha+v0, Ve €QYS:), o €Wy (S)),

where ¢, 1, are the affine function defined as (Q; interpolation on the nodes, and ¢,
1o the reminder term which is zero on every node.

(5.7)

LEMMA 5.6. There exists a constant C > 0, which does not depend on €, such

that (i € {1,...,N})
Vo € WHP(S), [0sball (s + [[0sdoll Le(soy < CllOsdll sy
(5.8) V'(/) S Wl,p(SE), ||35¢a\|Lp(3§i>) + Has,(/JOHLp(Séi)) < CHaSwHLp(Séi)))
||1P0||Lp($§i)) < Cfuaswnm(sgi))'

Proof. Step 1. First, we recall a simple result. Let 1 be in the space WP(0,1)

(p € [1,+0o0]). Denote 1), the affine function
Yalt) = 9(0) + (1)~ 9(0)),  t€[0,1)

One has

(5.9) el < 19 1Ly, 1% = YallLron) < 2014 Lr,1)-

Step 2. We prove the statements of the Lemma.

We start with (5.8);. By construction, S is the union of a finite number of segments
whose extremities belong to K. Hence, inequality (5.9); and an affine change of
variables leads to (i € {1,...,N})

10s¢allLo(sw) < 19l Lo (s,
19s@ollLr sy < 0sPallLe(siry + 10s@ll e sy < 2[00 Lo(s)
and thus (5.8); is proved. Estimate (5.8)y follows by (5.8); and an affine change of

variables, while (5.8)3 follows by (5.8)2 and again a change of variables. The constant
does not depend on ¢ since S has a finite number of segments. O

We show now the asymptotic behavior of sequences that are anisotropically bounded.

LEMMA 5.7. Let {¢:}e be a sequence in WHP(S.) satisfying (p € (1,+00))

1-N
(5.10) PellLr(s.) + 10s@ellLr(s:) + €llOs@ellLr(sry < Ce™P

where the constant does not depend on €. _
Then, there exist a subsequence of {e}, denoted {}, and ¢ € LP(Q, V; WLP(S")),

per
¢ € LP(Q; WLP(S)), such that (i € {1,...,N1})

per

Tss(%) - 5 weakly in  LP(Q; WP(S)),

TS (8s¢) — 03+ Os¢  weakly in  LP(2 x D),
(5.11) L. . S i
B (72 (¢c) = Msw o T (%)) — 0;¢0S°+ ¢ — Mg (d)

weakly in  LP(Q x SW),

This manuscript is for review purposes only.
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where S¢ = (S — Mg (S)) - ;.
The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. Given {¢.}. C W1P(S,), we decompose ¢. as in (5.7) and get
¢£ = ¢a7e + ¢0,57 ¢a75 S Ql(sa)a ¢0,€ € VVS:IZ():5 (SE)
By Lemma 5.6 and hypothesis (5.10) we have

||¢0,s
(5.12) [0,

1N
Lo(sy) €ll0sbocllo(sy) < CellOstellroisy < Ce v 1,

1-n
Lr(syy +Ell0s@oellr(syy < Cel|OsgellLr(siy < Ce 7\

1-N
||¢a75||LP(85) T ||aS¢a,6||LP(S;) + <€”aSQSa’EHLP(SQ) <Ce v .

where the constant does not depend on ¢.
By estimates (5.12)12 and [8, Theorem 1.36] applied on each line of S, there ex-

ist a subsequence of {¢}, still denoted {¢}, and functions ¢} € LP(Q;W&’,}%@ET(S’))

(Wé,’,%per(S') = W&’,Ié(S’) NWLP(S")) and q%’ € LP(Q; Wé”p (8")) such that

per K.,per
ETS@) ) — (E/ weakly in  LP(Q; WhP(S"))
o e (o 0 y : 7
7;5(¢)0,8) - (% weakly in  LP(Q; Wl,p(g//)).
By estimates (5.12)5 and Lemma 5.4, there exist a subsequence, still denoted {e}, and

functions ¢, € LP(Q, V,; QL. (S")), b € LP(Q;QL,,.(S)) such that (i € {1,...,Ni})

per per
75 (dae) = da strongly in LP(2:Q1(S)),
T5(0s$a.s) = 0i6a + Os9a  weakly in  LP(Q x §@).
Hence (i € {1,...,N1},j€{N1+1,...,N})
T5(9e) = G strongly in LP(QW'P(S"),
TS(6) = Ga+ &y weakly in  LP(Q;WHP(S")),
T5(0e62) = O + 0s(da + @) weakly i LP(Q x V).
Setting ¢ = dq + %’, we get that ¢ belongs to LP(Q,V,; WLP(S")). Then, we set

per

¢ = ¢a + ¢}, this function belongs to LP(; WyE(S)). Convergence (5.11)3 is an
immediate consequence of (5.11)2. The proof is complete. 0

As a direct consequence, it follows the asymptotic behavior of the uniformly bounded
sequences.

