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Abstract22

The seismic noise recorded by the InSight (Interior Exploration using Seismic Investi-23

gations, Geodesy, and Heat Transport) seismometer (SEIS) has a strong daily quasi-periodicity24

and numerous transient micro-events, associated mostly with an active Martian environ-25

ment with wind bursts, pressure drops, in addition to thermally-induced lander and in-26

strument cracks. That noise is far from Earth’s micro-seismic noise. Quantifying the im-27

portance of non-stochasticity and identifying these micro-events is mandatory for im-28

proving continuous data quality and noise analysis technics, including autocorrelation.29

Cataloguing these events has so far been made with specific algorithms and operator’s30

visual inspection. We investigate here the continuous data with an unsupervised deep31

learning approach built on a deep scattering network. This leads to the successful de-32

tection and clustering of these micro-events as well as better determination of daily cy-33

cles associated to changes in the intensity and color of the background noise. We first34

provide a description of our approach and then present the learned clusters followed by35

a study of their origin and associated physical phenomena. We show that the cluster-36

ing is robust over several martian days, showing distinct types of glitches that repeat at37

a rate of several tens per sol with stable time differences. We show that the clustering38

and detection efficiency for pressure drops and glitches is comparable to or better than39

manual or targeted detection techniques proposed to date, noticeably with an unsuper-40

vised approach. Finally, we discuss the origin of other clusters found, especially glitch41

sequences with stable time offsets which might generate artifacts in auto-correlation anal-42

yses. We conclude with presenting the potential of unsupervised learning for long-term43

space mission operations, in particular, for geophysical and environmental observatories.44

Keywords: Martian events, clustering, detection, unsupervised learning, deep learn-45

ing, scattering network.46

1 Introduction47

InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Trans-48

port) landed on Mars on November 26, 2018 (Banerdt et al., 2020), and deployed the49

SEIS (Seismic Experiment for Interior Structure) experiment on the ground (Lognonné50

et al., 2019). It records the Martian pressure with the APSS (Auxiliary Payload Sen-51

sors Suite) experiment (Banfield et al., 2018, 2020), and since February 2019, ground ac-52
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celeration with SEIS almost continuously, detecting marsquakes (Lognonné et al., 2020;53

Giardini et al., 2020) and transient atmospheric signals (Garcia et al., 2020; Kenda et54

al., 2020; Charalambous et al., 2021).55

The SEIS background noise (Lognonné et al., 2020; Stutzmann et al., 2021) is much56

lower in amplitude than Earth’s seismic noise (Peterson, 1993). Because of the surface57

installation, atmospheric activity and surface temperature drive the noise fluctuations58

(Lognonné et al., 2020; Charalambous et al., 2021), leading to a strong daily trend and59

a significant non-stochastic character. This is, for example, illustrated by the relation60

in occurrences in time of the transient thermally induced micro-tilts (also denoted glitches)61

with the SEIS recorded temperature, as already observed by Scholz et al. (2020). When62

not corrected, these glitches lead to artifacts in auto-correlation analyses, as demonstrated63

by Kim et al.(2021). During daytime, other frequent transients events are associated with64

pressure drops, analyzed and cataloged by Lorenz et al. (2020); Spiga et al. (2021) from65

pressure data analysis and modeled by Lognonné et al. (2020); Banerdt et al. (2020); Kenda66

et al. (2020). Mostly above 1Hz, lander shaking events are also frequent, especially at67

lander resonance frequencies (Ceylan et al., 2021).68

All the required cataloging efforts in identifying these transient signals are time-69

consuming, which might be critical for long-duration operations. In addition, the meth-70

ods developed by Scholz et al. (2020) for glitches cannot identify easily non-stochastic71

patterns in the signal, such as sequences of glitches with stable offset time. Furthermore,72

the non-stochasticity can also be related to predictable changes in the color of the noise73

spectrum, such as those related to the daily variation of the atmospheric turbulences,74

even if not associated with observable transient signals in the time domain.75

This study aims to identify families of signals in the continuous data recorded by76

SEIS to better understand the structure of the continuous data and its non-stochasticity77

using artificial intelligence. The analysis presented, here, does not focus on the detec-78

tion of rare (on the time scale of a sol) seismic events (Clinton et al., 2021), but inves-79

tigates instrument or local (e.g. lander or instrument-related or environmental) sources,80

which might either generate single or repeating signals which are similar enough to be81

clustered. The associated clustering problem (Goodfellow et al., 2016) fits in an unsu-82

pervised learning framework in a feature space generated with a deep scattering network83

that has its roots in time-frequency analysis. The deep scattering network (Andén & Mal-84
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lat, 2014; Bruna & Mallat, 2013; Andén & Mallat, 2014) has been made learnable, which85

allows our analysis to be fully adapted to unknown conditions, including those of Mars.86

The original algorithm was developed by Seydoux et al. (2020) for Earth continuous seis-87

mic data. We modified it to detect and classify the transient signals in the VBB/SEIS88

continuous data (InSight Mars SEIS Data Service, 2019) or APSS pressure data (Mora,89

2019). This work is the first study to apply deep learning on martian seismic. During90

the course of this work, another study was made with atmospheric Curiosity data Priyadarshini91

& Puri (2021).92

In this article, we first introduce the deep learning strategy developed and applied93

on Earth. We then applied it to SEIS and pressure data. For SEIS, two analyses are made,94

the first to identify how much the signal can be clustered and the second to detect re-95

peating signals in the noise. For pressure, only the first step is made.96

Finally, we compare the timing of the cluster’s events with those reported in the97

already published catalog (Ceylan et al., 2021; Scholz et al., 2020; Spiga et al., 2021; Lorenz98

et al., 2021). For single events like glitches and pressure drops, deep learning provides99

comparable (for glitches) or better (for pressure drops) detection results than the already100

published methods. This comparison depends of course on the various thresholds used101

by all techniques. More importantly, we show that unsupervised machine learning de-102

tects non-stochastics features, such as repeating series of glitches, and clusters the noise103

based on its color (or spectrum). This provides important feedback on the noise struc-104

ture and a critical check on assumptions in scientific analysis, such as auto-correlations105

of the continuous data (Deng & Levander, 2020; Kim et al., 2021; Schimmel et al., 2021).106

This will also help to better understand the impact of the atmospheric turbulence on SEIS107

data.108

2 Method109

2.1 Machine learning in seismology110

Machine learning is a powerful approach to statistical data analysis and has had111

wide-ranging success in various fields (Jordan & Mitchell, 2015) including seismology (e.g.112

Jia & Ma, 2017; Kong et al., 2018; Malfante et al., 2018; Hibert et al., 2019; Falcin et113

al., 2021; Seydoux et al., 2020). Here, we distinguish supervised from unsupervised ap-114
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proaches. In a supervised approach, the algorithm learns the mapping between data sam-115

ples and labels from labeled, training data.116

Lack of labeled data requires unsupervised strategies. Cluster analysis is a com-117

mon strategy used in unsupervised learning (e.g. Géron, 2019). Even if depending on hy-118

perparameter values, unsupervised learning, performs an information-based data anal-119

ysis (Bergen & Beroza, 2018) not relying on former, human-based labeling of data. It120

can also reveal new classes, which is out of reach for supervised algorithms trained to121

recognize already-known classes. In the present study we focus on noise, adopt the un-122

supervised strategy and compare its efficiency on SEIS data with the existing catalogs.123

For future studies focusing on marsquakes, supervised learning (employing the recurrent124

scattering neural network) will be tested to automate the manual task performed by the125

Mars Quake Service (MQS) (Clinton et al., 2018) and possibly detect more events.126

Selecting a relevant and stable representation of waveforms (or waveform features)127

is critical to the success of clustering since the temporal representation of waveforms is128

sensitive to small deformations (Andén & Mallat, 2014). In seismic applications, the fea-129

tures have commonly been handcrafted (signal energy, spectral content; see, e.g. Mal-130

fante et al., 2018) which implies having a priori knowledge of the data content. Here, we131

learn the relevant features, which is known as representation learning. The representa-132

tion is formed by a learnable deep scattering network.133

2.2 Deep scattering network134

A deep scattering network extracts stable representations of continuous data. This135

network is built layerwise from wavelet transforms (convolutions), taking moduli and pool-136

ing, that is, decimation with prior low-pass filtering (see Fig 1 and Seydoux et al. (2020)).137

The modulus of the convolution |x∗ϕ| of a time series x(t) and a wavelet ϕ(t) de-138

fines the time series energy near the center frequency of this wavelet as a function of time.139

