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ABSTRACT

In an industrial environment, object detection is a challenging
task due to the absence of real images and real-time require-
ments for the object detector, usually embedded in a mobile
device. Using 3D models, it is however possible to create a
synthetic dataset to train a neural network, although the per-
formance on real images is limited by the domain gap. In
this paper, we study the performance of a Convolutional Neu-
ral Network (CNN) designed to detect objects in real-time:
Single-Shot Detector (SSD) with a MobileNet backbone. We
train SSD with synthetic images only, and apply extensive
data augmentation to reduce the domain gap between syn-
thetic and real images. On the T-LESS dataset, SSD performs
better than Mask R-CNN trained on the same synthetic im-
ages, with MobileNet-V2 and MobileNet-V3 Large as back-
bone. Our results also show the huge improvement enabled
by an adequate augmentation strategy.

Index Terms— Object detection, Synthetic dataset, Mo-
bile applications

1. INTRODUCTION

Industry is one of the many fields now relying on computer vi-
sion for the automation of different tasks. From maintenance
to robotic manipulation, a precise detection of diverse objects
is required. In the meantime, deep artificial neural networks
have been developed, encouraged by the improved computa-
tion capabilities of computers and an increasing availability of
massive image datasets [1]. Different levels of analysis have
been defined, from classification to semantic segmentation of
images. In between, the object detection task consists in the
localization of boxes surrounding each object, and identify-
ing the category of the main object in each box. The exis-
tence of challenges aiming at resolving these tasks on large-
scale datasets greatly benefits the research in computer vision.
Among the most successful methods, Convolutional Neural
Networks (CNNSs) have obtained the best results.

Since industrial applications need to recognize specific ob-
jects absent from the usual datasets, it becomes necessary
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Fig. 1. Synthetic training images (top row) and real test im-
ages (bottom row) from dataset T-LESS [3].

to generate datasets for these objects, a resource-consuming
task. Since CAD models exist as a part of the products design
process, a promising line of work is to take advantage of the
existing 3D data to generate automatically annotated datasets
of entirely synthetic images [2]. Moreover, many applications
require the CNN to be applied to a stream of images in real-
time, on a mobile device such as an embedded computer or a
smartphone, which have limited memory and computing ca-
pabilities.

In this work, we compare the performance of the SSD de-
tector with different MobileNet architectures as feature ex-
tractors, in the case of synthetic-to-real domain adaptation.
Within such context, we highlight the importance of data aug-
mentation to train a model on synthetic images that will per-
form detection on real images. We provide object detection
results on the public dataset T-LESS [3], that contains chal-
lenging texture-less industrial objects.

2. RELATED WORK

In this section, we describe the main approaches for object
detection, MobileNets and learning on synthetic images.

Object detection. CNNs enabled a huge performance im-
provement on the task of object detection. First models with
few layers have been outperformed with bigger and deeper
architectures, typically composed of two subnetworks: a re-
gion proposal stage and a detection stage [4, 5]. This increase
in number of layers and parameters is not a suitable prop-
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Fig. 2. Model architecture: SSD with MobileNet-V3 backbone.

erty for real-time and embedded applications, which led to
the development of small one-stage object detectors for fast
inference [6, 7].

MobileNets. Feature extraction is a crucial step for any
CNN, and many architectures have been proposed, such
as the MobileNet series. MobileNet-V1 [8] introduced the
notion of depth-wise separable convolution, as well as the
width and resolution multipliers as new hyper-parameters.
MobileNet-V2 [9] replaced the simple convolutional layers
by inverted residual blocks: a bottleneck with an expansion
layer, and residual connections between the bottlenecks of the
successive blocks. This memory-efficient residual block en-
forces the information to be contained in a low-dimensional
space. MnasNet [10] added a squeeze-and-excite module into
the bottleneck block of MobileNet-V2. Finally, MobileNet-
V3 [11] was built as an optimized assembly of the previous
blocks, with more efficient non-linearities. While it is better
and faster than MobileNet-V2 on a classification task, its ac-
curacy is the same for a faster inference on a detection task.
Its adoption by the community has been limited, and recent
works still use MobileNet-V2.

