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Algebraic invariants of orbit con�guration spaces in genus zero associated to

�nite groups

Mohamad Maassarani

IRMA, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg, France

Abstract

We consider orbit con�guration spaces associated to �nite groups acting freely by orientation preserving

homeomorphisms on the 2-sphere minus a �nite number of points (eventually none). We compute the

cohomology ring and the Poincaré series of these spaces. This generalizes the work of V. Arnold for "classical"

con�guration spaces of points of the plane. The results imply that the spaces we consider are formal in the

sense of rational homotopy theory. We also prove the existence of an LCS formula relating the Poincaré

series of such spaces to the

Keywords: orbit con�guration space, cohomology ring, di�erential forms, formal spaces, homotopy groups,

LCS formula
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Introduction

Context

For M a topological space and n ≥ 1 an integer, the con�guration space of n ordered points of M is the

space:

Cn(M) = {(p1, . . . , pn) ∈M |pi 6= pj , for i 6= j}.

Con�guration spaces appear naturally in mathematics. For instance, they are encountered in the study braid

groups, Knizhnik-Zamolodchikov connections and manifold embeddings. The topology of these spaces and

their algebraic invariants are widely studied.

Let S be an orientable surface. In general, for S with compact boundary (eventually empty), the space

Cn(S) is aspheric, except for S homeomorphic to the 2-sphere S2. The fundamental group π1Cn(S) of

Cn(S) is known as Artin pure braid group on n strands for S = C ([Art47]) or generally as the surface pure

braid group on n strands ([GG04]) .

In [Arn69], the author computes the cohomology ring with integer coe�cients and the Poincaré series of
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Cn(C). The cohomology ring of Cn(S2) was computed in [FZ00] (also considered in [FH01]). The spaces

Cn(C \X) where X has cardinal 1 or n were considered in [FRV07] and [LV12]. In a more general context,

models for Cn(M) withM a smooth compact complex projective variety, are known ([FM94]). These models

were simpli�ed in ([Kri94]) and then used in ([Bez94]) to compute the Malcev Lie algebra Lieπ1Cn(S) of

π1Cn(S) for S closed (see also [Enr14], and [Koh83] for the case S = C where the Lie algebra is the Kohno-

Drinfeld algebra). We will be interested in variants of con�gurations spaces (introduced in [Xic97]), known

as orbit con�guration spaces:

CHn (M) = {(p1, . . . , pn) ∈M |pi 6= h · pj , for i 6= j and h ∈ H},

where H is a group acting (continuously) on M . As for classical con�guration spaces the projections

CHn (M) → CHk (M) on the �rst k coordinates (k ≤ n) are locally trivial �brations under reasonable as-

sumptions ([Xic97],[Xic14]). In [Coh01] and [Enr07] the authors considered the orbit con�guration space

C
µp
n (C×) where µp is the group of p-roots of the unity acting by multiplication on C×. Using di�erent ap-

proaches they studied π1C
µp
n (C×) and computed its Malcev Lie algebra. In [CX02], the orbit con�guration

spaces CHn (C) where H = Z + iZ acts additively is studied. In [CKX09], the case of orbit con�guration

spaces obtained out of a surface subgroup (of genus g ≥ 2) of PSL(R2) acting freely on the upper half plane

{z ∈ C, Im(z) > 0} is considered. Cohomology of orbit con�guration spaces of spheres with respect to the

antipodal action were studied in [Xic00] and [FZ02] (see also [GGSX15]). Cohomology and homotopy groups

of orbit con�guration spaces are analyzed in [Cas16] using the notion of FLG-modules. The "duality" and

"abelian duality" properties for orbit con�guration spaces of surfaces is considered in [DS18]. In [BG18], the

authors use a spectral sequence related to posets to study the cohomology (with compact support) of orbit

con�guration spaces (see also [BG19]).

Here, we consider the orbit con�guration spaces CHn (S2 \ Y ) where Y is a �nite set and H is a �nite

group acting freely by orientation preserving homeomorphisms on S2 \ Y . Under these assumptions, the

action of H on S2 \Y is in fact equivalent to the natural action of a �nite homography group G ⊂ PGL(C2)

(isomorphic to H) on P1 \ Z, where P1 ' S2 is the complex projective line and Z is a �nite G-stable set

containing the irregular points of G (points with non-trivial stabilizer). One can give a complete classi�cation

of such actions (Cf. Subsection 1.4) and give a biholomorphic equivalence between some orbit con�guration

spaces associated to isomorphic groups (Cf. Subsection 2.1).

In [Maa19], we have computed the Malcev Lie algebra of CGn (P1 \ Z) for Z equal to the set of irregular

points of G. In particular, we recover from [Maa19] the Lie algebras computed by [Coh01] and [Enr07] for

(G,Z) = ({z 7→ ζz|ζ ∈ µp}, {0,∞}) and the Kohno-Drinfeld Lie algebras for (G,Z) = ({1},∞). The work

implies that CGn (P1 \Z) is 1-formal in the sense of rational homotopy theory. For (G,Z) 6= ({1}, ∅), the space

CGn (P1 \Z) is biholomorphic to the complement of a hypersurface in Cn and hence in Pn(C) (Cf. Subsection

2.2) and hence the 1-formality for (G,Z) 6= {1, ∅} follows also from [Koh83].
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Main results of the paper

Fix R ⊂ C a unital ring and set Xn := CGn (P1 \ Z).

For (G,Z) 6= ({1}, ∅) we prove (Cf. Subsections 4.1 and 5.1) that:

1) The singular cohomology ring H∗(Xn, R) is isomorphic to the R-subalgebra Ω∗D(Xn)R of holomor-

phic (in fact algebraic) closed forms generated by logarithmic 1-forms {ωa}a (having integer periods)

corresponding to the irreducible components {Da}a of (P1)n \ Xn. The isomorphism is induced by

integration of forms on homology classes.

2) We �nd relations between the elements {ωa}a of Ω∗D(Xn)R ' H∗(Xn, R) wich together with the

antisymmetry relations give a presentation of the algebra.

3) The homology and cohomology groups of Xn with coe�cientss in R are free R-modules of �nite type

and the Poincaré series PXn of Xn is given by:

PXn(t) =

n∏
k=1

(1 + αkt),

where αk = |G|(k − 1) + |Z| − 1.

4) The space Xn is formal in the sense of rational homotopy (Cf. Subsection 1.1, for the de�nition).

5) The space Xn is a K(π, 1) space.

6) The fundamental group π1(Xn) of Xn is an iterated almost direct product of free groups in the sense

of [CS98] (Cf. Subsection 1.3 for the de�nition) and the ranks of the abelian groups Γiπ1Xn/Γi+1π1Xn

corresponding to the lower central series �ltration {ΓiπXn} of π1Xn can be related to the Poincaré

series of Xn by the "LCS formula":

PXn(−t) =
∏
i≥1

(1− ti)φi(π1Xn),

where φi(π1Xn) is the rank Γiπ1Xn/Γi+1π1Xn, and for which we give an explicit formula.

For the case (G,Z) = ({1}, ∅), i.e. Xn = Cn(P1) ' Cn(S2), the cohomology ring was computed in [FZ00].

Here we show (Cf. Subsections 4.2 and 5.2) that:

7) The space Cn(P1) is formal and construct a subalgebra of closed di�erential forms isomorphic via

integration to H∗(Cn(P1), R) for 1
2 ∈ R and R a principal ideal domain.

8) We have an LCS formula relating the Poincaré series (that factors into a product of linear terms) to

the ranks φi(π1Xn) of the abelian groups Γiπ1Xn/Γi+1π1Xn for which we give an explicit formula.
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The constants φi(π1Xn) appearing in (6) and (8) correspond to the dimension of homogenous elements of

graded Lie algebras introduced in [Maa19] (Cf. Remark 5.8).

Results (1), (2) and (3) are obtained as a generalization of the work of [Arn69]. Result (4) follows from

(1) using standard facts. Result (5) is obtained by classical means using homotopy long exact sequences of

�brations associated to orbit con�guration spaces. Claim (7) follows from (1) and a known decomposition

of Cn(P1). The proof of the existence of the LCS formula (6) (and roughly speaking (8)) is similar to the

one in [FR85] (generalized to groups in [CS98]).

In the case G cyclic generated by z 7→ ζz where ζ is a root of the unity and Z = {0,∞} or G = {1}

and |Z| = 1, CGn (P1 \ Z) is the complement in Cn of a central hyperplane arrangement. The corresponding

algebras Ω∗D(Xn)Z are those of [Bri73], [Arn69] and the presentations are equivalent to those given in [OS80]

(Cf. last paragraph of Subsection 3.2). As seen previously, π1Cn(C) is the Artin pure braid group on n

strands and the LCS formula is known (see for instance [CS98]).

One can obtain the Poincaré polynomial of Xn using (5) from the work of [CS98] (Cf. Section 5). We

note that a "collapsing" result for spectral sequences related to Borel-Moore homology groups of orbit con-

�guration spaces ([BG19], Theorem A) applies to the spaces we study when (G,Z) 6= ({1}, ∅).

Outline of the paper

Section 1 consists of reminders on: formality, De Rham theorem, Iterated almost direct products, their

LCS formula, the classi�cation of �nite homography groups actions on P1 and the correspondence between

these actions and orientation preserving �nite group actions on a 2-sphere with �nite punctures.

In section 2, we recall the de�nition of orbit con�guration spaces and some of their classical properties,

establish the correspondence between the spaces CHn (S2 \Y ) and the spaces CGn (P1 \Z), exhibit CGn (P1 \Z)

as a hypersurface complement in Cn for (G,Z) 6= ({1}, ∅), and construct generators of π1C
G
n (P1 \ Z) in the

general case.

Section 3 contains the de�nition of the holomorphic 1-forms {ωa}a (for (G,Z) 6= (1, ∅)), their periods

(values of their integrals over homology classes, used in section 4), relations between the 1-forms (the rela-

tions mentioned in (2)), the de�nition of the R-algebra Ω∗D(Xn)R generated by these 1-forms and a family

of forms spanning Ω∗D(Xn)R. We prove in section 4 that the family is a basis.

In section 4, we prove the main results (1), (2), (3), (4), (7) and compute the Poincaré polynomials of the

spaces CGn (P1 \ Z). The proofs of (5), (6) and (8) are given in section 5.
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In the appendix, we consider a closed oriented surface S. We prove that if Y ⊂ S is �nite (eventually

empty) and H is a �nite group acting by orientation preserving homeomorphisms on S \ Y , then the action

of H extends to an action on S and there exists a complex structure on S in which H acts holomorphically.

The result follows from the case Y = ∅ and this seems to be known, but the author was not able to track a

proof. We use this in section 1 to link �nite group actions on S2 \ Y to homography actions on P1.
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1. Reminders

In subsection 1.1, we recall the de�nition of formal spaces and some related facts for smooth manifolds.

We go rapidly through the construction of the De Rham isomorphism in subsection 1.2. Subsection 1.3
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is devoted to almost product of group and the LCS formula of an iterated almost product of free groups.

