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Abstract

Asymptotic homogenization method is often used in multiscale analysis of periodic
structures instead of conducting a full field heterogeneous analysis, in order to achieve
computational feasibility and efficiency. When completed with a relocalization pro-
cess, this method may provide relevant estimates to microscale fields within the
material. Nevertheless, the construction of a solution near the boundaries remains
beyond the capabilities of classical relocalization schemes due to the loss of periodic-
ity in the vicinity of the boundaries. This paper proposes a post-processing scheme
in order to conduct the relocalization step within a finite element framework for peri-
odic linear elastic composite materials. It also assesses the boundary layer effect and
a new general method, effective for various boundary conditions (Dirichlet, Neumann
or mixed), is proposed based on the idea of computing corrective terms as solution
of auxiliary problems on the unit-cell. These terms are finally added to the usual
fields obtained from the relocalization process to obtain the corrected solution near
the boundaries. The efficiency, accuracy and limitation of the proposed approach
are studied on various numerical examples.
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1. Introduction

Composite materials microstructure can be varied, ranging from randomly dis-
tributed phases to a perfectly periodic microstructure. Direct Numerical Simulations
(DNS, i.e. when the geometry of the microstructure is explicitly described in simu-
lations) of composite materials are often difficult to perform because of the resulting
complexity and size of the computational problems. Therefore, to fully realize the
benefits offered by these materials, it is essential to develop reliable computational
methods, bypassing DNS, to predict their behavior.
Homogenization of periodic structures has been successfully used to determine their
effective properties at macroscale from the knowledge of local mechanical properties
of one unit-cell, representative of the material microstructure. The obtained effective
properties can then be used for numerical simulations of the homogeneous problem
without conducting DNS. The unit-cell problem can be solved either analytically or
numerically.
The simplest analytical methods are based on the assumption that either strains or
stresses are uniform within the unit-cell, leading to the well known Voigt [1] and
Reuss [2] bounds. More accurate analytical methods were developed, among which
the composite sphere model and the self-consistent scheme [3, 4, 5]. Numerical ho-
mogenization using computational methods like the Finite Element Method (FEM)
has also been used for solving the unit-cell problem [6, 7, 8], among many others.
Most of these methods are known to be effective for materials with large scale sep-
aration between the scale of heterogeneity and the macroscale dimension. For low
scale separation, however, they generally become inaccurate. In such a case, the
wave length of variation of the macroscale fields is not sufficiently large compared to
the size of the heterogeneities. Thus, the predicted effective properties may fail to
describe the local or global response of the composite [9]. To tackle this, higher-order
gradients of macroscale strain may be taken into account in the homogenization of
the unit-cell. At least two approaches exist regarding this subject:

• The first approach uses Quadratic Boundary Conditions (QBCs) applied to the
unit-cell [10, 11, 12], deduced from the macroscale higher-order strain-stress
fields. This method has a major flaw as shown in [12]. Indeed, the effective
strain-gradient properties remain non zero when the material is homogeneous,
which seems to be physically unreasonable result. To tackle this, a correction
has been proposed in [13] by adding adequate body forces to QBCs.

• The second approach considers higher-order problems in the asymptotic ex-
pansion at the basis of homogenization method, introduced in [14, 15]. This
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method consists in using asymptotic expansions of mechanical fields of the mi-
croscale problem in order to split them into separate microscale and macroscale
problems. It is shown in [16] that the higher-order terms in asymptotic ho-
mogenization introduce successive gradients of macroscale strain and tensors,
characteristic of the microstructure, which result in introducing a non-local
effect in the material behavior.

These methods allow the prediction of both the local, by a relocalization process, and
the overall averaged properties of the structure. A recent comparison between the
asymptotic homogenization and QBCs-based method [17] shows that a modification
of the QBCs-based method, by adding body forces, is necessary to be consistent with
the asymptotic homogenization.
Asymptotic homogenization has been applied in a wide range of engineering prob-
lems, e.g. to optimize structures [18, 19, 20], compute the effective elastic behavior
of woven fabric composites [21] and evaluate localized stiffness degradation [22].
Different numerical methods have been applied in conjunction with the asymptotic
homogenization theory. The Fast Fourier Transform [23, 24] (FFT) method was used
to apply the homogenization theory on microstructures defined on regular grids [25].
FEM has also been successfully applied for the analysis of linear and non-linear mi-
crostructures with arbitrary discretization, albeit at a higher computing cost. Differ-
ent implementation strategies [26, 27, 28, 29] were proposed for the homogenization
of composites using the FEM. However, the validity of the relocalization process is
usually not verified, except asymptotically in an idealized setting. The analysis of
local gradients and boundary effects requires additional efforts.
The response of a composite structure near its geometric boundaries has been studied
both experimentally and analytically [30, 31, 32, 33]. It has been shown that complex
stress states with a rapid change of gradients occur within a very local region near
the boundaries, frequently referred to as a boundary layer effect. Ultimately, the
high stresses developed in these regions may be responsible for the failure initiation
of the structure [30].
While asymptotic homogenization allows to estimate local fields within the structure
by a relocalization method, the construction of a solution near the vicinity of the
boundaries remains beyond capabilities of the classical homogenization [34] for two
reasons:

• First, in asymptotic homogenization, the solution is considered to be periodic.
However the loads are no longer periodic in the vicinity of boundaries, and
consequently, the solution is not periodic either.

• Second, the boundary condition on the composite domain cannot be satisfied
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by a periodic unit-cell solution.