Synthetic training data. To train CNNs without any real
image, CAD models are used to create synthetic images. The
naive approach of pasting a 2D rendered object onto a real
background enables to recognize some objects in real im-
ages [12, 13, 2], but is limited by the unrealistic aspect of the
objects boundaries. Using rendering engines, one can create
complete scenes and automatically record annotated images
from virtual environments [14, 15]. The limitations of these
engines, such as the difficulty to render diverse objects and
generate annotations, motivated researchers to develop pho-
torealistic renderers specifically for machine learning, such
as BlenderProc [16]. Finally, the advances of Augmented
Reality techniques also enables to blend smoothly real and
synthetic elements [17]. Domain randomization techniques
can be used to generate synthetic images with diverse appear-
ances, such that the real images appear to the network as one

more variation of the same domain [18, 19].

This work aims to evaluate if a single-stage object detector
with MobileNet feature extractor can effectively learn from
photorealistic images only, without seeing a single real image
of the objects.

3. PROPOSED APPROACH

3.1. Network architecture

Among the lightweight CNN architectures for object detec-
tion, we selected SSD [6] since its size mostly depends on the
feature extractor used. The original feature extractor is com-
monly replaced by ResNet-50 [20] for increased performance
or MobileNet-V2 [9] for real-time inference. We compare the
performance obtained using MobileNet-V2 and MobileNet-
V3. MobileNet-V3 exists in two settings, Large and Small,
which differ in the number of layers and maximum size of the
feature maps. We evaluate all three architectures, denoted as
V2-SSD, V3-SSD and V3small-SSD.

SSD is composed of a set of extra layers and header layers that
predict objects locations and categories (Figure 2). The extra
layers are added on top of the backbone, while the header
layers take as inputs the feature maps from different layers
for multi-scale prediction: two sets of predictions are drawn
directly from the backbone, and one for each of the extra lay-

Table 1. Object detection results.

Model mAP
Mask R-CNN 32.8
V3small-SSD (augl) | 18.6
V3-SSD (augl) 36.3
V2-SSD (augl) 38.3
V3small-SSD (aug2) | 23.5
V3-SSD (aug2) 46.1
V2-SSD (aug?2) 47.7




Table 2. Results: inference time for a single image (224x224 pixels), allocated memory on GPU and number of parameters.

Model Inference (ms) | Memory (M) | Parameters (M)
Mask R-CNN 463 181.4 44.0
V3-SSD 35 20.1 4.9
V2-SSD 28 14.5 3.5
V3small-SSD 33 10.6 2.6

ers. A Non-Maximum Suppression (NMS) step is applied to
remove duplicate detections. The complete model is built fol-
lowing [9] and [11]: the first SSD header is placed on top
of the expansion layer of the bottleneck block with stride 16
(C4), and the extra layers as well as the second header layer
are branched on top of the layer with stride 32 (C5). Figure 2
presents the network architecture for V3-SSD. The depths of
the feature maps used by SSD are indicated below.

3.2. Data Augmentation

To reduce the domain gap, we rely on data augmentation over
photorealistic rendered images. For this purpose, we apply
a series of color and geometric augmentations using the Al-
bumentations library [21], each with a random probability of
being applied. The augmentations are: brightness, contrast,
saturation and hue alterations; color shift; Gaussian, median
or motion blur; Gaussian, multiplicative and ISO noise; ver-
tical flip. After these augmentations, the image is randomly
cropped to 400x400 pixels, and finally resized to 224x224.

4. EXPERIMENTS AND RESULTS

4.1. Dataset

We evaluate our approach on T-LESS [3], a dataset for 6D
pose estimation, containing CAD models and RGB-D images
of 30 industry-relevant, texture-less objects. In the context
of the 2020 edition of the BOP challenge [23], a synthetic
dataset of 50000 photorealistic images was released, gener-
ated using the physics-based rendering tool BlenderProc [16]
(Figure 1, top row). We used these synthetic images as the
only training data, removed 1000 of them for validation, and
used the 1000 test images captured using the Primesense
CARMINE 1.09 sensor as test dataset (Figure 1, bottom
row). We focus on RGB object detection and leave the other
modalities provided for further work.

