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Abstract— This paper proposes a new neural network based
on Symmetric Positive Definite (SPD) manifold learning for
real-time skeleton-based hand gesture recognition. The trans-
formation of the input skeletal data into SPD matrices allows
to encode efficiently high-order statistics such as covariances
or correlations between the joints’ features. These matrices are
combined and transformed by our deep neural network which
is thus constrained to work on the manifold of such matrices.
The online recognition is performed using two sliding windows
moving along the gesture’s stream in order to simultaneously
detect and classify the occurrence of a new gesture within the
stream. The proposed network is validated on a challenging
dataset and shows state-of-the-art performances both in terms
of accuracy and inference time.

I. INTRODUCTION

Deep neural networks have seen great success in recent
years, where most of the traditional methods have been
outperformed by deep learning architectures, especially in
the area of computer vision and handcrafted features. Con-
volutional neural networks (CNNs) [1], [2] are composed of
alternating convolution and pooling layers and finally apply-
ing a multi-layered perceptron to perform the classification
step. Other techniques that have encountered great success in
many image- and video-based pipelines are Symmetric Pos-
itive Definite (SPD) matrices. Such matrices have the ability
to learn non-linear relationships between input features.
They have been used in many tasks and areas of computer
vision [40], [41], [42], [43] such as medical imaging [3] or
pedestrian classification and detection [4]. In this paper, we
empower deep neural network architectures with statistical
representations using SPD matrices learning to solve the
issue of offline and online hand gestures recognition.

Hand gesture recognition is the process of detecting and
classifying human hands into several categories. This task is
one of the fundamental blocks in many applications such as
human-robot interaction [7], video games [6], sign language
interpretation [5], security and surveillance [8]. The issue of
hand gesture recognition is solved by traditional methods,
usually using sophisticated and expensive RGB and depth
cameras. However, with the recent development of low-cost
sensing cameras such as Microsoft Kinect, Intel Realsense, it
is possible to obtain skeletal data of human hands (Fig. 1) or
bodies with high precision. This kind of devices give accu-
rate information without too much processing or computing
resources. Conventional non-deep learning based works for
the recognition of hand gestures or human actions are mainly

based on modeling the movement of skeletal data over
time using Dynamic Time Warping [9], Fourier Temporal
Pyramid [10], Moving pose KNN [11]. Skeletal data has
been used by deep learning methods in different forms and
representations. The most effective methods are based on
CNN networks [34], [35], [36], [39], RNN /LSTM networks
[37], [38], [39] and more recently graph convolutional net-
works [24], [25]. Deep learning-based methods are powerful
for capturing both spatial and temporal features as well as the
relationships between joints. In addition, they can be applied
to frames or sequences of frames (i.e., videos). This line of
methods achieved high performance for hand/action gesture
recognition. However, they are limited and constrained by
the input’s shape with the need for deep architectures to
extract highly representative and discriminating features.
Despite the performance of deep learning architectures in
terms of accuracy, it is hard to design a real-time system
based on these architectures. In addition, these methods do
not allow straightforwardly to encode high-order statistics
such as correlations or variances between features. This last
point is a severe drawback in an application where several
joints evolve together in order to perform a gesture. Son et
al. [64] have proposed a deep learning solution based on SPD
matrices to handle the task of hand gesture recognition. This
solution explicitly encodes high-order relationships between
features but remains too slow for real-time applications. It is
thus designed especially for offline hand gesture recognition.
In this paper, we propose a deep architecture based on the
3D pose of the hand’s joints for real-time Hand Gesture
Recognition. Inspired by [64], [45], we first propose an
efficient deep neural network based on SPD matrices in order
to get a rich description of each sub-sequence of a gesture.
These SPD matrices extract temporal and local information
about the movement and trajectories of the hand’s joints
over a time segment and around an instantaneous 3D pose.
Such local and temporal information could be seen as a
generalization of the moving pose descriptor [11], and the
action snippet [48]. Our proposed network is then combined
with a novel architecture in order to perform online gesture
recognition.
In the following, we present in Section II the main methods
of the state-of-the-art. Our sub-network provides a descrip-
tion of each sub-sequence in Section III, and our new
architecture for online recognition is described in Section IV.
The resulting method is evaluated and compared to the
state-of-the-art in Section V. Finally, the conclusion and the978-1-6654-3176-7/21/$31.00 ©2021 IEEE



perspectives are described in Section VI.