One approach to tackle the non-periodicity in the boundary layers is to introduce
evanescent corrective terms that would exponentially decay toward the interior of the
body [35, 36]. These corrective terms are obtained by solving auxiliary problems on
the unit-cell. An application of this approach is found in [37], in which heterogeneous
stress fields are estimated by considering a Neumann boundary condition correction
as in [35]. More recently, a numerical study was conducted to investigate the decay
of the boundary layer in a three dimensional periodic homogenization for different
fiber orientations using a domain with fixed edges (Dirichlet boundary) [38]. It is
worth to remark that these papers have not proposed a boundary layer correction
strategy for various types of boundary conditions.
Regarding the aforementioned aspects, the present work proposes a general boundary
layer correction methodology for asymptotic homogenization in order to approximate
real microscale fields near the boundaries. The main idea is to compute corrective
terms obtained from the resolution of different problems over the unit-cell. The
nature of the problems to be solved depends on the actual boundary conditions
applied locally to the structure. Then, the corrective terms are added to the esti-
mated local fields. The obtained results demonstrate the significance of boundary
layer corrections even in the general case. Indeed, the proposed method is valid for
different Boundary Conditions (BCs): Dirichlet, Neumann or mixed. The authors
are unaware of a similar general boundary layer correction strategy for asymptotic
homogenization in the literature.
The outline of the paper is as follows. In Sec. 2, we first recall briefly the asymp-
totic expansion homogenization method and describe the proposed relocalization
process. In Sec. 3, we detail the proposed general boundary layer correction proce-
dure. Numerical examples are presented and discussed in Sec. 4, with the objective
of demonstrating the efficiency and limitations of the suggested approach.

2. Estimation of microscale fields based on asymptotic homogenization

This section briefly recalls the asymptotic homogenization approach in linear elas-
ticity. The reader is referred to seminal works in [14, 15] and other recent references
such as [16, 26, 39] for further details. We also describe the proposed estimation of
microscale fields based on the relocalization process, derived from asymptotic homog-
enization. This relocalization stage is associated with a given macroscale equilibrium
state detailed in this section.
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2.1. Statement of the boundary value problem and homogenization procedure
An inhomogeneous body is considered as a linearly elastic solid in static equi-

librium, whose heterogeneity arises from the distribution of separate phases at the
microscale. We define the bounded domain Ωϵ occupied by this heterogeneous body
and corresponding to the microscale (see Fig. 1) and subjected to a body force f per
unit volume. The boundary ∂Ωϵ consists of a portion Γu, on which the displacements
are prescribed to the value ud, and a portion Γt on which surface tractions F d per
unit area are prescribed such that ∂Ωϵ = Γu ∪ Γt, and Γu ∩ Γt = ∅.
Due to its heterogeneity, the mechanical behavior of the body is assumed to depend
on two scales:

• Macroscale, free of heterogeneities, having L as a characteristic length and
global coordinates x ∈ Ω with the assumption that ∂Ωϵ = ∂Ω (see Fig. 1).

• Microscale, having l as a characteristic length and with local coordinates y ∈ Y ,
where Y is the unit-cell domain, typically chosen to be an open rectangular
parallelepiped Y =]0, Y1[×]0, Y2[×]0, Y3[ (see Fig. 1).

The coarse and fine scales are related by the parameter ϵ such that:

ϵ = l

L
y = x

ϵ
(1)

The domain Ωϵ can be considered as the product space Ω × Y :

Ωϵ =
{

x ∈ Ω
∣∣∣∣ (

y = x

ϵ

)
∈ Y

}
(2)

We further consider that, at each material point of Ωϵ, there exists a periodically
repeating microstructure. Owing to this periodicity, one can define the elasticity
tensor C as Y −periodic:

C = C (y) (3)
Expressed in global coordinates, the heterogeneous stiffness tensor would read Cϵ (x) =
C (x/ϵ) = C (y), the superscript indicating fine-scale dependence. Similarly, the
microscale displacement, strain and stress fields in global coordinates read uϵ, εϵ,
and σϵ, respectively.
In the ensuing sections, we will define the following boundary value problems:

• The heterogeneous problem (Pref ) corresponding to microscale and generated
by translating the unit-cell Y characterized by an oscillatory behavior Cϵ (x)
over the three-space directions.
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Heterogeneous problem
(Pref )

Homogeneous problem
(Phom)

×1
ϵCϵ (x)

C0

f

f
F d

F dΩ

Ωϵ
Heterogeneous

Unit-cell
Y

Homogeneous
Unit-cell

Y

Γu

Γu

Homogenization Relocalization

Figure 1: Illustration of the heterogeneous problem (Pref ) with domain Ωϵ, constructed by trans-
lating the unit-cell Y characterized by an oscillatory behavior Cϵ (x) over the three-space directions.
The homogenized problem (Phom) with homogeneous domain Ω is characterized by the homoge-
nized elasticity tensor C0 obtained from the homogenization step. Microscale fields are estimated
from a relocalization process.

• The first-order periodic problem
(
P1st

order

)
used to deduce the homogenized elas-

ticity tensor C0 and localization tensors.

• The homogenized problem (Phom) corresponding to the macroscale character-
ized by the homogenized elasticity tensor C0.

The proposed first-order estimate of microscale fields will also be defined.