COROLLARY 5.8. Let {¢:}. be a sequence in WHP(S.) satisfying (p € (1,+00))

1-N
lellwimsy < Ce 7,

where the constant does not depend on €.
Then, there exist a subsequence of {e}, still denoted {e}, and functions ¢ € W1P((Q)
and ¢ € LP(Q;WZ}CZ?O(S)) such that (i € {1,...,N})

7;s(¢8) ¢ strongly in  LP(Q; WHP(S)),
T.5(0s2) — 00+ Osd  weakly in LP( x SD),

This manuscript is for review purposes only.
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The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. The proof directly follows from Lemma 5.7 in the particular case 8’ = S
and 8" = 0. 0

6. Periodic unfolding for sequences defined on lattices with information
until the second order derivatives. The main problem that arises for functions
in W2P(S;) is the lack of mixed derivatives. This comes from the fact that a function
defined on the lattice segments can be derived twice, only in the segment directions.
We overcome the problem in two different ways.

6.1. Unfolding via special Q)3 interpolation. Analogously to the previous
section, we decompose a function into a reminder term and a cubic polynomial, this
latter is extended to a special Q3 interpolation to the whole space. Then, we use
the periodic unfolding results for open subset in RY and finally restrict these results
to the lattice. However, to bound the extension, further assumptions on the original
function must be applied.

First, we recall a basic result concerning the functions in W27(0,1).

LEMMA 6.1. Let ¢ be in W2P(0,1). There exist a unique decomposition
¢ = ¢p + %o, (6ps d0) € W?P(0,1)?,
where ¢, is the cubic polynomial defined by (t € [0,1])
Sp(t) = (0)(2t + 1)(t — 1)* + H(1)t*(3 — 2t) + ¢/ (0)t(t — 1)* + ¢' (D) (t — 1)
and ¢qg is the reminder term satisfying
(6.1) $0(0) = do(1) = ¢(0) = ¢(1) = 0.
Moreover, there exists a constant C > 0, such that

Vo e W2P(0,1), |9y llr0,1) < Cll¢" [l e 0,1y
95l zr0,1) < Cll¢ [lwrp 0,1y
lPpllr(0,1) < Clldllw2r(0,1)
¢ollw2r0,1) < Cllo" | Lr0,1)-

(6.2)

Proof. Given ¢ be in W?2P(0,1), it is clear that the decomposition is unique.
Indeed, condition (6.1) implies that the function ¢, must satisfy

¢p(0) = 6(0), ¢p(1) = d(1), ¢,(0) = ¢'(0), ¢,(1) =¢'(1)

and therefore the 4 coeflicients of the cubic polynomial are uniquely determined.
Now, we observe that

(1) = (6(1) ~ 9(0) — 5 (¢/(0) + 6/(1)) )6t(1 — 1) + ((1) ~ #(0)) ¢ + 6'(0),

2
(1) = (6(0) — 6(0) — 5 ('(0) +¢/(1) )61~ 20) + (1) — (0).

Then, we easily obtain the estimates (6.2)1 2 3. Estimate (6.2)4 follows by assumption
(6.1), the Poincaré inequality applied twice and estimate (6.2);. d

This manuscript is for review purposes only.
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Define the spaces (p € [1,+o0])

W2L(S) = {¢p € W2P(S) | ¢ = Ds¢ =0 on K},

)

WP (8.) = {0 € W2P(S.) | = dsp =0 on K.}

e

Remind that for any ¢ € W2P(8S) (resp. ¢ € W2P(S.)), its derivatives ds¢ (resp.
dst) in direction e; are functions belonging to W'?(S®) (resp. V[/Lp(.S'E(i)))7 for
every ¢ € {1,..., N} and therefore defined on every node of the structure S (resp.
S.). Hence, they can be extended by Q; interpolation on the small segments of SU)

(resp. Se(j)) for every j € {1,..., N}, j # i. We denote these extensions by 0;¢ (resp.
0;iv), for every i € {1,...,N}.

LEMMA 6.2. For every ¢ € W2P(S), there exist two functions ®, € WP(Y) and
oo € Wg:,’é (S) such that
(6.3) p=0,+¢9 ae inS,

where ®,5 is a cubic polynomial on every small segment of S.

