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Detection of graphene’s divergent orbital
diamagnetism at the Dirac point
J. Vallejo Bustamante1, N. J. Wu1,6, C. Fermon2, M. Pannetier-Lecoeur2, T. Wakamura1,7, K. Watanabe3,
T. Taniguchi4, T. Pellegrin1, A. Bernard1, S. Daddinounou1, V. Bouchiat5, S. Guéron1, M. Ferrier1,
G. Montambaux1, H. Bouchiat1*

The electronic properties of graphene have been intensively investigated over the past decade. However,
the singular orbital magnetism of undoped graphene, a fundamental signature of the characteristic
Berry phase of graphene’s electronic wave functions, has been challenging to measure in a single
flake. Using a highly sensitive giant magnetoresistance (GMR) sensor, we have measured the gate
voltage–dependent magnetization of a single graphene monolayer encapsulated between boron nitride
crystals. The signal exhibits a diamagnetic peak at the Dirac point whose magnetic field and temperature
dependences agree with long-standing theoretical predictions. Our measurements offer a means to
monitor Berry phase singularities and explore correlated states generated by the combined effects
of Coulomb interactions, strain, or moiré potentials.

O
rbital magnetism results from the quan-
tum motion of electrons in a magnetic
field. At low energy, thismotion leads to
the Landau spectrum, which is, in most
two-dimensional (2D) conductors, a har-

monic oscillator–type spectrum with equally
spaced levels separated by the cyclotron en-
ergy ħwc (1). As long as the material is non-
superconducting, this spectrum causes a very
small diamagnetic low-field susceptibility that
is usually hidden by spin contributions. How-
ever, some materials, such as graphene, can
display extraordinarily large diamagnetism.
This was predicted in the theoretical work of
McClure (2), who showed that graphene is
diamagnetic at half filling (at the so-called
Dirac point), with a divergent zero-field sus-
ceptibility (the derivative of the magnetiza-
tion M with respect to the magnetic field B),

c0 mð Þ ¼ @M

@B
¼ � 2e2v2F

3p
d mð Þ ð1Þ

where vF is the Fermi velocity, e is the elec-
tronic charge, and the Fermi energy m is zero
at the Dirac point. This is all the more surpris-
ing because the density of states is zero at that
point. The reason for this singular susceptibil-
ity stems from the electron-hole symmetric
linear spectrum of Dirac relativistic electrons,
which gives rise to a Landau spectrum quan-
tized as T

ffiffiffiffiffiffi
nB

p
where n is a positive integer.

The diamagnetic sign of the response is at-
tributable to the existence of the zero-energy
Landau level (n = 0), as recalled and sketched
below [see also figure 5 of (3) and related com-
ment]. This peculiar level is known to result
from the Berry phase (4) of p acquired by the
wave function pseudo-spin upon a revolution
around a Dirac cone in reciprocal space (5).
Therefore, the diamagnetic sign of the sus-
ceptibility at the Dirac point is a direct con-
sequence of the p Berry phase. Indeed, it has
been shown that slightly different models
with a zero Berry phase lead to orbital para-
magnetism at the Dirac point (3). To summa-
rize, the divergence reflects the linear spectrum
and the diamagnetic sign reflects the non-
trivial geometry of the eigenstates via the
Berry phase (3).
However, despite these striking predic-

tions, the singular orbital magnetism of a sin-
gle graphene flake remains undetected. The
reason for this lies in at least three obvious
experimental challenges. First, the magnetic
signal of an atomic monolayer is extremely
small. Second, the McClure singularity, orig-
inally computed for an ideal system without
disorder at zero temperature and in the limit
of zero magnetic field, is rounded when any
of these conditions is relaxed (6–9). Finally,
this orbital magnetism is expected to be hid-
den by the magnetism of spins originating
from edges, vacancies, or impurities (10), which
tends to become dominant at low tempera-
tures. This may explain why magnetization
measurements have to date only been per-
formed on a macroscopic number of gra-
phene flakes. In one case (11), the focus was
mainly on the spin paramagnetism of induced
vacancy– and resonant states–type defects,
which were found to depend on the chemical
doping of the samples. A second set of mea-
surements (12) did focus on the diamagnetism,
and found a diamagnetism larger than that of

pure graphite by a factor of 3. The magnetiza-
tion curves at high fields were found to be
compatiblewith the

ffiffiffi
B

p
dependence predicted

for the Dirac spectrum. However, in those ex-
periments it was not possible to fix the doping,
nor could the residual contribution of para-
magnetic spins along the edges of the flakes be
well controlled (13).
In the present experiment, by contrast, we

measure the orbital moment of a single flake
whose Fermi energy is precisely controlled.
This is achieved by implementing several
sensitivity-enhancing features detailed in
(14). As shown in Fig. 1, our experiment con-
sists of a graphene monolayer, encapsulated
between two hexagonal boron nitride (hBN)
2D crystals, capacitively coupled to a top-gate
electrode and positioned above a highly sen-
sitive magnetic detector made of two giant
magnetoresistance (GMR) strips (figs. S1 to
S3) in aWheatstone bridge configuration. One
key asset is that whereas graphene’s orbital
magnetism responds to a field perpendicu-
lar to the graphene plane (“vertical” field), the
resistance of the GMR detectors only de-
pends on the in-plane field, and thus detects
the horizontal component of the field gen-
erated by the orbital current loops in the
graphene (Fig. 1), all the while being in-
sensitive to the applied vertical field. A sec-
ond feature is the addition of a small AC
modulation to the DC gate voltage, which
in turn modulates the magnetization with
respect to gate voltage and thus the resist-
ance of the GMR detector. Beyond increasing
the sensitivity, this modulation technique
makes gate-independent magnetic signals
invisible. Thanks to these experimental im-
plementations, we were able to detect the de-
rivative with respect to gate voltage of the
diamagnetic McClure peak at low magnetic
fields. We have also measured the crossover to
the de Haas–van Alphenmagnetic oscillations
at higher fields.
Figure 2 shows the gate voltage derivative

of the field induced by the graphene sample
on the calibrated GMRs as a function of Vg for
perpendicularmagnetic fields between 0.1 and
1.2 T. We found an antisymmetric peak cen-
tered at Vg = –0.29 V, which we identified as
the Dirac point by comparing to the position
of the maximum in the resistance of the sam-
ple R(Vg) (Fig. 2B and fig. S3). At lowmagnetic
fields, the antisymmetric peak detected in the
GMR resistance is directly proportional to the
derivative of the McClure peak with respect to
the chemical potential (controlled by the gate
voltage), as detailed in (14). The experimental
detection of this peak and its evolution with
magnetic field are the central result of ourwork.
Both the peak width and amplitude increase
linearly with field, as shown in Fig. 2, E and F.
Above 0.6 T, @M/@Vg(Vg) displays periodic
oscillations in addition to the antisymmetric
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pendicular field. This illustrates the sensitiv-
ity of our experiment. The correspondence
between this detected field, BGMR, and mag-
netization is obtained by modeling the orbital
magnetic moment as an effective current loop
whose geometry is defined by the gated re-
gion of graphene (fig. S10). We find that posi-
tive magnetic fields produce a negative peak
in magnetization, and vice versa, which is con-

sistent with the expected diamagnetic response
of graphene (2). The sign of the response was
carefully determined via the sign of the re-
sponse of the GMR sensor to a horizontal field
of known orientation. We can assert that the
signal cannot be attributed to gate voltage–
dependent magnetism of paramagnetic im-
purities, given the absence of temperature de-
pendence between 4.2 and 40 K (15) (see fig.

peak around the Dirac point. These oscilla-
tions are related to the expected de Haas–van 
Alphen oscillations of the magnetization, as 
discussed below.
The magnetization, shown in Fig. 2D, is 

obtained by the integration of the curves in 
Fig. 2A. The peak amplitude translates into 
a few nanoteslas induced in the GMR plane 
by graphene’s orbital response to a 0.1-T per-

2 of 4

Fig. 1. Experimental setup. (A) Principle of the
experiment. The orbital magnetization Morb can be
viewed as a current loop (blue circle) generated by a
vertical magnetic field B and circulating around the
graphene region covered by the gate electrode. It is
detected by the two GMR detectors, which measure the
horizontal components B1 and B2 (respectively on
the detectors GMR1 and GMR2) of the magnetic field
(black dashed lines) generated by this loop. The
sensitivity is on the order of 0.1 nT (14). (B) Micrograph
of the sample investigated; the gate voltage derivative
of the orbital magnetization is measured via the
difference between the DC current–biased GMR1 and
GMR2 resistances with I1 and I2 adjusted so as to
cancel the DC component of the voltage difference
V1 – V2. The signal measured by a lock-in amplifier
(L.I.) is the AC component of V1 – V2 at the
modulation frequency of the gate voltage. There is
no current applied to the graphene sample during
the magnetization measurements.

Fig. 2. Magnetization data. (A) Detected modulation of the GMR detector’s
resistance with an AC gate voltage modulation of 20 mV, as a function of the DC
gate voltage Vg. The quantity plotted is @BGMR/@Vg, where BGMR is deduced from
the signal on the calibrated GMR sensor divided by the applied vertical magnetic
field B. Data are the average of 80 independent measurements. (B) Derivative with
respect to gate voltage of the two-point resistance of graphene measured
through the side electrodes, in the region of the Dirac point, with a gate voltage
modulation of 50 mV. (C) For comparison, the GMR signal at –0.6 T using
the same gate voltage modulation as in (B). The GMR peak is much narrower.