A wavelet transform is the convolution of a time series with a filter bank with various140

center frequencies (Fig 1A left). The wavelets of a given bank ϕλ(t) are dilated versions141

of a mother wavelet ϕ0(t) with a scaling factor λ such as ϕλ(t) = λϕ0(tλ). The frequency142

range of a wavelet transform is controlled by the number of octaves J , and the frequency143

resolution is given by the number of wavelets per octave Q. The total number of wavelets144

in a bank is F = JQ.145
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A wavelet transform defines a time-frequency representation of a signal called a scalo-146

gram, as illustrated from a SEIS record in Fig 1A. The evolution of modulating signals147

or longer trends in the envelopes cannot be captured with a single wavelet transform when148

several orders of magnitude exist between the time scales, as usually observed in seis-149

mology. On Earth, for instance, earthquakes often produce signals with sharp onsets and150

broad frequency contents. However, in the same frequency range, we can also observe151

non-volcanic tremor signals without clear onsets (e.g. Obara, 2002). Similar observations152

are made on Mars for the seismic noise recorded by SEIS: In addition, we observe both153

localized pressure drop signals and continuous wind-generated noise in equal frequency154

bands (Lognonné et al., 2020; Kenda et al., 2020; Charalambous et al., 2021). This mo-155

tivates a design of a deep scattering network with three layers (Fig 1A). Each layer out-156

puts scattering coefficients (see Fig 1A, right), the order corresponding with the layer157

index. The scattering coefficients from all orders define the set of features used later in158

our clustering procedure. The invariance properties of this network promote robust clus-159

tering. The dimension of one-dimensional data through the scattering network is sum-160

marized in Table 1. The time-pooling factor is adapted at each layer to allow for con-161

catenating the scattering coefficients at all layers.162

The 3 axis SEIS data are individually transformed and the scattering coefficients163

obtained from each component are concatenated to form a set of features for the three164

components within different time windows. The number of scattering coefficients obtained165

from a single time window can be significant depending on the number of wavelet filters166

and scattering orders. This full scattering representation is highly redundant since the167

input signals may share similar properties at different frequencies, so there is no need168

to keep the entire scattering representation. For this reason, we perform a dimension re-169

duction of the scattering coefficients with a projection on the first few principal compo-170

nents (Fig 1B), corresponding to a low-dimensional representation (or latent space) where171

the clustering is applied.172

2.3 Clustering with Gaussian Mixture Models173

The overall clustering procedure is depicted in Fig 1A. Once transformed into a low-174

dimensional latent space, the different time windows of seismic data are clustered with175

a Gaussian Mixture Model (GMM). The different groups of time windows are ultimately176

interpreted as clusters of events. As in Seydoux et al. (2020), the mother wavelets at each177
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scattering layer are learned by minimizing the clustering loss of the GMM. Learning the178

wavelets is indicated by the back-propagation arrow in Fig 1B.179

The learning procedure involves two steps. First, we define the value and deriva-180

tive of the mother wavelet on K knots at each layer of the scattering network. The full181

wavelet is then interpolated with Hermite cubic splines. The number of knots is low to182

minimize the number of parameters to learn (for instance, with a wavelet defined on 5183

knots, we need to learn 10 parameters; seven for both amplitude and derivative). A three-184

layer scattering network with wavelets defined on 5 knots involves 30 learnable param-185

eters. In the second step, we learn the three mother wavelets that maximize the clus-186

tering quality. Following Seydoux et al. (2020), we use the ADAM stochastic gradient187

descent in order to incrementally converge towards an optimal solution, back-propagating188

the GMM clustering loss. In order to prevent trivial solutions from being learned (e.g.,189

zero-valued wavelets), we include a partial reconstruction loss to preserve the input sig-190

nal’s energy across the network. For each layer, the reconstruction loss is the quadratic191

error between the input signal and the partially reconstructed signal (see Seydoux et al.,192

2020, for more formal details).193

The deep scattering network can be seen as a particular, regularized Convolutional194

Neural Network (CNN), while the output is generated layerwise. In addition, the deep195

scattering network filters are reminiscent of physically meaningful signal processing as196

these involve multiple time and frequency analyses of the input data; this is illustrated197

in Table 1. This is an advantage over traditional CNNs which was demonstrated in Andén198

& Mallat (2014) and Oyallon et al. (2017).199

2.4 Hyperparameters200

The overall clustering strategy involves several hyperparameters that define the net-201

work architecture, control the time and frequency scales and temporal resolution of the202

analysis based on the frequency content of the tracked event, and the maximum num-203

ber of clusters found by the procedure. We here define these parameters:204

• The number of scattering layers L. Andén & Mallat (2014) suggest that two205

layers are sufficient for audio signals, especially with a broad frequency spectrum.206

In our case, we use 3 layers since the signals of interest span a narrow frequency207
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band, with the second and third layers designed to focus on the envelope oscilla-208

tions at different frequencies (see Section 2.2).209

• The decimation factor: The main idea of the deep scattering network is to cap-210

ture the frequency content of the signals’ envelope at different frequencies. For seis-211

mic data, we assume the envelopes vary smoothly with respect to time. We thus212

decimate the output of the different wavelet transforms at all layers by a given dec-213

imation factor. As a consequence, the temporal sampling of each layer reduces as214

depth increases (see Table 1).215

• The number of octaves J`: determines the frequency range of the wavelet fil-216

ter bank at layer `, from ωmin = π2−J` to ωmax = π (in radians). In the first217

layer, J1 defines the frequencies analyzed in the seismic data. The parameters J2218

and J3 control the ranges of time scales seen in the signal envelopes.219

• The number of wavelets per octave Q` : controls the frequency resolution220

of each scalogram. Following Seydoux et al. (2020), we use a large Q in the first221

layer (dense representation) and a low Q in deeper layers (sparse representation)222

to maximize the separation between dissimilar events.223

• The number of wavelet knots K: controls the number of points to interpo-224

late the wavelets, and therefore the potential complexity in wavelet shape. Select-225

ing more knots leads to a better description of the signal at reduced computational226

efficiency. To approximate standard mother wavelets such as the Gabor wavelet227

at affordable computation cost, we use K = 5 knots.228

• The latent space dimension: controls the number of components to keep in229

the dimension reduction with Principal Component Analysis (PCA). There is a230

trade-off to consider between removing too much information (few principal com-231

ponents) and degrading the GMM clustering quality (too many principal compo-232

nents). Judging this trade-off, in the present study, we selected 6 components to233

perform the analysis.234

3 Application to SEIS continous data235

We focus on the continuous 20 samples per seconds (sps) VEL channels of the oblique236

VBB components U, V and W. The two top panels of Fig. 2 show one sol (184) of VBB237

U raw data and its spectrogram. Sols are Martian days (about 24 hours and 40 minutes)238

and are numbered since the landing date. A LMST hour is 1/24 of a sol.239
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As already described by Lognonné et al. (2020); Giardini et al. (2020); Stutzmann240

et al. (2021); Ceylan et al. (2021), SEIS signals contain highly repetitive patterns in both241

noise amplitude and frequency of events (that we define here as short duration bursts242

of energy) from one sol to another. Because of this sol-periodicity, we can expect to cover243

with a limited number of sols all patterns embedded in the noise, which will need only244

a few weeks for signal training. The first is from June, 3, 2019 to June, 11, 2019, coin-245

ciding with the start of continuous 20 sps data. We selected also three other weeks in246

2019 (June 12 to 18, June 23 to 30 and July 7 to 14), in order to check that our unsu-247

pervised deep learning algorithm (see Section 2.2) can cluster the noise structure regard-248

less of the duration and epoch of the time-period. As clustering results are similar for249

the four weeks, we show only the results for the first week.250

In order to interpret the clustering results, we have also used the temperature data251

from SEIS and the temperature and pressure data from the Auxiliary Payload Sensors252

Suite (APSS) experiment Banfield et al. (2018). See further details in section ”Data and253