Definition of the heterogeneous problem (Pref )
The boundary value problem of the heterogeneous linear elastic body Ωϵ reads:
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Find (uϵ, σϵ) such that:


div (σϵ (x)) + f (x) = 0 ∀x ∈ Ωϵ

σϵ (x) = Cϵ (x) : εϵ (x) ∀x ∈ Ωϵ

uϵ (x) = ud ∀x ∈ Γu

σϵ (x) · n = F d ∀x ∈ Γt

(4a)
(4b)
(4c)
(4d)

where Eq. (4a) is the balance equation, Eq. (4b) is the constitutive equation and
Eq. (4c), Eq. (4d) are the applied boundary conditions, with n the outward unit
normal vector to Γt. The traction and displacement fields are assumed to be contin-
uous across the interfaces. The strain field εϵ is given by:

εϵ = sym (∇uϵ) = 1
2

(
∇uϵ + (∇uϵ)⊤

)
(5)

where sym(•) indicates the symmetric part of second-order tensors.
Thus, by considering Einstein’s convention for tensor notation, the resolution of (Pref )
consists in determining the displacement field corresponding to the solution uϵ of the
following variational problem:∫

Ωϵ
Cijkl

∂uϵ
k

∂xϵ
l

∂vi

∂xϵ
j

dΩϵ =
∫

Ωϵ
fi vi dΩϵ +

∫
Γt

F d
i vi dΓ ∀vi ∈ V0

Ωϵ (6)

where V0
Ωϵ are the sets of sufficiently regular functions, zero-valued in Γu.

Mechanical fields, solution of (Pref ), are approximated with an asymptotic expansion
in powers of the small parameter ϵ as:

uϵ (x) = u0 (x, y)+ϵu1 (x, y)+O
(
ϵ2

)
εϵ (x) = ε0 (x, y) +ϵε1 (x, y) +O

(
ϵ2

)
σϵ (x) = σ0 (x, y)+ϵσ1 (x, y)+O

(
ϵ2

)
(7)

(8)

(9)

The quantities un, εn and σn are Y −periodic functions called correctors of order n
of the displacement, strain and stress fields, respectively.
The existence of two scales means that a function f ϵ (x) is associated with the
function f (x, y), where the chain rule is applied:

f ϵ (x) = f (x, y) ; d
dx

f ϵ = ∂

∂x
f + 1

ϵ

∂

∂y
f (10)
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The expansion of strains is obtained by substituting the expansion of displace-
ments (7) into the strain definition (5), and making use of the chain rule (10). The ex-
pansion of stresses is obtained by substituting the resulting strains into the constitu-
tive equation (4b). The stress expansion is substituted into the balance equation (4a)
and, by collecting the terms of like powers of ϵ, we obtain a sequence of equilibrium
equations of different orders with respect to powers of ϵ, defined on the unit-cell [16].
We choose to ignore higher-order homogenization problems and restrict our study
to the resolution of the first-order problem. It is shown [16] that u0 (x, y) = u0 (x),
meaning that the displacement u0 is independent of the microscale coordinates y
and can be identified with the macroscale displacement field.

First-order periodic problem
(
P1st

order

)
This problem is defined on the unit-cell Y . Its solution is the first-order displace-

ment corrector u1 and stress σ0. It reads:

Find (u1, σ0) such that:

divy

(
σ0 (x, y)

)
= 0 ∀y ∈ Y

σ0 (x, y) = C (y) :
(
E0 (x) + εy(u1)

)
∀y ∈ Y

u1 (x, y) is Y − periodic
σ0 (x, y) · n is Y − antiperiodic

(11a)

(11b)
(11c)
(11d)

where E0 (x) = εx(u0 (x)) is a prescribed macroscale strain, divy(•) is the divergence
operator with respect to local variable y, and εx, εy are the strain tensors calculated
according to the global variable x and local variable y, respectively:

ε• = sym (∇•u
ϵ) = 1

2
(
∇•u

ϵ + (∇•u
ϵ)⊤

)
(12)

The periodic fluctuation solution of the first-order problem takes the following form [16]:

u1 (x, y) = D (y) : E0 (x) (13)

where D (y) is a third-order tensor, called the displacement relocalization tensor. It
is periodic over unit-cell Y and verifies ⟨D⟩Y = 0, where ⟨•⟩Y = 1

|Y |
∫

Y • dY indicates
the volume average over unit-cell Y . Note that D is symmetric with respect to its
two last indices.

8



The displacement relocalization tensor components are the solutions Dijk ∈ V#
Y of

the variational problem:∫
Y

Cijkl
∂Dkmn

∂yl

∂vi

∂yj

dY =
∫

Y
Cijmn

∂vi

∂yj

dY, ∀vi ∈ V#
Y (14)

where V#
Y is the set of Y -periodic sufficiently regular functions with zero average

value in Y .
The total first-order microscale strain field reads:

ε0 (x, y) = εy(u1 (x, y)) + E0 (x) = A (y) : E0 (x) (15)
where A (y) is a fourth-order tensor, called the strain relocalization tensor:

A (y) = I + εy(D (y)) (16)
where I is the fourth-order identity tensor operating on symmetric second order
tensors.
We therefore can define the first-order microscale stress field as:

σ0 (x, y) = C (y) : ε0 (x, y) = B (y) : E0 (x) (17)
where

B (y) = C (y) : A (y) (18)
is the stress relocalization tensor. Note that A and B possess the minor symmetries.
The homogenized elasticity tensor C0 is deduced from the volume average of the
stress relocalization tensor over the unit-cell:

C0 = ⟨B (y)⟩Y (19)
It can be proved that C0 possesses the minor and major symmetries as required for
an elasticity tensor.