(D) Numerical integration of the data plotted in (A) and fig. S4, yielding the
magnetization per unit surface (in nA; right axis) and the magnetic field BGMR
detected by the GMR device (in nT; left axis) as a function of the gate voltage.
(E and F) Field dependences of the GMR peak maxima and widths, as defined in (C),
for gate voltage modulations of 20 mV (circles) and 50 mV (squares), and
comparison with the linear variations expected theoretically (see Eqs. 5 and 6 and
eqs. S20 to S27), using the scaling between the gate voltage and the square of the
Landau energy e2B via the parameter a defined in Eq. 8. Deviations from linearity
caused by excessive modulation amplitudes are visible for a 50-mV modulation.
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S9). In addition, thanks to our gate modulation
technique, we can exclude spurious contribu-
tions from impurities or defects in alumina or
graphene, which would not depend on gate
voltage. This contrasts with all previous mea-
surements of graphene’s magnetism, which
were performed on large ensembles of flakes.
In the following, we compare our results to

theoretical predictions, taking into account the
variations of the chemical potential caused by
charge inhomogeneity, and ignoring the smaller
broadening due to temperature (14). Assuming
a Gaussian distribution for the electrochem-
ical potential m′ of standard deviation s,

Ps m′ð Þ ¼ 1ffiffiffiffiffi
2p

p
s
exp � m′2

2s2

� �
ð2Þ

yields a smoothed susceptibility,

cs mð Þ ¼ ∫Ps m′ð Þc0 m� m′ð Þdm′ ð3Þ
Then, the d-peak of the susceptibility is broad-
ened as

cs mð Þ ¼ � 2e2v2F
3p

Ps mð Þ ð4Þ
The full field and chemical potential depen-
dence of the magnetization, including the os-
cillations, is given by the derivative M =
–@W/@B of the disorder-averaged grand po-
tential Ws(m, B) (14) (eqs. S20 to S23):

Ws m;Bð Þ ¼ ∫Ps m′ð ÞW0 m� m′;Bð Þdm′ ð5Þ

with

W0 m;Bð Þ
¼ e3B

4p2ħ2c2
X
p>0

1

p3=2
1� 2S 2

ffiffiffi
p

p mj j
eB

� �� �

ð6Þ
The Landau levels at energies

ffiffiffi
n

p
eB, with

eB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eħv2FB

p
, enter via the argumentffiffiffi

p
p

mj j=eB where p is an integer, in the Fresnel
function

S xð Þ ¼ ∫
x

0sin
p
2
t2dt ð7Þ

The predicted disorder-averaged magnetization
is displayed in Fig. 3E. With increasing field, it
evolves from a sole diamagnetic McClure peak
of width s to a broader peak with additional os-
cillations, centered at mn=eB ¼ ffiffiffi

n
p

. Figure 3D
demonstrates how charge disorder induces
rounding and attenuates the oscillations.
To compare these predictions to experiment,

we must also relate the gate voltage Vg to the
chemical potential m. Far from the Dirac point,
this relation is quadratic, Vg(m) – VD = am2

sign(m), with

a ¼ e=Cg

pħ2v2F
ð8Þ
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Fig. 3. Calculated chemical potential dependence of the orbital magnetization of graphene in a finite
magnetic field. The calculations are based on Eq. 6; see (14) for more details. (A) Evolution of the graphene
spectrum in a magnetic field [adapted from (3)]. The condensation of the continuous spectrum into
Landau levels decreases the energy, except for the zero energy level whose contribution is predominant.
Globally, the net result is an increase of the energy with the field—that is, a diamagnetic response [see also
figure 5 of (3)]. (B) Without disorder, the magnetization, plotted as a function of the rescaled chemical
potential m/eB, exhibits discontinuities at the Landau level energies

ffiffiffi
n

p
eB; a.u., arbitrary units. (C) Sketch

illustrating the spatial distribution of electrochemical potentials m′ = mD – hmDi where mD is the local
Dirac point and hmDi is its spatial average. (D) Rounding of M(m/eB) by a Gaussian chemical potential
distribution with a variance s = 0.1eB. (E) Calculated M(m) for different magnetic fields for s = 50 K. At low
fields, the oscillations disappear and the magnetization displays a Gaussian diamagnetic peak at m = 0. This
peak is broadened by the magnetic field as soon as eB ≥ s.

A B

Fig. 4. Comparison of theory to experiment. Fit of detected AC magnetization response to a gate voltage

modulation of 50 mV, as a function of the DC gate voltage divided by ae2B ¼ 2aeħv2FB. Dashed lines
show the theoretical gate dependence of @M/@Vg, with s0 = 165 K and s∞ = 50 K, including the extra
rounding effect owing to the 50-mV AC gate modulation. In (A), the amplitude of the theoretical signal has
been rescaled by a factor of 1/2.6 at 0.1 T and by a factor of 1/2 at 0.2 T to fit quantitatively the
experimental data. In (B), the rescaling factors are closer to unity for higher fields for which the McClure
peak is expected to be independent of s0.
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whereVD is the gate voltage at the Dirac point,
and Cg is the geometrical capacitance per unit
surface between graphene and gate, as deter-
mined from the Vg periodicity of the de Haas–
van Alphen oscillations at high field (14). In
contrast, close to the Dirac point, Vg varies
linearly with m, with a slope given by the
standard deviation of m disorder around the
Dirac point, s0:

Vg mð Þ � VD ¼ 4s0mffiffiffiffiffi
2p

p ð9Þ

(eqs. S24 and S25). We find that the expe-
rimental data can be fit (see Fig. 4) using two
constants, s0 = 165 K and s∞ = 50 K, which
describe the m distribution at low and high
doping respectively (eqs. S26 and S27). The
smaller value of s∞ is explained by the more
efficient screening of charge impurities at high
doping. We note that the two constants can
practically be determined independently, given
the high sensitivity of the decay of the deHaas–
van Alphen oscillations to disorder, and the
large broadening of theMcClure peak induced
by magnetic field (on the order of eB).
We find thatM(Vg) and @M/@Vg depend on

Vg, s0, and s∞, exclusively via the variables
Vg=ae2B, s0/eB, and s∞/eB. In particular, the
variation as ae2B of the @M/@Vg peak’s width,
shown in Fig. 2F, is directly related to this
scaling, which originates from the Dirac Landau
spectrum of graphene.
Next, we compare the magnetization peaks

measured at the Dirac point at 0.1 T and 0.2 T
to theoretical expectations. We find that the
predicted amplitude of the antisymmetric
magnetization peak at the Dirac point (1/B)
(@M/@Vg) at low magnetic field, equal to 9.6 ×
10–6 A(TV)–1, is on the order of the experimen-
tal values, although larger by a factor 2 to 2.6.
This is probably a consequence of the over-
simplified model of the Gaussian distribution
of electrochemical potentials we have used.
This value corresponds to a diamagnetic mag-
netization two orders of magnitude larger than
the Landau diamagnetism of a 2D free elec-
tron gas. Finally, deviations from the linearity
betweenmagnetization andmagnetic field are
expected when eB becomes much greater than
s0, with a smooth crossover toward a

ffiffiffi
B

p
de-

pendence (eqs. S20 to S23). Because the calib-
ration of the GMR sensor becomes delicate in

high perpendicular magnetic fields owing to
the residual imperfect alignment of the mag-
netic field, these deviations from linearity can-
not be precisely checked in the field range
above 0.5 T where they are expected to occur.
We have detected the McClure singularity

of low-field orbital magnetization of a single
graphene monolayer at the Dirac point, which
is the signature of the p Berry phase of elec-
tronic wave functions in graphene. This ex-
periment should also enable the investigation
of interband-induced Berry curvature anoma-
lies (16–18) as well as Coulomb interaction ef-
fects in 2D materials such as graphene and its
bilayer (19, 20). Moreover, in contrast to the
diamagnetic McClure peak observed here, a
divergent paramagnetic orbital susceptibil-
ity (21) is expected at Van Hove singularities
in the presence of moiré potentials of high
periodicity. These moiré potentials also gen-
erate flat bands in the magic-angle twisted
bilayer of graphene (22). An anomalous quan-
tum Hall effect is then expected to appear
as the result of Coulomb interactions lead-
ing to valley symmetry breaking (23–25) and
orbital current loops in zero magnetic field.
They are detectable via the orbital magnetic
moments they would generate, as very recent-
ly shown in (26). The possibility of generating
flat bands with a periodic array of strain has
also been predicted (27–29). In fig. S12, we
present data on a strained sample on which it
was possible to detect a gate-dependent GMR
signal at zero magnetic field. This preliminary
result suggests that more controlled situations
like that in (30) can be investigated. Such mea-
surements could also be used to reveal the
expected ballistic loop currents along the edges
of 2D topological insulators (31–34).
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I. MATERIALS AND METHODS

A. Measuring orbital magnetization of graphene with a GMR detector

1. The GMR detector

The magnetoresistive material of the GMR detectors consist in a multilayer stack of ferromagnetic layers.These
layers are su�ciently thin to ensure negligible leakage �elds. The low �eld magneto-resistance is determined by the
in-plane orientation of the soft layer's magnetization. This variation is linear with the horizontal magnetic �eld BH

on a few gauss scale around zero and saturates above a few mT.

a. GMR e�ect The Giant MagnetoResistance (GMR) e�ect [36] is based on the variation of conductivity in
multilayered ferromagnetic materials according to the relative orientation of the di�erent layer's magnetization. It is
widely used for hard disk drive read heads or magnetic memories, as well as for sensing purposes. In this latter case,
the spin valve structure is the most commonly used [37]. It comprises a magnetic layer exhibiting a strong coercivity
(hard layer) separated from a magnetic layer with a very low coercivity (soft layer) by a thin metallic spacer. The
magnetization of the soft layer can align along an in-plane applied �eld, whereas the direction of magnetization is
�xed in the hard layer . The resistance of the whole stack varies with the angle between the magnetization directions
of the two layers.