Moreover, there exists a constant C' > 0 such that

N
1D?®, Loy < C Y (|08 ()| o)

=1

N
64) IV lLeer) < C(10500ecs) + D 1050 s )

i=1

N
[Pyl Lr vy < C(||¢HLP(S) + 10s9|l Lr(s) + Z Has(az'@HLp(s))

=1

and that
(6.5) I¢ollz2s) + 198 ollz2(s) + 1080l L2(s) < C|O5S| o s)-

Proof. We will only prove the case N = 2, since the extension to higher dimension
is done by an analogous argumentation.
Step 1. A first result.
Denote Qq, @1, dQo and dQ; the following polynomial functions (¢ € [0, 1])

Qolt) = (E+1)(t=1)%, Qu(t) = 2(3-2t), dQo(t) = H(t—1)%, dQu(t) = £2(t—1).

Let ¢ be a function continuous on dZ, Z = (0,1)2, and of class WP on every edge

of Z. We define the polynomial function ® € W2°>°(Z) by

q)(t) = ¢(07 O)POO(t) + ¢(Ov I)PO,I(t) + ¢(1’ O)Pl,O(t) + ¢(17 1)P1,1(t)
+81¢(O, O)dlpo()(t) + 81(]5(1, O)dlplo(t) =+ 81(25(0, 1)d1P01(t) + 81¢(1, 1)d1P11<t)
+020(0,0)d2 Poo(t) + 920(0, 1)da Po1(t) + O20(1,0)da Pio(t) + 020(1, 1)de P11 (1)
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where for all t = (t1,t5) € [0,1]2
Poo(t) = Qo(t1)Qo(t2),
Pio(t) = Q1(t1)Qo(t2),

d1Poo = dQo(t1)Qo(t2),
d1Po1 = dQo(t1)Q1(t2),
daPoo = Qo(t1)dQo(t2),
daPro = Q1(t1)dQo(t2),

Py1(t)
Pri(t)

= Qo(t1)Q1(t2),
= Q1(t1)Q1(t2),
di1Pro = dQ1(t1)Qo(t2),
di P11 = dQ1(t1)Q1(t2),
daPo1 = Qo(t1)dQ1(t2),
da P11 = Q1(t1)dQx (t2).

First, observe that the polynomial ® can be rewritten as

P(t) =(¢(0,0)Qo
+(6(0,1)Qo
+(92¢(0,0)
+(020(1,0)

tq
tq

(
(

~— ~—

+¢(1,0)0Q1(t1) + 016
+¢(1,1)Q1(t1) + 19
dQo(t2) + 020(0,1)dQ (t2
dQo(t2) + 020(1,1)dQ1 (t2

(0,0)dQo(t1) + d16(1,0)dQ1(t1)) Qo(t2)
(0,1)dQo(t1) + d19(1,1)dQ1(t1)) Q1 (t2)
)Qo(t1)
)@

1(t1).

~— ~—

A straightforward calculation and Lemma (6.1) lead to

D@ 1r(z)

2
< C(Z 1070 Le(02),) + |020(1,0) — 020(0,0)| + |820(1,1) — D2(0, 1)

i=1

+1016(0, 1) = 916(0,0)| + [216(1,1) = 216(1,0)])

2
< CZ 10s(0:9)|| e ((02):)-
i—1

where (02); = (0,1)

Observe also that (i € {1,2})

(6.6)

Then, we obtain
[V®lLr(z)

and thus

x {0,1} and (8Z), = {0,1} x (0,1).

105®| e (02):) < CllO3D|| Lo ((02):)-

< C(10s9llLroz) + | D*®| 1o(z))-

19l Le(z) < C(I9llLroz) + IVl Lo(2))-

Step 2. We prove the estimates (6.4) for N = 2.

In every small rectangle build on the nodes of S we extend ¢ as described in Step
1. That gives a function ®, € W*P(Y) satisfying (6.4) for N = 2. Estimate (6.5)
follows by applying the Poincaré inequality twice and the fact that (see (6.6))

2
108¢0llr(s) < D N05®l o (02),) + 1088llLr(s) < ClOGS| o)

i=1

The proof is complete.
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18 R. FALCONI, G. GRISO, J. ORLIK

We can finally show the asymptotic behavior of sequences bounded in W?2P(S.),
whose derivatives of the gradient extension from the lattice to the whole space are
also bounded.

THEOREM 6.3. Let {¢:}. be a sequence in WP(S.), p € (1,+00), satisfying

N
(6'7) ||¢EHL2(SE) + Has(bEHLz(Sg) + Z HaS(ai¢6)||L2(5€) < CE—T'
=1

Then, there exist a subsequence of {e}, still denoted {e}, and functions ¢ € WP ()
and ¢ € LP(Q; W2P(S)) such that (i € {1,...,N})