II. RELATED WORK

In this section, we present the state-of-the-art methods for
the task of hand/action gesture recognition.

Skeleton Features: Traditional methods of a hand gesture
or action recognition are focused on handcrafted features,
that are applied for specific tasks. These methods extract sta-
tistical properties from input data before applying a discrim-
inative learning method to classify this input. These features
are based on geometric low-level properties [27], [28], [29]
or complex relationships between pairs of joints [30], [9],
[32]. Also, these features can be classified as informative [33]
or non-informative. However, despite the intensive efforts
spent to design efficient and complex features, the results
obtained by these methods are now outperformed by methods
learning an appropriate representation from data.

Deep Learning on Skeletal Data: After the breakthrough
of deep learning, many recent approaches have been pro-
posed for hand gesture, human action, and human activity
recognition using either images or videos. Most of these
approaches are based on 3D convolutional neural network
(3DCNN) [13], using e.g., a two-level hierarchical structure
[15], a 3DCNN with recurrent neural networks [14] such
as R3DCNN [12], C3D+LSTM [16], and CNN-LSTM [26].
Other methods for the task of gesture and action recognition
are based on sequence-to-sequence models using GRU net-
works [18], [19], [20]. The results and performance achieved
by DeepGRU [20] are mainly due to using : i) a GRU
network to capture the long term dependencies and the
variations over time of the hand/action joints between the
frames, and ii) to an attention module that detects which
frame is more important than other frames. Avola et al. [21]
developed a deep learning method with 4 stacked layers of
LSTM Networks [17] to map the internal angles features of
the input into classes for Sign Language and Semaphoric
Gesture Recognition with a Leap Motion device to track
the joints. Then, as they proved that angle features are not
sufficient to accurately model dynamic gestures in 3D space,
they added other types of features: 3D displacements of the
hand’s palm to manage hand translation, 3D displacements
of the fingertips position to manage hand rotation, intra-
finger angles between two consecutive fingers to manage
static gestures. Zhang et al. [22] developed a view adaptive
approach based on a RNN-LSTM architecture with 4 stacked
layers of LSTM Networks for human action recognition
using 3D skeleton data. Zhang et al. [22] built an architecture
made of two parts. The first part determines the observation
viewpoint by translating (shifting) and rotating the frames
from a camera coordinate system (original frames) to a new
coordinate system where the body is the center. The second
part performs feature extraction and action classification.
This architecture regulates the viewpoint of each action
sequences to be more consistent with a new viewpoint.
This transformation helps to solve the limits of using dif-
ferent camera position to capture the same posture from
different viewpoints. Zanfir et al. [23] proposed a moving

pose (MP) descriptor-based on dynamic representation of the
body features for human action and activity recognition. The
descriptor captures information about the 3D pose of the
body’s joint in addition to speed and acceleration within a
short time window around the current frame. They assumed
that the 3D pose is a continuous and differentiable function of
the body joint positions over time, therefore, by using Taylor
approximation, they numerically estimate the speed and the
acceleration as the first and second order derivatives, of the
pose. Thus, the descriptor captures information on the action
in the current frame and within the temporal neighborhood
of the given frame. The MP method is based on a modified
version of a KNN classifier trained in a supervised learning
manner. These methods [22], [21], and [23] are limited as 1)
they only consider physical connections of hand/body joints,
2) they do not model correlations between joints 3) they are
specially designed for offline gesture recognition.