b. GMR fabrication process The GMR stack is deposited by sputtering (Rotaris deposition chamber from
Singulus) on a 300 µm-thick silicon substrate insulated by a SiO2 layer of 1 µm. It has the following composition: Ta
(3 nm) / NiFe (5 nm) / CoFe (2.1 nm) / Cu (2.9 nm) / CoFe (2.1 nm) / Ru (0.85 nm) / CoFe (2nm) / IrMn (7.5 nm)
/Ru (0.4 nm) / Ta (5 nm). The hard layer is composed of the antiferromagnet IrMn coupled to a synthetic ferromagnet
(CoF/Ru/CoFe) whereas the soft layer is made of the CoFe/NiFe bilayer. After the GMR stack deposition, an oven
annealing step at 1 T and 180 ◦C is performed to set the magnetization direction of the hard layer. The GMR sensors
( 2 µm wide and 20 µm long) are de�ned by optical lithography and ion beam etching. Contacts consist of a Ti(10
nm)/Au (100 nm) bilayer deposited by evaporation. The resistance of the contacted GMR is 150 0hms. The sample
is then protected by a 900 nm-thick Al2O3 passivation layer, deposited by sputtering.

The GMR sensor is sensitive to the component of the magnetic �eld in the plane of the sensor. When a strong
magnetic �eld is applied out-of-plane with perfect alignment, there is a loss of sensitivity as the �eld increases. Indeed,
the magnetization of the soft layer tends to rotate of the plane, resulting in a reduction of the component projected
in the plane [38].

c. Sensitivity of the GMR sensor The �eld response of the sensor is characterized by the derivative dR/dBH=
2.5 Ω/mT around BH = 0 which is optimum when BH is in-plane and aligned perpendicularly to the long dimension
of the GMR ribbons, see Fig. S1-A . The magnetization measurements were performed between T=4.2 K and 70 K
without any bias current through the graphene. The vertical magnetic �eld (perpendicular to the graphene plane) is
created by a superconducting solenoid. In order to compensate for the inevitable misalignment between the vertical
direction and the normal to the sample plane, two Helmholtz pairs of superconducting coils were used to precisely
cancel the component of the �eld, in the GMRs plane.

Although the �eld sensitivity decreases a mentioned above, the GMR is still operational at vertical �elds up to
0.8 T at room temperature and up to 1.2 T at low temperatures, see Fig. S1-B. It was important to recalibrate the
GMR with the horizontal �eld (created by the Helmholtz coils) for each value of the vertical �eld. We checked this
calibration both before and after each experiment. When changing magnetic �eld we tried to maintain as far as we
could the horizontal component of the applied magnetic �eld close to zero in order to avoid saturation of the GMR
during the process and possible hysteresis which would change their sensitivity.

d. Limit of magnetic �eld detection The magnetoresistive sensors are inserted into a Wheastone bridge circuit
with adjustable dc currents (in the 0.1 to 1mA range) through the 2 GMR strips, in such a way that the bridge
voltage is zero in a uniform horizontal magnetic �eld. The bridge is read by a low noise voltage ampli�er. We use a
low noise voltage ampli�er which input noise voltage is 2nV/sqrt(Hz) above 40Hz (the current noise of the order of

10−14A/
√
(Hz) yield a negligible contribution through the 150 Ohms GMR sensors). We show in Fig. S2 the voltage

noise of the ampli�er together with the noise measured on the dc current biased GMR sensors. This data show that
the ampli�er noise is negligible compared to the intrinsic noise of the GMR We have also checked that the graphene
signal on the GMR does not depend on frequency between 7Hz and 125Hz but is more noisy at low frequency because
of the low frequency 1/f noise of the GMRs. From this �gure it appears that it could have been also interesting to work
at even larger frequency, see Fig. S3.However we are concerned with the fact that at high frequency the modulation
of the gate voltage induces current in graphene giving rise to an out-of-phase signal on the GMR sensors. By limiting
the frequency below 200 Hz, we ensure that this contribution is negligible compared to the in-phase component due
to the equilibrium orbital moment of graphene. The lowest detectable magnetic �eld is then simply related to the
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Figure S1: A-Magnetoresistance of one of the GMR resistances used in the experiment as a function of the in-plane
magnetic �eld applied perpendicularly to the GMR ribbon. B-Relative sensitivity of the GMR detector as a function

of vertical �eld. The maximum value ( without vertical �eld) corresponds a sensitivity of 2.5 Ω/mT

voltage noise measured on the GMR bridge Vn = 4nV/
√

(Hz) knowing the sensitivity of the GMRs s(Bperp) in
Ohms/T shown in Fig.7 and the dc current drive IGMR = 0, 5mA which is the maximum allowed value to keep the

graphene device at 4.2K. When data is averaged over time τ the sensitivity reaches δB = Vn/(2sIGMR

√
2πτ) = 80

pT for τ = 300s at Bperp = 0.1T and 0.4 nT at Bperp = 1T taking into account of the decrease of the sensitivity of
the GMRs with perpendicular magnetic �eld.

!

"

#

$

%

&

'
(

 )

!

"

*
+
,-
.
/0
+
12
3
4
.
/5
6
7
8 
9
:
;

$))#))"))!)) )))

<=.>?.6@A/59:;

/BCD/$))EF
/FGH1,I,.=/B=+?6J.J

 !"/9:
/
/

Figure S2: Noise spectrum of the shrt circuited GMR probes and with 500µA through the GMRs (red). The peaks
at odd multiple values of 50Hz come from the power supply of the building sector.

TMR detectors are in principle more sensitive than the GMR sensors we have used. However they are much more
noisy than GMRs in the range of temperature and frequency we are working at. Moreover the technique of fabrication
of these sensors with the constraint that they also should work at cryogenics temperature with a small electric power
consumption in order not to heat the graphene sample, is not as advanced as for the metallic GMR sensors we used.

It is also interesting to compare this sensitivity of detection of our GMR set up to SQUID detectors. If one considers
a SQUID of 10 micron square 0.1 nT leads to a �ux of the order of 10−21W = 0.510−6Φ0 which is of the order of the
best sensitivity which can be achieved in zero magnetic �eld in a micro SQUID. Nano SQUIDs are even more sensitive
in terms of �ux detection. Their sensitivity in terms of magnetic �eld is however limited to 1nT, see D. Vasyukov, et
al., Nat. Nanotech. 8 (2013) 639�644. They have a much better spatial resolution than our GMR detectors which
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translates into a higher sensitivity in terms of magnetic moment Y. Anahory et al. Nanoscale 12, 3174 (2020). They
can now detect a single Bohr magneton electronic magnetic moments, however all these SQUID detectors are also
very sensitive to out-of-plane magnetic �eld. In the present experiment we exploit the fact that GMR sensors are
insensitive to the out-of-plane component of the magnetic �eld which is obviously not the case for SQUID sensors.
NV sensors are very nice quantum detectors of small magnetic moments but they cannot be operated in magnetic
�elds above 100mT moreover they are not sensitive to the sign of the magnetic �eld detected, whereas this sign issue
is essential in our experiment.

2. Assembling Graphene and detector

The graphene sample consists of a single monolayer �ake encapsulated between hexagonal boron nitride (h-BN)
�akes. We use dry transfer to assemble [39] the graphene stack and deposit it on the GMR detectors covered by a layer
of alumina, see Fig. 1. A topgate electrode was deposited above the graphene region between the 2 magnetoresistive
sensors. The graphene sample was subsequently contacted by 2 electrodes on one side of the magnetoresistive sensor
after locally etching the top BN �ake. The mobility of graphene µe in the vicinity of the Dirac point was estimated
from the gate voltage dependent conductance ∂G/∂Vg = SµeCg and the capacitance Cg, to be of the order of 40
000 cm2V−1s−1. This kind of experiment where it is possible to measure resistance and magnetization on the same
sample in a wide range of magnetic �eld while controlling the chemical potential is quite challenging. We note that
similar combined investigations of transport and magnetization were done on GaAs 2D electron gas systems [40], but
only at large magnetic �eld . This possibility was essential in the present experiment for the determination of the
Dirac point but also to check, by measuring the low �eld magnetoresistance, that the GMR detector does not perturb
the magnetic �eld seen by the sample and �nally to control possible heating e�ects induced by the current applied
through the GMR sensors.
The magnetoresistive detector was calibrated in a test experiment with a current loop whose dimensions are similar

to the gated region of graphene (8 µm x 4 µm). The orbital magnetization of graphene per unit surface expressed
in current units can be obtained from this calibration and agrees with the calculation within the current loop model
detailed below.
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B. Extra experimental information and data

1. Resistance of the graphene sample

We show below the 2 wires measurement of the resistance of the graphene sample. The small amplitude of the
resistance peak at the Dirac point is due to the small area of the gated graphene region.
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Figure S3: Resistance as a function of the gate voltage. The Dirac peak is located at the same gate voltage as the
McClure peak shown in the main text.