The last subsection (1.4) contains reminders on homogarphies of P1 including the classi�cation of �nite

homography groups of PGL(C2). We also relate continuous orientation preserving actions of �nite groups

on S2 with a �nite number of punctures, to actions of �nite homography groups on P1.

1.1. Cochain algebras and formality of topological spaces

Most the material in this section can be found in [FHT01]. For R a ring an R-cochain algebra (dga

for short) is a unital associative graded R-algebra A∗ = ⊕i≥0A
i, equipped with a di�erential d : A∗ → A∗

mapping Ai → Ai+1, such that: d(xy) = d(x)y + (−1)ixd(y) and d2 = 0, for x ∈ Ai and y ∈ Aj . We say

that A∗ is commutative (A∗ is a cdga) if xy = (−1)ijyx, for x and y as before. The cohomology of the dga

A∗ is H∗(A∗) := Ker(d)/Im(d) that inherits a structure of graded algebra from A. Throughout the rest of

the text, a graded map of degree 0 is simply called graded map or map of graded modules-vector spaces-cdga's.

We say that two cdga's A∗ and B∗ are weakly equivalent if there exists a sequence of cdga morphisms

(morphisms of algebras respecting the di�erentials) connecting A∗ and B∗:

A∗ → C(1)∗ ← C(2)∗ → · · · → C(n)∗ ← B∗,

and inducing isomorphisms in cohomology (quasi-isomorphisms).

Let F be a �eld of characteristic zero and X a topological space. One assigns functorially to X the cdga

A∗PL(X)F of polynomial di�erential forms on X with coe�cientss in F . The algebra H∗(A∗PL(X)F ) is natu-

rally isomorphic to the singular cohomology algebra of X with coe�cientss in F . For F ′ a �eld containing F ,

one has a natural quasi-isomorphism A∗PL(X)F ⊗F ′ → A∗PL(X)F ′ . When X is a smooth manifold, A∗PL(X)R

is weakly equivalent to the cdga Ω∗(X)R of real valued smooth di�erential forms on X with product the

wedge product and di�erential the exterior di�erential. It follows from the last two statements that:

Proposition 1.1. If X is a smooth manifold, then A∗PL(X)C is weakly equivalent to the cdga Ω∗(X)C of

complex valued smooth di�erential forms on X with product the wedge product and di�erential the exterior

di�erential.

A path connected topological space X is called formal over F (usually over Q) if A∗PL(X)F is weakly

equivalent to its cohomology (equivalently the singular cohomology of X with coe�cientss in F ) with zero

di�erential. It turns out that: if the rational cohomology of X is �nite dimensional, then X is formal over

F if and only if X is formal over Q.

1.2. De Rham theorem

Let X be a smooth manifold and F be the �eld of real numbers or complex numbers. A smooth singular

k-simplex on X, is a singular k-simplex on X admitting a smooth extension to a neighborhood of the
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standard k-simplex ∆k. One can therefore de�ne the integral of a di�erential form ω over a smooth simplex

σs by
∫
σs
ω :=

∫
∆k

(σs)∗ω, where ∆k is endowed with the standard orientation. We denote by H∗DR(X,F )

the De Rham cohomology of smooth F -valued di�erential forms on X (corresponding to the cohomology

of the cdga Ω∗(X)F seen in subsection 1.1). One has an integration morphism ([Lee13], [Bre97]) of graded

F -vector spaces: ∫
: H∗DR(X,F )→ HomZ(H∗(X,Z), F ),

ω 7→ ([σ] 7→
∫
σs
ω)

where H∗(X,F ) is the singular homology group of X with coe�cientss in F , HomZ stands for morphisms

of abelian groups, [σ] is a homology class and σs is a smooth representative of [σ] (a representative which is

a sum of smooth simplices). The natural map NF
X,∗ : H∗(X,F ) → HomZ(H∗(X,Z), F ), where H∗(X,F ) is

the singular cohomology of X with coe�cientss in F , is an isomorphism, since F is a �eld. The De Rham

theorem states that:

(NF
X,∗)

−1 ◦
∫

: H∗DR(X,F )→ H∗(X,F ) is an isomorphism of algebras,

with H∗DR(X,F ) equipped with the wedge product. The theorem is usually stated for F = R. It also holds

for F = C, since H∗DR(X,C) ' H∗DR(X,R)⊗C. One can �nd the a proof in [War83] (p. 205-207) or [Whi57]

(p. 142).

1.3. Almost direct products and LCS formula

Let H be a group. We denote by the {ΓiH}i≥1 the lower central series of H: Γ1H = H and Γi+1H =

(H,ΓiH), for i ≥ 1, where (A,B) is the subgroup of H generated by the commutators (a, b) = aba−1b−1

for (a, b) ∈ A × B. Let Hab be the abelianization of H (i.e. H/Γ2H). An IA-automorphism of H is an

automorphism inducing the identity on Hab. A semi-direct product of two groups H1 oβH2 is called almost

direct product if for all h2 ∈ H2, β(h2) is IA. For k a positive integer, we denote by F (k) the free group on

k generators.

Proposition 1.2 ([FR85],[CS98]). Let

F := F (cn) oαn (F (cn−1) oαn−1 (F (cn−2) oαn−1 (· · ·oα3 (F (c2) oα2 F (c1)) · · · ))),

be an iterated almost direct product, i.e. the image of αi consists of IA-automorphisms, for i ∈ [1, n − 1].

We have: ∏
i≥1

(1− ti)φi(F ) =

n∏
k=1

(1− ckt),

where φi(F ) is the rank of the abelian group ΓiF/Γi+1F for i ≥ 1 and ΓkF is the k-th term of the lower

central series of F .
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The formula follows from the fact that ΓiF/Γi+1F = ⊕ml=1ΓiF (cl)/Γi+1F (cl) ([FR85], Theorem 3.1) and the

formula ([MKS66], p. 330) known for free groups (1 − ct) =
∏
i≥1(1 − ti)φi(F (c)). An explicit formula for

φi(F (c)) is known ([MKS66]):

φi(F (c)) =
1

i

∑
j|i

µ(j)ci/j ,

where µ is the Möbius function. Therefore, the constants φi(F ) in the proposition are given by:

φi(F ) =

n∑
l=1

φi(F (cl)) =
1

i

n∑
l=1

∑
j|i

µ(j)c
i/j
l , (1)

where µ is the Möbius function.

Remark 1.3. In [CS98], it is shown that the homology with integer coe�cients of F as in the proposition,

is free as an abelian group and that the Poincaré series of F is given by
∏n
k=1(1 + ckt).

1.4. Orientation preserving group actions in genus 0

Let aH : H × XH → XH and aH′ : H ′ × XH′ → XH′ be actions by homeomorphisms of �nite groups

H and H ′ on topological spaces XH and XH′ . We say that the actions aH and aH′ are equivalent if there

exists an isomorphism f : H → H ′ and a homeomorphism g : XH → XH′ such that gaH′(f × g) = aH . The

irregular points of H (with respect to aH) are the elements of XH with non-trivial stabilizer.

Recall that the action of GL(C2) on C2 is compatible to the projection C2 \ 0 → P1, (z, w) 7→ [z : w]

and therefore we have an induced action of GL(C2) on P1 given for A ∈ GL(C2) by:

A · [z : w] = [A1(z, w) : A2(z, w)] where A(z, w) = (A1(z, w), A2(z, w)),

The mapping [z : w] 7→ A · [z : w] is called a homography. It is common to only give the homography in

the chart [z : 1], i.e. z 7→ A1(z,1)
A2(z,1) . The kernel of this action (a) is the center C of GL(C2) consisting of

homotheties and hence the induced action of the projective linear group PGL(C2) = GL(C2)/C on P1 is

faithful. The group PGL(C2) is also called the homography group of P1.

The following facts are well known. We give proofs or references for completeness.

Proposition 1.4. The group of automorphisms (biholomorphic self maps) of P1 is PGL(C2) acting by ho-

morgraphy and every element of PGL(C2) �xes at least a point in P1.

Proof. For the �rst statement one can �nd a proof in [FL12] (Cf. p. 83). The second statement follows

from the fact that an element of GL(C2) have at least one eigenvector.

Proposition 1.5. Let G be a �nite subgroup of PGL(C2).

1) The group G is either cyclic, diherdral or isomorphic to A4,S4 or A5, and all these groups occur.
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2) Two isomorphic �nite subgroups of PGL(C2) are conjugate.

3) The action of G on P1 is equivalent to one of these actions:

� The action of a group GR generated by a rotation of �nite order on the 2-sphere.

� The action of 〈GR, r〉 on S2, where GR is as above and r is a rotation of order 2 with axis

orthogonal to the axis of rotation of GR (di�erent choices of r give equivalent actions).

� The action of the isometry group of a Platonic solid (A4,S4 or A5) on the surface of the corre-

sponding solid which is a topological 2-sphere.

4) Every non-trivial element of G �xes exactly two points.

5) If G is not trivial, then the number of points with non-trivial stabilizer (irregular points) is 2 if G is

cyclic or 2 + |G| otherwise. These points form 2 orbits if G is cyclic and 3 orbits otherwise.

Proof. The di�eomorphism S2 → P1 obtained from stereographic projections gives an identi�cation be-

tween the groups SO(R3) and PSU(C2) ([Bea95], p.63). The facts above hold for SO(R3) ([Art91], p.184)

and one only needs to show that every �nite subgroup of PGL(C2) is conjugate to a subgroup of PSU(C2).

The inclusion PSL(C2)→ PGL(C2) is an isomorphism and the preimage of a �nite subgroup of PSL(C2) in

SL(C2) is a �nite subgroup. Let G be a �nite subgroup of SL(C2) and f be the standard Hermitian form on

C2. The group G is an isometry group for the non-degenerate Hermitian form fG :=
∑
g∈G g

∗f , where g∗f

is the pullback of f by g. Both f and fG are non-degenerate. Hence, we have isomorphism of Hermitian

spaces (C2, f)
T→ (C2, fG) and the group TGT−1 is a subgroup of SU(C2). We have proved the proposition.

The following proposition is a special case of proposition 6.8 proved in the appendix.

Proposition 1.6. Let H be a �nite group acting by orientation preserving homeomorphisms on S2 \ Y ,

where Y is a �nite subset of S2. There exists a �nite subgroup G of PGL(C2) such that the action of G by

homography on P1 \ Z, for a given �nite Z ⊂ P1 stable under the action of G, is equivalent to the action of

H on S2 \ Y .