per
TS(be) = ¢ strongly in LP(Q; WP(S)),
T5(0e6c) = 0,6 strongly in LP(Q; WP (SD)),
TS (020) — 026+ 03¢ weakly in LP(Q x SV).
Proof. Given {¢.}. C W?P(S.), we decompose ¢.(e€ + €S), £ € Z.,S€S, asin
(6.3) and get
(be = ¢p75 + ¢0,57 (I)p,s S W27p(§£)7 (bO,e S Wg:}ée (Sa)
We first consider the sequence {¢o.}. belonging to Wg:fég (S:). By estimate (6.5)
together with an affine change of variables and (6.7), we have
1-N
1@0.cllLo(s.) + elldsocllLo(s.) + 21020l Lo(s.) < Cel|03¢eLo(s.) < Ce7 2,

where the constant does not depend on . Hence, there exist a subsequence, still

denoted {¢}, and a function ¢y € LP(S; Wg,’,%per (8)) such that

(6.9) TS0 = B0 weakly in L2(Q;W(S))

Now we consider the sequence {®,.}.. By estimates (6.4) together with an affine
change of variables and hypothesis (6.7) we have

N
1@l < C 7 (Ioelneis) + 1050 lr2is.) + 3 [06(0162) | s,y ) < C-
=1

Hence, by [8, Theorem 1.47], there exist a subsequence, still denoted {¢}, and functions
¢ € W2P(Q) and @, € LP(; W2E(Y)) such that

Qpci0— @ weakly in WQ’p(Q),

Te(Ppe) = @ strongly in  LP(Q; WP(Y)),

T:(V®,.) = Vo strongly in  LP(Q; WP (Y)N,

T:(D*®,.) — D?¢ + D2®,  weakly in LP(Q x Y)NV*V,

Note that the following relations hold (i € {1,...,N}):

7;S(¢p76) = TES((I)ZLE\SE) = Eezt(q)fgvs)lﬁgxs’
7'55(85%5)@“8(“ =73 (asq)p,sls?) =T (ai(bpvf)ﬁsxs(ﬂ’

S S ex
Te (ag‘bpys)\ﬁsxs(i) = Ts (aszq)p,dg;i)) = Ta t(afq)pﬁ)ﬁexs(i)'

This manuscript is for review purposes only.
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Hence, we can restrict the above convergences from € x Y to the subsets {2 x S and
QxS 1) for every i € {1,..., N}. Hence, there exists ¢p = i)p‘gxg € LP(Q; W2E(S))
such that (i e{1,. N})

TE(bpe) > ¢ strongly in  LP(Q; W2P(S)),
T8 (Osppe) — D strongly in  LP(Q; WP (SW)),
TS (2pe) — 026+ 030, weakly in  LP(Q x D),
where the strong convergences are preserved due to the polynomial character of the

function T:°(¢, ) with respect to the second variable.
Hence, by the above convergences and (6.8) we get (i € {1,...,N})

T5(¢e) — ¢ strongly in  L*(Q; W2P(S)),
T:5(9sp:) — 03¢ strongly in - L2(Q; WHP(SW)),
T-5(92¢:) — 03¢ + O3 (% + ¢0) weakly in  L2(Q x SO).
Hence, the proof follows by setting $ = ¢?p + 507 which belongs to L2(Q; Wﬁei’ (S)). O

6.2. Unfolding via known results for sequences of functions uniformly
bounded in WP, We consider the sequences in W2?(S.) as sequences in WP (S,)

with partial derivatives belonging to Wl*p(SE(i)), foreach i € {1,..., N}. In this sense,
we can apply the results obtained in section 5. Even though no gradient extension is
needed, the additional work must be done to show that the IV different limit functions,
one for each partial derivative, are in fact a unique function restricted to each line.

From [3, Chapter 9], we recall that (p € (1, +00)):

(i) if u € WHP(9) satisfies Au € LP(2) then u € WHP(Q) N W2P(Q)?;

(ii) if © is a bounded domain in RY with a C*! boundary and if u € Wl’p(Q)
satisfies Au € LP(2) then u € WP () N W22(Q).

Denote (p € [1,4+0o0])

W?P(Q) = {p € WP (Q) N W2P(Q) | 93 € LP(Q) for every i€ {1,...,N}}.

loc

We endow W*P(Q) with the following norm

N
llw2r () = 6lwre) + Y 1050l o)
i=1

THEOREM 6.4. Let {¢.}. be a sequence in WP(S.), p € (1,+00), satisfying

1-N
(6.9) el Lo (s.) + [10s@ellLos.) + 1020l r(s.) < Ce 7 .
Then, there exist a subsequence of {c}, still denoted {e}, and functions ¢ € W*P(Q)

31n fact, we have pD?u € LP(Q)NV*N where p(z) = dist(x, Q) for all z € RN,
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and ¢ € LP(Q; WP (S)) such that (i € {1,...,N})

per,0

TS () — ¢ strongly in  LP(Q; WHP(S)),
(6.10) T8 (0spe) — Db weakly in  LP(Q x W),
T8 (92¢.) — 0%+ 9d  weakly in  LP(Q x SW).
The same results hold for p = +oo with weak topology replaced by weak-* topology in
the corresponding spaces.