Deep Learning on SPD Matrices: SPD matrices have
been used in many computer vision tasks [40], [41], [42],
[43]. They have the ability to learn appropriate statistical
representations. The property of this kind of matrices is that
they deal with non-Euclidean domains [44], [45], [46], where
the problem of SPD matrices is that most of the classical
deep learning approaches such as CNNs, LSTM cannot
handle this kind of matrices. In order to tackle this issue,
we need either to map the SPD manifolds into Euclidean
domains, or to design specific layers [50], [51], [45]. As
applying Euclidean geometry to SPD matrices can result in
undesirable effects [3], it is more interesting to design a deep
learning architecture to non-linearly learn SPD matrices on
Riemannian manifolds [45].

III. DEEP SPD NETWORK

Inspired by [64], [45], we present in this section our Deep
SPD network (Deep SPDNet) for solving the issue of offline
hand gestures recognition from 3D skeletons.

Convolution layer:

Fig. 1. (left) Illustration of hand joints, and (right) their corresponding 2D
grid. This 2D grid is used as an input to our proposed pipeline.

Our Deep SPDNet is composed of 7 different layers. First,
it starts with a 2D convolution layer as in CNNs networks [1],
[2]. The filter weights are shared over all frames of the
sequence in the dataset. The aim of this layer is to extract
features and to model the relationships between hand joints.
To this end, the convolution layer receives as input a 2D grid
with 3 channels, i.e., x, y, and z coordinates of hand joints
and outputs another grid with several channels. To build the
2D grid, we remove the palm and wrist joints from each
frame. Then, the joints from 1 to 20 form a 2D grid 4 × 5



(i.e., 4 joints × 5 fingers) that is used as an input to the
convolution layer. Each node of the 2D grid has at most 9
neighbors including itself (Fig. 1). The output feature vector
at each node is computed as a spatial convolution from its
neighboring nodes:

Xt
k =

∑
j∈Ni

Wk,iX
t
k−1,j (1)

where Xt
k−1,j ∈ R3 is the input 3D coordinates of the

hand joint j at frame t and for the k− th layer. Wk ∈ Rdk−1

is the filter matrix. Xk ∈ Rdout is the output feature map. Ni

is the set of neighbors of node i (Fig. 1). The convolution
layer is directly applied to the input 2D grid representing
skeletal data that lie in Euclidean domain.

Gaussian Mapping layer (Gmap): After applying the
convolutional layer on each skeleton grid we decompose the
sequence into 6 subsequences (s) for each finger (f ). The
first subsequence is the original skeleton sequence. Then,
we divide the sequence into two and three subsequences
of equal lengths. This operation can be interpreted as the
construction of a pyramid of sequences at different resolu-
tions. This allows to capture temporal variations at different
levels. Therefore, we obtain a total of 30 branches, i.e.,
s = 6 subsequences for f = 5 fingers. Let Jf denote
the set of joints of a finger f . In order to characterize the
temporal variations of each joint j ∈ Jf in each frame of
a subsequence s, we divide s into N subsequences (sb) of
equal length. Let tsb,sb and tse,sb be the beginning and ending
frames of a subsequence sb ∈ {1, ..., N}. The temporal
variations of a joint j ∈ Jf at frame sb within the sequence
s is defined by the Gaussian mapping layer (Gmap) that
provides the SPD matrix Xsb

s,j defined as follows:

Xsb
s,j =

[
Σsb

s,j + µsb
s,j(µ

sb
s,j)

T µsb
s,j

(µsb
s,j)

T 1

]
(2)

where µsb
s,j is the mean vector, Σsb

s,j is the covariance
matrix. These two parameters (i.e., mean and covariance)
of the Gaussian distribution N (p;µ,Σ) are estimated as
follows:

µsb
s,j =

1

tse,sb − tsb,sb + 1

tse,sb∑
t=tsb,sb

pts,j (3)

where pts,j denotes the coordinates of joint j ∈ Jf at frame
t of subsequence s.