2. Orbit con�guration spaces in genus 0 associated to �nite groups

In the �rst subsection, we recall the de�nition of orbit con�guration spaces, a �bration theorem for

these spaces, and use the results of subsection 1.4 to show that the orbit con�guration space CHn (S2 \ Y )

where H is a �nite group acting freely by orientation preserving homeomorphisms on S2 minus a �nite set

Y , is homeomorphic to CGn (P1 \ Z), where G is a homography group and Z is a given �nite set. In the

second subsection, we prove that the orbit con�guration spaces CGn (P1 \ Z) correspond to the complement

of a singular hypersurface in Cn (except when (G,Z) = ({1}, ∅)). We then de�ne loops generating the

fundamental group of CGn (P1 \ Z) , in subsection 2.3.
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2.1. Orbit con�guration spaces of the 2-sphere

Let H be a group acting by homeomorphisms on a topological manifold M . The orbit con�guration

space of (ordered) n-points of M with respect to H is the topological subspace of Mn:

CHn (M) = {(p1, . . . , pn) ∈Mn|pi /∈ H · pj , for 1 ≤ i 6= j ≤ n},

for n ≥ 1, and by convention CH0 (M) is a point. When H is trivial, the space is the classical con�guration

space of ordered n-points of M .

The space CHn (M) is naturally equipped with a topological action of the semidirect product Hn o Sn.

The action is given by the datum:

gi · (p1, . . . , pn) = (p1, . . . , pi−1, g · pi, pi+1, . . . , pn)

and σ · (p1, . . . , pn) = (pσ−1(1), . . . , pσ−1(n)),

for i ∈ [1, n], g ∈ G, σ ∈ Sn and where gi = (1, . . . , 1, g, 1, . . . , 1) with g at the i-th position.

Theorem 2.1 ([Xic97]). If H is a �nite group acting freely by homeomorphism on a boundaryless manifold

M . For n ≥ k ≥ 0, the projection CHn (M)→ CHk (M) on the �rst k coordinates is a locally trivial �bration.

Here we study orbit con�guration spaces associated to a �nite group H acting freely by orientation preserving

homeomorphisms on the 2-sphere S2 ' P1 minus a �nite number of points:

CHn (S2 \ Y ) = {(p1, . . . , pn) ∈ (S2 \ Y )n|pi /∈ H · pj , for 1 ≤ i 6= j ≤ n},

where Y ⊂ S2 is �nite. It follows from proposition 1.5 and proposition 1.6, that:

Proposition 2.2. The space CHn (S2 \ Y ) for n,H and Y as in the previous paragraph, is homeomorphic to

CGn (P1 \ Z), where G ' H is a �nite subgroup of PGL(C2) acting naturally (by homographies) on P1 and

Z ⊂ P1 is �nite, stable under the action of G, and contains the irregular points of G. Moreover, Z 6= ∅ if

G 6= {1}.

In the sequel G and Z are as in the above proposition.

Remark 2.3. Let G be a subgroup of PGL(C2) and h a homography. The map h×n induces a biholomor-

phism CGn (P1 \ Z)→ ChGh
−1

n (P1 \ h(Z)). In particular, for (G,Z) 6= ({1}, ∅) we can assume up to applying

a biholomorphism that ∞ ∈ Z (as an irregular point if G 6= {1}). Moreover, two con�guration spaces of the

form CGn (P1 \Z) associated to two isomorphic subgroups of PGL(C2) can be biholomorphic depending on the

choice of the stable sets, since two isomorphic subgroups of PGL(C2) are conjugate.

If G = {1}, the spaces CGn (P1 \ Z) correspond to classical con�guration space : the con�guration space of

the sphere if Z is empty, the con�guration space of the plane if |Z| = 1, the con�guration space of the plane
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minus 1 point if |Z| = 1 etc..

The space P1 \ Z and the action of G satisfy the conditions of proposition 2.1. Hence, for n ≥ 1, we

have a �ber bundle (the base is paracompact):

Fn → CGn (P1 \ Z)
πn→ CGn−1(P1 \ Z)

where πn is the projection on the �rst n−1 coordinates and the �ber Fn is a 2-sphere minus |Z|+ (n−1)|G|

points. The orbit con�guration space CGn (P1 \ Z) is path connected.

2.2. Orbit con�guration spaces of the 2-sphere as complements of hypersurfaces

Take G and Z as in the previous subsection. The space CGn (P1 \ Z) is the complement in (P1)n of the

hypersurfaces:

Dij(g) = {(p1, . . . , pn) ∈ (P1)n|pi = g · pj} Dkk(p) = {(p1, . . . , pn) ∈ (P1)n|pk = p}

for i, j, k ∈ [1, n], g ∈ G and p ∈ Z with i < j (to avoid repetitions). Putting coordinates ([z1 : w1], . . . , [zn :

wn]) on (P1)n, setting g([z : w]) = [g1(z, w) : g2(z, w)] for g ∈ G, and p = [pz : pw] for p ∈ Z, we get that

Dij(g) and Dii(p) are respectively the zero loci of the polynomials :

wig1(zj , wj)− zig2(zj , wj) and wipz − zipw.

For Z 6= ∅, up to a biholomorphism, we can assume that (Cf. Remark 2.3): ∞ ∈ Z and that the other

elements of Z lie in C. Under these assumptions CGn (P1 \Z) is the complement in Cn of the hypersurface of

equation:

f(z1, . . . , zn) =
∏

1≤k≤n,q∈Z\{∞}

P qii(z1, . . . , zn)
∏

1≤i<j≤n,g∈G

Pαij(z1, . . . , zn) = 0,

where P qii = zi − q and P gij = g1(zj , 1)− zig2(zj , 1).

If G is cyclic of order m ≥ 1. We can assume, up to conjugacy-biholomorphism (Cf. Remark 2.3), that G is

generated by z 7→ ζz where ζ is a m-th primitive root of the unity. In that case, the hypersurface is given

by the equation:

f(z1, . . . , zn+1) =
∏

1≤i≤n
q∈(Z\{∞})

(zi − q)
∏

1≤i<j≤n
0≤k<m

(zi − ζkzj) = 0.

This arrangement is central (the intersection of all the hyperplanes is not empty) if and only if Z = {0,∞}.

In the case G not cyclic, the "collection" of the irreducible components of the hypersurface f = 0 can not

be mapped homeomorphically to an arrangement of hyperplanes. Indeed, if G is not cyclic, there exists a

g ∈ G not stabilizing the in�nity. The intersection {P 1
ij = 0} ∩ {P gij = 0} for such a g contains exactly

two connected components corresponding to the 2 points �xed by g. Hence, {P 1
ij = 0} ∩ {P gij = 0} is not

homeomorphic to the intersection of 2 hyperplanes, since the latter is always connected.
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2.3. Generators of the fundamental group

We will construct loops of CGn (P1 \ Z), for n ≥ 1. We �x a base point Pn = (p1, . . . , pn) ∈ CGn (P1 \ Z)

and we set for i ∈ [1, n]:

Yi = Z ∪ Yi,G, where Yi,G = ∪j 6=i∈[1,n],G · pj .

The space P1 \ Yi is naturally homeomorphic to the �ber of πn : CGn+1(P1 \ Z) → CGn (P1 \ Z) over Pn. We

endow P1 with its natural orientation. For q ∈ Yi, let γi(q) be a smooth simple anticlockwise oriented loop

of P1 based at pi, avoiding q and bounding a closed disc D(q) such that D(q) ∩ Yi = q.

We choose the loops γi(q) so that they generate the fundamental group of P1 \ Yi based at pi.

De�nition 2.4. For i, j ∈ [1, n], g ∈ G and p ∈ Z we de�ne the smooth loops xgij (for i 6= j) and xpii of

CGn (P1
∗) based at Pn by the following:

xgij(t) = (p1, . . . , pi−1, γi(g · pj)(t), pi+1, . . . , pn),

xpii(t) = (p1, . . . , pi−1, γi(p)(t), pi+1, . . . , pn),

for t ∈ [0, 1].

Proposition 2.5. For any p∞ ∈ Z, the loops xgij and x
p
kk for g ∈ G, p ∈ Z and i, j, k ∈ [1, n] such that i < j

and p 6= p∞, generate π1(CGn (P1 \ Z), Pn).

Proof. The result can be obtained by induction using the long exact sequences of the �brations CGk (P1 \

Z)→ CGk−1(P1 \ Z) (see for instance proposition 3.3 of [Maa19]).

We have seen that CGn (P1 \Z) is biholomorphic to Cn \ {f = 0}, where {f = 0} is a hypersurface. The loops

in the proposition are meridian loops with respect to irreducible components of the hypersurface {f = 0}

and hence generate H1(CGn (P1 \Z),Z) ([GH94], p. 455). Moreover, they generate H1(CGn (P1 \Z),Z) freely

([Dim92], p. 102). This will also follow from other elements in the next sections.

3. Di�erential forms on the orbit con�guration spaces

In subsection 3.1, we introduce, for (G,Z) 6= ({1}, ∅), closed holomorphic 1-forms on Xn := CGn (P1 \ Z)

and consider, for R ⊂ C an unital ring, the R-algebra Ω∗D(Xn)R of di�erential forms on Xn generated by

these forms. We also study the action of GnoSn on Ω∗D(Xn)R. The action of GnoSn is used in subsection

3.2 to deduce relations (de�ned over Z) in Ω2
D(Xn)R. The relations allow us to give a family of forms span-

ning Ω∗D(Xn)R as an R-module and to de�ne, by generators and relations, an R-algebra An(R) equipped

with a natural surjective map to Ω∗D(Xn)R. In the last subsection, we study the periods of Ω1
D(Xn)R (values

of integrals of elements of Ω1
D(Xn)R on 1-homology classes of Xn). The results on periods will be used in
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the next section.

Till the end of this section, we assume that (G,Z) is di�erent from ({1}, ∅).

3.1. Di�erential forms and the algebra Ω∗D(CGn (P1 \ Z))R

For A ∈ PGL(C2) with matrix

a b

c d

 in the canonical basis of C2, set:

PA(x, y) = (cy + d)(x−A · y) = x(cy + d)− (ay + b),

where A · y = ay+b
cy+d . We assign to h ∈ PGL2(C) a 1-form

ωh(x, y) := d log(PA(x, y)) =
dPA(x, y)

PA(x, y)
, (2)

where A is a lift of h to PGL(C2). The de�nition of ωh(x, y) do not depend on the choice of the lift, since

PλA = λPA for λ a scalar. The form ωh(x, y) is holomorphic over C2 \ {(x, y) ∈ C2|x = h(y)}. Indeed, the

set of zeros of the polynomial PA is exactly the set {(x, y) ∈ C2|x = h(y)}. We also de�ne for p ∈ C the

holomorphic 1-form on C \ {p}:

ωp(x) := d log(x− p). (3)

Both ωp(x) and ωh(x, y) are closed forms.

We pick a p∞ ∈ Z and chose a homography hZ ∈ PGL(C2) mapping p∞ to ∞. If Z contains ∞ we

take p∞ = ∞ and hZ = id. The map h×nZ induces a biholomorphism CGn (P1 \ Z) → C
hZGh

−1
Z

n (P1 \ hZ(Z))

and P1\hZ(Z) is C\(hZ(Z)\{∞}). We will introduce di�erential forms on CGn (P1\Z), using the coordinates

([z1 : 1], . . . , [zn : 1]). The forms will depend on the choice of p∞ and hZ , but as we will see later on the

algebra of complex valued forms generated by these forms is independent of these choices.