Proof. Step 1. We prove convergences (6.10)1 2
By estimate (6.9), the sequence {¢. }. satisfies

1-N
[ellwinsy) < Ce P

and thus by Corollary 5.8, there exist ¢ € W1P(Q) and ¢ € LP () W;e’fO(S)) such
that

Tgs(%) — ¢ strongly in  LP(¢; Wl’p(S)),

(6.11) ~ ,
To(8s¢pe) = i+ Os¢  weakly in  LP(Qx S@),  ie{l,...,N}.

Now, we consider the sequences {wéi)}g = {8S¢E|S(i) te,i€{1,...,N}. From estimate
(6.9) we have

||¢ ||W1 p(s()) < CE P

Since wé“, i€{1,...,N}, is defined on every node of S, we extend it as a function
affine on every small segments in SY e {1,...,N}\ {i}. We still denote this
extension wéz). It satisfies

N
||¢£i)”Lp(5£)+||8sw§i)HLP(827:>)+5||351/)$)HLP(Sg]) <C:e7, where Sl = U S
=10

Observe that a function defined and constant on every line of S can be thended
to a function periodic on S and affine between two contiguous nodes of S, where
jeA{l,...,N}\{i}. Lemma 5 7 glves a subsequence of {¢}, still denoted {e}, and

functions w(z) € LP(Q, 0 Wl’ﬁ( 1)), ¥ € LP(Q; WLP(S)). Here, due to the above

per
remark, we assume that Mga) (@) = 0 a.c. in Q x S@.
Thus, one has (i € {1,...,N})

TS (D) = weakly in  LP(Q; WP(S)),
7;5(85¢£’)) N 81{/;(1) + aS'(ZJ\(Z) weakly in LP(Q % S(z))

The above second convergence and (6.11)q yield
00+ 0sd=0"  ae inQx8P ie{l,..., N}

Since 1/1(1 does not depend on S in S® and qu is periodic with respect to S in S we
have 9;¢ = ¥ and dg¢ = 0 a.e. Q x SO for every i € {1,...,N}.
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116 Hence, ¥ belongs to LP(,d;) and thus d;¢ € LP(,8;). Now, since A¢ € LP(1)
117 we have ¢ € W*P(Q). Therefore, the following convergences hold:

TE(¢:) = o strongly in  LP(Q; WP (S)),
e T:5(0s¢pe) — 0i¢p  weakly in LP(Q x W),
T8 (as2¢s) —0%p+ 5512(2‘) weakly in  LP(€ x S(i)).

149 Moreover, we also have that, for each i € {1,...,N}:
1 ~ )
150 (612) - (7;5((95@)—/\43@) 0725(@5@)) — 020S°+0")  weakly in  LP(Q2xS®).

151 Step 2. We prove the convergence (6.10)3.

152 We have to prove the existence of ¢ € LP(£; Wgéf)O(S)) such that

85(}5: 12(1) ae. in QxSW,

354/5: z/ZJ\(N) ae. in QxSW),

454 A necessary and sufficient condition to get existence of the function 5 is (remind that
455 A(k + ei) = A(k}) + lzez)

A(k+e1) o A(kJreiJre]‘) o
[ vesas+ [ (., S)as

» ~ A(k) A(k+e;)
456 (613) Vk € K, A(kte;) o A(k+ei+e;) o
- / JO(,8)ds + / J9(., 8)ds
A(k:) A(k+9j)

157 a.e. in Q.

) 1
158 Since on a line belonging to S, one has (see Lemma 5.4) 8¢ =t — 3’ t € [0,1], the

459 above equality (6.13) is equivalent to Vk € K,

A(k}JreI) o A(kJreiJre]‘) o
/ (028 + (-, 8))dS + / (03,68 + 91 (-,8))dS
: 4 A(k) A(k+e;)
160 (6.14) A(k+e;) . A(k+eite;) ~
= / (92,68 +¢Y)(,8))dS + / (02¢8¢ + (-, 8))dS
A(k) A(k+ej)

461 a.e. in €.
162 Convergence (6.12) gives (remind that 9%

2

¢ does not depends on S)

[ (7000 - Mo 0 T (0u00) ) s

Atk) €
463 VkeK - (0208 +4M)ds
A(k)
(ki+1)1; 1 A(k+es)
=526 (t— 7>dt+/ 3 (z,S)dS..
kil 2 A(k)
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Similarly, one has (j # i)