Definition of the homogeneous problem (Phom)
The boundary value problem on the macroscale for the homogeneous linear elastic

body Ω reads:

Find (U , Σ) such that:


divx (Σ (x)) + f (x) = 0 ∀x ∈ Ω
Σ (x) = C0 : E (x) ∀x ∈ Ω
U (x) = ud ∀x ∈ Γu

Σ (x) · n = F d ∀x ∈ Γt

(20a)
(20b)
(20c)
(20d)
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where divx(•) is the divergence operator with respect to global variable x, the
macroscale displacement is U = u0 and the macroscale strain E and stress Σ are
equal to the volume average over the unit-cell of their microscopic counterparts ε0

and σ0, respectively.
E =

〈
ε0

〉
Y

, Σ =
〈
σ0

〉
Y

(21)

The resolution of (Phom) consists in finding the displacement field corresponding to
the solution u0 of the following variational problem:

∫
Ω

C0
ijkl

∂u0
k

∂xl

∂vi

∂xj

dΩ =
∫

Ω
fi vi dΩ +

∫
Γt

F d
i vi dΓ ∀vi ∈ V0

Ω (22)

where V0
Ω is the set of sufficiently regular functions, zero-valued in Γu.

It is apparent from Eq. (20c) and (20d) that macroscale fields (U , Σ) verify given
boundary conditions. However, as we will demonstrate later in this article, the
microscale fields estimated after relocalization process, do not necessary verify these
boundary conditions. For instance, the estimated local stresses σ0 do not verify in
general the Neumann boundary conditions:

σ0 · n ̸= F d (23)

2.2. Proposed first-order estimate
The design and reliability analysis of composite structures taking into account

the state of microscale fields can be more accurate than an entirely macroscale anal-
ysis. To tackle this, it is possible to bind the macroscale with the microscale based
on a relocalization process derived from asymptotic homogenization.
As mentioned before, periodic homogenization is based on the assumption of scale
separation between that of heterogeneities (with local coordinates y) and the charac-
teristic macroscale dimension (with global coordinates x). This assumption induces
a local invariance by translation and the periodicity of microscale fields. The scale
separation assumption leads to:

ϵ ≪ 1 (24)
with ϵ defined in Eq. (1). In what follows, we propose to investigate situations
where the scale separation assumption is not verified, meaning that the size of the
heterogeneities can be comparable to the characteristic macroscale length scale, e.g.
near the boundaries. Thus, the macroscale gradients could be such that it is no longer
possible to assume a uniform mechanical field acting on the unit-cell. Therefore, we
will consider:

ϵ = 1 =⇒ x = y (25)
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This directly implies that the separation of scales assumption is not verified. There-
fore, the mechanical fields of the reference problem depend only on x, representing
both microscale and macroscale coordinates.
For the purpose of this study, the reference problem is tractable by Direct Numerical
Simulation (DNS) and its mechanical fields are used as reference results. However,
in the more general case where a DNS would be out of reach, common practice
would call for a best estimate. This estimate is built here using the solution of the
homogeneous problem (Phom) and relocalization tensors (D,A,B) obtained after the
resolution of

(
P1st

order

)
. The proposed estimate fields read:


uest (x) = U (x) + D (x) : E (x) ∀x ∈ Ω
εest (x) = A (x) : E (x) ∀x ∈ Ω
σest (x) = B (x) : E (x) ∀x ∈ Ω

(26a)
(26b)
(26c)

The displacement U (x) and the strain E (x) are obtained from the resolution of the
homogeneous problem (Phom).

2.3. Proposed relocalization procedure
Once

(
P1st

order

)
is solved, the resulting homogenized elasticity tensor C0 is used

to compute the homogeneous structure problem conducted at the macroscale, whose
solution fields are (U , E, Σ). In order to carry out the relocalization process, an in-
termediate step is performed to locate each unit-cell on the macroscale structure. To
eliminate mesh-sensitivity and facilitate the computation of error estimates, we con-
sidered that the macroscale mesh was constructed by translating the unit-cell mesh
over the three space directions, i.e. macroscale and microscale meshes are identi-
cal. If not, a mapping of the homogeneous fields on the microscale mesh could be
considered as shown in [40]. We considered the relocalization process improvement
proposed in Ref. [41], which is a simple way of taking into account macroscale gradi-
ents in relocalization formulation. For instance, the microscopic estimated strain (or
stress), in a given point of the unit-cell, is determined using relocalization tensors
combined with the value of the current macroscale strain at this point, and not its
average over the unit-cell.

3. Boundary layer correction

Asymptotic homogenization may provide an estimate of the microscale fields
within the material if the macroscale computation is complemented by a relocaliza-
tion process. Nevertheless, the construction of a solution near the boundaries remains
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Estimated fields
(uest, εest, σest)

Homogenized
fields

(U , E, Σ)

Unit-cell
(D,A,B)

Γu

Γu

f

f

F d

F d

(Phom)

Y

Locate each cell
on the macrostructure

σest (x) = B (x) : E (x)
εest (x) = A (x) : E (x)

uest (x) = U (x) + D (x) : E (x)

Figure 2: Illustration of the proposed relocalization procedure scheme without scale separation.
Mechanical fields depend only on x, representing both microscale and macroscale coordinates.

beyond the capabilities of classic homogenization/relocalization. This is mainly due
to the loss of periodicity in the vicinity of boundaries.
We propose a new approach to account for non-periodicity in the boundary layers
based on the idea of introducing corrective terms that would decay as one moves
toward the interior of the body, which can be seen as an extension of [35, 38].
The main objective of this section is to describe the proposed general boundary
layer correction procedure, effective for various types of boundary conditions (Dirich-
let, Neumann, or mixed), see Fig. 3.
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n

n

n

∂Ω
Cell at Neumann

boundary

Cell at Dirichlet
boundary

Cell at mixed
boundary

Figure 3: Illustration of the boundary layers for Dirichlet, Neumann, and mixed boundary condi-
tions. With n is the normal direction of the boundary.