Resources”.254

3.1 Data pre-processing and learning convergence255

Minimal pre-processing was performed on the continuous data, limited to (i) a dec-256

imation by 2 due to available GPU memory limitations and (ii) a 0.001 Hz high-pass fil-257

tering, to remove the very long period thermal signal. All data are therefore expressed258

in Digital Unit (DU), which correspond to about 1.25 10−11 m/s at 1 Hz. Our various259

tests confirmed that the resulting 0.001-5 Hz 10 sps 3 axis continuous was sufficient for260

the clustering task.261

Table 1 summarizes the choice of hyperparameters and dimension of the feature262

vectors used in our clustering approach. The continuous data was segmented in 100 s263

duration intervals viewed as samples without overlap due to processing limitation. Even264

if DSN has been able to track and cluster events close from the window’s borders, fu-265

ture optimization can easily be made with overlapping.266

The most frequent events in the data (like those generated by pressure drops or glitches)267

do not need many interpolation points for their reconstruction by the mother wavelets268

in each layer. As mentioned before, we set K to 5 and the latent space dimension to 6.269
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J`, Q` values and Nyquist frequencies, determining the bandwidth of each layer, are pro-270

vided in Table 1.271

Up to 9000 iterations (or epochs) were possible for the learning, but a stopping cri-272

terion after 2000 epochs was introduced, based on training’s track and reconstruction273

losses and with awareness of the plateau phenomenon (Seydoux et al., 2020), found gen-274

erally in the first 500 epochs. We tested our deep scattering network (DSN) with differ-275

ent depths and concluded that 3 layers were sufficient to extract information from noisy276

data and guarantee stability during learning. While a maximum of 15 clusters was al-277

lowed for the clustering, the clustering converged toward the smaller number of 9 clus-278

ters. This convergence to 9 clusters was found for different maxima tested (from 10 to279

20) and was also found for training on either one week of data or only one sol.280

3.2 Clusters and centroid for one sol281

Figure 2 shows how the 885 100sec data samples cluster during sol 184, one of the282

sol of the week learning period. It provides the number of data samples per hour for each283

cluster as a function of the Local Mean Solar Time (LMST) at the InSight location. Clus-284

ter’s occurrence frequency is described in figure 2. For example, cluster 0 is the most fre-285

quent cluster with 226 samples found, while cluster 8 is the least frequent one, with 24286

samples. This already shows that all clusters are associated to specific LMST and are287

therefore thermally triggered or associated to specific temperature/pressure conditions.288

Clusters 0,1,2 occur during day time, clusters 4, 6, 7, 8 during early night and clusters289

3 and 5 during late night. This will be confirmed by results for one week, presented later290

in the discussion and illustrated in the appendices.291

These data samples are clusterized either due to similar events occurring in the 100292

sec window or due to similar noise properties (e.g. level or color) in these windows. Be-293

fore continuing the interpretation, we first briefly review the types of events already iden-294

tified on SEIS data. These can be divided into two families:295

• Frequent events: These appear every sol and are either associated with the Mar-296

tian environment, the lander and/or the SEIS instrument. First examples are the297

pressure drops generating ground deformations. See Banerdt et al. (2020), Lognonné298

et al. (2020) and Kenda et al. (2020) for their signal on SEIS and Banfield et al.299

(2020) for the pressure signal on APSS. Spiga et al. (2021) and Lorenz et al. (2020)300
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catalogued them, based on the pressure signal shape. Other wind bursts exam-301

ples appear through lander vibrations. See among other (Ceylan et al., 2021; Char-302

alambous et al., 2021). Finally, due to thermoelastic stress release and also to pres-303

sure drops, glitches are very frequent on all SEIS records, with a visual repeata-304

bility sol by sol. See Lognonné et al. (2020) and Scholz et al. (2020) for more de-305

tails. They generate micro-tilts, leading to high amplitude instrument responses306

in the raw data.307

• Rare events: For our analysis, rare events are the seismic events (Giardini et al.,308

2020). With a rate of a few events per sol (Clinton et al., 2021), they are much309

less frequent than those listed above. In the framework of this paper, these will310

not be captured by clustering. Furthermore, for all the weeks analyzed, no cor-311

relation between reported P or S arrival times (as given by InSight Marsquake Ser-312

vice (2020)) and any cluster’s event origin time was found. The frequency of event313

clusters during the seismic events was similar to the one found at the same LMST314

but for sols without events.315

To better quantify common waveform similarities between samples of the same clus-

ter, we extracted for each cluster their centroid waveform and compared them to the best

similarity (BS) waveform. The later is by definition the closest to the covariance ellip-

soid’s center in the scattering manifold, distance corresponding in the machine learning

vocabulary to the similarity coefficient. For a given cluster, the centroid waveform is the

waveform stack of all events of the cluster and is obtained as follows. First all events from

the cluster are aligned with the BS waveform and sorted with increasing correlation co-

efficient. See Figure 3 for cluster 6. Alignment is made by maximum correlation time-

lag and correlation is computed in a 100 s window. The weighted stack is then obtained

from the aligned waveforms as follows:

X(t) =

N∑
i=0

ωixi(t− τi) ,

where ωi is the correlation weight and τi is the correlation time-lag of the event i with316

respect to the reference.317

For the 9 clusters, centroid waveforms are shown in Figure 4 while the data wave-318

forms are shown in Appendix A (Figures A3 to A11 respectively). The BS waveforms319

for these 9 clusters are provided in Figure A12 of Appendix A. For each cluster, the cor-320
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relation and similarity values between the BS and centroid waveforms are shown on Fig-321

ure 5 and support a classification in three families, listed A, B, C.322

Clusters A (numbered 6-7-8) are characterized by both a high correlation and a high323

similarity between the BS waveform and the centroid. While having no significant sim-324

ilarity, the B type centroids (numbered 3,4,5) conserve a high correlation with the BS325

waveform for clusters 4 and 5. Correlation drops to about 0.5 for cluster 3. Clusters C326

are those numbered 0,1,2. They have a very low correlation but with a significant sim-327

ilarity for 1 and 2.328

Both centroids and BS waveforms of families A and B are characterized by VBB329

glitches, as identified by Lognonné et al. (2020) and Scholz et al. (2020). They appear330

on these raw data as the instrument response to an acceleration step. The glitches are331

less clear for cluster 3 BS waveform and appear mostly on the corresponding centroid.332

The centroids and BS waveforms of family C are all occurring during windy activity, ei-333

ther during the day regime for clusters 1 and 2 with their larger spectral amplitudes or334

in the second part of the night, continuing to the morning for cluster 0. We will see later335

that these clusters are associated either to pressure drops or wind burst, generating in336

both cases SEIS signal.337

The clustering is, however, not made only on the waveform similarities, but also338

on their spectral properties, including spectra color and ratio between high frequency339

and low frequency amplitudes. This explains why these families have several clusters and340

not only one and is illustrated by the spectra of the 9 centroid waveforms shown in fig-341

ure 6 for the V component and in Appendix A (figure A13) for the associated BS spec-342

tra.343

The large differences in the ratio between low-frequency and high-frequency am-344

plitudes for family A and B confirm differences between the 5 clusters. For example, cen-345

troid’s spectra of clusters 3, 4 and 7 are comparable above 1Hz but have growing am-346

plitudes between 0.1-0.2Hz while the high frequency amplitudes and color of centroid’s347

spectra 6, 8, and 5 are respectively red, white and blue. Likely, the clustering is also sen-348

sitive to the 1 Hz tick noise (and associated 2Hz-3Hz harmonics) which acts as an am-349

plitude reference. While being an artifact related to the interference of the house keep-350

ing data inrush current on the VBB feedback analog signal, its amplitude is indeed sta-351

ble over time (Ceylan et al., 2021). Another interesting feature is the 2.4Hz resonance352
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peak, proposed as a ground resonance by Giardini et al. (2020). It has a very compa-353

rable amplitude for the three low noise clusters (3,4,7), which confirms the stability of354

its amplitude. Clusters 3, 4-8 all occur during the night. But clusters 5 and 6 have a much355

larger noise level, covering the 2.4 Hz resonance, while cluster 8 has the highest back-356

ground noise of both family A and B. For the family C, spectra are on the other hand357

much more comparable after scaling. The 1Hz tick noise allows however to understand358

that clusters 0, 2, 1 are associated to growing noise level, the tick noise being for exam-359

ple observed on both the BS waveform and the centroid for cluster 0 and absent for clus-360

ter 1. We will discuss this family later, in more detail, after having compared these clus-361

ters with pressure drops statistics.362

Other VBB components provide similar results (Figures A1 for W and A2 for U)363

but with amplitude differences of the 1 Hz, 2 Hz, 3 Hz and 2.4 Hz peaks.364

3.3 Clustering stability365

The stability of the clustering is tested with training on different sols selected from366

the middle of Northern spring to the middle of Northern summer. Between 8 and 10 clus-367

ters are commonly identified. Four clusters (1,2,3,7) are stable over time, representing368

families A, B and C for clusters 7, 3 and 1-2 respectively. A similarity larger than 95%369

between events from different sols but from that same stable cluster is found. The cen-370

troid spectra are shown on Figure 7 for all these sols.371

The two clusters with the lowest spectral amplitudes have clear 1 Hz (and over-372

tones) tick noise peaks plus the 2.4 Hz resonance and correspond to clusters 7 and 3 from373