Σsb
s,j =

1

tse,sb − tsb,sb + 1

tse,sb∑
t=tsb,sb

(pts,j − µsb
s,j)(p

t
s,j − µsb

s,j)
T

(4)
Eigenvalue Rectification layer: Eigenvalue rectification
(Reig) layer [45] is designed specifically to introduce non-
linearity for SPD matrices. Reig layer is defined as the
following mapping:

Fig. 2. Illustration of the pipeline Deep SPDNet and TDN network
for online hand gesture recognition. The pipeline starts by extracting
the embedding of each clip using Deep SPDNet before detecting the
dissimilarity / similarly using TDN network.

X1,sb
s,j,k = fr(X

sb
s,j) = Uk−1max(ϵI, Vk−1)U

T
k−1 (5)

Where fr is the Reig rectification function, X1,sb
s,j and

Xsb
s,j,k are respectively the pre- and post-activation SPD

matrices, ϵ is a rectification threshold, I is an identity matrix,
Xsb

s,j = Uk−1Vk−1U
T
k−1 is the eigenvalue decomposition of

Xsb
s,j , and M = max(ϵI, Vk−1) is a diagonal matrix whose

diagonal elements are computed as follows:

M(i, i) =

{
Vk−1(i, i), Vk−1(i, i) > ϵ,
ϵ, Vk−1(i, i) ≤ ϵ.

(6)

Reig function prevents SPD matrices to have negative
or zero values in addition to adjusting their small positive
eigenvalues.

Eigenvalue Logarithm layer:
The objective of this eigenvalue logarithm layer [45]

(LogEig) is to map SPD matrices to Euclidean spaces. The
mapping of this layer is defined as:

X2,sb
s,j = fl(X

1,sb
s,j ) = log(X1,sb

s,j ) = Uk−1log(Vk−1)U
T
k−1

(7)
Where fl is the LogEig function, X1,sb

s,j = Uk−1Vk−1U
T
k−1

is an eigenvalue decomposition, log(Vk−1) is a diagonal
matrix.

Matrix Vectorization layer: After applying the LogEig
layer we can apply a matrix vectorization layer [52] (Vec-
Mat). VecMat vectorizes the input matrices by applying a
linear transformation to convert only the upper triangular
matrices1 into vectors as the following:

xsb
s,j = fv(X

2,sb
s,j ) = [X2,sb

s,j (1, 1),
√
2X2,sb

s,j (1, 2)

, ...,
√
2X2,sb

s,j (1, dcout), X
2,sb
s,j (2, 2),

√
2X2,sb

s,j (2, 3)

, ..., X2,sb
s,j (dcout, d

c
out)]

T

(8)

1This is due to the symmetric property of the matrices.



Where fv is the VecMat function, X2,sb
s,j (i, i), is the

diagonal entries, X2,sb
s,j (i, j), i < j, is the upper part of X2,sb

s,j .
After applying VecMat function, we obtain a set of

{xsb
s,j}

sb=1,...N
j∈Jf

vectors characterizing the temporal variation
of each joint on each frame of s. In order to obtain a global
characterization of finger f along the subsequence s we
aggregate these vectors into SPD matrices using the Gmap
operator as follows:

Xs,f = fg({xsb
s,j}

sb=1,...N
j∈Jf

) =

[
Σs,f + µs,f (µs,f )

T µs,f

(µs,f )
T 1

]
(9)

Where the mean (µ) and covariance (Σ) are defined as
follows:

µs,f =
1

N |Jf |
∑
j∈Jf

N∑
sb=1

xsb
s,j (10)

Σs,f =
1

N |Jf |
∑
j∈Jf

N∑
sb=1

(xsb
s,j − µs,f )(x

sb
s,j − µs,f )

T (11)