3.1. Correctors for Neumann BCs
The homogenized problem (Phom) could be written as:

div
〈
σest (x)

〉
Y

+ f (x) = 0 ∀x ∈ Ω〈
σest (x)

〉
Y

= C0 : E (x) ∀x ∈ Ω〈
uest (x)

〉
Y

= ud ∀x ∈ Γu〈
σest (x)

〉
Y

· n = F d ∀x ∈ Γt

(27a)

(27b)

(27c)

(27d)

with the macroscale stress: ⟨σest⟩Y = Σ and strain: ⟨εest⟩Y = E.
It is apparent from problem (27d) that the boundary condition on Γt is only satisfied
by the mean value of σest, therefore:

σest · n ̸= F d (28)

For this reason, added to the fact that the local stress field is generally not periodic
in the vicinity of the Neumann boundaries, σest is inaccurate near the boundaries.
To overcome this, it was proposed in Ref. [35] to correct the expansion of the dis-
placement and the associated expansion of the stresses in the neighborhood of the
boundary of a 2D problem. Boundary layers term σbl are introduced whose sum
with local stresses satisfies exactly boundary conditions at each microscopic point.
We propose to compute σbl by considering six auxiliary problems on the unit-cell
subjected to six characteristic loads Fkl with kl = {11, 22, 33, 23, 31, 12} on the
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surface where the Neumann boundary condition is applied. The opposite surface is
fixed, and other surfaces of the unit-cell are subjected to periodicity conditions. The
characteristic load is defined as follows:

Fikl = −Bijkl · nj + 1
|Y |

∫
Y

Bijkl · nj dY with fixed index j (29)

where nj is the normal direction of Γt and the fixed index j ∈ {1, 2, 3} is the
index of this normal direction. Binkl are the components of the stress relocalization
tensor B.
The resulting displacements, strains, and stresses solving each auxiliary problem
are the components of the boundary-layer relocalization tensors Dbl, Abl, and Bbl,
respectively. Thus, the boundary layer corrective terms are computed as follows:


σbl= Bbl : E

εbl = Abl : E

ubl= Dbl : E

(30)
(31)
(32)

As a result, the stress field σcor

σcor = σest + σbl (33)

satisfy the Neumann BC.

3.2. Correctors for Dirichlet BCs
We recall that the proposed estimated displacement field is given by equation (26a):

uest (x) = U (x) + u1 (x) (34)

with u1 = D : E is the first-order corrector of the displacement field obtained
from the resolution of

(
P1st

order

)
. The displacement uest estimates correctly the real

displacement in the interior of the material where the structure is periodic. Neverthe-
less, we need to ensure that uest verifies the Dirichlet boundary condition uest = ud

on Γu. But since U = ud on Γu is enforced then uest do not necessarily verify the
Dirichlet boundary conditions.
Therefore, a correction is needed that is the negative of u1 at the boundary and
decays inward, and such that the corrected field would read:

ucor (x) = U (x) +
(
u1 (x) + ubl (x)

)
(35)
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The correction ubl must verify:

ubl (x) = −u1 (x) ∀x ∈ Γu (36)

As in the Neumann case, an auxiliary problem is considered on which the boundary
layer fields will be computed. In this case, corrective displacements ϱkl with kl = {11, 22, 33, 23, 31, 12}
are applied to the unit-cell and defined as:

ϱikl = −Dikl (37)

where Dijk are the components of the displacement relocalization tensor D. The
corrective boundary layer fields are obtained by conducting the same analyses defined
in Eq. (30),(31), and (32).

3.3. Mixed BCs
The correction for boundary layers with mixed BCs is conducted by considering

six auxiliary problems on the unit-cell subjected to both six characteristic loads Fikl

defined in Eq. (29) and displacements ϱikl defined in Eq. (37), with kl = {11, 22, 33, 23, 31, 12}.
The correction to be ultimately applied for each i index depends on the actual (Neu-
mann or Dirichlet) BC applied in this specific direction. For the purpose of illustra-
tion, we shall consider the following simple of a composite in tension (see Fig. 4):

3.4. Proposed general boundary correction scheme
The proposed boundary correction strategy is summarized in Fig. 6. For the

sake of simplicity and clarity, an invariance along the thickness direction is consid-
ered. The structure in Fig. 6 is fixed on Γu, a surface traction is applied on Γt and
other boundaries of Γt are kept free of forces. The estimated fields are correct in
the bulk region where the structure is periodic and the boundary layers to be cor-
rected are divided into five regions. For what follows, kl = {11, 22, 33, 23, 31, 12}
and i ∈ {1, 2, 3}. The five regions are:

1. Boundary layers subjected to Dirichlet BCs:
The unit-cell is subjected to six displacement vectors ϱikl (37) on the face where
Dirichlet BCs are applied, the opposite face is kept free of forces. Remaining
faces of the unit-cell are subjected to periodicity conditions (see Fig. 5a).