Figures 4 and 6. As already said, they are associated with glitches occurring during the374

early and late night, respectively, and therefore with decreasing cooling rate, which might375

explain the smaller glitch amplitude of cluster 3 as compared to 7, as illustrated by the376

almost 20 db differences in figure 6. The two other clusters are those with the largest377

spectral amplitudes, have large excitation levels for the lander resonances above 3 Hz and378

correspond to clusters 1 and 2 from Figures 4 and 6. These two clusters appear during379

the day or the second half of the night, respectively. We will later see that cluster 1 is380

associated with pressure drops, while cluster 2 is associated with bursts of energy gen-381

erating ringing associated with the lander resonances. This ringing is also found when382

examining the spectrograms of individual events.383
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These clustering stabilities from sol to sol are likely related to both the waveform384

and spectra similarities, including for spectra resonances. The invariance properties of385

the deep scattering network contribute to these stabilities.386

4 Comparison between SEIS glitch clusters and glitch catalog387

Families A and B are characterized by powerful (for cluster 4-8) and weak (for clus-388

ter 3) glitches. Glitches from clusters 4 and 8 are dominating the signal in the time do-389

main (Figure 2). During sol 184, they sum up to 364 events. These glitches are frequent390

enough to occur during quakes and perturb the recorded quakes signals (Lognonné et391

al., 2020).392

Cataloging the glitches and possibly removing them was an early effort (Lognonné393

et al., 2020) and is detailed by Scholz et al. (2020). We compare here the detection tim-394

ing of the DSN with those provided by the more classical glitch detection techniques. On395

sol 184 (June, 3, 2019), the number of glitches reported in these catalogs ranges from396

50 to more than 200, depending on the detection algorithm and threshold parameters,397

and we use for comparison a catalog of 127 glitches obtained for a middle threshold value398

(see Supplementary material for the associated listing and further details in Scholz et399

al. (2020)). The histogram of the results is shown in Figure 15. The zero-centered dis-400

tribution confirms the matching between the two approaches. In fact, DSN retrieves 117401

glitches from the catalog out of 127 with a timing error smaller than 2 s, which corre-402

sponds to 92 % of the cataloged glitches and therefore 8% of false negative. When look-403

ing on the similarity coefficient, 170 of these events have a very low similarity coefficient,404

smaller than 10−8, and can therefore be either false detection or weak detection. The405

total of glitches detected by DSN with high similarity is therefore 194 (152% of the cat-406

aloged glitches). These additional events are likely glitches with amplitude lower than407

the catalog threshold.408

4.1 Cluster polarizations409

Polarization provides additional information on the origin of clusters, and we de-410

termined the azimuth and dip for all events as follows. We first high-pass filter all com-411

ponents with a 0.1 Hz cutoff. We then normalized all components with the transfer func-412

tion of the U component (a correction made by the ratio of the U transfer function with413
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the transfer function of the component) and then rotated the data to obtain the N, E,414

and Z components (based on SEED dataless information). The event’s azimuth and dip415

are then computed using the Ppol software (Fontaine et al., 2009; Scholz, 2020). For all416

clusters except 1 and 3 we use a ±5s time window around the event center, as defined417

by the correlation with the centroid. For clusters 3 and 1 a window of ±40s and ±20s418

respectively is used.419

Figure 10 shows the back azimuths and dips of all events from clusters 1, 3 and 8,420

while those of the other clusters are only discussed below. Cluster 0 and 1 have sub-vertical421

dip, as observed by Kenda et al. (2020) for pressure drops. Cluster 2 has a horizontal422

dip but with a relatively large azimuth scatter, even if some clustering toward North is423

observed with large amplitude. We retrieve here observations from Stutzmann et al. (2021);424

Charalambous et al. (2021) and an interpretation based on wind-induced lander noise.425

Cluster 8 is typical for SEIS glitches (like clusters 4 to 8). Its dip departure from hor-426

izontal is very small (as for cluster 7) and its azimuth points to the North (as for clus-427

ters 4,6 and 7) and seems related to longitudinal micro-tilts with respect to the tether.428

The not shown cluster 5 has on its side an azimuth close to orthogonal from the Load429

Shunt Assembly (LSA)/tether in line with their peak occurrence during the cooling of430

the early night (Figure 2), while those with smaller amplitude have still a sub-horizontal431

dip. Cluster 3 has more vertical component but a relatively stable azimuth toward the432

lander and correspond to either low amplitude glitches or internal SEIS glitches, known433

as source of vertical signal (Scholz et al., 2020).434

5 Correlation of SEIS clusters with temperature and sol quasi peri-435

odicity436

Both the dependency on LMST and the clustering stability over sols suggest that437

our clusters are driven by daily temperature variations. This is confirmed by Figure 8438

which shows for five days, the number of events per hour together with the outside tem-439

perature, the scientific temperature and the VBB temperature. The latter two have a440

delay related to 3 hr and 5.5 hr time constant of the VBB enclosure and WTS (Lognonné441

et al., 2019). None of these temperature data were input of the learning.442

We first discuss the correlation of occurrence rate with temperature starting from443

midnight (0:00 LMST). During the nighttime cooling and associated decrease of atmo-444
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spheric temperature, cluster 3 (green) is dominant, with a low noise level (Figure 6) and445

a clear 2.4 Hz resonance. Glitches from cluster 5 are also present in background, espe-446

cially when noise levels are larger.447

Cluster 0 (blue), with a much larger noise above 1Hz, hiding the 2.4 Hz resonance448

(Figure 6), increases in intensity when night winds rise up, and . This cluster replaces449

cluster 3 and becomes the most abundant in the early morning. Cluster 1 (orange) starts450

when the temperature increases after sunrise and reaches its maximum occurrence rate451

in the late morning. During the daytime’s atmospheric activity this cluster dominates.452

The occurrence rate of cluster 2 (red) is increasing in the late morning and has a plateau453

between 12:00 and 17:00 LMST. Clusters 0, 2 and 1 have increasing background noise454

levels (Figure 6). This behavior is related to afternoon wind bursts, the signature of which455

is also found in the large variations in atmospheric temperature. Clusters 0, 1 have both456

long-period events and short-period events. They seem to be associated with the con-457

junction of pressure drops and wind burst. Cluster 2 is mostly a high-frequency event458

and is likely associated with wind bursts.459

Thermal glitches, identified with clusters 3-8 are mostly occurring for 4-8 during460

the cooling phase of the late afternoon, reaching maximum activity between 18:00 and461

20:00 LMST and a diffuse activity all the night. Cluster 3 glitches are on their side ob-462

served almost all the night.463

For all clusters, the sol by sol repetition suggests that the clustering is able to cap-464

ture the waveform and noise differences of these events, and that these are directly re-465

lated to LMST and/or to a physical processes depending on LMST. Although the se-466

quence is found every sol, differences in amplitude and in start/end times for each clus-467

ter are observed in sol to sol comparisons, as shown in Figure 8. Climatic variation will468

need further analysis but we can expect these to generate mostly a drift of the occur-469

rence LMST time of the temperature correlated clusters.470

6 Characterization of SEIS multi-glitches471

Our approach detected another type of events in the data: these are glitches ap-472

pearing in pairs, repeating with a stable time offset within the event window, and also473

repeating as the previous one every sol. We refer to these as doublet and, more gener-474

ally, tuplet glitches.475
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To identify these, we simply increased the basic time window from 100 sec to 1200476

sec. We now obtained 6 clusters. For a test made on 2 weeks of data in April 2019, the477

learning process converged after 8000 epochs and detected sequences of tuplet glitches478

with quasi-periodic recurrence times of 83 s, 208 s, 280 s, 295 s, 327 s and 374 s. We pro-479

vide further details in Appendix B and Figure B1. For a 2-week period in June 2019 (from480

sol 183 to sol 197), the quasi-period recurrence times found are 91 s, 198 s, 208 s, 218481

s, 280 s, 368 s and 385s. We provide further details in Appendix B and Figure B2. Al-482

though the recurrence times vary slightly, they concentrate in the ranges 80-90 s, 195-483

220 s, 280 s and 365-385 s. Figures 9 shows examples of glitches repeating with about484