De�nition 3.1. 1) For g ∈ G, p ∈ Z \ {p∞} and i, j, k ∈ [1, n], with i 6= j, we de�ne the holomorphic

closed forms ωgij and ω
p
kk of CGn (P1 \ Z), by:

ωpkk =
1

2iπ
(h×nZ )∗ωhZ(p)(zk) and ωgij =

1

2iπ
(h×nZ )∗ωhZgh

−1
Z (zi, zj),

where the star ∗ is for pullback, ωhZ(p) and ωhZgh
−1
Z are as in (3) and (2), and ω∞ = 0 (and hence

ωp∞kk = 0) by convention.

2) For R an unital subring of C, we de�ne Ω∗D(CGn (P1 \ Z))R to be the R-subalgebra of complex valued

forms on CGn (P1 \ Z), generated by the 1-forms de�ned in (1) with grading induced by the degree of

forms.

For instance ω1
ij = 1

2iπd log(zi − zj) if hZ = id.
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Lemme 3.2. For A and B ∈ GL(C2). We have:

PA(x,B · y) =
PAB(x, y)

DB(y)
and PA(B · x, y) = det(B)

PB−1A(x, y)

DB(x)
,

for B · z =
b1,1z+b1,2
b2,1z+b2,2

and DB(z) = b2,1z + b2,2, where bi,j (i, j ∈ [1, 2]) is the i, j entry of the matrix of B in

the canonical basis of C2.

Proof. To prove the lemma one can assume that the matrices of A and B in the canonical basis are

a b

c d


and

a′ b′

c′ d′

, then compute both sides of each equation.

Recall that the group Gn o Sn acts on CGn (P1 \ Z). The action is holomorphic and hence the group acts

on the right (by pullback) on complex valued di�erential forms on CGn (P1 \ Z). For h a homography of P1

and i ∈ [1, n], we denote by hi the bijection (P1)n → (P1)n acting by h on the i-th coordinate and acting

trivially on the other coordinates.

Proposition 3.3. For g, h, f ∈ G, p ∈ (Z \ {p∞}), σ ∈ Sn and i, j, k, l ∈ [1, n] with i 6= j, we have:

(hifj)
∗ωgij = ωh

−1gf
ij − ωh

−1(p∞)
ii − ωf

−1(p∞)
jj , h∗kω

p
kk = ω

h−1(p)
kk − ωh

−1(p∞)
kk ,

h∗kω
g
ij = ωgij if k 6= i, j, h∗l ω

p
kk = ωpkk,

if l 6= k, and

σ∗ωgij = ωgσ−1(i)σ−1(j), σ∗ωpkk = ωpσ−1(k)σ−1(k).

Proof. One deduces the proposition from the case ∞ ∈ Z (i.e. p∞ = ∞ and hZ = id), by pulling back

the equations. We hence only prove the proposition for ∞ ∈ Z. For v ∈ {f, g, h}, we chose a lift ṽ of v

to GL(C2). Using the de�nition of ωgij , the de�nition of a pullback, then by applying lemma 3.2 twice and

identifying the terms we get:

(2iπ)(hifj)
∗ωgij = d log(Pg̃(h̃ · zi, f̃ · zj))

= d log(Ph̃−1g̃f̃ (zi, zj))− d log(Df̃ (zj))− d log(Dh̃(zi))

= (2iπ)(ωh
−1gf
ij − ωh

−1·∞
ii − ωf

−1·∞
jj ).

This proves the �rst equation of the proposition. We now prove the second equation of the proposition. The

equation is true for p = ∞. Assume p 6= ∞. Setting f = g = 1 in the �rst equation of the proposition, we

get h∗iω
1
ij = ωh

−1

ij − ωh−1·∞
ii and then by setting zj = p, we �nd h∗iω

p
ii = 1

2iπd log(Ph̃−1(zi, p))− ωh
−1·∞
ii . The

second equation of the proposition (for p 6=∞) follows, since

Ph̃−1(zi, p) =

(cp+ d)(zi − h−1 · p) if h−1 · p 6=∞

ap+ b otherwise

= (2iπ)ωh
−1·p
ii ,
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if h̃−1 =

a b

c d

. We have proved the second equation of the proposition. The remaining equations are

straightforward. We have proved the proposition.

Corollary 3.4. The algebra Ω∗D(CGn (P1 \ Z))R is stable under the action of Gn oSn.

Proposition 3.5. Algebras Ω∗D(CGn (P1 \ Z))R obtained for di�erent choices of p∞ and hZ are equal.

Proof. Recall that if ∞ ∈ Z, then we take hZ = id. Assume ∞ /∈ Z and �x a choice of p∞ and hZ .

Adapting the computations used to prove the �rst two equations of the previous proposition, by taking

h = f = hZ and p = hZ(q), we get:

ωgij = ωg(zi, zj)− ωp∞(zi)− ωp∞(zj) and ωqkk = ωq(zk)− ωp∞(zk),

where ωg, ωp∞ and ωq are as in (2) and (3). Given a q0 ∈ Z, we can add to the generators above −ωq0ll for

an (or two) appropriate l('s) (we add nothing if q0 = p∞), to deduce that the algebra Ω∗D(CGn (P1 \ Z))R is

generated by the forms:

ωg(zi, zj)− ωq0(zi)− ωq0(zj) and ωq(zk)− ωq0(zk),

for q ∈ Z, g ∈ G and i, j, k ∈ [1, n], with i 6= j. This proves the proposition.

We see (from the proof above) that we can give a de�nition of forms generating Ω∗D(CGn (P1 \ Z))R without

using hZ . Anyway, the pullback formula by hZ seems to be easier to manipulate.

3.2. Relations in Ω∗D(CGn (P1 \ Z))R and the algebra An(R)

Recall that for i, j, k three distinct integers in [1, n], we have the following relation ([Arn69]):

ωij ∧ ωjk + ωjk ∧ ωik + ωik ∧ ωij = 0,

where ωst = d log(zs − zt).

Proposition 3.6. For 1 ≤ i 6= j ≤ n, h, g ∈ G and p, q ∈ Z \ {∞}, we have:

ωpii ∧ ω
q
ii = 0 , ωgij = ωg

−1

ji , (4)

ωhij ∧ ω
p
jj = ωhij ∧ ω

h·p
ii + ωh·pii ∧ ω

p
jj + ωh·p∞ii ∧ ωhij , (5)

ωhik ∧ ω
g
jk = ωhg

−1

ij ∧ (ωgjk − ω
h
ik) + ωg·p∞jj ∧ (ωh

−1g
ij − ωgjk) + ωh·p∞ii ∧ (ωhik − ω

hg−1

ij ) + ωh·p∞ii ∧ ωg·p∞jj , (6)

for k ∈ [1, n] \ {i, j}, and

ωhij ∧ ω
g
ij = (ωp1ii + ωp2ii ) ∧ (ωgij − ω

h
ij)− ω

g·p∞
ii ∧ ωgij + ωh·p∞ii ∧ ωhij , (7)

for h 6= g, with p1 and p2 the two points �xed by hg−1.
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Proof. The �rst equation in (4) is straightforward. We prove the second one. Using the de�nition of the

polynomial PA, we get:

PA(y, x) = y(cx+ d)− (ax+ b) = −(x(−cy + a)− (dy − b)) = −det(A)PA−1(x, y).

This proves that ωgij = ωg
−1

ji . We now prove (5). Pulling back the relation given before the proposition by

h×nZ , we obtain:

ω1
ij ∧ ω1

jk + ω1
jk ∧ ω1

ik + ω1
ik ∧ ω1

ij = 0.

Setting zk = p, we get:

ω1
ij ∧ ω

p
jj + ωpjj ∧ ω

p
ii + ωpii ∧ ω

1
ij = 0,

which is true for p = p∞. Pulling back the last equation by h−1
i , we �nd using proposition 3.3:

(ωhij − ω
h·p∞
ii ) ∧ ωpjj + ωpjj ∧ (ωh·pii − ω

h·p∞
ii ) + (ωh·pii − ω

h·p∞
ii ) ∧ (ωhij − ω

h·p∞
ii ) = 0.

This proves (5). Applying proposition 3.3 to the pullback by h−1
i of the equation ω1

ij ∧ ω1
jk + ω1

jk ∧ ω1
ik +

ω1
ik ∧ ω1

ij = 0, we �nd:

ωhik ∧ ω1
jk = ωhij ∧ ω1

jk + ωhik ∧ ωhij + ωh·p∞ii ∧ (ωhik − ωhij).

Pulling this equation by g−1
j , we get:

ωhik ∧ (ωgjk − ω
g·∞
jj ) =

(ωhg
−1

ij − ωg·p∞jj ) ∧ (ωgjk − ω
g·p∞
jj ) + ωhik ∧ (ωhg

−1

ij − ωg·p∞jj )

+ ωh·p∞ii ∧ (ωhik − ω
hg−1

ij + ωg·p∞jj ).

Simplifying this equation gives (6). Replacing zj with zi in (6), for h 6= g, we get:

ωhik ∧ ω
g
ik = ωhg

−1

ii ∧ (ωgik − ω
h
ik)− ωg·p∞ii ∧ ωgik + ωh·p∞ii ∧ ωhik,

where ωhg
−1

ii is the form obtained by replacing zj with zi in ω
hg−1

ij . For a ∈ PGL(C2) of �nite order and A a

lift of a to GL(C2) the polynomial PA(x, x) admits simple roots corresponding to the elements x ∈ C �xed

by a. Hence, using the convention ω∞(x) = 0, we have:

d log(PA(x, x)) = ωx1(x) + ωx2(x),

where x1, x2 ∈ P1 are the two �xed points of a ∈ PGL(C2) and ωxi(x) = d log(x − xi) as in equation (3).

From this, and the de�nition of ωpii (for p ∈ Z) we deduce that:

ωhg
−1

ii = ωp1ii + ωp2ii ,

where p1 and p2 are the �xed points of hg−1 (and ωp∞ii = 0 by convention). Replacing ωhg
−1

ii by ωp1ii + ωp2ii

in the equation obtained previously, we get:

ωhik ∧ ω
g
ik = (ωp1ii + ωp2ii ) ∧ (ωgik − ω

h
ik)− ωg·p∞ii ∧ ωgik + ωh·p∞ii ∧ ωhik.

We obtain (7) by replacing k with j in the last equation. We have proved the proposition.
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Corollary 3.7. Let ωαij and ωβkl be forms as in de�nition 3.1. The product ωαij ∧ ω
β
kl, is equal to the sum

of products εωα
′

rs ∧ ω
β′

tu, where ε ∈ {1,−1}, ωα′rs and ωβ
′

tu are as in de�nition 3.1, r ≤ s, t ≤ u and s < u ≤

max(i, j, k, l).