4.2. Evaluation metrics and comparison

We compute the mean Average Precision (mAP) as defined in
the Pascal VOC challenge [24] with the framework proposed
by Padilla et al. [25]. We compare our results against the ones
of Mask R-CNN [26] trained on the same synthetic images.
Mask R-CNN usually performs better than MobileNets when
training and testing on same domain images [27]. However,

the size and lower inference time of the model limit its use
in embedded applications. We used the model provided by
the winners of the 2020 BOP Challenge as the first step of
their method to estimate objects 6D pose [22] and apply our
evaluation method to the predictions. To identify the influ-
ence of data augmentation, we also trained our models with
the same augmentation pipeline as Mask R-CNN, which has
less variety in the transforms applied. We refer to this data
augmentation as augl, and our data augmentation described
in Section 3.2 as aug?2. Note that the training and test images
have a size of 540x720 pixels for Mask R-CNN and 224x224
for SSD. For fair comparison, the inference times are always
measured for 224x224 pixels.

4.3. Training parameters

We used an existing PyTorch implementation of MobileNet-
V3 !in order to take advantage of the provided model weights
trained on ImageNet [1] for the Large and Small settings. Al-
though the MobileNet-V3 architecture is based on the first
version of the article before its publication at ICCV, the only
difference is the size of the expansion layer on the 14th bot-
tleneck block (672 instead of 960). For MobileNet-V2, we
use the architecture and weights pre-trained on ImageNet pro-
vided by the torchvision library [28]. We train the networks
until convergence using SGD with a learning rate of 0.05, mo-
mentum of 0.9, weight decay of 0.000012 and batch size of
32. The hyper-parameters were determined experimentally
with a preliminary random search with V3-SSD and applied
to all architectures.

4.4. Quantitative results

Experiments show that, with same data augmentation augl,
V2-SSD and V3-SSD both outperform Mask R-CNN (Ta-
ble 1). With a more complete set of augmentations (aug2),
performance improves from 36.33% to 46.1% for V3-SSD,
and from 36.3% to 47.7% for V2-SSD. Surprisingly, the
MobileNet-V2 backbone performs better than MobileNet-V3
with both augmentation settings, while the performance on
the validation set was lower, suggesting a better ability to
generalize to the real domain. A reason may be the lower
number of parameters (Table 2), which prevents the model
from learning less useful features (i.e., features representative

Uhttps://github.com/d-li14/mobilenetv3.pytorch
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Fig. 3. Detection results. From left to right: ground-truth, Mask R-CNN [22], V3-SSD (ours), V2-SSD (ours).

of the synthetic nature of the training images). However,
V3small-SSD obtains a lower performance in both augmen-
tation settings.

To extract features relevant to the real domain, previous works
fixed the weights of the backbone pre-trained on ImageNet,
obtaining either an improved [12, 2] or degraded [19] per-
formance. In our experiments, the network did not converge
when updating only the SSD weights during training. We
assume that the features learned on ImageNet do not transfer
to T-LESS because the color and texture are not discrimina-
tive. The realism of the synthetic training set is then a strong
requirement to reduce the reality gap without any real image.
Regarding the inference time, SSD is about 10 times faster
than Mask R-CNN (Table 2). It is worth noting that about
half the time taken by the SSD models corresponds to the
NMS, which was not optimized. The model size in memory
is a measurement of the memory allocated when loading the
model on the GPU. V2-SSD is both smaller and faster than
V3-SSD, and performs better, which justifies its use in em-
bedded applications. With our implementation, V3-SSD and
V3small-SSD seem to have the same inference time, even
though the latter contains half the number of parameters.

4.5. Qualitative results

Figure 3 shows the detected bounding boxes for Mask R-
CNN, V3-SSD and V2-SSD, as well as the ground truth

boxes. A recurring mistake of all methods is to identify the
markers around the scene as an object (usually with category
7, a rectangular block of 3 sockets). While Mask R-CNN
misses objects, both V3-SSD and V2-SSD duplicate detec-
tions with different labels. This error may come from the way
we applied NMS: In order to allow the detection of objects
when one occludes the other, we remove only the bounding
boxes of the same categories when they intersect more than
a given threshold. Applying the standard NMS (regardless
of the category) would remove the duplicates of different
categories, although possibly keeping the wrong ones.

5. CONCLUSION

We evaluated the suitability of single-stage object detectors
trained only on synthetic images for embedded detection ap-
plications. We show that such models outperform a larger
model as Mask R-CNN on texture-less industry-related ob-
jects, especially with the curated data augmentation method.
SSD with MobileNet-V2 as feature extractor achieves the
best performance, with faster inference and lower memory
requirements than the more recent MobileNet-V3. Further
work should study the relevance of the proposed augmenta-
tion techniques on Mask R-CNN, as well as transferring the
synthetic images to the real domain before training the object
detector.
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