2. GMR data in positive and negative magnetic �eld

3. Calculation of the thickness of the top BN �ake

The oscillations observed in Fig.2 of the main paper at large gate voltage are manifestations of the de Haas-van
Alphen e�ect. They are due to the contribution of non zero Landau levels to the magnetization.
The gate voltage capacitance can be simply deduced from the periodicity of these oscillations away from the Dirac

point, corresponding to the region where Vg = αµ2, with α = e/(πCgℏ2v2F ). In particular the di�erence in the position
(Vg), between peaks 2 and 3 yields the geometrical capacitance between the gate electrode and graphene:

∆Vg = Vg3 − Vg2 = α(µ2
3 − µ2

2) (S.1)

∆Vg = α(ε2B [N ]− ε2B [N − 1])

= α(2eℏv2FB)(N −N + 1)

∆Vg =
2e2B

πCgℏ

(S.2)

Recalling that Cg = ε0εr/d, being d the BN thickness, we arrive to the expression:

d =
∆Vgπℏε0εr

2e2B
≃ 7× 10−8m (S.3)

where we have taken ∆Vg = 0.32 V (from the average of the peaks, B = 1 T and εr = 3.8 for BN. This rather large
thickness of BN ensures that we can neglect the e�ect of the quantum capacitance in series with Cg.
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Figure S4: GMR Signal at positive and magnetic �elds. This �gure corresponds to the data obtained on the gate
voltage modulated GMR resistance measured both for positive and negative values of magnetic �eld and leading to

the data presented in Fig.2D after integration with respect to the gate voltage.

4. In�uence of the amplitude modulation

The modulation δVg applied to the gate voltage, depending on its amplitude, can lead to a rounding of the mag-
netization peak and a reduction of the peak amplitude. It is necessary to �nd the good compromise between a small
enough modulation amplitude to avoid this rounding and a large enough amplitude to preserve a good signal-to-noise
ratio. In Fig. S4we plot the signal obtained on the GMRs, δM renormalized by the modulation amplitude δVg for
several values of δVg. The amplitude of the signal measured is increased by a factor ∼ 3 when δVg is decreased a
factor 10. This e�ect is also visible in the integrated peak, M, in Fig. S5On the other hand we see in Fig. S8 that
decreasing the modulation below 20mV does not lead to a detectable narrowing of the peak but only to more noisy
data.

5. Temperature dependence

From the Gaussian model described in section 1 of these SM, we �nd that the value σ = 50 K reproduces quite
well the damping of the de Haas-van Alphen oscillations seen at high magnetic �eld. This gives an approximate value
below which, the e�ect of temperature should not be noticeable. One unavoidable source of heating in this experiment
is the current through the GMRs. In Fig. S8 we can see that a change in the current in the GMRs by a factor 5
does not change the signal obtained. This is evidence that heating produced by the GMR is negligible in this range
of current bias through the GMR sensor.

In Fig. S9 however, a decrease of the amplitude of the peak at µ = 0 is clear when the sample was heated at 60 K.
In addition, the de Haas-van Alphen oscillations start to disappear.
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Figure S5: GMR signal δM renormalised by the modulation amplitude δVg measured at Bperp = 4 kG, for di�erent
values of δVg. The rounding e�ect of the amplitude is higher for high modulation amplitudes. Note also the splitting
of the McClure peak at small modulation. This splitting is the signature of puddles which electrochemical potential

lie outside of the main Gaussian peak.
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Figure S6: Integrated magnetization for an external �eld Bperp = 2 kG. In green, the data for 400 mV and in blue,
data for 50 mV modulation.

6. Current loop model: from VGMR to Morb

In order to estimate the magnetic susceptibility of graphene, a geometrical model of the orbital current loop is
needed. The easiest model one can imagine is the one of a current �owing along the edges of the gated region of
graphene. This is equivalent to a thin rectangular loop carrying the orbital current. The edges parallel to the GMRs
mostly contribute to the detected magnetic �eld. From Biot-Savart law we can determine the horizontal component
of the magnetic �eld detected by the GMR. This value at the point C, the center of the GMR, is computed from the
distances from C to the parallel edges of the gated region : d1 = 1.75 µm and d2 = 5.57 µm as well as the angles
θh1 = 30.96o, θh2 = 9.3o α1 = 76o, α1 = 51.5o shown in Fig. S10.

BGMR =
µ0Iorb
2π

[
sin(θh1)

d1
sin (α1)−

sin(θh2)

d2
sin (α2)

]
(S.4)
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Figure S7: Comparison of the gate voltage derivative of the magnetisation measured with a 10 and 20mV
modulation.
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Figure S8: ∂M
∂Vg

as a function of Vg obtained for Bperp = 4 kG. The data measured with a current of 500µ A and

100µA through the GMR do not show any substantial di�erence.

from where we can �nd the coe�cient relating the orbital current (or equivalently the magnetization per unit surface)
to the �eld measured by the GMR sensor:

Iorb/BGMR = Morb/(SBGMR) = 22.3(A/T ) (S.5)

We also applied the same model to compare the experimental value of the magnetic �eld induced on the GMR by
a rectangular gold loop (e-beam lithography and metal evaporation) which was deposited between the GMRs. The
dimensions of the loop shown in Fig. S11were 4 × 8µm, corresponding to the right lithographic pattern. A ac
modulation of te current through the loop was used to determined the response of the GMR to the �eld generated by
the loop. A sensitivity of 4× 10−2T/A was obtained.
In order to compare this result with our simple magnetostatic model, we approximate the loop by a in�nitesimally

thin rectangle . We consider that the GMR is only sensitive to the �eld generated by the parallel edges of the loop
(the contribution of the perpendicular edges is neglected). Using again the Biot-Savart law it can be shown that the
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Figure S9: 1
B

∂M
∂Vg

as a function of Vg for di�erent values of temperature. One can notice that the peak amplitude

does not vary between 4.2 and 40 K but is reduced at 60 K.

(b)

Figure S10: Front and lateral views of the sample with the de�nition of the angles θh1 and θh2 between the 2 edges
of the gate electrode and the plane of the GMR. C is the center of symmetry of the GMR detector.

horizontal �eld at point P is given by equ. S.4. Taking into account the loop geometry we obtained the values of the
angles α1 = 65.7o and α1 = 35.53o, the other parameters being unchanged compared with graphene.
We obtain a value of 5.2× 10−2T/A, which agrees within 20% with the experimental value.
These numbers allow to quantitatively compare the experimental data measured on graphene with theoretical

predictions. The analysis is made with the averaged data (∂M/∂Vg) in order to decrease the errors introduced
by integration. We therefore consider the amplitude Adχm

measured between the positive and negative peaks in
(1/B)(∂M/∂Vg), around Vg = VD . We �nd Adχm = 3.7±0.5µA(V T )−1 for B=0.1T and Adχm = 4.3±0.5µA(V T )−1

for B=0.2T .
In the model with a gaussian distribution of µ, we expect the following amplitude for the McClure susceptibility

peak:

χGauss(0) =
2e2v2F

3π3/2
√
2σ0

= 0.95

[
µA

T

]
(S.6)

However, we cannot in principle directly compare our experimental data to the McClure peak, de�ned for vanishing
external magnetic �eld. The correct procedure is to calculate the gate voltage dependent magnetization divided by
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10 µm

Figure S11: Lithography pattern of current loops fabricated to calibrate the GMRs sensors. Only the right one was
operational.

the magnetic �eld within our theoretical model and compare its derivative with the gate voltage. We �nd for the
theoretical equivalent of Adχm de�ned above:

Adχt
= 9.594× 10−6

[
A

V T

]
(S.7)

which gives a ratio theory-experiment of 2.5 for the data taken at 0.1 T and 2.2 for the data taken at 0.2 T . We
�nally note that a better agreement between experiment and theory is obtained at larger �eld where the width of the
McClure peak does not depend on σ0 but only on ϵB .

7. Preliminary measurements on a strained sample

In the following we present measurements performed on a hBN/graphene/hBN stack deposited on a similar GMR
detector with a 100 nm thick bottom gate below the 800 nm thick alumina layer. This stack compared to the stacks
made using a top gate described in the main text is presumably highly strained. The signal detected on the GMR
exhibits a peak which is much wider than in the experiment due to the much thicker dielectric substrate. One can
see in Fig. S12that the observed peak in dRGMR/dVg is still present in zero magnetic �eld and does not change
sign between 1000 and -1000 G. This intriguing result calls for additional experiments where strain is applied in a
controlled way.
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Figure S12: Investigation of a strained BN encapsulated graphene stack on a thick gate electrode (left panel). The
signal obtained on the GMR sensor exhibits asymmetric peaks centered on the Dirac point with a sizable peak at

zero �eld.

II. SUPPLEMENTARY TEXT

A. Theoretical calculations

The experiment described in the paper addresses the dependence of the magnetization M , more precisely the
derivative ∂M/∂Vg, as a function of the gate voltage Vg. In this supplemental material, we propose a theoretical
derivation of this quantity. This is done in two steps, the dependence of the magnetization versus chemical potential
M(µ) and the relation between µ and the gate voltage Vg. Special attention is given to the broadening due to a
distribution of the electrochemical potential in the presence of disorder.