Corollary 3.8. The algebra Ω∗D(CGn (P1 \ Z))R is generated as an R-module by the forms:

ωβ1

i1j1
∧ · · · ∧ ωβkikjk , 0 ≤ k ≤ n, 1 ≤ ik ≤ jk ≤ n, j1 < j2 < · · · < jk

with βk ∈ G if ik 6= jk and βk ∈ Z \ {p∞} if ik = jk (for k = 0 the product is equal to 1).

De�nition 3.9. De�ne An(R) as the quotient of the R-exterior algebra generated by the elements ω̃gij and

ω̃pkk for i, j, k ∈ [1, n], with i 6= j, g ∈ G and p ∈ Z \ {p∞}, by the ideal corresponding to relations analogue

to those of proposition 3.6.

Proposition 3.10. 1) We have a surjective morphism of graded R-algebra ΨR : An(R) → Ω∗D(Xn)R

given by ω̃gij 7→ ωgij and ω̃
p
kk 7→ ωpkk, for i, j, k ∈ [1, n], g ∈ G and p ∈ Z \ {p∞}.

2) The analogue of corollary 3.8 holds for An(R).

For (G,Z) = ({1}, {∞}), or (G,Z) = (〈ζz〉, {0,∞}) the space Xn is the complement in Cn of a central

hyperplane arrangement (see subsection 2.2) and its cohomology ring with integral coe�cients is isomorphic

to Ω∗D(Xn)Z ([Arn69], [Bri73] lemma 5) and a presentation (de�nition by generators and relations) is known

([Arn69], [OS80]). For (G,Z) = ({1}, {∞}), the algebra An(Z) is the algebra An of [Arn69]. As we will see

later, for all Xn, An(Z) is isomorphic to Ω∗D(Xn)Z. It follows easly that for (G,Z) as in the beginning of the

paragraph, the relations de�ning An(Z) are alternatives (or equal) to those in [OS80] for the corresponding

central hyperplane arrangement.

3.3. Periods of Ω1
D(CGn (P1 \ Z))R and H1(CGn (P1 \ Z), R)

We recall that for Pn ∈ CGn (P1 \ Z), we have de�ned loops xαij based at Pn, for i ≤ j ∈ [1, n] with α ∈ G

if i 6= j and α ∈ Z if i = j.

Proposition 3.11. For α, β ∈ (G∪Z\{p∞}) and i ≤ j, k ≤ l ∈ [1, n], such that xαij and ω
β
kl are well-de�ned,

we have: ∫
xαij

ωβkl = δikδjlδαβ ,

where δab = 1 if a = b and δa,b = 0 otherwise.

Proof. The formula follows from the case hZ = id using the formula
∫
f(γ)

ω =
∫
γ
f∗ω, since h−1

Z (xαij) has

same homology of xα
h

ij , where α
h is hαh−1 or h(α) and xα

h

ij is the analogue in the corresponding space of

xαij . Hence, we assume that hZ = id (∞ ∈ Z). We only prove the case k < l (β ∈ G). The easier case k = l
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can be treated similarly. Assume that k < l. The s-th component (xαij)s of xαij is constant for s 6= i and

(xαij)i = γi(pα) (see subsection 2.3). Hence:∫
xαij

ωβkl =
δik
2iπ

∫
t∈[0,1]

d logQβ(γi(pα)(t), pl) +
δil
2iπ

∫
t∈[0,1]

d logQβ(pk, γi(pα)(t)),

where pα ∈ (Z \ {∞}) if i = j or pα = α · pj if i < j, and Qβ is equal to Pβ̃ for a given lift β̃ ∈ PSL2(C) of

β. The polynomials Qβ(x, pl) and Qβ(pk, y) are degree 1 polynomials with respective zeros x = β · pl and

y = β−1 · pk. The equations therefore reduces to:∫
xαij

ωβkl =
δik
2iπ

∫
t∈[0,1]

γi(pα)′(t)

γi(pα)(t)− β · pl
+

δil
2iπ

∫
t∈[0,1]

γi(pα)′(t)

γi(pα)(t)− β−1 · pk
,

The loops γi(pα) are oriented clockwise. One deduce from the de�nition of γi(pα) and the residue theorem

that: ∫
xαij

ωβkl = δikδpα(β·pl) + δilδpα(β−1·pk).

The proposition follows for k < l, since δpα(β·pl) = δjlδαβ and δpα(β−1·pk) = 0 if i = l (i ≤ j by hypothesis,

hence k < j).

Corollary 3.12. The �rst singular homology group of CGn (P1 \Z) with coe�cients in Z, is freely generated

by the cohomology classes of the loops, xgij and x
p
kk, for i, j, k ∈ [1, n], g ∈ G, p ∈ Z \ {p∞} with i < j .

Proof. We combine the previous proposition with proposition 2.5.

4. The cohomology ring of the orbit con�guration spaces and their homology

We keep the notation of the previous section Xn = CGn (P1 \ Z). In the �rst subsection, we assume that

(G,Z) 6= ({1}, ∅). We show using results from the previous section, that for R ⊂ C an unital ring, we have iso-

morphism H∗(Xn, R) ' H∗(Xn−1, R)⊗W ∗n and H∗(Xn, R) ' H∗(Xn−1, R)⊗W ∗n , where W ∗n ⊂ Ω1−
D (Xn)R

is a space of di�erential forms identi�ed to H∗(Fn, R) (Fn the �ber of Xn → Xn−1) via integration and

H∗(−, R), H∗(−, R) correspond to singular cohomology and homology with coe�cientss in R respectively.

It follows by induction that: the groups Hk(Xn, R), Hk(Xn, R) are free R-modules, H∗(Xn, R) admits a

basis obtained out of classes corresponding to di�erential forms, and that the Poincaré series of Xn factors

into a product of linear terms. We then show that: integration induces a isomorphism of graded R-algebras

ΦR : Ω∗D(Xn)R → H∗(Xn, R), that ΨR : An(R)→ Ω∗D(Xn)R of the previous section is an isomorphism, and

that the products (de�ned in the previous section) spanning An(R) and Ω∗D(Xn)R form in fact a basis of

the corresponding modules. In particular, we get a description by generators and relations for both rings

H∗(Xn, R) and Ω∗D(Xn)R. At the end of the section, we prove that Xn is formal is the sense of rational

homotopy theory. In the second subsection, we consider the case (G,Z) = ({1}, ∅). We show that the

cohomology ring of Xn with coe�cients in R corresponds to a subring of di�erential forms (for R a principal

ideal domain containing 1
2 , if n ≥ 3) and that the space Xn is formal. We also give the Poincaré series of
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Xn.

As mentioned in the introduction in this section: R ⊂ C is a unital ring, H∗(X,R) and H∗(X,R) de-

note the singular cohomology and homology of X with coe�cients in R and Xn := CGn (P1 \ Z).

For A∗ = ⊕k∈NAk, B∗ = ⊕k∈NBk graded R-modules and f∗ : A∗ → B∗ a map of graded R-modules, we

denote by Al
−
the graded R-module ⊕0≤k≤lAk and by f l

−
(resp. f l) the map of graded modules Al

− f∗→ Bl
−

(resp. Al
f∗→ Bl).

4.1. The case (G,Z) 6= ({1}, ∅)

In this subsection we assume that (G,Z) 6= ({1}, ∅). Recall that we have an integration isomorphism of

graded C-algebras (Cf. Subsection 1.2),
∫

: H∗DR(Xn,C)→HomZ(H∗(Xn,Z),C). Since Ω∗D(Xn)R consists of

closed forms, we have a morphism of graded R-algebras TR : Ω∗D(Xn)R → H∗DR(Xn,C), ω → [ω]. Set:

φ∗ :=

∫
◦TR : Ω∗D(Xn)R → HomZ(H∗(Xn,Z),C),

given by φ∗(ω)([σ]) =
∫
σs
ω, where σs is a smooth singular chain representing the homology class [σ].

Proposition 4.1. 1) For ω ∈ Ω1−
D (Xn)R, the image of φ1−(ω) lies in R.

2) We have a well-de�ned isomorphism φR1− ("restriction" of φ1−) of R-modules:

Ω1−
D (Xn)R → HomZ(H1−(Xn,Z), R)

ω 7→ ([σ] 7→
∫
σs
ω),

Proof. The proposition follows from proposition 3.11, corollary 3.12 and the fact thatXn is path connected.

We recall that, for n ≥ 1, we have a �ber bundle Fn → Xn
πn→ Xn−1, with �ber Fn homeomorphic to P1

minus |G|(n− 1) + |Z| points. In particular,

H∗(Fn, R) ' H∗(Fn, R) ' (R)0 ⊕ (Rαn)1,

where (−)i stands for the degree i component and αn = |G|(n − 1) + |Z| − 1. The �ber over a point

P = (p1, . . . , pn−1) ∈ Xn−1 is equal to:

Fn,P = {(p1, . . . , pn−1, x) ∈ (P1 \ Z)n|x /∈ G · pi for i ∈ [1, n− 1]}.

For X, a topological space, one has a natural morphism of R-modules:

NR
X,∗ : H∗(X,R)→ HomZ(H∗(X,Z), R),

The maps NR
Xn,1− and NR

Fn,p,∗ are isomorphisms.
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Proposition 4.2. Let W ∗n be the R-submodule of Ω1−
D (Xn)R spanned by 1 and the 1-forms ωgin and ωpnn for

i < n, g ∈ G and p ∈ Z \ {p∞}. For P ∈ Xn−1, the composite of the following maps:

W ∗n
φR1−−→ HomZ(H1−(Xn,Z), R)

(NRXn,1−)−1

−→ H∗(Xn, R)
i∗n−→ H∗(Fn,P , R),

where i∗n is the map induced by the inclusion in of the �ber Fn,P → Xn , is an isomorphism of graded

R-modules.

Proof. The fact that the composition is an isomorphism in degree 0 is clear. Since H∗(Fn,p, R) is concen-

trated in degree 0 and 1 we still have to prove the assertion in degree 1. We have the following commutative

diagram:

W ∗n HomZ(H1(Xn,Z), R) H1(Xn, R)

HomZ(H1(Fn,P ,Z), R) H1(Fn,P , R)

φR1

r1 HomZ((in)∗,R)

NRXn,1

i∗n

NRFn,P ,1

,

where r1 is HomZ((in)∗, R) ◦ φR1 . Since NR
Xn,1

and NR
Fn,P ,1

are isomorphisms, we only need to prove that r1

is an isomorphism. For any point Q ∈ Fn,p, the group H1(Fn,P , R) is generated by the homology classes of

the loops xαin and xβnn, associated to the base point Q, for i ∈ [1, n− 1], α ∈ G and β ∈ Z \ {p∞}. Moreover,∫
xαin

ωβkn = δikδαβ , where δab = 1 if a = b and δab = 0 otherwise (proposition 3.11). This proves that r1 given

by ωβkn 7→ ([γ] 7→
∫

(in)∗([γ])
ωβkn) is an isomorphism.