Bilinear Mapping layer:
After this last Gmap layer we obtain a set of SPD matrices

encoding the variations of each finger f along each sub
sequence s. The aggregation of these matrices into a single
SPD matrix encoding the whole gesture induces a notion of
weighing in order to privilege the most relevant matrices for
hand gesture recognition. In order to simplify the notations,
let us denote (Xs,f )(s,f)∈{1,...,6}×{1,...,5} by (Xi)i∈{1,...,N}
with N = 30. The Bilinear Mapping layer [45] (BiMap)
transforms these SPD matrices into a single SPD matrix as
follows:

X = fb(X1, ..., XN ;W1, ...,WN )

=

N∑
i=1

WiXiW
T
i

(12)

Where Xi ∈ Rdk−1×dk−1 are the input SPD matrices,
Wi ∈ Rdk×dk−1 are the transformation matrices2, X ∈
Rdk×dk is the output matrix. The BiMap layer can roughly
be understood as an attention network defined on SPD
matrices that insures that the resulting matrix lies on the
SPD Riemannian manifold.

A vector providing a rich summary of the whole sequence
is then obtained by applying LogEig and VecMat layers on
the matrix X. In the context of offline gesture recognition,
this vector may be combined with a softmax layer in order
to obtain the final classification scores. Let us note that the
softmax layer may be replaced by an SVM during the test
phase while the softmax layer is used during training phase.

2The weight matrices Wi are assumed to be semi-orthogonal and row
full-rank matrices.

IV. ONLINE GESTURE RECOGNITION:

Online gesture recognition is a challenging issue due to the
fact that (i) the input stream of hand’s joint positions does not
contain any indication of the start and end of each gesture,
(ii) the architecture should be efficient in terms of memory
consumption and computational complexity, iii) gestures may
contain undesired hand motions (i.e., gestures that do not
belong to any class).

Fig. 3. The pipeline of Deep SPDNet and TDN transforms skeletons
sequence into hand gestures sequences. Each blue block represents a 10-
frame clip. C6 means the class 6.

In order to tackle these issues, we combine two head
networks for online gesture recognition (Fig. 2). Each head
network is a Deep SPD Network, as defined in Section III.
The combination of these two heads networks is performed
by a Multi Layer Perceptron that takes as input the vectorial
encoding provided by the BiMap layer of a Deep SPD
Network. It is denoted in the rest of this paper as Temporal
Detection Network (TDN). The pipeline that we propose in
this section receives sequentially a stream of hand’s joint
positions as 10-frame clips. Since the nucleus phase of the
hand gesture spans multiple clips, we measure the percentage
of similarity/dissimilarity between two clips. The first head
network points to the first clip of a stream while the second
head network points to the next clip and sequentially moves
along the stream (Fig. 3). For each position of the two heads,
the network Deep SPDNet defined in Section III is used
according to the architecture defined in Fig. 2. This enables
to obtain a vectorial encoding of each clip and to determine
if they correspond to a same gesture. The point where our
network detects two different gestures is called a critical
point (Fig. 3). Once a critical point has been detected, the first
head network moves on to this point while the second head
network is shifted of 10 frames. This process is iterated until
the end of the stream. Fig 3 shows our proposed pipeline,
where the input of the pipeline receives a stream of 10-frame
clips (blue block in Fig 3).

For the task of offline hand gestures recognition, the
Deep SPDNet network is trained on sequences describing
a complete gesture. In our experiments, each sequence is
normalized so as to take 500 frames [64].



For the task of online hand gesture recognition, the
inference time and early detection are crucial properties
compared to offline hand gestures recognition. Thus, the
training phase in this task is done in three steps. First, instead
of taking complete sequences of 500 frames, we train the
Deep SPDNet network on subsequences (clips) composed of
10 frames. Second, Deep SPDNet is used to obtain a vectorial
encoding of each incoming clip of the stream. In the third
step, the TDN network is trained on a different combination
of positive and negative pairs. Positive pairs correspond to
clips of different gestures while negative clips correspond to
the opposite, i.e., the same gesture. These pairs of positive
and negatives clips3 are chosen randomly while taking into
account an equivalent number of both types of clips to avoid
the issues of unbalanced dataset and combinatorial explosion.