1. Grand potential as a function of the chemical potential

Several expressions for the �eld dependent part of the grand potential in graphene are found in the literature,
including the original paper by McClure[1, 12, 41, 42]. Here we propose the following derivation.The electronic
spectrum in a �eld is written as

ϵn = ±vF
√
2|n|ℏeB ≡ ϵB

√
|n| (S.8)

with degeneracy 2eB/h per unit area, taking into account the spin degeneracy (ϵ2B = 2ℏv2F eB). The grand potential
is a double integral of the density of states per unit of area ν(ϵ, B) which is written:

ν(ϵ, B) =
2eB

h

∑
n,±

δ
(
ϵ± ϵB

√
|n|
)

. (S.9)

A Poisson transformation leads to the Fourier decomposition of the density of states :

ν(ϵ, B) =
2|ϵ|

πℏ2v2F

(
1 + 2

∞∑
p=1

cos
2πpϵ2

ϵ2B

)
(S.10)

After a double integration, we obtain the oscillatory part of the grand potential for a clean sample and at zero
temperature :

Ω0(µ,B) =
ϵ3B

4π2ℏ2v2F
∆0

(
µ

ϵB

)
, (S.11)
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with

∆0(x) =

∞∑
p=1

1

p3/2
[1− 2S(2

√
p|x|)] (S.12)

where S(x) is the Fresnel integral :

S(x) =

∫ x

0

sin
πt2

2
dt . (S.13)

This variation, �rst obtained by McClure (although in a di�erent form) is recalled in Fig. S14-a. On an energy
scale larger than ϵB , the function can be replaced by a δ-function having the same total weight. The substitution
1− 2S(|x|) → 4

π δ(x) transforms eq. (S.11) into:

Ω0(µ,B) =
ϵ4B

12πℏ2v2F
δ(µ) =

e2v2FB
2

3π
δ(µ) (S.14)

sometimes called the McClure peak.

At �nite temperature, in the presence of elastic disorder, or with a distribution of the electrochemical potential
around the average chemical potential (coinciding with Fermi energy at zero temperature), this expression has to be
convoluted with one of the corresponding functions:

PT (ϵ) =
β/4

cosh2 βϵ/2
,

PD(ϵ) =
TD

ϵ2 + (πTD)2
,

Pσ(ϵ) =
1√
2πσ

e−
ϵ2

2σ2 . (S.15)

Here we consider that the main source of broadening is due to the distribution Pσ(µ
′) for the electrochemical

potential µ′ = µD − ⟨µD⟩ assumed to be Gaussian with a standard deviation σ. In graphene, the e�ciency of the
screening of charged impurities giving rise to the disorder potential increases indeed with doping, that is when moving
away from the Dirac point. Therefore the distribution of µ′ is expected to depend on µ,so that the standard deviation
σ is a function σ(µ) which decreases with |µ|, see Fig. S13.
Here, we present the calculation of the grand potential, with a �xed value of σ.

Ωσ(µ,B) =

∫ +∞

−∞
Pσ(µ

′)Ω0(µ− µ′, B)dµ′

=
ϵ3B

4π2ℏ2v2F
∆σ

(
µ

ϵB

)
(S.16)

with

∆σ(x) =

∞∑
p=1

1

p3/2

∫ ∞

−∞

e−y2

√
π

[
1− 2S

(
2
√
p|x+

√
2σ

ϵB
y|
)]
dy (S.17)

This function is plotted in Fig. S14 -b for σ/ϵB = 0.1 which corresponds to σ = 42 K for B = 1 T.

In the limit σ ≫ ϵB , one recovers the Gaussian decay

∆σ≫ϵB (µ/ϵB) =
πϵB
3

Pσ(µ) −→ Ωσ≫ϵB (µ,B) =
e2v2FB

2

3π
Pσ(µ) (S.18)

or a decay as PT (µ), PD(µ) if temperature or elastic disorder are the main sources of broadening.
From the grand potential, we deduce the magnetization M = −∂Ω/∂B (here we compute −∂Ω/∂ϵB noting that

∂/∂B = (ϵB/2B)∂/∂ϵB). The dependence of this quantity versus chemical potential is displayed on Fig. S15.In
principle all these calculations could also be done taking an explicit dependence of σ(µ).
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Figure S13: Schematic representation of the �uctuation of electrochemical potential µ′ = µD − ⟨µD⟩, measured with

respect to average Dirac point ⟨µD⟩. They are induced by a screened disorder potential produced by charge impurities

which amplitude decreases when µ− ⟨µD⟩ increases: The standard deviation σ depends on µ and decreases when

carrier density increases.
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Figure S14: Functions ∆0(x), and ∆σ(x) for σ/ϵB = 0.1.

2. Non-linear �eld dependence of the magnetization

We take the opportunity of the supplemental material to discuss the �eld dependence of the diamagnetic response,
here at �xed chemical potential µ = 0. In the presence of broadening, the �eld dependent part of the grand potential
is given by :

Ω(B) =

∫
P (µ′)Ω0(µ

′, B)dµ′ (S.19)

where Ω0(µ,B) and P (µ) are given by eqs. (S.11,S.12) and (S.15). Two limits are of special interest:
When the broadening is large, that is T, TD or σ ≫ ϵB ,
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Figure S15 Magnetization as a function of µ/ϵB , for σ = 0 and σ/ϵB = 0.1 independent of µ.
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Figure S16: Theoretical magnetisation (normalized to its value at µ = 0) as a function of µ expressed in Kelvin for
σ = 50 K. The low �eld magnetisation is a gaussian of width sigma. The di�erent plots show the broadening of the
peak which increases as ϵB , with increasing magnetic �eld and become independent on σ. On the other hand de
Haas-von Alphen oscillations show up. Their damping is directly related to σ and can be used to determine σ at

large doping.

Ω(B) = P (µ = 0)

∫
Ω0(µ

′, B)dµ′ =
e2v2FB

2

3π
P (µ = 0) (S.20)

leading to a quadratic �eld dependence of the grand potential as B2×min(1/T, 1/TD, 1/σ) and a magnetization linear
in B. For the speci�c case of a Gaussian distribution of width σ, the grand potential reads in this limit:

Ωσ(B) =

√
2e2v2FB

2

6π3/2σ
(S.21)

In the opposite limit of a perfectly clean sample or very strong �eld, the �eld dependence becomes non-analytical
[1] as :

Ω(B) = Ω0(0, B) =
ϵ3B

4π2ℏ2v2F
ζ(3/2) =

vF e
3/2ζ(3/2)

π2
√
2ℏ

B3/2 (S.22)
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since ∆0(0) = ζ(3/2) and the magnetization is proportional to
√

(B) . Note that all limits can be summarized as

Ω(B) ∝ B2 ×min(1/ϵB , 1/T, 1/TD, 1/σ) (S.23)

The non-linear �eld dependence of the magnetization is di�cult to observe [12]. Authors in [12] have investigated
deviations from the linearity at moderate magnetic �eld. A description of the interpolating regime has been proposed
by [12] using a Langevin function. We stress here that the correct behavior, see equation (S.19), deviates signi�cantly
form a Langevin function, in particular in small �eld.

3. Gate voltage Vg(µ)

It is of fundamental importance to �nd the relation between Vg and µ given that in our experiment the control
variable is precisely the gate voltage. We start by modeling the action of Vg as the one of a capacitance per unit
surface relating Vg to the charge density in graphene: Vg × Cg = en:

Vg =
en

Cg
=

e

Cgπ
k2 = α sign (µ− µD)(µ− µD)2, (S.24)

with α = e/(Cgπℏ2v2F ). In the model of a Gaussian distribution of µ′, this relation takes the following form, assuming
that Cg is the geometrical capacitance between graphene and the gate and therefore independent of µ:

Vg(µ) =
α√
2πσ

∫ ∞

−∞
sign (µ− µ′)(µ− µ′)2 exp

(
− µ′2

2σ2

)
dµ′ (S.25)

After integration, we get:

Vg(µ) = α× erf

(
µ√
2σ

)
(µ2 + σ2) +

4α√
2π

µσ × exp

(
− µ2

2σ2

)
(S.26)

where erf is the error function: erf (x) = 2√
π

∫ x

0
e−t2dt.

-4 -2 0 2 4

-20

-10

0

10

20

μ/σ

V
g

(a
.
u
.)

Figure S17: Relation between the gate voltage and the chemical potential, assuming that σ is independent of µ.
Note the linear dependence of Vg(µ) at low µ compared to σ.

It is easy to generalize equation (S.26) to the case where σ depends on µ. It leads then to the two following
expressions, respectively valid in the limits of low and large µ compared to σ0:

Vg(µ) = 4σ0µ/
√
2π for µ ≪ σ0

Vg(µ) = αµ2 sign(µ) for µ ≫ σ0 (S.27)

In graphene, the e�ciency of the screening of charged impurities giving rise to the disorder potential increases with
doping, that is when moving away from the Dirac point. Therefore the �uctuations of µ′ are expected to depend on µ:
the standard deviation σ should be a function σ(µ) which decreases with |µ|. We denote σ0 the value of σ(µ) close to
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the Dirac point and σ∞ its limiting value far from the Dirac point. Experimentally our data yields σ0 ≃ 165K which
is much larger than σ∞ ≃ 50K determined from the damping of de Haas-van Alphen oscillations at large µ ≫ σ0.
This is due to the formation of electron-hole puddles in the vicinity of the Dirac point [43, 44].
In order to �t experimental data it was enough to consider only these two values. σ0 determines the width of the

low �eld McClure peak and the variation of Vg(µ) at low chemical potential. On the other hand σ∞ describes the
large �eld damping of the de Haas-van alphen oscillations for µ ≫ σ0. We note that in these large �elds where de
Haas-van alphen oscillations in µ are visible, the width of the magnetisation peak at µ = 0 is determined by ϵB and
does not depend on σ, which simpli�es the �t of experimental data.
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I. MATERIALS AND METHODS


A. Measuring orbital magnetization of graphene with a GMR detector


1. The GMR detector


The magnetoresistive material of the GMR detectors consist in a multilayer stack of ferromagnetic layers.These
layers are su�ciently thin to ensure negligible leakage �elds. The low �eld magneto-resistance is determined by the
in-plane orientation of the soft layer's magnetization. This variation is linear with the horizontal magnetic �eld BH


on a few gauss scale around zero and saturates above a few mT.