2. Corner cells subjected to both Neumann and Dirichlet BCs:
The unit-cell, which is a corner cell in this case as shown Fig. 6, is subjected to
six displacement vectors ϱikl (37) on the face where Dirichlet BCs are applied
and six loads Fikl (29) on the face where Neumann BCs are applied. Remaining
faces of the unit-cell are kept free of forces (see Fig. 5b).
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Neumann BCs
correction

Mixed BCs
correction kl = {11, 22, 33, 23, 31, 12}

Figure 4: Illustration of the Neumann and mixed BCs corrections to be applied to the unit-cell.

3. Free forces boundary layers:
The unit-cell is subjected to six loads Fikl (29) where the unit-cell is free of
forces. The opposite face where the loads are applied is fixed. Remaining faces
of the unit-cell are subjected to periodicity conditions (see Fig. 5c).

4. Boundary layers subjected to Neumann BCs:
The unit-cell is subjected to six loads Fikl (29) on the face where Neumann BCs
are applied. The opposite face where the loads are applied is fixed. Remaining
faces of the unit-cell are subjected to periodicity conditions (see Fig. 5d).

5. Corner cells subjected to Neumann BCs:
The unit-cell is subjected to six loads Fikl (29) where Neumann BCs are applied
and where the unit-cell is free of forces. Remaining faces of the unit-cell are
fixed (see Fig. 5e).

The boundary layer correction and relocalization tensors Dbl, Abl, and Bbl are con-
structed from the resolution of auxiliary problems. Thereafter corrective boundary
layer fields are computed and added to estimated fields as summarized in Fig. 6.
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Figure 5: Illustration of auxiliary problems for boundary layers correction.
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Dbl,Abl,Bbl

↓
σbl (x) = Bbl (x) : E (x)
εbl (x) = Abl (x) : E (x)
ubl (x) = Dbl (x) : E (x)

↓
σcor (x) = σbl (x) + σest (x)
εcor (x) = εbl (x) + εest (x)
ucor (x) = ubl (x) + uest (x)

Figure 6: Illustration of the boundary layer correction process. An invariance along the vertical (thickness) direction is
considered for simplicity. 18



4. Numerical examples

In this section, numerical examples are presented and discussed in order to demon-
strate the efficiency and limitations of the suggested approach. For illustrative pur-
poses, a simple study conducted on a uni-directional laminate in tension is presented
in appendix B.

4.1. Matrix-inclusion composite
We consider the plane strain linear elasticity problem of a matrix-inclusion com-

posite in tension as depicted in Fig. 7. The size of the structure is L = 8 mm, H =
5 mm and W = 1 mm, and the diameter of the fibers is D = 0.2 mm. The matrix
and the spherical inclusions are assumed to be isotropic linear elastic with coefficients
(Em = 1000 MPa, νm = 0.3) and (Ef , νf = 0.3) where Ef is varied in the examples,
respectively. We propose to estimate the microscale fields by using the relocalization

u

(E , ν )
f f (E , ν )

m m

(a) Structure geometry (b) unit-cell domain

Figure 7: Illustration of matrix-inclusion composite. The structure is fixed on Γu and a non-zero
surface traction is applied on Γt, other boundaries are kept free. The results will be plotted along
AB and CD lines.

procedure described in subsection. 2.3, and correct these estimates on the boundaries
based on the proposed boundary correction scheme described in Sec. 3.
In this study we will compare the ensuing stress fields:

• The microscale stress field obtained by solving the problem (Pref ) using DNS,
which will be considered as our reference, indexed ref.

• The homogeneous stress field obtained from solving the problem (Phom), in-
dexed hom.
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• The proposed estimate of the microscale stress field obtained by the relocaliza-
tion process, indexed est.

• The correction of the microscale stress field corrected with the proposed bound-
ary layer correction scheme, indexed cor.

We will also quantify the difference between the reference and estimated fields by
computing the modeling error. For this purpose, we define the following local (ele-
ment wise) error in energy norm:

∥e∥E(Ωe) = ∥uref (x) − uk (x)∥E(Ωe)

=
(∫

Ωe

∇s
(
uref (x) − uk (x)

)
: C : ∇s

(
uref (x) − uk (x)

)
dΩe

) 1
2 (38)

where Ωe denotes the domain of an element and uk (x) denotes the estimated dis-
placement field whose error is measured (k = est or k = cor). The global error
∥e∥E(Ω) is then defined as:

∥e∥2
E(Ω) =

∑
e

∥e∥2
E(Ωe) (39)

4.1.1. Comparison of stress fields
We consider a contrast Ef

Em
= 10, where Ef and Em are Young’s moduli of the

fiber and matrix phases, respectively. Comparison of resulting stress fields along AB
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Figure 8: Results of the homogenized (hom), reference (ref), estimated (est) and corrected (cor)
stress fields plotted along the AB line with Ef

Em
= 10 for the matrix-inclusion composite in tension.
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and CD lines are presented in Fig. 8 and Fig. 9, respectively. The corresponding
AB and CD lines are defined on Fig. 7. Both σest

11 and σest
22 perfectly coincide with

reference ones in the inner domain of the composite, where they are periodic. Never-
theless accuracy is lost near the boundaries. After the boundary layer correction, the
corrected fields provide a good approximation of the reference near the boundaries.
In particular, σcor

11 verifies the applied Neumann condition (300 MPa) at x1 = 8 mm
as for the reference and the homogeneous counterparts, but it is not the case for σest

11 .
More precise quantification of the error is provided in the next subsection.
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Figure 9: Results of the homogenized (hom), reference (ref), estimated (est) and corrected (cor)
stress fields plotted along the CD line with Ef

Em
= 10 for the matrix-inclusion composite in tension.