For the evaluation phase, we measure the performance of
our proposed architectures for both tasks: offline and online
hand gestures recognition, where the evaluation is measured
in terms of many evaluation metrics, in particular in terms
of accuracy and inference time, that are critical for online
hand gesture recognition.

V. EXPERIMENTS AND DISCUSSIONS

In order to evaluate our proposed architectures for offline
and online hand gestures recognition, we conduct a series of
experiments on the First-Person Hand Action (FPHA) dataset
[53]. We used the settings of [45] for the following hyper-
parameters: the learning rate λ is 10−2, the batch size is set
to 30, the connection weights size of BiMap is set to 200×56
with random semi-orthogonal initialisation, the rectification
threshold ϵ is set to 10−4. The number of convolution filters
is set to 9, and please note that adding more filters hurts the
performance. For the SVM model, we used LIBLINEAR
library [54] with L2 loss-regularization, where C is set to 1,
and the tolerance of termination criterion is set to 10−1. For
training our architectures, we use Matlab environment with
i7 PC without any GPUs.

FPHA dataset: we use in these experiments the famous
First-Person Hand Action dataset, which is very challenging
and widely used for hand gesture recognition. It contains
1175 videos of hand gestures divided into 600 sequences
for training and 575 for testing, as proposed by [53] for
the evaluation step. Each video belongs to one of the 45
classes, also, it is performed by 6 actors in three different
scenarios. The dataset provides for each video the 3D (x, y,
and z) coordinates of 21 hand joints, e.g., a video clip with
10 frames has 21*10 3D coordinates.

Table I summarizes the results of our proposed Deep
SDPNet architecture and of the state-of-the-art methods on
the offline hand gestures recognition task. As it is shown,
the proposed architecture outperforms most of the state-of-
the-art methods by a large margin, i.e., more than 5.5%
compared to the method [55] and more than 6.6 % compared
to the method4 [45]. This reveals the importance of deep

3Each clip has 10 frames.
4The results are obtained by using the original implementation with the

default settings.

architecture property and the SPD matrices to improve the
accuracy of the state-of-the-art methods on the task of hand
gestures recognition. Moreover, as one can see from Table
I, the 3D pose coordinates are capable to provide better
features than the use of all 3 modalities (Color, depth, and
pose) as the case with the method [57]. The method of
[65] achieved high performance in terms of accuracy, but
it does not leverage the huge parameters of the two-stream
network to outperform our method. The method of [64]
and our proposed Deep SPDNet network have quite close
results to each other. However, the Deep SPDNet network
is specifically designed to work for both tasks (i.e., offline
and online) in real-time, where the method [64] is developed
only for offline hand gestures recognition. Moreover, Deep
SPDNet only needs 0.15 seconds as inference time to predict
the class of each gesture.

TABLE I
COMPARISON OF THE RECOGNITION RESULTS OF OUR PROPOSED

ARCHITECTURE AND THE STATE-OF-THE-ART METHODS ON THE FPHA
DATASET. NUMBERS IN BOLD ARE THE BEST VALUES.

Method Color Depth Pose Accuracy(%)
HON4D [56] ✗ ✓ ✗ 70.61
Lie Group [9] ✗ ✗ ✓ 82.69
HBRNN [37] ✗ ✗ ✓ 77.40