a. GMR e�ect The Giant MagnetoResistance (GMR) e�ect [36] is based on the variation of conductivity in
multilayered ferromagnetic materials according to the relative orientation of the di�erent layer's magnetization. It is
widely used for hard disk drive read heads or magnetic memories, as well as for sensing purposes. In this latter case,
the spin valve structure is the most commonly used [37]. It comprises a magnetic layer exhibiting a strong coercivity
(hard layer) separated from a magnetic layer with a very low coercivity (soft layer) by a thin metallic spacer. The
magnetization of the soft layer can align along an in-plane applied �eld, whereas the direction of magnetization is
�xed in the hard layer . The resistance of the whole stack varies with the angle between the magnetization directions
of the two layers.


b. GMR fabrication process The GMR stack is deposited by sputtering (Rotaris deposition chamber from
Singulus) on a 300 µm-thick silicon substrate insulated by a SiO2 layer of 1 µm. It has the following composition: Ta
(3 nm) / NiFe (5 nm) / CoFe (2.1 nm) / Cu (2.9 nm) / CoFe (2.1 nm) / Ru (0.85 nm) / CoFe (2nm) / IrMn (7.5 nm)
/Ru (0.4 nm) / Ta (5 nm). The hard layer is composed of the antiferromagnet IrMn coupled to a synthetic ferromagnet
(CoF/Ru/CoFe) whereas the soft layer is made of the CoFe/NiFe bilayer. After the GMR stack deposition, an oven
annealing step at 1 T and 180 ◦C is performed to set the magnetization direction of the hard layer. The GMR sensors
( 2 µm wide and 20 µm long) are de�ned by optical lithography and ion beam etching. Contacts consist of a Ti(10
nm)/Au (100 nm) bilayer deposited by evaporation. The resistance of the contacted GMR is 150 0hms. The sample
is then protected by a 900 nm-thick Al2O3 passivation layer, deposited by sputtering.


The GMR sensor is sensitive to the component of the magnetic �eld in the plane of the sensor. When a strong
magnetic �eld is applied out-of-plane with perfect alignment, there is a loss of sensitivity as the �eld increases. Indeed,
the magnetization of the soft layer tends to rotate of the plane, resulting in a reduction of the component projected
in the plane [38].


c. Sensitivity of the GMR sensor The �eld response of the sensor is characterized by the derivative dR/dBH=
2.5 Ω/mT around BH = 0 which is optimum when BH is in-plane and aligned perpendicularly to the long dimension
of the GMR ribbons, see Fig. S1-A . The magnetization measurements were performed between T=4.2 K and 70 K
without any bias current through the graphene. The vertical magnetic �eld (perpendicular to the graphene plane) is
created by a superconducting solenoid. In order to compensate for the inevitable misalignment between the vertical
direction and the normal to the sample plane, two Helmholtz pairs of superconducting coils were used to precisely
cancel the component of the �eld, in the GMRs plane.


Although the �eld sensitivity decreases a mentioned above, the GMR is still operational at vertical �elds up to
0.8 T at room temperature and up to 1.2 T at low temperatures, see Fig. S1-B. It was important to recalibrate the
GMR with the horizontal �eld (created by the Helmholtz coils) for each value of the vertical �eld. We checked this
calibration both before and after each experiment. When changing magnetic �eld we tried to maintain as far as we
could the horizontal component of the applied magnetic �eld close to zero in order to avoid saturation of the GMR
during the process and possible hysteresis which would change their sensitivity.


d. Limit of magnetic �eld detection The magnetoresistive sensors are inserted into a Wheastone bridge circuit
with adjustable dc currents (in the 0.1 to 1mA range) through the 2 GMR strips, in such a way that the bridge
voltage is zero in a uniform horizontal magnetic �eld. The bridge is read by a low noise voltage ampli�er. We use a
low noise voltage ampli�er which input noise voltage is 2nV/sqrt(Hz) above 40Hz (the current noise of the order of


10−14A/
√
(Hz) yield a negligible contribution through the 150 Ohms GMR sensors). We show in Fig. S2 the voltage


noise of the ampli�er together with the noise measured on the dc current biased GMR sensors. This data show that
the ampli�er noise is negligible compared to the intrinsic noise of the GMR We have also checked that the graphene
signal on the GMR does not depend on frequency between 7Hz and 125Hz but is more noisy at low frequency because
of the low frequency 1/f noise of the GMRs. From this �gure it appears that it could have been also interesting to work
at even larger frequency, see Fig. S3.However we are concerned with the fact that at high frequency the modulation
of the gate voltage induces current in graphene giving rise to an out-of-phase signal on the GMR sensors. By limiting
the frequency below 200 Hz, we ensure that this contribution is negligible compared to the in-phase component due
to the equilibrium orbital moment of graphene. The lowest detectable magnetic �eld is then simply related to the
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Figure S1: A-Magnetoresistance of one of the GMR resistances used in the experiment as a function of the in-plane
magnetic �eld applied perpendicularly to the GMR ribbon. B-Relative sensitivity of the GMR detector as a function


of vertical �eld. The maximum value ( without vertical �eld) corresponds a sensitivity of 2.5 Ω/mT


voltage noise measured on the GMR bridge Vn = 4nV/
√


(Hz) knowing the sensitivity of the GMRs s(Bperp) in
Ohms/T shown in Fig.7 and the dc current drive IGMR = 0, 5mA which is the maximum allowed value to keep the


graphene device at 4.2K. When data is averaged over time τ the sensitivity reaches δB = Vn/(2sIGMR


√
2πτ) = 80


pT for τ = 300s at Bperp = 0.1T and 0.4 nT at Bperp = 1T taking into account of the decrease of the sensitivity of
the GMRs with perpendicular magnetic �eld.
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Figure S2: Noise spectrum of the shrt circuited GMR probes and with 500µA through the GMRs (red). The peaks
at odd multiple values of 50Hz come from the power supply of the building sector.


TMR detectors are in principle more sensitive than the GMR sensors we have used. However they are much more
noisy than GMRs in the range of temperature and frequency we are working at. Moreover the technique of fabrication
of these sensors with the constraint that they also should work at cryogenics temperature with a small electric power
consumption in order not to heat the graphene sample, is not as advanced as for the metallic GMR sensors we used.


It is also interesting to compare this sensitivity of detection of our GMR set up to SQUID detectors. If one considers
a SQUID of 10 micron square 0.1 nT leads to a �ux of the order of 10−21W = 0.510−6Φ0 which is of the order of the
best sensitivity which can be achieved in zero magnetic �eld in a micro SQUID. Nano SQUIDs are even more sensitive
in terms of �ux detection. Their sensitivity in terms of magnetic �eld is however limited to 1nT, see D. Vasyukov, et
al., Nat. Nanotech. 8 (2013) 639�644. They have a much better spatial resolution than our GMR detectors which
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translates into a higher sensitivity in terms of magnetic moment Y. Anahory et al. Nanoscale 12, 3174 (2020). They
can now detect a single Bohr magneton electronic magnetic moments, however all these SQUID detectors are also
very sensitive to out-of-plane magnetic �eld. In the present experiment we exploit the fact that GMR sensors are
insensitive to the out-of-plane component of the magnetic �eld which is obviously not the case for SQUID sensors.
NV sensors are very nice quantum detectors of small magnetic moments but they cannot be operated in magnetic
�elds above 100mT moreover they are not sensitive to the sign of the magnetic �eld detected, whereas this sign issue
is essential in our experiment.


2. Assembling Graphene and detector


The graphene sample consists of a single monolayer �ake encapsulated between hexagonal boron nitride (h-BN)
�akes. We use dry transfer to assemble [39] the graphene stack and deposit it on the GMR detectors covered by a layer
of alumina, see Fig. 1. A topgate electrode was deposited above the graphene region between the 2 magnetoresistive
sensors. The graphene sample was subsequently contacted by 2 electrodes on one side of the magnetoresistive sensor
after locally etching the top BN �ake. The mobility of graphene µe in the vicinity of the Dirac point was estimated
from the gate voltage dependent conductance ∂G/∂Vg = SµeCg and the capacitance Cg, to be of the order of 40
000 cm2V−1s−1. This kind of experiment where it is possible to measure resistance and magnetization on the same
sample in a wide range of magnetic �eld while controlling the chemical potential is quite challenging. We note that
similar combined investigations of transport and magnetization were done on GaAs 2D electron gas systems [40], but
only at large magnetic �eld . This possibility was essential in the present experiment for the determination of the
Dirac point but also to check, by measuring the low �eld magnetoresistance, that the GMR detector does not perturb
the magnetic �eld seen by the sample and �nally to control possible heating e�ects induced by the current applied
through the GMR sensors.
The magnetoresistive detector was calibrated in a test experiment with a current loop whose dimensions are similar


to the gated region of graphene (8 µm x 4 µm). The orbital magnetization of graphene per unit surface expressed
in current units can be obtained from this calibration and agrees with the calculation within the current loop model
detailed below.
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B. Extra experimental information and data


1. Resistance of the graphene sample


We show below the 2 wires measurement of the resistance of the graphene sample. The small amplitude of the
resistance peak at the Dirac point is due to the small area of the gated graphene region.


 !"#$%& '
(


 !"#!


 !"#)


 !"#*


 !"#'


 !"!$


 !"!!


 
%+
 
,


- ". - "' -'". '"' '".  "'


!"%+/,


Figure S3: Resistance as a function of the gate voltage. The Dirac peak is located at the same gate voltage as the
McClure peak shown in the main text.