A(k}Jre]‘ +e1) 1
/ = (T5(060) — Mgt 0 T-5(056)) S

A(k+e;) €
(ki+1); 1 A(k+ejte;)
— 92¢ (t - 7>dt +/ @ (z,8)dS
il 2 Akte;)
and same kind of results for the other two quantities.
Hence, to get (6.13), we have to prove that both quantities

A(kte:) | S S
[ (75000~ Mot o TS 0u) ) S

A(k) €
(6.15) Alkrertes) | .
+f (75 000) — Mgt o T-5(0002) ) S
A(k+e;) €
and
Alk+e) 1, s
[ (T800) - Mo 0 75026 ) s
(6.16) Am €
. A(k+ej+e;) 1 s s
+/ *(7(—5 (8s¢s) - MS(i) o7T. (as¢s))ds
A(k+e;j) €

admit the same limit or equivalently that the limit of their difference is 0.
First we note that

A(k+e;) 1 [Alk+e)
/ 7;5(65¢5)ds = 7/ 857:55(¢6)ds

A(k) € JAw)
- 1(7;5(¢s)(.,A(k+ei)) — 7-63(@)(.”4(/{))) ae. in 0.

€
Hence,

1 A(k-&—el) A(k—i—ej +e,i)
([ mE@waas+ [ 725 (240245 )

£ M aw A(k+e;)

1 A(k+e;) Alk+ei+e;) -
:7(/ 7;5(85¢5)d5+/ 7;5(85¢5)d8) ac. in €.

€M JAw) A(k+e;)

Now, recall that the function Mg 07'58(85qu) is defined on (26 x 8 and is constant
on every line of S®. One has a.e. in Q.

A(K ) +e; 1 A(k)+e;
/ DTS (6.)dS

My o 7—58(85‘.([)5) = / 7—55(85%) ds = -

A(k") €
- 2(7‘58(@55)(.714(1@') te)— 7;8(%)(',14(#)))

on Q. x [A(K), A(K') + &), ¥ € K.
Hence

A(k')

A(k+e;)
/ M o TS (956.)dS
Ak)

:%(7;8(¢6)(7A(k/) —|—el) _7;S(¢5)(7A(]€/))> ae. in QE,

This manuscript is for review purposes only.



A71

473
474
475
476

AT7

478

479

480
481
182

483

184

485
486
158
189
190

191
192

PERIODIC UNFOLDING FOR LATTICE STRUCTURES 23

where k' € K; is such that k = k' + k;e;. Hence, we get

) MsweTS@0ds - [

&M JA) A(k+e;)
U (TS0, AW) + &) — o5 (6 (- AW)
—TES(qu)(-,A(k" +ej)+e)+ Tas(¢a)(-,A(k" + ej))) a.e. in Q.

A(k:+6j+ei)

Mg o 7;5(85¢8)d8>

where k' € K; is such that k = k' + k;e;.
Now, we can apply Lemma 8.1 and claim that the limit of the difference of the
quantities in (6.15) and (6.16) is equal to 0. This proves (6.14) for every k € K.

As a consequence, there exists a unique qAS € LP(§ Wie’f)o(S)) such that convergence

(6.10)3 holds. O

7. Application: homogenization of a fourth 4th order homogeneous
Dirichlet problem on a periodic lattice structure. We can now give a direct
application of the periodic unfolding for sequences in H?(S.).

From now on, let Q be a bounded domain in RY with a C*! boundary. Let {A.}. be
the sequence of functions belonging to L>°(S.) defined by

Ag(s)iA({E}) for a.e. s€ 8.,

€
where A belongs to L>(S) satisfies
(7.1) 3(c,C) € (0,+00)? such that c¢< A(S)<C forae S€S

and let {g.}c and {f.}. be sequences in L?(S.).
Set the space

Hy(S:) = {¢p € H'(S.) ‘ ¢ =0 ae. on O, NnS:}.
By the Poincaré and Poincaré—Wirtinger inequalities, we have
Vo€ Hi(S)NHAS),  9lias, < Clodllias,) < CIo2lacs,)
where the constants do not depend on the parameter £ (note that Mgw) (9s¢) = 0 for

every i € {1,...,N}).
Consider the 4th order homogeneous Dirichlet problem in variational formulation:

Find u. € H}(S.) N H*(S.) such that:

7.2
(7.2) /A58§u€a§¢d82/ gaas¢ds+/ fe pds, V¢EH01<SE)QH2(SE)'
Se S. S.