We deduce from the proposition that W ∗n is isomorphic to H∗(Fn,p, R) and that the restriction of

θn,∗ := (NR
Xn,1−)−1 ◦ φR1− : Ω1−

D (Xn)R → H∗(Xn, R)

toW ∗n corresponds to a cohomology extension of the �ber for the �ber bundle Fn → Xn
πn→ Xn−1 (in the sense

of [Spa95], p. 256). Since H∗(Fn, R) is a �nitely generated free R-module, we can apply the Leray-Hirsch

theorem (version in [Spa95], p. 259, theorem 9) stating in the case of πn that:

Proposition 4.3. We have isomorphisms of R-graded modules:

H∗(Xn−1, R)⊗RW ∗n → H∗(Xn, R)

a⊗ b 7→ π∗n(a) ^ θn,∗(b),

where π∗n is the map induced by πn : Xn → Xn−1 and ^ is the cup product; and

H∗(Xn, R)→ H∗(Xn−1, R)⊗RW ∗n

a 7→
∑
α

(πn)∗(θn,∗(ωα) _ a)⊗ ωα),

where (πn)∗ is induced by πn, _ is the cap product and the sum runs over the elements

ωα ∈ {1} ∪ {ωckn|k ∈ [1, n], c ∈ G if k < n and p ∈ Z \ {p∞} if k = n}.
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Using induction, we deduce the following corollaries:

Corollary 4.4. For k ≥ 0, the R-modules Hk(Xn, R) and Hk(Xn, R) are �nitely generated free R-modules.

Corollary 4.5. The natural map NR
Xn,∗ : H∗(Xn, R)→ HomZ(H∗(Xn,Z), R) is an isomorphism.

Corollary 4.6. The family of products:

θn,∗(ω
β1

i1j1
) ^ · · ·^ θn,∗(ω

βk
ikjk

), 0 ≤ k ≤ n, 1 ≤ ik ≤ jk ≤ n, j1 < j2 < · · · < jk

with βk ∈ G if ik 6= jk and βk ∈ Z \ {p∞} if ik = jk (for k = 0 the product is equal to 1), forms a basis of

the R-module H∗(Xn, R).

Corollary 4.7. For n ≥ 2, PXn(t) = PFn(t)PXn−1
(t), where PXk and PFk are the Poincaré series of Xk

and Fk respectively.

Since the Poincaré series of PFk = (1 + αkt), where αk = |G|(k − 1) + |Z| − 1,

Corollary 4.8. For n ≥ 1:

PXn(t) =

n∏
k=1

(1 + αkt),

where αk = |G|(k − 1) + |Z| − 1.

Remark 4.9. The existence of a cohomology extension implies that π1(Xn−1, P ) acts trivially in the coho-

mology of the �ber H∗(Fn, R) (also in homology, since it is free), and that the cohomology and homology

spectral sequences of the �bration Fn → Xn → Xn−1 collapse at the second page.

Proposition 4.10. 1) For ω ∈ Ω∗D(Xn)R, the image of φ∗(ω) lies in R and the map φ∗ induces a well-

de�ned morphism of graded R-modules:

φR∗ : Ω∗D(Xn)R → HomZ(H∗(Xn,Z), R), ω 7→ ([σ] 7→
∫
σs
ω).

2) The map ΦR := (NR
Xn,∗)

−1 ◦ φR∗ : (Ω∗D(Xn)R,∧)→ (H∗(Xn, R),^) is a morphism of R-algebras.

Proof. Recall thatH∗(Xn,K) forK an abelian group is the cohomology of the cochain complex HomZ(C∗(X),K),

where C∗(X) is the singular chain complex of X (over Z). The inclusion i : R → C induces a natural map

of cochain complexes i′ : HomZ(C∗(X), R) → HomZ(C∗(X),C) compatible with the cup product, and we

have a commutative diagram:

HomZ(H∗(Xn,Z),C) H∗(Xn,C)

HomZ(H∗(Xn,Z), R) H∗(Xn, R)

NC
Xn,∗

HomZ(H∗(Xn,Z),i)

NRXn,∗

H∗(i′)
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where H∗(i′) is a morphism of algebras. In particular, if [σi]C ∈ H∗(Xn,C) (for i ∈ [1, k]) is equal to

H∗(i′)[σi]R for [σi]R ∈ H∗(Xn, R), then:

NC
Xn,∗([σ1]C ^ · · ·^ [σk]C) = HomZ(H∗(Xn,Z), i)(NR

Xn,∗)
−1([σ1]R ^ · · ·^ [σk]R).

Recall that φ∗ =
∫
◦TR. Hence, (NC

X,∗)
−1◦φ∗ = (NC

X,∗)
−1◦

∫
◦TR is a map of algebras. Indeed, (NC

X,∗)
−1◦

∫
=∫ ′

(Cf. Subsection 1.2) and TR are both morphisms of algebras. From this and the last equation containing

cohomology classes, we deduce (since φR1 is the "restriction" of φ∗) that:

φ∗(ω1 ∧ · · · ∧ ωk) = HomZ(H∗(Xn,Z), i)(NR
Xn,∗)

−1(Φ1,R(ω1) ^ · · ·^ Φ1,R(ωk)),

for ω1, . . . , ωk ∈ Ω1
D(Xn)R and where Φ1,R := (NR

Xn,1
)−1φR1 . In particular, the image of φ∗(ω1 ∧ · · · ∧ ωk),

with ωi ∈ Ω1
D(Xn)R, lies in R and hence φ∗ induces a well-de�ned integration morphism φR∗ : Ω∗D(Xn)R →

HomZ(H∗(Xn,Z), R), ω 7→ ([σ] 7→
∫
σs
ω). This proves point (1) of the proposition. Point (2) also follows

from the last equation. We have proved the proposition.

Proposition 4.11. 1) The maps ΨR : An(R)→ Ω∗D(Xn)R and ΦR : Ω∗D(Xn)R → H∗(Xn, R), of propo-

sitions 3.10 and 4.10, are isomorphisms of graded R-algebras.

2) The family of products in corollary 3.8 and their analogues for An(R) form basis of Ω∗D(Xn)R and

An(R) respectively.

Proof. The proposition follows from the fact that ΦR and ΨR are algebra morphisms (propositions 3.10

and 4.10), corollary 3.8, proposition 3.10 and corollary 4.6.

Denote by Ω∗(Xn)C the commutative cochain algebra of complex valued di�erential forms on Xn, with

di�erential the exterior di�erential and product the wedge product.

Corollary 4.12. The commutative cochain algebras Ω∗D(Xn)C, H
∗(Xn,C) and Ω∗(Xn)C, where the �rst two

algebras are equipped with a zero di�erential, are weakly equivalent.

Proof. The previous proposition states that Ω∗D(Xn)C and H∗(Xn,C) are isomorphic. Since the forms in

Ω∗D(Xn)C are closed the inclusion T̃C : Ω∗D(Xn)C → Ω∗(Xn)C is a map of cochain algebras. Since the map

induced by T̃C in cohomology is the map TC and corresponds to (
∫ ′

)−1 ◦ ΦC, where
∫ ′

is the De Rham

isomorphism, we deduce that TC is an isomorphism and T̃C is a quasi-isomorphism.

Corollary 4.13. The space Xn is formal in the sense of rational homotopy theory, i.e. the commutative

cochain algebra H∗(Xn,Q) with zero di�erential is weakly equivalent to the cochain algebra A∗PL(Xn)Q of

polynomial di�erential forms on X with coe�cients in Q.

Proof. Since the rational cohomology of Xn is of �nite type, the formality of A∗PL(Xn)F for any �eld

F containing Q will imply the formality for Q and A∗PL(Xn)C will be weakly equivalent to Ω∗(Xn)C (Cf.

Subsection 1.1). Hence, the above corollary becomes a consequence of the previous one.
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Recall that Γ := GnoSn acts on C
G
n (P1\Z). The quotient map π : Xn → Xn/Γ is a covering map and hence

π induces a cdga isomorphism π∗ : Ω∗(Xn/Γ)C → Ω∗(Xn)Γ
C between complexes of complex valued forms (the

superscript Γ is (and will be) used for Γ invariants). We know that Ω∗D(Xn)C is stable under Γ (Cf. Section

3.1) and that the inclusion Ω∗D(Xn)C → Ω∗(Xn)C is a quasi-isomorphism. It follows that the last inclusion

also induces a quasi-isomorphism Ω∗D(Xn)Γ
C → Ω∗(Xn)Γ

C. In particular, Ω∗(Xn/Γ)C is quasi-isomorphic to

its cohomology (and Ω∗D(Xn)Γ
C). One can derive from this that Xn/Γ is formal.

4.2. The case (G,Z) = (1, ∅), i.e. Xn = Cn(P1)

Let R ⊂ C be an unital ring. The space P1 is homeomorphic to S2 ⊂ R3. We will sometimes switch spaces

implicitly for convenience. One can derive the formality of the upcoming spaces by theoretic arguments.

Here, we derive this from the description of the cohomology using di�erential forms, since we are interested

in the description also.

By de�nition C1(P1) is equal to P1. The singular cohomology algebra H∗(P1, R) of P1 is isomorphic to

the R-subalgebra of di�erential forms generated by the volume form ω = i
2π

dz∧dz̄
(1+|z|2)2 (the integral of ω over

P1 with its canonical orientation is equal to 1).

We consider the case n = 2. It is known that the projection π2 : C2(S2)→ C1(S2) is a homotopy equivalence

with homotopy inverse s given by s(p) = (p,−p). Indeed, π2 ◦ s = id, and

H((x1, x2), t) = (x1,
(1− t)x2 − tx1

||(1− t)x2 − tx1||
),

where || · || is the Euclidean norm in R3, is a homotopy between s ◦ π2 and id. Hence, H∗(C2(P1), R) corre-

spond to the R-subalgebra of di�erential forms generated by π∗2ω and C2(P1) is formal .

We examine Cn(P1), for n ≥ 3. We assume that R is a principle ideal domain. For p = (p1, p2, p3) ∈ (P1)3

where the coordinates are pairwise distinct (i.e. a projective basis of P1), there exists a unique hp ∈ PGL(C2)

mapping p1, p2, p3 to 0, 1,∞ respectively. The homography hp is given by:

hp(z) =
(z − p1)(p2 − p3)

(p2 − p1)(z − p3)
.

This proves that PGL(C2) acts freely transitively on C3(P1). Hence, C3(P1) is di�eomorphic to PGL(C2)

and for n ≥ 3, we have an homeomorphism:

Cn(P1)→ C3(P1)× Cn−3(P1 \ {0, 1,∞})

(p1, . . . , pn) 7→ ((p1, p2, p3), (hp(p4), . . . , hp(pn)))
, (8)

where p = (p1, p2, p3). This decomposition was used in [FZ00] to compute the cohomology of Cn(P1) for

n ≥ 3.
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Using the QR decomposition one obtains that C3(P1) ' PGL(C2) is di�eomorphic to PSU(C2) × R3. We

have PSU(C2) ' SO(R3) and SO(R3) is homeomorphic to the three-dimensional projective real space P3(R).