2. GMR data in positive and negative magnetic �eld


3. Calculation of the thickness of the top BN �ake


The oscillations observed in Fig.2 of the main paper at large gate voltage are manifestations of the de Haas-van
Alphen e�ect. They are due to the contribution of non zero Landau levels to the magnetization.
The gate voltage capacitance can be simply deduced from the periodicity of these oscillations away from the Dirac


point, corresponding to the region where Vg = αµ2, with α = e/(πCgℏ2v2F ). In particular the di�erence in the position
(Vg), between peaks 2 and 3 yields the geometrical capacitance between the gate electrode and graphene:


∆Vg = Vg3 − Vg2 = α(µ2
3 − µ2


2) (S.1)


∆Vg = α(ε2B [N ]− ε2B [N − 1])


= α(2eℏv2FB)(N −N + 1)


∆Vg =
2e2B


πCgℏ


(S.2)


Recalling that Cg = ε0εr/d, being d the BN thickness, we arrive to the expression:


d =
∆Vgπℏε0εr


2e2B
≃ 7× 10−8m (S.3)


where we have taken ∆Vg = 0.32 V (from the average of the peaks, B = 1 T and εr = 3.8 for BN. This rather large
thickness of BN ensures that we can neglect the e�ect of the quantum capacitance in series with Cg.
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Figure S4: GMR Signal at positive and magnetic �elds. This �gure corresponds to the data obtained on the gate
voltage modulated GMR resistance measured both for positive and negative values of magnetic �eld and leading to


the data presented in Fig.2D after integration with respect to the gate voltage.


4. In�uence of the amplitude modulation


The modulation δVg applied to the gate voltage, depending on its amplitude, can lead to a rounding of the mag-
netization peak and a reduction of the peak amplitude. It is necessary to �nd the good compromise between a small
enough modulation amplitude to avoid this rounding and a large enough amplitude to preserve a good signal-to-noise
ratio. In Fig. S4we plot the signal obtained on the GMRs, δM renormalized by the modulation amplitude δVg for
several values of δVg. The amplitude of the signal measured is increased by a factor ∼ 3 when δVg is decreased a
factor 10. This e�ect is also visible in the integrated peak, M, in Fig. S5On the other hand we see in Fig. S8 that
decreasing the modulation below 20mV does not lead to a detectable narrowing of the peak but only to more noisy
data.


5. Temperature dependence


From the Gaussian model described in section 1 of these SM, we �nd that the value σ = 50 K reproduces quite
well the damping of the de Haas-van Alphen oscillations seen at high magnetic �eld. This gives an approximate value
below which, the e�ect of temperature should not be noticeable. One unavoidable source of heating in this experiment
is the current through the GMRs. In Fig. S8 we can see that a change in the current in the GMRs by a factor 5
does not change the signal obtained. This is evidence that heating produced by the GMR is negligible in this range
of current bias through the GMR sensor.


In Fig. S9 however, a decrease of the amplitude of the peak at µ = 0 is clear when the sample was heated at 60 K.
In addition, the de Haas-van Alphen oscillations start to disappear.
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Figure S5: GMR signal δM renormalised by the modulation amplitude δVg measured at Bperp = 4 kG, for di�erent
values of δVg. The rounding e�ect of the amplitude is higher for high modulation amplitudes. Note also the splitting
of the McClure peak at small modulation. This splitting is the signature of puddles which electrochemical potential


lie outside of the main Gaussian peak.
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Figure S6: Integrated magnetization for an external �eld Bperp = 2 kG. In green, the data for 400 mV and in blue,
data for 50 mV modulation.


6. Current loop model: from VGMR to Morb


In order to estimate the magnetic susceptibility of graphene, a geometrical model of the orbital current loop is
needed. The easiest model one can imagine is the one of a current �owing along the edges of the gated region of
graphene. This is equivalent to a thin rectangular loop carrying the orbital current. The edges parallel to the GMRs
mostly contribute to the detected magnetic �eld. From Biot-Savart law we can determine the horizontal component
of the magnetic �eld detected by the GMR. This value at the point C, the center of the GMR, is computed from the
distances from C to the parallel edges of the gated region : d1 = 1.75 µm and d2 = 5.57 µm as well as the angles
θh1 = 30.96o, θh2 = 9.3o α1 = 76o, α1 = 51.5o shown in Fig. S10.


BGMR =
µ0Iorb
2π


[
sin(θh1)


d1
sin (α1)−


sin(θh2)


d2
sin (α2)


]
(S.4)
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Figure S7: Comparison of the gate voltage derivative of the magnetisation measured with a 10 and 20mV
modulation.
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Figure S8: ∂M
∂Vg


as a function of Vg obtained for Bperp = 4 kG. The data measured with a current of 500µ A and


100µA through the GMR do not show any substantial di�erence.


from where we can �nd the coe�cient relating the orbital current (or equivalently the magnetization per unit surface)
to the �eld measured by the GMR sensor:


Iorb/BGMR = Morb/(SBGMR) = 22.3(A/T ) (S.5)


We also applied the same model to compare the experimental value of the magnetic �eld induced on the GMR by
a rectangular gold loop (e-beam lithography and metal evaporation) which was deposited between the GMRs. The
dimensions of the loop shown in Fig. S11were 4 × 8µm, corresponding to the right lithographic pattern. A ac
modulation of te current through the loop was used to determined the response of the GMR to the �eld generated by
the loop. A sensitivity of 4× 10−2T/A was obtained.
In order to compare this result with our simple magnetostatic model, we approximate the loop by a in�nitesimally


thin rectangle . We consider that the GMR is only sensitive to the �eld generated by the parallel edges of the loop
(the contribution of the perpendicular edges is neglected). Using again the Biot-Savart law it can be shown that the
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Figure S9: 1
B


∂M
∂Vg


as a function of Vg for di�erent values of temperature. One can notice that the peak amplitude


does not vary between 4.2 and 40 K but is reduced at 60 K.


(b)


Figure S10: Front and lateral views of the sample with the de�nition of the angles θh1 and θh2 between the 2 edges
of the gate electrode and the plane of the GMR. C is the center of symmetry of the GMR detector.


horizontal �eld at point P is given by equ. S.4. Taking into account the loop geometry we obtained the values of the
angles α1 = 65.7o and α1 = 35.53o, the other parameters being unchanged compared with graphene.
We obtain a value of 5.2× 10−2T/A, which agrees within 20% with the experimental value.
These numbers allow to quantitatively compare the experimental data measured on graphene with theoretical


predictions. The analysis is made with the averaged data (∂M/∂Vg) in order to decrease the errors introduced
by integration. We therefore consider the amplitude Adχm


measured between the positive and negative peaks in
(1/B)(∂M/∂Vg), around Vg = VD . We �nd Adχm = 3.7±0.5µA(V T )−1 for B=0.1T and Adχm = 4.3±0.5µA(V T )−1


for B=0.2T .
In the model with a gaussian distribution of µ, we expect the following amplitude for the McClure susceptibility


peak:


χGauss(0) =
2e2v2F


3π3/2
√
2σ0


= 0.95


[
µA


T


]
(S.6)


However, we cannot in principle directly compare our experimental data to the McClure peak, de�ned for vanishing
external magnetic �eld. The correct procedure is to calculate the gate voltage dependent magnetization divided by
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10 µm


Figure S11: Lithography pattern of current loops fabricated to calibrate the GMRs sensors. Only the right one was
operational.


the magnetic �eld within our theoretical model and compare its derivative with the gate voltage. We �nd for the
theoretical equivalent of Adχm de�ned above:


Adχt
= 9.594× 10−6


[
A


V T


]
(S.7)


which gives a ratio theory-experiment of 2.5 for the data taken at 0.1 T and 2.2 for the data taken at 0.2 T . We
�nally note that a better agreement between experiment and theory is obtained at larger �eld where the width of the
McClure peak does not depend on σ0 but only on ϵB .


7. Preliminary measurements on a strained sample


In the following we present measurements performed on a hBN/graphene/hBN stack deposited on a similar GMR
detector with a 100 nm thick bottom gate below the 800 nm thick alumina layer. This stack compared to the stacks
made using a top gate described in the main text is presumably highly strained. The signal detected on the GMR
exhibits a peak which is much wider than in the experiment due to the much thicker dielectric substrate. One can
see in Fig. S12that the observed peak in dRGMR/dVg is still present in zero magnetic �eld and does not change
sign between 1000 and -1000 G. This intriguing result calls for additional experiments where strain is applied in a
controlled way.







11


Figure S12: Investigation of a strained BN encapsulated graphene stack on a thick gate electrode (left panel). The
signal obtained on the GMR sensor exhibits asymmetric peaks centered on the Dirac point with a sizable peak at


zero �eld.


II. SUPPLEMENTARY TEXT


A. Theoretical calculations


The experiment described in the paper addresses the dependence of the magnetization M , more precisely the
derivative ∂M/∂Vg, as a function of the gate voltage Vg. In this supplemental material, we propose a theoretical
derivation of this quantity. This is done in two steps, the dependence of the magnetization versus chemical potential
M(µ) and the relation between µ and the gate voltage Vg. Special attention is given to the broadening due to a
distribution of the electrochemical potential in the presence of disorder.