368 s delay, with 574 events found during a long sequence, from sol 184 to sol 198), and485

the aligned weighted stack of all these events. A mean rate of about 28 events per sol486

is therefore found for these events and the rms of the 368 s time offset is only 2.3 s. An487

interesting finding is that these signals are not present during some periods of the night,488

roughly between 1 LMST and 7 LMST. Further works, outside the scope of this paper,489

will be necessary to understand if they are instrument or lander generated.490

Clearly, the occurrence of these glitches cannot be assumed as random and this might491

impact analysis assuming stochastic ambient noise. In this regard, the timing of man-492

tle and core signals proposed by Deng & Levander (2020) from auto-correlation of the493

raw (and non-deglitched) SEIS data are coinciding with the 280s and 380s delays found494

in doublet clusters. An in depth analysis of the impact of glitches has been made by Kim495

et al. (2021), confirming that these signals must be handled with care for any geophys-496

ical interpretation. To our knowledge, the clustering analysis proposed here is at this time497

the only proposed method enabling the identification in the SEIS data of doublets and,498

generally speaking, of multi-glitches with non-stochastic timing. It furthermore allows499

us to find periods in the data, during which these signals disappear, and which might500

be more adequate for auto-correlation analysis.501

7 Pressure drop clusters and catalog502

We now analyze the correlations between SEIS micro-event clusters and pressure503

drops induced by atmospheric vortices, very frequent in Elysium Planitia (Banfield et504

al., 2020) and more generally the efficiency of clustering for pressure signals. We do it505

first with a clustering analysis of the pressure signal alone and then, compare the tim-506
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ing of pressure clusters and the SEIS clusters obtained in the previous sections with pres-507

sure drop catalogs (Lorenz et al., 2020; Spiga et al., 2021).508

7.1 Cataloging pressure drops with DSN509

For the first step, we use only 2 layers in the DSN structure and limit the princi-510

pal component analysis to 3 components instead of 6. This focuses on the most frequent511

and clearest events. The 10 sps calibrated pressure data (Banfield et al., 2020b) were used.512

The training was made with pressure data starting on 2019-06-02 00:00:00 UTC and end-513

ing on 2019-06-11 00:00:00 UTC, covering sols 182 to 191.514

We obtained 7 clusters, described in Appendix D and focus here on the three clus-515

ters clearly associated with pressure drops. Their stacks are shown on Figure 11 and these516

clusters differ by their frequency content and waveform shape. The less frequent events517

from cluster 2 have for example a more pronounced peak shape than those of cluster 0518

and 1.519

7.2 Pressure drop catalog correlation with the pressure clusters520

To confirm the link with pressure drops, we use the published pressure drop cat-521

alog. It reports 278 pressure drops larger than -0.3 Pa during the learning period. For522

each event of the three clusters, we determine first its time through cross-correlation with523

the cluster centroid waveform and compute then the time difference with the closest cat-524

aloged pressure drop. Events with a time difference larger than the learning window (100s)525

are rejected(about 8%). The learning detected 341 events for cluster 0, 566 events for526

cluster 1 and 24 events for cluster 2, respectively. Similarity coefficients were larger than527

0.00018 for cluster 0, 5.310−7 for cluster 1 and 0.0019 for cluster 2, respectively. 111.9%528

(311 learned events out of 278 in the pressure drop catalog) of the reported dust dev-529

ils are within this 100 sec window, and 92% have furthermore a time difference of less530

than 20s. DSN can therefore catalog the pressure drops directly from pressure data, and531

in addition improve the detection of smaller and not yet reported ones. For these 2 clus-532

ters we detected 3.34 times more events than those found manually, with pressure am-533

plitudes of -0.015 Pa for cluster 0, -0.017 Pa for cluster 1 and -0.2 Pa for cluster 2, re-534

spectively.535

Figure 12 shows the occurrence time difference between the DSN detected pressure536

drop and those of the catalog. Most of the events timing are within ±5 sec from those537
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of the catalog. Note also the secondary peaks, mostly 25 sec prior, which is likely related538

to double pressure drops structure.539

Figure 13 summarizes the results with a frequency-amplitude log-log cumulative540

histogram. This shows that the power -2 slope proposed by Lorenz et al. (2021); Spiga541

et al. (2021) can be extended to lower amplitudes and at least down to 0.2 Pa. This dou-542

bles the number of pressure drops. The cluster 2, with a sharp pressure drop, seems more543

sensitive to noise and is found only for the largest pressure drop while the cluster 0 might544

complete, for low amplitude, the cluster 1. Machine learning is therefore efficient and545

likely better at detecting and classifying pressure drops than previous studies made with546

InSight data.547

7.3 VBB clusters correlation with the pressure clusters548

Let us now compare the occurrence time of the seismic VBB clusters and those of549

the published dust devils catalog, to identify VBB events related to pressure drops. Clus-550

ter numbers are those from section 4-6.551

Let us first focus on pressure drops found with a time delay within ± 100 sec to552

a cluster event. For a cluster with a rate of N event per sol, a fraction of these might be553

coincident just by chance. In such a random process, the probability to get n pressure554

drops in the N windows of ∆T=200 sec is p(n) = an0C(N,n) where C(N,n) is the bi-555

nomial coefficient of n-combinations over N and a0 = ∆T
sol , where sol is the duration of556

one sol. This provides the 1σ threshold for all cluster, respectively equal to n=13,13,3,8,3,6,3,2,2557

for clusters 0 to 8. These numbers were all computed for the reference period detailed558

in Appendix A, where the list of all clusters can be found.559

Only 5 clusters are found above the 1σ threshold, with associated histograms in560

Figure 14: clusters 0, 1, 2, 4 and 8, with a number of pressure drops respectively 14x,561

7x, 6x, 1.5x and 8.5x those of the 1σ thresholds. For the 201 pressure drops reported in562

the test period from June 3 to June 10, 2019, 90% (respectively 50%) of these pressure563

drops can be associated with an event of cluster 0 (respectively 1).564

With a closer look at Figure 14, we find pressure drops within ±25s for cluster 0565

and ±40s for cluster 1. In addition, we observed on the centroid waveforms (figure 4),566

long period oscillations, 25s before the event’s center for cluster 0 and 40s before for clus-567

ter 1. VBB events are therefore detected in advance of the drop in pressure data. The568
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glitch clusters 4 and 8 are also correlated with pressure drops. Their dip is close to hor-569

izontal, suggesting generation by the pressure drop of a micro-tilt on the instrument, in570

contrary to clusters 0 and 1 for which the signal has a significant vertical component.571

Finally, some of the events of cluster 2, related to wind bursts, are also associated with572

pressure drop. They account only for about 10% of the pressure drops and are likely re-573

lated to the high winds observed during the pressure drops events.574

Conclusion575

The Deep Scattering Network DSN method has proven to be powerful and effec-576

tive when applied to the Martian dataset gathered by the InSight mission. It has suc-577

cessfully classified the dynamics of the noise in an automatic and unsupervised way. DSN578

is capable of extracting multiple features in a large dimensional space, to which the noise579

is mapped. This allows us to better understand and identify the properties in each time580

window of SEIS and pressure data. Naturally, the DSN approach can be generalized to581

other time series. With the multiple wavelets cascade and activation functions, patterns582

that cannot be easily identified are retrieved.583

As a result, we detected multiple environmental Martian events like glitches, pres-584

sure drops, and wind bursts with efficiency and sensitivity comparable with the published585

catalogs but in a full unsupervised way. More importantly, the DSN was able to discover586

and characterize, for the first time, tuplets of glitches, whose stable separation in time587

must be integrated in future auto-correlation analysis to ensure that these quasi-periodic588

events are not misinterpreted in terms of deep interior seismic phases. DSN appears there-589

fore as a powerful tool for studying the non-stochasticity of seismic noise and finding noise590

structures both in terms of waveform and spectra. When implemented on continous data,591

this will allow possible misinterpretation between seismic phases and micro-seismic noise592

bursts, especially for low signal-to-noise events.593

This analysis also shows that unsupervised deep learning efficiently identifies clus-594

ters of micro-events in seismic data. If used in parallel with more classical seismic de-595

tection algorithms, this could prevent detection saturation and select noise samples for596

future planetary or Earth’s ocean bottom geophysical observatories unable to fully trans-597

mit their data. In this regard, DSN can not only enhance the robotic system performance598

but also increase science return.599
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Data and Resources600

SEIS data used are available in SEED format (InSIght Mars SEIS Service, 2019a)601

or PDS4 format (InSIght Mars SEIS Service, 2019b) at the respective doi’s: 10.18715/SEIS.INSIGHT.XB602