The Lax—Milgram theorem implies that the problem (7.2) has a unique solution.
Moreover, one has

CHasQUsH%z(sE) < ||gs\|L2(sE)||3sus||L2(ss) + ”fs”L?(SE)”usuLZ(SE)
< C(lgellrz(s.y + I1fellnzes)) 102uell Lacs.)-
Hence
(7.3)  luellzecs.) + 18sucllr2(s.y + 105ucllr2(s.) < Cl9ellzaesy + 1ol r2s.))-

The constant does not depend on &.
Below, we give the periodic homogenization via unfolding.
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THEOREM 7.1. Let uc be the solution of problem (7.2) and {gec}e, {fc}e satisfying

6%7;5(95) — g strongly in L*( x S),
e TS(f.) = f  strongly in  L*(2 x S).
Then, there exist functions u € Hy(Q) N H?*(Q) and u € L*(Q; HZ,, o(S)) such that
Ge{l,...,N})
T3 (ue) — u strongly in  L*(Q; H*(S)),
(7.5) 725 (Bsue) — du weakly in L*(Q; HY(SW)),
7.8 (Q2u.) — Ofu+ 03U strongly in  L*(Q x S®).

7

(7.4)

The couple (u,u) is the unique solution of problem

N

> 1 A (92u + 0%0) (92¢ + 920) dadS
— IS Jaxso
(7.6)
:/G-V¢dx+/ F ¢ dz,
Q Q
Vo € Hy(Q)NH?*(Q) and Vo € L*(Q; HY,, o(S))
where

N
Gi;;(é(i)g(-,S)ds)ei, Fi%'/sf(-,sms.

Proof. Step 1. We show (7.6).
The solution u. of (7.2) satisfies (7.3). Due to the convergences (7.4) we have that

1-N

luellzzcs.) + 10ste | ags.) + [105uell2(s.) < Ce=
The constant does not depend on €.
Hence, up to a subsequence of {e}, still denoted {¢}, Theorem 6.4 gives functions
uw € Hi(Q) N H?(Q) and u € LP(Q; H},, 1(S)) such that the following convergences
hold (i € {1,...,N}):

TS (ue) = u strongly in  L*(Q; H%(S)),

725 (Dsue) — diu weakly in  L2(; HY(SW)),

7.5 (02u.) — 0ku + 020 weakly in  L?(Q x SW).

Now, we choose the test functions
e ¢ in C>®(Q) N HI(Q),
e &in D(Q),
b (/5 in ngr,O(s)'

. 1-N 2 -~ E
Pe(x) =2 <¢(s)+5 <I>(s)¢>(g)), a.e. s€S..
Applying the unfolding operator to the sequence {¢.}., we get that (i € {1,...,N})

Set

TES(%) — ¢ strongly in  L*(Q; H2(S)),
T:5(8s¢e) = 0i¢p strongly in  L2(Q; HY(SW)),
T.5(02¢.) — 020+ ®%p  strongly in  L2(Q x §O).

?

This manuscript is for review purposes only.



— =
[S1 NN

ot Ot ot (@25
iy

-~

wt
oo

=

1
B2

(o)
[\
no

ot
N
w

526

527
528
529
530

PERIODIC UNFOLDING FOR LATTICE STRUCTURES 25

Taking ¢. as test function in (7.2), then transforming by unfolding and passing to
the limit give (7.6) with (¢, @(E) By density argumentation, we extend such results
to all ¢ € H}(Q) N H2(Q) and ¢ € L2(; H?,, o(S)). Since the solution is unique, the
whole sequences converge to their limit.

Step 2. We show that convergence (7.5)3 is strong.

Taking ¢ = wu. in (7.2), then transforming by unfolding and using the weak lower
semicontinuity yield

N
Z/ A|0%u + 824" dxdS
i—1 J/Ox8W

N N
< limian/ T-(A,) ’7;3(852u6)|2 dxdS < lirrLi(l)leN_l Z /AE |852u5‘2 ds
. Q S € =1 SE

e—0

<hmbup€N 12/14 ]82u8|2ds:limsup5N*1</ gaﬁsueds+/ fgugds)
55 Ss

e—0
al 2
:|S|(/G~V¢dﬁc+/F¢dm>:Z/ A|8iu+8 ﬂ! dzdS.
Q Q i—1 xS (1)
Also observe that
lim inf S(0%u. | dzdS < hm supz (Ag) |TS(8521L5)|2 dzdS
£—0 st Qx s :
<hmsup5N 12//1 ’82u5| ds
From the above inequalities it follows that
S 2
313%2/7 T5(02u.)|” ddS
_ 2 _ 2 ~|2
;%Z/A |02uc|* ds = Z/ S()A|8”u+8 Sa|” dzdS.

Since the map ¥ € L*(Q x S) — \// A|¥|2 dzdS is a norm equivalent to the
QxS

usual norm of L2(Q x S), we get

lim [ [75(02u.)PdedS = / |02 + 631|*dzdS.
e=0 Jaxs QxS

This, together with the fact that (7.5)3 already converge weakly, ensures the strong

convergence. O

We define the corrector X, k € {1,..., N}, as the unique solution in H2,, ((S) of the

cell problem

er,0

(7.7) / A (Lsw + 03Xk) 03WdS =0, Vo € H2,, (S).
S

This manuscript is for review purposes only.