4.1.2. Modeling error
The local relative modeling error without the boundary layer correction, presented

in Fig. 10a, is concentrated near the boundaries and maximal in the vicinity of the
applied Neumann boundary. This is mainly explained by the loss of periodicity in
the vicinity of the boundaries. After the correction, the error is significantly reduced
near the boundaries. We notice that the remaining error is mainly concentrated
at the corners, especially near the Neumann boundary. We recall that a particular
treatment was considered for the corners correction, as explained in Fig. 6. This
correction improves the overall result but seems to be still imperfect since errors
remain at the interfaces. Table 1 summarizes the global relative modeling error for
different contrast ratios. The boundary layer correction allows to drastically reduce
the modeling error by a factor of 4 to 5 for the four ratios. This demonstrates that
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(a) ∥uref −uest∥2
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E(Ωe)

∥uref ∥2
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Figure 10: Comparison of the local relative modeling error results with Ef

Em
= 10 for the matrix-

inclusion composite in tension.

the correction process is effective even for a higher contrast between fiber and matrix
phases.

Table 1: Comparison of the global relative modeling error for different contrast ratios for the matrix-
inclusion composite in tension.

Global modeling Contrast Contrast Contrast Contrast
error 10 25 50 100

∥uref −uest∥E(Ω)
∥uref ∥E(Ω)

0.038 0.044 0.046 0.048

∥uref −ucor∥E(Ω)
∥uref ∥E(Ω)

0.009 0.010 0.011 0.012

4.2. Laminated composite in tension
We consider a plane strain elasticity problem of a laminated composite made of

two layers as presented in Fig. 11. The size of the structure is L = 8 mm, H = 5 mm
and W = 1 mm. The two layers are assumed to be isotropic linear elastic with
coefficients (Em = 1000 MPa, νm = 0.3) and (Ef , νf = 0.3) where Ef is varied in
the examples. We conduct the same study as in the previous example. In order
to correct the Γu boundary layer, it is necessary to apply both the Neumann and
Dirichlet boundary corrections.
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(E , ν )
f f (E , ν )

m m

(a) Structure geometry (b) unit-cell domain

Figure 11: Illustration of the laminated composite in tension. The structure is sliding on Γu and a
surface tension is applied on Γt. Other boundaries are kept free. Results will be plotted along AB
and CD lines.

4.2.1. Comparison of stress fields
Figs. 12 and 13 show that σcor is in agreement with σref in the inner domain of

the composite and on the boundaries. We also notice that high stresses are developed
in the vicinity of the sliding boundary Γu, especially for higher contrast ratios. For
a ratio of 50, the estimated stress is 3 times smaller than the real stress for σ11
and 7 times smaller for σ12, which may result in underestimating failure criteria if
the design is conducted without any boundary layer correction.

4.2.2. Modeling error
The local relative modeling error between the reference and estimated fields

(Fig. 14a) is negligible in the inner domain of the composite but significant on the
boundaries, especially in the vicinity of the sliding boundary Γu. After the correction
(Fig. 14b), the modeling error is significantly reduced, and remains concentrated at
the corners of Γu.
Table 2 summarizes the relative modeling error for different contrast ratios. Simi-

larly, by correcting the boundary layers, the remaining error is divided by 3 for the
four ratios.

4.3. Laminated composite in bending
The same composite as in the previous example is now subjected to bending as

shown in Fig. 15. This specific load will create high macroscale strain gradients. In
this case, the first-order approximation is expected to lose its accuracy even in the
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Figure 12: Results of the homogenized (hom), reference (ref), estimated (est) and corrected (cor)
stress fields plotted along the AB line with Ef

Em
= 10 for the laminated composite in tension.
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Figure 13: Results of the homogenized (hom), reference (ref), estimated (est) and corrected (cor)
stress fields plotted along the AB line with Ef

Em
= 50 for the laminated composite in tension.

inner domain of the structure. In order to illustrate this, the same study is conducted
by comparing stress fields and computing the modeling error.

4.3.1. Comparison of stress fields
We only consider a contrast of 10 in this example, as it will be sufficient to

illustrate our point. Comparisons of the stress fields along the AB line are presented
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Figure 14: Comparison of the local relative modeling error results for Ef

Em
= 10 for the laminated

composite in tension.

Table 2: Comparison of the global relative modeling error for different contrast ratios for the
laminated composite in tension.

Global modeling Contrast Contrast Contrast Contrast
error 10 25 50 100

∥uref −uest∥E(Ω)
∥uref ∥E(Ω)

0.10 0.14 0.17 0.20

∥uref −ucor∥E(Ω)
∥uref ∥E(Ω)

0.027 0.036 0.047 0.066

in Fig. 16 and along the CD line in Fig. 17.
The results show that the estimated fields, contrary to the previous examples,

are inaccurate even in the inner domain of the structure. This is mainly explained
by high macroscale strain gradients induced by the bending. To overcome this short-
coming, higher-order terms must be introduced in the asymptotic expansion which
features higher-order gradients of macroscale strain and characteristic tensors of the
microstructure [16]. Despite this clear limitation, the corrected estimated stresses
are still a better approximation of the real stresses near the boundaries.