2016 and 10.17189/1517570. Pressure and atmospheric data are available at NASA PDS603

at the respectives doi’s: 10.17189/1518939 and 10.17189/1518950. Namely, we used in604

addition to seismic data the VBB sensor’s temperatures (03.VKU, 03.VKV, 03.VKW),605

the Leveling System (LVL) temperature (VKI), and for APSS, the atmospheric temper-606

ature (VKO) and pressure (03.BDO). Catalogs are available for MQS event in InSight607

Marsquake Service (2020), for pressure drops in Spiga et al. (2021) and for glitches in608

Scholz et al. (2020). The deep scattering network clustering algorithm used in this study609

was downloaded from its original repository at https://github.com/leonard-seydoux/scatnet.610

This paper is accompanied by a supplementary material divided into two sections.611

The first part corresponds to the learned pressure drops data (3 files) and docu-612

ments all events of the 3 pressure drop clusters shown in the paper. In each file, columns613

provide the event index, the UTC time, the similarity coefficient, the correlation coef-614

ficient, the amplitude and finally the amplitude of the event in Pa.615

The second section describes the VBB cluster’s data and documents all events of616

the 9 VBB clusters shown in the paper. In each file, columns provide the event index,617

the UTC time, the similarity coefficient, the correlation coefficient and the amplitude618

of respectively U, V and W channels. All correlation coefficients are those with the event619

having the highest similarity coefficient, as explained in the paper620
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D., Beucler, E., Garcia, R. F., Kedar, S., Panning, M. P., Perrin, C., Pike, W. T.,701

Smrekar, S. E., Spiga, A., & Stott, A. E. (2021). The marsquake catalogue from702

insight, sols 0–478. Physics of the Earth and Planetary Interiors, 310 , 106595.703
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1 Clustering continuous seismograms with deep scattering network (DSN) and Gaussian

mixture model (GMM). A. Deep scattering network the modulus of convolution between

the input seismogram and a first learnable wavelet bank defines the first-order scalogram.

The average pooling in the time dimension of this scalogram provides the first-order scatter-

ing coefficients. The second-order scalograms are obtained from each scale of the first-order

scalogram, similarly leading to second-order scattering coefficients with average pooling

(Andén & Mallat, 2014). This procedure can be performed at higher orders, and the col-

lection of all-orders scattering coefficients define the scattering representation of the seismic

data. The analysis of multiple channels in done by the concatenation of the scattering co-

efficients obtained for each channel.B. Clustering workflow as defined in Seydoux et al.

(2020): the scattering coefficients are extracted from the continuous multi-component seis-

mograms with a DSN (illustrated in B). A low-dimensional representation (latent space) of

the continuous seismic data is obtained from the first few principal components of the scat-

tering coefficients. The clustering is performed onto the data projected in the latent space

with a GMM, allowing to assign a cluster to each segment of signal. The overall strategy

optimizes the mother wavelets of each DSN layers to minimize the GMM clustering loss. . 31

2 Cluster occurrence frequency on Sol 184. The first panel from the top shows the raw VBB

U data for Martian Sol 184. The second panel is the associated spectrogram, computed

with a window of 102.4 s illustrating the evolution of the frequency content. The other

panels show the histograms of cluster activities. They give the number of events occurring

in a 11 minute window as a function of LMST (Local Mean Solar Time). Numbers on the

top right of each panel are the total number of events for that sol. . . . . . . . . . . . . . 32

27
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3 Cluster 6 events aligned on their largest amplitude for the three components. Starting

from left to right panels: U, V and W. The top traces are the reference waveforms and

the ranking from top to bottom corresponds to decreasing correlation. All waveforms are

normalized with respect to their maximum amplitude and event start time is at t=0 s.

Correlation is defined as the mean value of the 3 correlation obtained for each axis, and

is shown on the right panel as a circle. The three values of correlations for U, V, W are

also shown as colored dots on this right panel, together with similarity with a red stars,

plotted to the power 1/6 due to the 6 dimension of the manifold. As clustering is done

with a mixture of noise level and waveform similarities, correlations and similarities are

not correlated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Centroid waveforms of the 9 clusters. For each cluster, the waveforms of the 3 components

U, V and W are plotted together with the corresponding peak to peak percentage computed

with respect to the component with the maximum amplitude. This provides the relative

amplitude of the three components, a feature taken into account in the clustering process.

Amplitudes are normalized by the mean squared norm L2 applied on the 3 axis. The

cluster event starts at 0 s (centered using the same procedure explained in figure 3). . . . 34

5 Cluster’s centroid similarity distribution in function of its correlation with the best simi-

larity event for each cluster . This figure highlight 3 families A, B and C: family A in red :

During the clustering procedure, the waveform shape is the dominant feature. Family B in

blue: the waveform is not the only main feature used in the clustering (e.g. the background

noise, the relative amplitude...). Family C in green: the background noise is the dominant

feature during the clustering procedure. It is more related to the response of the external

Martian sources in the seismic data, like the background noise generated by pressure drops

(cluster 0 and 1) or wind burst (cluster 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Amplitude spectral density of the 9 cluster centroid waveforms for the V component. . . 35

7 Stable cluster spectrum. Each plot shows the centroid spectra of the clusters 1, 2, 3 and

7, as obtained from learning on the following Martian Sols: Sol193, Sol203, Sol213, Sol223,

Sol234, Sol243, Sol253, Sol363, Sol372, Sol393. These cluster’s events have 95% similarity

between each others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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8 Temperature correlation. Top panel: Temperature (in Celsius) recorded at three different

locations. On the lander (outside temperature in red), under seismometer thermal shielding

(scientific temperature in blue), next to the VBB U sensors (VBB temperature in black).

For each local hour, the color in the background corresponds to the cluster which has the

maximum number of detection, as shown in the bottom plot. Middle panel: Number of

detection per hour for the 9 clusters. Each color line corresponds to one cluster with the

same color code as in Figure 7 (0: blue, 1: orange, 2: green, 3: red, 4: purple, 5: brown,

6: pink, 7: gray, 8: gold). Both plots are a function of local time in sols, from sol 183 to

sol 189. Bottom panel: U, V and W raw data presented from Sol 184 to Sol 189. . . . . . 37

9 On the left, cluster of doublet glitches with 368 s time delay on component W. Amplitudes

are normalized as in Figure 4 and RMS is 2.3 s. The right panel provides the LMST of

these glitches and shows that an interruption is observed during the coldest time of the

night. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10 Back azimuths and dip of the events of clusters 1, 2 and 8 recorded on sol 183. The first

3 plots on the top shows the back azimuth of the clusters 1,2 and 8. For each cluster, the

corresponding events are plotted with points as a function of their back azimuth from 0 to

360o along the outer circle and as a function of their index along the radius. The events are

assumed to be linearly polarized. The inner dashed circles give the event indices. Events

in the center have the best similarity with the cluster centroid. Note that these numbers

are different for each cluster. Azimuths related to the SEIS instrument feature are given

on the outer circle and include: the sensitivity azimuth of the VBB (U, V, W) and SP

sensors (SP2,SP3), the feet of the LVL system (LVL1-2-3), the feet of the Wind Thermal

Shield sub-system (WTSE, W, N) and the Load Shunt Assembly (LSA). SP1 is not listed

since this is the vertical component SP sensor. The three figures in the bottom illustrates

the dip of 1,2 and 8 clusters following the same representation as the azimuth. . . . . . . 39

11 Waveforms of pressure drop clusters. The stacked waveforms are obtained using the ap-

proach outlined in Section 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

12 Timing of pressure drops. Histogram showing the number of pressure drops as a function of

time difference between the pressure drop center, as reported in the pressure drop catalog

of Spiga et al. (2021) and the center of the pressure drop, as event of cluster 0, 1 and

cluster 2. The bin size is 4 s for cluster 0 and 1 and 2 s for cluster 2. The learning window

is 100 s and the difference are reported when within ±100 s. . . . . . . . . . . . . . . . . 40
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13 Statistics of pressure drops. Cumulative histogram of the pressure drops from Spiga et

al. (2021) catalog (blue) and for the combined clusters 0-1-2 (orange). The histograms for

each pressure drop cluster are also provided, with colors purple, red and green for 0,1,2

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

14 VBB pressure drops statistics. Histogram showing the number of pressure drops as a

function of time difference between the pressure drop center, as reported in the pressure

drop catalog and the center of the VBB events of several clusters. The learning window is

100 s and the difference are only reported when within ±100 s. Only clusters for which the

number of coincidence is larger than the 1-σ value obtained for random process are shown. 41

15 Glitch detection timing. Histogram showing the time difference of glitches cataloged by

Scholz et al. (2020) and the glitch clusters. Only differences smaller than 10 s are shown

in Sol 184. 127 glitches are listed in catalog. In the figure’s legend, we mention the total

number of glitches for each cluster out of its total event’s number. . . . . . . . . . . . . . 42
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8 Tables and figures913