JOULE-all [57] ✓ ✓ ✓ 78.78
Two stream-all [58] ✓ ✗ ✗ 75.30

Novel View [59] ✗ ✓ ✗ 69.21
LSTM [60] ✗ ✗ ✓ 80.14

Gram Matrix [55] ✗ ✗ ✓ 85.39
T Forests [61] ✗ ✗ ✓ 80.69

M Learning [45] ✗ ✗ ✓ 84.35
G Manifolds [62] ✗ ✗ ✓ 77.57

ST-TS-HGR-NET [64] ✗ ✗ ✓ 93.22
Two-stream NN [65] ✗ ✗ ✓ 90.26

Deep SPDNet ✗ ✗ ✓ 90.96

In order to evaluate our proposed pipeline of Deep SDPNet
and TDN networks for the task of real-time online hand
gesture recognition, we used the videos of hand gestures of
FPHA dataset to extract features from the BiMap layer of
Deep SDPNet networks. Then, these features are normalized
with Z-score normalization, i.e., with zero mean and unit
standard deviation to avoid the issue of activation function
oscillation. After that, they are used to create 5 datasets with
different sequences lengths, each dataset has sequences from
10 to 160 successive clips (100 to 1600 frames). Also, the
created datasets are composed of 1000 or 2000 sequences.

The TDN network makes a prediction to detect whether
the features from two clips do correspond or not to a same
gesture. If they belong to a same gesture, then the TDN
activates the Deep SDPNet to classify the first clip, and
since the two clips are considered as similar we assume that
they correspond to a same gesture. In order to validate this
last assumption, we evaluate in Table II the performances
of the binary classification performed by the TDN network
using the construction scheme of pairs of clips defined in
section IV. In this case, the set of clip pairs is split into
3 subsets: training set with 64% of data, validation set
with 20% of data, test set with 16% of data. The accuracy
obtained on the test set is of 98%, hence confirming our



initial assumption. This mapping of the two clips on a same
gesture avoids the inference time required to recognize the
class of the second clip. If the features of the two clips are
different, then the TDN Network activates the Deep SDP
Network for the two clips. So, if the number of Pc classes is
less than the number of successive gestures in one sequence
Pg , i.e., Pc < Pg , the inference time will be reduced by more
than a half, since the pipeline needs only to detect different
gestures (i.e., the critical points), while the same gestures
will have the same class. Moreover, TDN network measures
the similarity/dissimilarity of two clips only in 0.03 seconds.

TABLE II
PERFORMANCE OF TDN NETWORK IN TERMS OF DIFFERENT

EVALUATION METRICS. TP: TRUE POSITIVES, FP: FALSE POSITIVES,
TN: TRUE NEGATIVES, FN: FALSE NEGATIVES

Dataset TP FP TN FN Accuracy (%)
Training 10075 188 9301 93 98.57

Validation 3121 83 2914 26 98.22
Test 2495 68 2322 30 98

In Table III, we measure the performance of the proposed
pipeline to detect and recognize sequences of clips from the
FPHA dataset. First, we measure the effect of the number of
clips per sequence. As shown in Table III, adding more clips
does not strongly hurt performances. For 10 C/S (number
of clips per sequence) the performance of the pipeline is
91.28%, and when the number of gestures is multiplied
by 16 (i.e., 160 C/S ), the performance reached 88.35%,
so it decreased only by 2.93%, which is acceptable in the
considered application. Second, we measured the effects of
the number of sequences on the pipeline. As shown in
Table III doubling the number of sequences increases the
performance by 1% to 2%.

TABLE III
MEAN ACCURACY PERFORMANCE OF THE PROPOSED PIPELINE TO

DETECT AND RECOGNIZE THE SEQUENCES OF CLIPS. ± STANDARD

DEVIATION, C/S: MEANS CLIPS PER SEQUENCE. EACH RESULT IN THE

TABLE IS AVERAGED OVER 10 EXPERIMENTS USING 600 CLIPS.