1. Grand potential as a function of the chemical potential


Several expressions for the �eld dependent part of the grand potential in graphene are found in the literature,
including the original paper by McClure[1, 12, 41, 42]. Here we propose the following derivation.The electronic
spectrum in a �eld is written as


ϵn = ±vF
√
2|n|ℏeB ≡ ϵB


√
|n| (S.8)


with degeneracy 2eB/h per unit area, taking into account the spin degeneracy (ϵ2B = 2ℏv2F eB). The grand potential
is a double integral of the density of states per unit of area ν(ϵ, B) which is written:


ν(ϵ, B) =
2eB


h


∑
n,±


δ
(
ϵ± ϵB


√
|n|
)


. (S.9)


A Poisson transformation leads to the Fourier decomposition of the density of states :


ν(ϵ, B) =
2|ϵ|


πℏ2v2F


(
1 + 2


∞∑
p=1


cos
2πpϵ2


ϵ2B


)
(S.10)


After a double integration, we obtain the oscillatory part of the grand potential for a clean sample and at zero
temperature :


Ω0(µ,B) =
ϵ3B


4π2ℏ2v2F
∆0


(
µ


ϵB


)
, (S.11)
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with


∆0(x) =


∞∑
p=1


1


p3/2
[1− 2S(2


√
p|x|)] (S.12)


where S(x) is the Fresnel integral :


S(x) =


∫ x


0


sin
πt2


2
dt . (S.13)


This variation, �rst obtained by McClure (although in a di�erent form) is recalled in Fig. S14-a. On an energy
scale larger than ϵB , the function can be replaced by a δ-function having the same total weight. The substitution
1− 2S(|x|) → 4


π δ(x) transforms eq. (S.11) into:


Ω0(µ,B) =
ϵ4B


12πℏ2v2F
δ(µ) =


e2v2FB
2


3π
δ(µ) (S.14)


sometimes called the McClure peak.


At �nite temperature, in the presence of elastic disorder, or with a distribution of the electrochemical potential
around the average chemical potential (coinciding with Fermi energy at zero temperature), this expression has to be
convoluted with one of the corresponding functions:


PT (ϵ) =
β/4


cosh2 βϵ/2
,


PD(ϵ) =
TD


ϵ2 + (πTD)2
,


Pσ(ϵ) =
1√
2πσ


e−
ϵ2


2σ2 . (S.15)


Here we consider that the main source of broadening is due to the distribution Pσ(µ
′) for the electrochemical


potential µ′ = µD − ⟨µD⟩ assumed to be Gaussian with a standard deviation σ. In graphene, the e�ciency of the
screening of charged impurities giving rise to the disorder potential increases indeed with doping, that is when moving
away from the Dirac point. Therefore the distribution of µ′ is expected to depend on µ,so that the standard deviation
σ is a function σ(µ) which decreases with |µ|, see Fig. S13.
Here, we present the calculation of the grand potential, with a �xed value of σ.


Ωσ(µ,B) =


∫ +∞


−∞
Pσ(µ


′)Ω0(µ− µ′, B)dµ′


=
ϵ3B


4π2ℏ2v2F
∆σ


(
µ


ϵB


)
(S.16)


with


∆σ(x) =


∞∑
p=1


1


p3/2


∫ ∞


−∞


e−y2


√
π


[
1− 2S


(
2
√
p|x+


√
2σ


ϵB
y|
)]
dy (S.17)


This function is plotted in Fig. S14 -b for σ/ϵB = 0.1 which corresponds to σ = 42 K for B = 1 T.


In the limit σ ≫ ϵB , one recovers the Gaussian decay


∆σ≫ϵB (µ/ϵB) =
πϵB
3


Pσ(µ) −→ Ωσ≫ϵB (µ,B) =
e2v2FB


2


3π
Pσ(µ) (S.18)


or a decay as PT (µ), PD(µ) if temperature or elastic disorder are the main sources of broadening.
From the grand potential, we deduce the magnetization M = −∂Ω/∂B (here we compute −∂Ω/∂ϵB noting that


∂/∂B = (ϵB/2B)∂/∂ϵB). The dependence of this quantity versus chemical potential is displayed on Fig. S15.In
principle all these calculations could also be done taking an explicit dependence of σ(µ).
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µD


Figure S13: Schematic representation of the �uctuation of electrochemical potential µ′ = µD − ⟨µD⟩, measured with


respect to average Dirac point ⟨µD⟩. They are induced by a screened disorder potential produced by charge impurities


which amplitude decreases when µ− ⟨µD⟩ increases: The standard deviation σ depends on µ and decreases when


carrier density increases.
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Figure S14: Functions ∆0(x), and ∆σ(x) for σ/ϵB = 0.1.


2. Non-linear �eld dependence of the magnetization


We take the opportunity of the supplemental material to discuss the �eld dependence of the diamagnetic response,
here at �xed chemical potential µ = 0. In the presence of broadening, the �eld dependent part of the grand potential
is given by :


Ω(B) =


∫
P (µ′)Ω0(µ


′, B)dµ′ (S.19)


where Ω0(µ,B) and P (µ) are given by eqs. (S.11,S.12) and (S.15). Two limits are of special interest:
When the broadening is large, that is T, TD or σ ≫ ϵB ,
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Figure S15 Magnetization as a function of µ/ϵB , for σ = 0 and σ/ϵB = 0.1 independent of µ.


 !"#


 #"$


 #"%


 #"&


 #"'


#"#


#"'


 
( 


)!
*
+ 


(#
)!


*


$##&### &## $##


 ,("*


,,,!"#,-
,,,#"%,-
,,,#"',-
,./011"


Figure S16: Theoretical magnetisation (normalized to its value at µ = 0) as a function of µ expressed in Kelvin for
σ = 50 K. The low �eld magnetisation is a gaussian of width sigma. The di�erent plots show the broadening of the
peak which increases as ϵB , with increasing magnetic �eld and become independent on σ. On the other hand de
Haas-von Alphen oscillations show up. Their damping is directly related to σ and can be used to determine σ at


large doping.


Ω(B) = P (µ = 0)


∫
Ω0(µ


′, B)dµ′ =
e2v2FB


2


3π
P (µ = 0) (S.20)


leading to a quadratic �eld dependence of the grand potential as B2×min(1/T, 1/TD, 1/σ) and a magnetization linear
in B. For the speci�c case of a Gaussian distribution of width σ, the grand potential reads in this limit:


Ωσ(B) =


√
2e2v2FB


2


6π3/2σ
(S.21)


In the opposite limit of a perfectly clean sample or very strong �eld, the �eld dependence becomes non-analytical
[1] as :


Ω(B) = Ω0(0, B) =
ϵ3B


4π2ℏ2v2F
ζ(3/2) =


vF e
3/2ζ(3/2)


π2
√
2ℏ


B3/2 (S.22)
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since ∆0(0) = ζ(3/2) and the magnetization is proportional to
√


(B) . Note that all limits can be summarized as


Ω(B) ∝ B2 ×min(1/ϵB , 1/T, 1/TD, 1/σ) (S.23)


The non-linear �eld dependence of the magnetization is di�cult to observe [12]. Authors in [12] have investigated
deviations from the linearity at moderate magnetic �eld. A description of the interpolating regime has been proposed
by [12] using a Langevin function. We stress here that the correct behavior, see equation (S.19), deviates signi�cantly
form a Langevin function, in particular in small �eld.


3. Gate voltage Vg(µ)


It is of fundamental importance to �nd the relation between Vg and µ given that in our experiment the control
variable is precisely the gate voltage. We start by modeling the action of Vg as the one of a capacitance per unit
surface relating Vg to the charge density in graphene: Vg × Cg = en:


Vg =
en


Cg
=


e


Cgπ
k2 = α sign (µ− µD)(µ− µD)2, (S.24)


with α = e/(Cgπℏ2v2F ). In the model of a Gaussian distribution of µ′, this relation takes the following form, assuming
that Cg is the geometrical capacitance between graphene and the gate and therefore independent of µ:


Vg(µ) =
α√
2πσ


∫ ∞


−∞
sign (µ− µ′)(µ− µ′)2 exp


(
− µ′2


2σ2


)
dµ′ (S.25)


After integration, we get:


Vg(µ) = α× erf


(
µ√
2σ


)
(µ2 + σ2) +


4α√
2π


µσ × exp


(
− µ2


2σ2


)
(S.26)


where erf is the error function: erf (x) = 2√
π


∫ x


0
e−t2dt.
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Figure S17: Relation between the gate voltage and the chemical potential, assuming that σ is independent of µ.
Note the linear dependence of Vg(µ) at low µ compared to σ.


It is easy to generalize equation (S.26) to the case where σ depends on µ. It leads then to the two following
expressions, respectively valid in the limits of low and large µ compared to σ0:


Vg(µ) = 4σ0µ/
√
2π for µ ≪ σ0


Vg(µ) = αµ2 sign(µ) for µ ≫ σ0 (S.27)


In graphene, the e�ciency of the screening of charged impurities giving rise to the disorder potential increases with
doping, that is when moving away from the Dirac point. Therefore the �uctuations of µ′ are expected to depend on µ:
the standard deviation σ should be a function σ(µ) which decreases with |µ|. We denote σ0 the value of σ(µ) close to
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the Dirac point and σ∞ its limiting value far from the Dirac point. Experimentally our data yields σ0 ≃ 165K which
is much larger than σ∞ ≃ 50K determined from the damping of de Haas-van Alphen oscillations at large µ ≫ σ0.
This is due to the formation of electron-hole puddles in the vicinity of the Dirac point [43, 44].
In order to �t experimental data it was enough to consider only these two values. σ0 determines the width of the


low �eld McClure peak and the variation of Vg(µ) at low chemical potential. On the other hand σ∞ describes the
large �eld damping of the de Haas-van alphen oscillations for µ ≫ σ0. We note that in these large �elds where de
Haas-van alphen oscillations in µ are visible, the width of the magnetisation peak at µ = 0 is determined by ϵB and
does not depend on σ, which simpli�es the �t of experimental data.
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