Layer Description Dimension After pooling dim. (scat. coef.) J` Q` f` (Nyquist) F`= J`Q`

-1 Raw data (100s, 20 sps) 3 channels × 2000 samples N/A N/A N/A 10 Hz N/A

0 Decimated data (100s, 10 sps) 3 channels × 1000 samples N/A N/A N/A 5 Hz N/A

1 First layer 3 ch. × F1 filters × 512 samples 3 × F1 × 8 6 6 1.25 Hz 36

2 Second layer 3 ch. × (F1 × F2) filters × 128 samples 3 ×F1 × F2× 8 7 2 0.312 Hz 14

3 Third layer 3 ch. × (F1 × F2 × F3) filters × 32 samples 3 × F1 × F2 × F3 × 8 7 2 0.079 Hz 14

Table 1. Computational dimensions of the scattering coefficients. Raw 20 sps data (layer -1) are first decimated to 10 sps for faster computation. A data

window of 100 seconds from 3 channels contains 1000 samples per channel at the 0 layer (input layer). After convolving the signal with the F1 filters of the first

wavelet bank, the signal is decimated down to 512 samples. Then, successive decimations by 4 with a 4th order Butterworth anti-alias filter are made from one layer

to the next one, ending up to 512, 128 and 32 samples for layers 1, 2 and 3 respectively. We finally obtain the scattering coefficients with an adapted pooling oper-

ation performed on all layers at once. The pooling factor is larger at first layers (from 512 to 8 samples) and lower at last layers (from 32 to 8 samples). We finally

end up with a number of 8 samples in the time dimension, corresponding to a time resolution of 12.5 seconds in our case. Note that the dimension of the scattering

coefficients grows exponentially with the number of filters per layers (F`) and the number of layers `. J`, Q` and f` defined the network hyperparameters used in

this study and defined in both section 2.4 and 4 in the main text.

–
3
5
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Figure 1. Clustering continuous seismograms with deep scattering network (DSN)

and Gaussian mixture model (GMM). A. Deep scattering network the modulus of con-

volution between the input seismogram and a first learnable wavelet bank defines the first-order

scalogram. The average pooling in the time dimension of this scalogram provides the first-order

scattering coefficients. The second-order scalograms are obtained from each scale of the first-

order scalogram, similarly leading to second-order scattering coefficients with average pooling

(Andén & Mallat, 2014). This procedure can be performed at higher orders, and the collection

of all-orders scattering coefficients define the scattering representation of the seismic data. The

analysis of multiple channels in done by the concatenation of the scattering coefficients obtained

for each channel.B. Clustering workflow as defined in Seydoux et al. (2020): the scattering

coefficients are extracted from the continuous multi-component seismograms with a DSN (illus-

trated in B). A low-dimensional representation (latent space) of the continuous seismic data is

obtained from the first few principal components of the scattering coefficients. The clustering is

performed onto the data projected in the latent space with a GMM, allowing to assign a cluster

to each segment of signal. The overall strategy optimizes the mother wavelets of each DSN layers

to minimize the GMM clustering loss.
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Figure 2. Cluster occurrence frequency on Sol 184. The first panel from the top shows

the raw VBB U data for Martian Sol 184. The second panel is the associated spectrogram, com-

puted with a window of 102.4 s, illustrating the evolution of the frequency content. The other

panels show the histograms of cluster activities. They give the number of events occurring in an

11-minute window as a function of LMST (Local Mean Solar Time). Numbers on the top right of

each panel are the total number of events for that sol.
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Figure 3. Cluster 6 events aligned on their largest amplitude for the three com-

ponents. Starting from left to right panels: U, V and W. The top traces are the reference

waveforms and the ranking from top to bottom corresponds to decreasing correlation. All wave-

forms are normalized with respect to their maximum amplitude and event start time is at t=0 s.

Correlation is defined as the mean value of the 3 correlation obtained for each axis, and is shown

on the right panel as a circle. The three values of correlations for U, V, W are also shown as

colored dots on this right panel, together with similarity with a red stars, plotted to the power

1/6 due to the 6 dimension of the manifold. As clustering is done with a mixture of noise level

and waveform similarities, correlations and similarities are not correlated.
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Figure 4. Centroid waveforms of the 9 clusters. For each cluster, the waveforms of the

3 components U, V and W are plotted together with the corresponding peak to peak percentage

computed with respect to the component with the maximum amplitude. This provides the rel-

ative amplitude of the three components, a feature taken into account in the clustering process.

Amplitudes are normalized by the mean squared norm L2 applied on the 3 axis. The cluster

event starts at 0 s (centered using the same procedure explained in figure 3).
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Figure 5. Cluster’s centroid similarity distribution in function of its correlation

with the best similarity event for each cluster . This figure highlight 3 families A, B and

C: family A in red : During the clustering procedure, the waveform shape is the dominant fea-

ture. Family B in blue: the waveform is not the only main feature used in the clustering (e.g.

the background noise, the relative amplitude...). Family C in green: the background noise is the

dominant feature during the clustering procedure. It is more related to the response of the exter-

nal Martian sources in the seismic data, like the background noise generated by pressure drops

(cluster 0 and 1) or wind burst (cluster 3).

Figure 6. Amplitude spectral density of the 9 cluster centroid waveforms for the V

component.
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Figure 7. Stable cluster spectrum. Each plot shows the centroid spectra of the clusters

1, 2, 3 and 7, as obtained from learning on the following Martian Sols: Sol193, Sol203, Sol213,

Sol223, Sol234, Sol243, Sol253, Sol363, Sol372, Sol393. These cluster’s events have 95% similarity

between each others.
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Figure 8. Temperature correlation. Top panel: Temperature (in Celsius) recorded at

three different locations. On the lander (outside temperature in red), under seismometer ther-

mal shielding (scientific temperature in blue), next to the VBB U sensors (VBB temperature in

black). For each local hour, the color in the background corresponds to the cluster which has the

maximum number of detection, as shown in the bottom plot. Middle panel: Number of detection

per hour for the 9 clusters. Each color line corresponds to one cluster with the same color code

as in Figure 7 (0: blue, 1: orange, 2: green, 3: red, 4: purple, 5: brown, 6: pink, 7: gray, 8: gold).

Both plots are a function of local time in sols, from sol 183 to sol 189. Bottom panel: U, V and

W raw data presented from Sol 184 to Sol 189.
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Figure 9. On the left, cluster of doublet glitches with 368 s time delay on compo-

nent W. Amplitudes are normalized as in Figure 4 and RMS is 2.3 s. The right panel provides

the LMST of these glitches and shows that an interruption is observed during the coldest time of

the night.

–43–



manuscript submitted to BSSA

Figure 10. Back azimuths and dip of the events of clusters 1, 2 and 8 recorded on

sol 183. The first 3 plots on the top shows the back azimuth of the clusters 1,2 and 8. For each

cluster, the corresponding events are plotted with points as a function of their back azimuth from

0 to 360o along the outer circle and as a function of their index along the radius. The events are

assumed to be linearly polarized. The inner dashed circles give the event indices. Events in the

center have the best similarity with the cluster centroid. Note that these numbers are different

for each cluster. Azimuths related to the SEIS instrument feature are given on the outer circle

and include: the sensitivity azimuth of the VBB (U, V, W) and SP sensors (SP2,SP3), the feet

of the LVL system (LVL1-2-3), the feet of the Wind Thermal Shield sub-system (WTSE, W, N)

and the Load Shunt Assembly (LSA). SP1 is not listed since this is the vertical component SP

sensor. The three figures in the bottom illustrates the dip of 1,2 and 8 clusters following the same

representation as the azimuth.

–44–



manuscript submitted to BSSA

Figure 11. Waveforms of pressure drop clusters. The stacked waveforms are obtained

using the approach outlined in Section 4.

Figure 12. Timing of pressure drops. Histogram showing the number of pressure drops as

a function of time difference between the pressure drop center, as reported in the pressure drop

catalog of Spiga et al. (2021) and the center of the pressure drop, as event of cluster 0, 1 and

cluster 2. The bin size is 4 s for cluster 0 and 1 and 2 s for cluster 2. The learning window is 100

s and the difference are reported when within ±100 s.
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Figure 13. Statistics of pressure drops. Cumulative histogram of the pressure drops from

Spiga et al. (2021) catalog (blue) and for the combined clusters 0-1-2 (orange). The histograms

for each pressure drop cluster are also provided, with colors purple, red and green for 0,1,2 re-

spectively.