# of sequences 10 C/S 20 C/S 40 C/S 80 C/S 160 C/S
1000 91.28(±0.77) 89.7(±1.06) 88.11(±0.83) 87.58(±1.43) 88.35(±0.96)
2000 91.71(±0.65) 90.44(±1.4) 89.78(±1.5) 89.34(±1.56) 89.09(±1.51)

In Table IV, we compare and add more test to the best
results in Table III. This time, we progressively increase the
number of clips (i.e., 600, 900, and 1175) that can be used
to generate the sequences. From each number of clips, we
generate randomly 2000 sequences. As shown in Table IV,
for 10 C/S the best accuracy, obtained for 600 clips (line
1) is equal to 91.71%. Adding additional 300 clips (i.e.
900 clips, line 2) decreases the accuracy by only 2.72%.
Moreover, when we use all the clips of the dataset to generate
the sequences (third row), the performance decreases by
only 6.44% to 85.27%. While the experiments performed
in Table I and Table III do not follow the same protocol and
are thus not fully comparable, we may however note that our

last result of 85.27% remains competitive compared to most
of the methods of the state of art.

TABLE IV
MEAN ACCURACY PERFORMANCE OF THE PROPOSED PIPELINE TO

DETECT AND RECOGNIZE THE SEQUENCES OF CLIPS. THE RESULTS ARE

MEANS OVER 10 RUNS, ± STANDARD DEVIATION. C/S: MEANS CLIPS

PER SEQUENCE. EACH RESULT IN THE TABLE IS AVERAGED OVER 10
EXPERIMENTS USING 600, 900, AND 1175 CLIPS, RESPECTIVELY.

10 C/S 20 C/S 40 C/S 80 C/S 160 C/S
91.71(±0.65) 90.44(±1.4) 89.78(±1.5) 89.34(±1.56) 89.09(±1.51)
88.99(±0.92) 87.61(±1.57) 86.36(±2.23) 85.37(±2.59) 84.72(±2.66)
85.27(±0.88) 83.24(±2.15) 81.43(±3.14) 79.76(±4.05) 78.14(±4.90)

In order to model the different hand positions and motions
during the prestroke and poststroke phases, we add randomly
a percentage of noise to the generated sequences. To do so
we randomly insert a given percentage of random frames
within all test sequences. The joint coordinates of these
inserted frames are generated from the range of the original
sequences. Table V shows the performance of our proposed
pipeline in the presence of noise. We set the number of
clips to 1175 (i.e., all data in the dataset) and the number
of sequences to 2000 sequences. The percentage of random
frames is progressively increased from 10% to 20%. The
results, summarized in Table V, show that for 10 C/S, adding
10% of noise (i.e., 117 sequences of randomly generated
noise) to the fixed number of clips (i.e., 1175), decreases
the performance by 17% compared the best results (i.e.,
91.71%). Moreover, adding 20% of noise (i.e., 235 sequences
of randomly generated noise) decreases the performance only
by 27%.

TABLE V
MEAN ACCURACY PERFORMANCE OF THE PROPOSED PIPELINE TO

DETECT AND RECOGNIZE THE SEQUENCES OF CLIPS. THE RESULTS ARE

MEANS OVER 10 RUNS, ± STANDARD DEVIATION. C/S: MEANS CLIPS

PER SEQUENCE. EACH RESULT IN THE TABLE IS AVERAGED OVER 10
EXPERIMENTS USING 1175 CLIPS AND 2000 SEQUENCES..

Noise (%) 10 C/S 20 C/S 40 C/S 80 C/S 160 C/S
10 74.18(±2.39) 69.84(±5.23) 63.68(±9.89) 55.8(±16.28) 48.76(±20.65)
20 64.57(±1.84) 57.59(±7.45) 49.63(±12.93) 41.39(±18.21) 34.37(±21.53)

VI. CONCLUSION

In this paper, we proposed a novel Deep SPD neural
networks classifier and TDN networks to solve the issue of
offline and online hand gestures recognition. Experiments
show that a stream of 10-frame clips is sufficient for online
hand gestures recognition, in addition, the proposed pipeline
supports real-time and early detection gestures recognition.
The performance of the pipeline over the state-of-the-art is
demonstrated on the FPHA dataset. As future work, we
intend to experiment with the proposed pipeline to other
types of skeletal data in order to study applications such
as human action and activity recognition. To do so, we
plan to replace the initial grid convolution with a Graph



Neural Network layer in order to handle such more general
skeletons.
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