In particular, C3(P1) is homotopy equivalent to P3(R) (see also remark 5.12 section 5) and for 1
2 /∈ R, the ring

H∗(Cn(P1), R) can not be described as an algebra of closed di�erential forms, since it contains torsion. Now

take a volume form ωV on PSU(C2) for which PSU(C2) have volume 1 (one can normalize any volume form)

and denote by ω′V the pullback of ωV by the smooth map C3(P1) ' PGL(C2) ' PSU(C2)×R3 → PSU(C2),

where the last map is the projection. Using the cross product one can check that, for R containing 1
2 ,

the ring H∗(Cn(P1), R)) is isomorphic via integration to the subalgebra of closed di�erential forms on

C3(P1) × Cn−3(P1 \ {0, 1,∞}) given by Ω∗3,R ⊗ Ω∗D(Cn(P1 \ {0, 1,∞}) (tensor with Koszul sign conven-

tion), where Ω3,R = (R)0 ⊕ (Rω′V )3 (indices for the degree) is the subalgebra generated by ω′V . This gives a

description of H∗(Cn(P1), R) as an algebra of closed di�erential forms (for 1
2 ∈ R) via integration and proves

that Cn(P1) is formal.

We have shown that Cn(P1) is formal for n ≥ 1, and described the singular cohomology ring of Cn(P1)

with coe�cients in an unital ring R ⊂ C, using di�erential forms with constraints on R for n ≥ 3. One

can easily derive presentations of the cohomology ring from what we have seen above and (for n ≥ 3) the

presentation of the cohomology ring of Cn(P1 \ {0, 1,∞}) from the previous section (see also [FZ00]).

Proposition 4.14. The Poincaré series Pn of Cn(P1) is given by:

P1(t) = P2(t) = 1 + t2, and Pn(t) = (1 + t3)

n−3∏
k=1

(1 + βkt),

for n ≥ and βk = 1 + k.

Proof. C1(P1) is a 2-sphere. Hence, P1(t) = 1 + t2. The space C2(P1) is homotopy equivalent to P1 as

seen previously in this subsection and hence P2 = P1. For n ≥ 3, Cn(P1) ' C3(P1)× Cn−3(P1 \ {0, 1,∞}).

Therefore, for n ≥ 3, Pn is the product of the Poincaré series of C3(P1) and Cn−3(P1 \ {0, 1,∞}). We have

seen in this subsection that C3(P1) is homotopy equivalent to P3(R) and hence its Poincaré series is given

by 1 + t3. The Poincaré series of Cn−3(P1 \ {0, 1,∞}) is equal to the other factor in the formula above by

corollary 4.8.

5. Homotopy groups and LSC formula

In the �rst subsection, we consider the case (G,Z) 6= ({1}, ∅). We prove that Xn := CGn (P1 \ Z) is a

K(π, 1) and that the �bration Xn+1 → Xn admits a cross section. The cross section is used to prove that

the �rst homotopy group π1Xn of Xn is an iterated almost direct product of free groups (Cf. Section 1.3

for the de�nition). This gives an LCS formula relating the Poincaré series of Xn to the rank of quotients of

successive terms of the lower central series of π1Xn. In the second subsection, we study the remaining case

Xn = Cn(P1). We give the higher homotopy groups of Xn known in the literature, describe the structure of
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the fundamental group of Xn (the structure is also known, in fact a presentation is known) and show that

we have an LCS formula.

Let H be a group. We denote by {ΓiH}i≥1 the lower central series of H and by Hab the abelianization of

H (i.e. H/Γ2H).

5.1. The case (G,Z) 6= ({1}, ∅)

In this subsection we assume that (G,Z) 6= ({1}, ∅).

Proposition 5.1. The space Xn is aspheric, i.e. a K(π, 1) space.

Proof. The �ber Fn+1 of Xn+1 → Xn is a 2-sphere with �nite number (nonzero) of punctures and hence

aspheric. Using this, we deduce from the long exact sequence of the �bration the following exact sequences:

0→ πk(Xn+1)→ πk(Xn)→ 0 for k ≥ 3 and 0→ π2(Xn+1)→ π2(Xn)→ π1Fn+1.

Hence, πk(Xn+1) = πk(X1) = πk(P1 \ Z) for k ≥ 3, and π2(Xn+1) injects into π2(X1) = π2(P1 \ Z). This

shows that Xn is aspheric, since P1 \ Z is aspheric.

We now study the fundamental group of Xn. Since Fn+1, Xn+1 and Xn are K(π, 1) spaces and are path

connected. The long exact sequence of the �bration Xn+1 → Xn gives the exact sequence:

1→ π1(FP,n+1, P̃ )→ π1(Xn+1, P̃ )→ π1(Xn, P )→ 1, (9)

where P̃ ∈ Xn+1 is a preimage of P ∈ Xn, FP,n+1 is the �ber over P and the maps are induced by the

inclusion FP,n+1 → Xn+1 and the projection Xn+1 → Xn.

Proposition 5.2. The �bration Xn+1 → Xn admits a continuous cross-section sn : Xn → Xn+1.

Proof. Fix a p∞ ∈ Z and a Riemannian metric on P1. Let d be the distance function associated to the

Riemannian metric. One can �nd a real number η > 0 and an isometry f : [0, η]→ P1 such that α(0) = p∞

and α(]0, η]) ⊂ P1 \ Z. For P = (p1, . . . , pn) ∈ Xn, set:

CP =
1

2
Min

(i,g)∈[1,n]×G
d(p∞, g · pi) and CηP = Min(CP , η).

For (i, g) ∈ [1, n]×G, we have d(p∞, α(CηP )) < d(p∞, g·pi). Therefore, the mappingXn → Xn+1, (p1, . . . , pn) 7→

(p1, . . . , pn, α(CηP )) de�nes a continuous cross section.

Corollary 5.3. The exact sequence (9) splits and πk(Xn+1, sn(P )) is isomorphic to

π1(FP,n+1, sn(P )) oβn π1(Xn, P ),

where βn([a])([b]) = [sn(a)bsn(a)−1] for a, b loops of Xn and FP,n+1 based at P and sn(P ) respectively.
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Let 1 → N → H → K → 1 be an exact sequence of groups and s : K → H a section (map of sets). We

have a morphism αs : K → Aut(N) mapping a ∈ K to the conjugacy by s(a) in N . The map αs induces a

morphism β : K → Aut(Nab), independent of the choice of s.

Lemme 5.4. Let N,H,K and β be as in the previous paragraph. If the natural map Nab → Hab is injective

then the image of β consists of IA-automorphisms.

Proof. For L a group, denote by (x, y) the commutator of x, y ∈ L and by (L,L) the commutator subgroup

of L. The injectiveness condition means that N ∩ (H,H) = (N,N). Therefore, under the injectiveness

assumption, for c ∈ K: s(c)bs(c)−1b−1 ∈ N ∩ (H,H) = (N,N) (s : K → H is the set section), and β(c)(b)

and b are equal in Nab. We have proved the proposition.

Lemme 5.5. For P ∈ Xn, the inclusion of the �ber FP,n+1 over P of Xn+1 → Xn into Xn+1, induces an

injective morphism in homology.

Proof. We can use corollary 3.12 and the fact that H1(FP,n+1,Z) is generated by the loops xgin+1, x
p
n+1n+1

(with base point a preimage of P ) for i ∈ [1, n], g ∈ G and p ∈ Z\{p∞} (for any p∞ ∈ Z). Another possibility

is to use the fact that H1(Xn+1) is freely generated by the loops xgij and x
p
kk for i, j, k ∈ [1, n + 1], g ∈ G

and p ∈ Z \ {p∞} as discussed in the paragraph after proposition 2.5.

Proposition 5.6. The semidirect product π1(FP,n+1, sn(P )) oβn π1(Xn, P ) of corollary 5.3 is an almost

direct product, i.e. the image of βn consists of IA-automorphisms.

Proof. The proposition follows from the last two lemmas.

As we have already seen FP,n+1 is a 2-sphere minus αn+1 + 1 = |G|n+ |Z| points. Hence, π1(FP,n+1, sn(P ))

is isomorphic to the free group F (αn+1) on αn+1 generators.

Corollary 5.7. 1) The fundamental group of Xn is isomorphic to an iterated almost direct product of

free groups:

F (αn) oγn (F (αn−1) oγn−1
(F (αn−2) oγn−1

(· · ·oγ3 (F (α2) oγ2 F (α1)) · · · ))),

where αk = |G|(n− 1) + |Z| − 1, for k ∈ [1, n].

2) Let PXn be the Poincaré series of Xn:

PXn(t) =

n∏
k=1

(1 + αkt) =
∏
i≥1

(1− ti)φi(π1Xn),

where αk = |G|(n− 1) + |Z| − 1, φi(π1Xn) is the rank of the quotient Γiπ1Xn/Γi+1π1Xn, with Γlπ1Xn

the l-th term of the lower central series of π1Xn and φi(π1Xn) is equal to:

φi(π1Xn) =

n∑
k=1

φi(F (αk)) =
1

i

n∑
k=1

∑
j|i

µ(j)α
i/j
k ,

with µ the Möbius function.
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Proof. Point (1) is obtained by induction on n using the previous proposition and the fact that the fun-

damental group of the �ber Fk of Xk+1 → Xk is F (αk). We have already proved that the Poincaré series

of Xn is given by PXn(t) =
∏n
k=1(1 + αkt) (corollary 4.8). By applying the LCS formula of proposition 1.2

and equation (1) (Subsection 1.3), we get the formula relating PXn to the in�nite product and the formula

for the constants φi(π1Xn).

Remark 5.8. In an earlier work, we have introduced a graded Lie algebra p(Xn) (denoted by pn(G)(Q) in

[Maa19]) whose degree completion correspond to the Malcev Lie algebra ([Qui69]) LieQπ1Xn of π1Xn over

Q, for Z equal to the set of irregular points of G. Since the associated graded of LieQπ1Xn is isomorphic to

(⊕i≥1Γiπ1Xn/Γi+1π1Xn) ⊗ Q, the constant φi(π1Xn) above (and in proposition 5.13) is the dimension of

the degree i part of p(Xn).

Remark 5.9. Knowing that π1(Xn) is an iterated almost direct product of free groups, one can deduce the

Poincaré series of Xn from the work of [CS98] (Cf. Remark 1.3, Subsection 1.3), since Xn is a K(π, 1).

Remark 5.10. An iterated almost direct product of free groups is residually torsion free nilpotent ([BB09],

Cf. end of Section 2). In particular, π1Xn is residually torsion free nilpotent.

5.2. The case (G,Z) = ({1}, ∅)

In this subsection we consider the case Xn = Cn(P1). We recall (Cf. Subsection 3.2) that C2(P2)

is homotopy equivalent to C1(P1) = P1 ' S2, C3(P1) is homotopy equivalent to the 3-dimensional real

projective plane P3(R), and that Cn(P1) is homeomorphic to C3(P1)× Cn(P1 \ {0, 1,∞}) for n ≥ 3.