Figure 14. VBB pressure drops statistics. Histogram showing the number of pressure

drops as a function of time difference between the pressure drop center, as reported in the pres-

sure drop catalog and the center of the VBB events of several clusters. The learning window

is 100 s and the difference are only reported when within ±100 s. Only clusters for which the

number of coincidence is larger than the 1-σ value obtained for random process are shown.
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Figure 15. Glitch detection timing. Histogram showing the time difference of glitches

cataloged by Scholz et al. (2020) and the glitch clusters. Only differences smaller than 10 s are

shown in Sol 184. 127 glitches are listed in catalog. In the figure’s legend, we mention the total

number of glitches for each cluster out of its total event’s number.
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Appendix A Clusters’ waveforms914

In this appendix, we show the clustering results for all the clusters and associated915

events obtained on sol 184 used for computing centroids. All these events can be found,916

together with their occurrence time, cluster type, amplitude on U,V,W, similarity co-917

efficient and correlation coefficient with respect to the cluster’s reference event in e-supplementary918

material available in the folder AppendixA-VBBClusters available at:919

https://www.dropbox.com/sh/2vnaepwmle8nm60/AACT3OctWtEOZxVDHbfFF9Iga?dl=0920

First, we illustrate below the centroid spectrum of the two VBB component U and921

W respectively in Fig A1 and Fig A2, the V component being in the main text. The clus-922

ters figures shown in Fig A3, A4, A5, A6, A7, A8, A9, A10, and A11, illustrate923

all the events waveforms aligned for each cluster over the reference period in addition924

to their similarity and correlation coefficient computed in the same procedure as in fig-925

ure 3 of the main text.926

Figure A1. Amplitude spectral density of the W component clusters centroid.
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Figure A2. Amplitude spectral density of the U component clusters centroid.

Figure A3. Cluster 0 aligned waveforms. The 3 first figures from left to right shows all

the cluster 0 events waveforms aligned to a chosen reference respectively of U,V and W compo-

nent.The 4th figure illustrates the similarity coefficient (plotted to the power 1/6 due to the 6

dimension of the manifold) as well as the correlation coefficient defined as explained in figure 3
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Figure A4. Cluster 1 aligned waveforms. Same as A3 but for cluster 1.

.

Figure A5. Cluster 2 aligned waveforms. Same as A3 but for cluster 2.

.
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Figure A6. Cluster 3 aligned waveforms. Same as A3 but for cluster 3.

.

Figure A7. Cluster 4 aligned waveforms. Same as A3 but for cluster 4.

.
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Figure A8. Cluster 5 aligned waveforms. Same as A3 but for cluster 5.

.

Figure A9. Cluster 6 aligned waveforms. Same as A3 but for cluster 6.

.
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Figure A10. Cluster 7 aligned waveforms. Same as A3 but for cluster 7.

.

Figure A11. Cluster 8 aligned waveforms. Same as A3 but for cluster 8.

.
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Figure A12. Best similarity waveforms of the 9 clusters. For each cluster, the wave-

forms of the 3 components U, V and W are plotted together with the corresponding peak to

peak percentage computed with respect to the component with the maximum amplitude. This

provides the relative amplitude of the three components, a feature taken into account in the clus-

tering process. Amplitudes are normalized by the mean squared norm L2 applied on the 3 axis.

The cluster event starts at 0 s (centered using the same procedure explained in figure 3).
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Figure A13. Amplitude spectral density of the V component of the clusters best

similarities events.
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Appendix B Extended time window and clustering of tuplet glitches927

In this section, we show the performance of DSN to learn and track stable glitch928

sequences with stable time offset in further different period (April and June) to illustrate929

the stability of the learning process. During both test, we applied the same DSN con-930

figuration on 2sps U,V and W VBB data.931

B1 April learning results932

In this section, we illustrate the clusters obtained after the learning process with933

stable time offset as shown in figure B1. In this test, we used a larger learning window934

: 512s and kept the same configuration. The learning period was from 2019-03-31, 23:57:26935

UTC to 2019-04-15, 00:00:02 UTC (2 weeks).936

Figure B1. Glitches sequences clusters obtained in April: The obtained time offsets

are 374s, 280s, 327s, 295s, 208s and 83s with RMS respectively equal to 0.09s, 0.98s, 1.07s, 0.96s,

2.36s and 0.12s

B2 June learning results937

To check the capability and the stability of the learning process, we run the same938

test with the same window (512s) but in June from the 2019-06-10T00:00:00 UTC un-939

til 2019-06-23T23:59:50 UTC(2 weeks). Its results are summarized in figure B2.940
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Figure B2. Glitches sequences clusters obtained in June: The obtained time offsets

are 368s, 91s, 218s, 385s, 280s, 208s and 198s with RMS respectively equal to 0.09s, 0.98s, 1.07s,

0.96s, 2.36s, 5.63s and 0.12s
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Appendix C Waveforms of tuplet glitch clusters941

In this appendix, we show all the events of doublet-tuplet glitch sequences clusters942

with stable delays between consecutive glitches. A Tuplet glitches cluster is shown in fig-943

ure C1, with a 3D representation of all the events waveforms on the left figure and the944

associated stack on the right. We detected also multiple doublet as illustrated in figures C2945

and C3.946

Figure C1. 3D triple glitch cluster 11 obtained in June learning test. In this exam-

ple, the mean delay and associated rms were computed between the event centered at 0s and the

glitch at 280s. Mean delay is 280.9 and RMS is 0.9s
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s

Figure C2. 3D double glitch cluster 2. It was obtained in one learning test made for Sol

363. Mean delay is 248.6s with an RMS of 1s.

Figure C3. 3D double glitch cluster 6. It was obtained in April learning test. Mean delay

is 397.5s with an RMS of 3.9s.
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Appendix D Clustering continuous pressure data947

In this appendix, we show the clustering results for all the pressure clusters and948

associated events obtained for the period from June, 2, 2019, 0:00:00 to June, 11, 2019,949

0:00:00 for pressure data. All these events can be found, together with their occurrence950

time, cluster type, amplitude, similarity coefficient, correlation coefficient and event am-951

plitude with respect to the cluster’s reference event in e-supplementary material avail-952

able in the folder AppendixD-PressureClusters available at:953

https://www.dropbox.com/sh/2vnaepwmle8nm60/AACT3OctWtEOZxVDHbfFF9Iga?dl=0954

During the learning process, we detected 7 clusters in total. Three are identified955

as pressure drop clusters as shown in the main text. To have a better view of the global956

results, we first show the pressure clusters distribution in figure D1. Then, we provide957

their aligned waveforms as well as their corresponding similarity and correlation coef-958

ficient in figures: D2, D3, D4, D5, D7, D8 and D9. Events from cluster 0 and 6 show959

a clear centered event on the aligned waveforms figures. Their waveforms stack is shown960

in figures D6 and D10 respectively. These clusters correspond to a sharp wind burst seen961

in the pressure data and also detected by DSN.962

For the three pressure drops clusters, we show in figures D2, D3 and D4 and in black963

the events detected in both the pressure drop catalog made by (Spiga et al., 2021) and964

the learning catalog in black and in red the events only seen by the learning process.965
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Figure D1. Pressure clusters distribution from the June 2 to June 11. The learning

process has detected 7 clusters. Three of them are pressure drop clusters: Cluster 0, 1 and 2. The

number of event detected over the period is on top right of each cluster figure.

Figure D2. Pressure cluster 0 aligned waveforms: The first figure shows the events

waveforms aligned to a chosen reference. The plots in red correspond to the events that are

detected also in the pressure catalog. The second figure illustrates the events correlation and

similarity power to 1/6 respectively in green and red points. The third figure shows the events

pressure amplitude in Pa.
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Figure D3. Pressure cluster 1 aligned waveforms: Same as D2 but for cluster 1.

Figure D4. Pressure cluster 2: aligned waveforms. Same as D3 but for cluster 2.
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Figure D5. Pressure cluster 3: The figure on

the left shows the aligned waveforms, with decreasing

similarity coefficient from top to bottom. The figure on

the right shows, for all events, the similarity coefficient

and the correlation with the highest similarity event.

Figure D6. Pressure cluster 0 stack waveform.

Figure D7. Pressure cluster 4:. Same as D5 but for cluster 4.
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Figure D8. Pressure cluster 5: Same as D5 but for cluster 5.

Figure D9. Pressure cluster 6: Same as D5 but

for cluster 6.

Figure D10. Pressure cluster 6 stack waveform.
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