536

545
546
547

548

26 R. FALCONI, G. GRISO, J. ORLIK

THEOREM 7.2. The function u € H(Q) N H%(Q) is the unique solution of the
following homogenized problem:

/Ah0m82u.52¢dx:/G.v¢dx+/F¢dx,
Q Q Q

(7.8)
Vo € Hy(Q) N H*(),
otu oo
where 8%u = and 8¢ =
R nu Rind

The homogenized matriz A™™ is given by ((i,5) € {1,...,N}?)
1 - -
(7.9) A?jom - E /S A (1$(i) + aéxi) (15(3') + ang) ds.

Proof. Equation (7.6) with ¢ = 0 leads to

N
/Q > A (92 u + 821) 03¢ dxdS = 0,
X

V(E € L2(Q ngr O(S))

from which we obtain the form of the cell problems (7.7) and thus the representation
of u

N
S) =Y Ohulx)Xk(S),  forae (z,8)€QxS.
Replacing the above expression of @ in (7.6) and choosing
N
S)=>_ 07é(x)Xk(S),  forae. (z,8)€QxS
lead to the following left hand side of (7.6):

1 N -
5] stA (; Lso + 03Xi)0 ) (; 1sm) + ang)aj?qu) dzdS

/Z |S|/ 1s<i>+3§>?i)(ls<j>+8§>2j)ds)a 0920 da.

/L’

Taking into account (7.7), the above expression becomes / Ahem 92, . 9%¢ da with
Q

the matrix A"*™ given by (7.9).
We prove now that A"*™ is coercive. Let & = (&1,...,6n) € RY be a vector with
fixed entries. From (7.9) we first have

Ahemg ¢ = |S‘ Z /A (s + 03X:) (Lsw) + 93X;) dS & &5

1,9=1

|S/ £+5’SX£
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where

N

N
gi Zfils(m )/(\5 = Zﬁk Xk, a.e.in S and for all £ e RY.
i=1 k=1

Then, by hypothesis (7.1) on A, we get
Ahoms E > i”g_’_ 82/\ ||2
=z |S‘ SX¢ L2(S)"
By the periodicity of dsXg, for every & € RY we get that
=~ ~ 2 =112 ~ 12 =112
1€+ O5Xell72(s) = [1€l]7s) + 198Xl 2s) = [1€]122s)

N N
— D11£:12 > min | S 12 — (min |S*) 2
> 1SVl > min VI Y [6F = (mjnls® e
Thus the coercivity of A"*™ is proved since

Atemg g >clgff,  vEeRY.

By the coercivity of A"*™ and the fact that u € HZ ()N H?(Q2), problem (7.8) admits
a unique solution. ]

8. Appendix.
LEMMA 8.1. Let {¢c}e be a sequence in W2P(S.), p € (1,+00), satisfying

1-N
6llr(s.) + 10sellr(s.) + 1030l Los.) < Ce 7 .

For every k' € K we define in Q. x IA{i the piecewise constant function @gi’j), where
(i,5) € {1,...,N}?, i # j, by

L (TS0 A + ) — T80 (- AK)

oy = ) IO AW + )+ ) +T(6:) (L AR +ey)) )
a.e. in ﬁg X IA{i,

0 a.e. in (RN\E) x K.

Then, there exist a subsequence of {e}, still denoted {c}, and ¢ € W'P(Q)NW2P(Q)
such that ((i,5) € {1,...,N}?, i #j, k' € K;)

TE(¢:) = ¢ strongly in  LP(Q;WP(S)),
(8.1) TS (Ose) — 00  weakly in LP(Q; WHP(SU)Y),
QU (k) = —11;0%¢  weakly in W HP(RN),

Proof. There exist a subsequence of {e}, still denoted {e}, and a function ¢ in
the space W1P(2) N W, 2P (Q) such that convergences (8.1); 2 hold (see Theorem 6.4).

loc
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Now, let ¥ be in WL (RN), one has

/Qw

x) @09 (2, k') da

=Ny My(w)(sf)i—; (¢€ (e€ + eA(K') + ce;) — pe (€ + cA(K))

cezN

— B (o€ + AWK + 20) + ce;) + b (€ + AR +¢;)) )

_ oy, 3 My () — cei) = My (¥)(ee) 6 (c6 + eAK) =6 (e + AWK +ey)

9 3
e

9

S [P ([ s as )i

Ak

Then, due to convergences (8.1)2, we get
N A(K +e;)
lim/ W(x) 80D (2, k') do = li/ aﬂp(/ aj¢ds) dz = lizj/ 010 da.
=0 Jq Q A(K") Q
Hence, (8.1)3 is proved. |
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