Proposition 5.11. The higher homotopy groups of Cn(P1) are given by,

π2Cn(P1) =

Z, if n ≤ 2

0, otherwise

and πkCn(P1) = πkS
2,

for k ≥ 3. The space Cn(P1) is simply connected if n ≤ 2, π1C3(P1) ' Z/2Z and for n > 3, π1Cn(P1) '

Z/2Z× π1Cn−3(P1 \ {0, 1,∞}).

Proof. The proposition follows from the facts reminded before it, and the fact that Cn−3(P1 \ {0, 1,∞}) is

aspheric as we have seen in the previous subsection.

Remark 5.12. A homotopy equivalence between C3(P1) and the Stiefel manifold V2(R3) ' SO(R3) ' P3(R)

appears in [FVB61], and the higher homotopy groups of Cn(Sr) (Sr the r-sphere) for r ≥ 2 were computed

in in term of homotopy groups of Stiefel manifolds of orthogonal frames in [Fad62].

Proposition 5.13. 1) For n > 3, π1Cn(P1) is the product of Z/2Z with the iterated almost direct product:

F (βn−3) oεn−3
(F (βn−2) oεn−2

(F (βn−3) oεn−3
(· · ·oε3 (F (β2) oε2 F (β1)) · · · ))),

where βk = k + 1.
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2) Denote by Pn the Poincaré series of Cn(P1). For n > 3:

1

1 + t3
Pn(t) =

n−3∏
k=1

(1 + βkt) =
∏
i≥1

(1− ti)φi(π1Cn(P1)),

where βk is as in (1), φi(π1Cn(P1)) is the rank of the quotient Γiπ1Cn(P1)/Γi+1π1Cn(P1), with

Γlπ1Cn(P1) the l-th term of the lower central series of π1Cn(P1) and

φi(π1Cn(P1)) =

n∑
k=1

φi(F (βk)) =
1

i

n∑
k=1

∑
j|i

µ(j)β
i/j
k ,

with µ the Möbius function.

Proof. Point (1) follows from the isomorphism concerning π1Cn(P1) in the previous proposition and (1)

of corollary 5.7 giving the structure of π1Cn(P1 \ {0, 1,∞}). We prove (2), π1Cn(P1) ' Z/2Z ×K, where

K is the iterated almost direct product in the proposition. Since the factor Z/2Z is central in π1Cn(P1),

Γlπ1Cn(P1) = ΓlK. Therefore, the equation
∏n−3
k=1(1 + βkt) =

∏
i≥1(1 − ti)φi(π1Cn(P1)) and the formula

for φi(π1Cn(P1)) can be obtained by applying the LCS formula (Cf. Proposition 1.2) and equation (1) of

subsection 1.3 to K. Finally, 1
1+t3Pn(t) =

∏n−3
k=1(1 + βkt) by proposition 4.14 of subsection 4.2.

Remark 5.14. The iterated almost direct product in the previous proposition is residually nilpotent (Cf.

Remark 5.10) and hence π1Cn(P1) is residually nilpotent.

6. Appendix: �nite actions on surfaces with punctures

Let S be a compact boundaryless, oriented surface and Y a �nite subset (eventually empty) of S. In this

appendix, we show that if a �nite group H acts by orientation preserving homeomorphisms on S \ Y , then

the action is the restriction of an action of H on S stabilizing Y and that S admits a complex structure in

which H acts holomorphically. We have applied this result in section 1.4 for the case S = S2. The result

seems to be known, but the author was not able to track a proof in the literature.

We implicitly assume that a surface is second-countable, Hausdor� and connected. A closed surface is a

compact surface with no boundary. By a disc we mean a topological disk.

Proposition 6.1. Let H be a �nite group acting by orientation preserving homeomorphisms on an oriented

connected surface S. For p in the interior of S (not on the boundary), and any neighborhood Up of p, there

exists a closed disc Dp ⊂ Up containing p in its interior such that:

1) The stabilizer Hp of p stabilizes Dp.

2) The action of Hp on p is equivalent to the action of the cyclic subgroup of order |Hp| of SO(R2) on the

closed unit disk in R2. In particular, Hp is cyclic.
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3) The intersection h ·Dp ∩Dp, for h ∈ H, is non-empty if and only if h ∈ Hp.

4) The set of points with a non-trivial stabilizer in Dp is either empty, either reduced to p.

Proof. In this proof, we mean by "a disk D around p" a closed disk D containing p in its interior D̊. Note

that (3) and (2) imply (4) and that the condition Dp ⊂ Up follows from (2), since (2) implies that the disc

can be taken as small as needed. Therefore, we will only prove the existence of a disk satisfying (1), (2) and

(3). We �rst show that a disk around p satisfying (3) exists. Take a neighborhood Vq for each q ∈ H · p,

such that Vq and Vq′ are disjoint for q 6= q′, and set V ′p = ∩h∈Hh−1Vh·p. The set V
′
p is a neighborhood of p

such that h′ ·V ′p ⊂ Vh′·p, for h′ ∈ H. Hence, any disk around p contained in V ′p satis�es (3). Let D be such a

disk and D′ a closed disk (around p) lying in the non-empty interior of ∩h∈Hph ·D ⊂ D. For h ∈ Hp, h ·D′

lies in D̊. Since all the disks h ·D′ lie in D̊, it follows form a general argument on intersection of disks in

R2 ([CK94], proposition 2.4) that the closure Jp of the connected component of ∩h∈Hph · D̊′ containing p is

a closed disk. Clearly Jp satis�es (1) and (3). We still have to prove that (2) is satis�ed for Jp and Hp. An

orientation preserving homeomorphism f of �nite order k of the unit closed disc D” ⊂ R2 is conjugate to a

rotation of D” ([CK94], theorem 3.1). Hence, it su�ces to prove that Hp is cylic. By the same conjugacy

result Hp acts freely on the boundary ∂Jp ' S1 of Jp. In particular, ∂Jp → (∂Jp)/Hp is a normal cover

and Hp is a quotient of π1((∂Jp)/Hp). The quotient (∂Jp)/Hp is a circle, since it is a compact boundaryless

1-dimensional manifold. Hence, Hp is a quotient of Z and Hp is cyclic. We have proved the proposition.

Corollary 6.2. The set of points in S having a non-trivial stabilizer is �nite if S is closed.

Proof. Denote by X the set in the corollary. Point (4) of the last proposition implies that X is discrete.

The corollary follows, since X is closed. We prove that X is closed. For h ∈ H denote by fh the map

S → S × S, p 7→ (p, h · p). The diagonal ∆S ⊂ S × S, is closed and X = ∪h∈Hf−1
h (∆S). Hence, X is closed.

Proposition 6.3. Let H be a �nite group acting by orientation preserving homeomorphisms on a connected

closed oriented surface. Denote by Y the set of points having a non-trivial stabilizer. The quotient space

S/H is a surface and the quotient map (S \ Y )→ (S \ Y )/H is a normal cover.

Proof. We will use the notations of the previous proposition. The quotient map π : S → S/H is open. The

space S/H is Hausdor�, since S is Hausdor� and H is �nite. Point (2) of the previous proposition implies

that (S \ Y )→ (S \ Y )/H is a (normal) cover and that π(Dp) ' Dp/Hp. By (3) of the previous proposition

Dp/Hp is a disk this proves that the neighborhood π(Dp) (π is open) of π(p) is Euclidean. We have proved

the proposition.

Lemme 6.4. Let H,S and Y be as in the previous proposition. Denote by π the quotient map S → S/H.

The surfaces S and S/H admit complex structures (Riemann surface structures) such that π is holomorphic.

Proof. The quotient space S/H is a closed surface and hence admits a complex structure. Such a structure

can be lifted to S via π (Cf. [Ful95] �19.B) and π becomes holomorphic.
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Proposition 6.5. If H is a �nite group acting by orientation preserving homeomorphisms on a closed

surface S then there is a complex structure on S in which H acts holomorphically.

Proof. By the previous lemma, we have complex structures over S and S/H such that π : S → S/H is

holomorphic. Take p ∈ S \Y and Up a neighborhood of p such that π|Up : Up → π(Up) is an homeomorphism

((S \ Y )→ (S \ Y )/H is a cover by proposition 6.3). The map π|h·Up : h · Up → π(h · Up) = π(Up) is also a

homeomorphism and Up → h · Up, induced by h ∈ H is equal to π−1
|h·Upπ|Up . Hence, h acts holomorphically

on S \ Y , since π is holomorphic. Using this and the fact that x 7→ h · x is continuous at p ∈ Y we deduce

from Riemann's theorem on removable singularities that the action on S is holomorphic. We have proved

the proposition.

Proposition 6.6. Let S be a closed surface, Y ⊂ S a �nite set and f a self homeomorphism of S \ Y .

There exists a unique self homeomorphism f̃ of S extending f . Moreover, if S is oriented and f preserves

the orientation, then f̃ is orientation preserving.

Proof. Denote by y1, . . . yn the elements of Y and take pairwise disjoint closed topological disks Di ⊂ S (for

n ∈ [1, n]) such that yi lies in the interior of Di. Denote by ∂Di the boundary of Di and set D′i = Di \ {yi}.

The punctured disc f(D′i) is closed in S \ Y but not compact. Hence, its closure in S is obtained by adding

points of Y . Take yji ∈ Y adherent to f(D′i). Since f(∂Di) is closed in S, small neighborhoods of yji do

not intersect f(∂Di) and such neighborhoods are included in {yi} ∪ (f(D′i) \ f(∂Di)) (f(∂Di) disconnects

the surface). In particular yji , is not adherent to f(D′k) for k 6= i. Hence, we have a bijection yi 7→ yji of

Y and the closure of f(D′i) in S is f(D′i) ∪ yji . Since Di and f(D′i) ∪ yji are one point compacti�cations of

D′i and f(D′i) respectively, the homeomorphism fi : D′i → f(D′i) induced by f extends to a homeomorphism

f̃i : Di → f(D′i)∪yji mapping yi to yji . This gives an open and bijective extension f̃ : S → S of f . Moreover,

f̃ is unique, since S \ Y is dense in S. The orientation part can be proved by manipulating the continuous

local homological orientations on S and S \ Y .

Corollary 6.7. Take S, Y as in the proposition. Let H be a group acting by homeomorphisms on S \ Y .

The action of H on S \ Y extends to a unique action of H on S. Moreover, if S is oriented and the action

on S \ Y preserves the orientation, then the extended action preserves the orientation.

Proposition 6.8. Let S be a closed, oriented surface, Y a �nite (eventually empty) subset of S and H be

a �nite group acting by orientation preserving homeomorphisms on S \ Y . The action of H extends to a

unique action of H on S stabilizing Y . Moreover, S admits a complex structure in which the extended action

of H is holomorphic.

Proof. The proposition follows from proposition 6.5 and corollary 6.7.
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