4.3.2. Modeling error
The local relative modeling error before the correction is maximal in the vicinity

of the sliding boundary Γu but also spread across the structure as shown in Fig. 18a.
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Figure 15: Structure composed of a laminated composite subjected to bending. Results will be
plotted along AB and CD lines.
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Figure 16: Results of the homogenized (hom), reference (ref), estimated (est) and corrected (cor)
stress fields plotted along the AB line with Ef

Em
= 10 for the laminated composite in bending.

After the boundary layer correction, the error is considerably reduced on the bound-
aries but still present inside the structure as shown in Fig. 18b.

5. Conclusions

In this study, we propose a general boundary layer correction based on asymp-
totic homogenization in order to estimate consistent microscale fields in the vicinity
of the boundaries. The main idea of the method is to compute corrective terms from
solving different auxiliary problems on the unit-cell. The nature of the problem to
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Figure 17: Results of the homogenized (hom), reference (ref), estimated (est) and corrected (cor)
stress fields plotted along the CD line with Ef

Em
= 10 for the laminated composite in bending.
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Figure 18: Comparison of the local relative modeling error results for Ef

Em
= 10 for the laminated

composite in bending.

solve depends on the local boundary conditions. These corrective terms are added
to the usual fields obtained from the relocalization process, drastically improving the
solution near the boundaries.
It was shown, by means of three numerical examples, that the corrected fields suc-
cessfully predict stress or strain concentrations near the boundaries, which can be
responsible for the failure of the individual phases. The proposed method was de-
veloped for different boundary conditions (Dirichlet, Neumann, and mixed). The
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associated computational cost is relatively inexpensive since the corrective terms are
computed over the unit-cell. All localization tensors can be computed off-line and
used for any composite structure involving the same unit-cell.
The major conclusions that can be drawn from this study are:

• The first-order estimated fields, obtained from the relocalization process, are
a good approximation of the heterogeneous (reference) fields in the inner do-
main of the structure. This result is not true for cases when high gradients of
macroscale strains exist.

• The boundary layer correction allows to reduce the global modeling error by a
factor of 3 to 4 for different ratios Ef

Em
.

• The corrected stress field captures high stresses developed near the boundary
region. Particularly, for laminated composite in traction (ratio of Ef

Em
= 50)

shown in Sec. 4.2, the estimated stress is 3 times smaller than the real stress
for σ11 and 7 times smaller for σ12. This may result in underestimating failure
criteria if the design is conducted without any boundary layer correction.

The method can now be applied with confidence to more realistic engineering com-
posite structures, especially in the 3D case for which DNS are not reasonably possible.
This also implies the use of coarse macroscale finite element meshes and proper pro-
jection/interpolation to the unit-cell mesh.
The limitation of the proposed approach have also been evidenced in some cases on
which it has been shown that boundary conditions are not the only source of modeling
error. Second-gradient effects, which first-order asymptotic homogenization neglects,
may play a prominent role. Combining higher-order and boundary correctors could
be a path toward efficient error estimation or adaptive model refinement.
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Appendix A: Finite element resolution

This appendix describes the numerical procedure using the Finite Element Method
(FEM) in order to solve

(
P1st

order

)
and thus compute the relocalization tensors (D,A,B)

and the homogenized elasticity tensor C0. We also describe the proposed numerical
relocalization scheme used to estimate the full microscopic fields.

Computation of relocalization and homogenized elasticity matrices
The displacement corrector u1, solution of the first-order periodic problem, con-

stitute the components of the corrector displacement matrix [D]. The finite element
approximation to Eq. (14) is:∫

Y e
[B]⊤Ndof ×6 [C]6×6 [B]6×Ndof

[D]Ndof ×6 dY e =
∫

Y e
[B]⊤Ndof ×6 [C]6×6 dY e

=
[
F D

]
Ndof ×6

(A.1)

where the script e denotes element quantities from the discretized unit-cell do-
main Y . [C] is the heterogeneous elastic stiffness matrix, [B] is the strain shape
function matrix, and [D] is the displacement relocalization matrix whose compo-
nents are solutions of Eq. (A.1). The load

[
F D

]
is a matrix composed of six columns

in the 3D cases. Each column is a force vector corresponding to an initial strain load-
ing. To illustrate this, we recall that the nodal forces

{
f ε0

}
induced by an initial

strain ε0 are defined as: {
f ε0}

=
∫

Y
[B]⊤ [C] ε0dY (A.2)

Thus, in our case, the loading are six unit initial strain tensors Ekl applied to the
unit-cell with kl = {11, 22, 33, 23, 31, 12}. Indeed, Eq. (A.1) is a set of six matrix
equations with six solutions, each providing a column of [D]:

Dikl = u1
i for i ∈ {1, 2, 3}, kl = {11, 22, 33, 23, 31, 12}, (A.3)

where Dijk are components of the displacement localization tensor D. Periodic
boundary conditions are imposed to the unit-cell in order to solve problems in
Eq. (A.1). The resulting strain and stress fields obtained for each loading case
also provide a column of the strain and stress relocalization matrices [A] and [B],
respectively. The homogenized elasticity matrix C0 can be obtained from the volume
average of [B]: [

C0
]

= 1
|Y |

∫
Y

[B] dY (A.4)
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Practically, the components of C0 can be computed by solving elementary load cases
corresponding to the different components of the macroscale strain Ekl and perform-
ing a unit-cell average of the resulting microscopic stress components.

Flowchart for the numerical resolution of
(
P1st

order

)
In practice, after discretizing the unit-cell domain, it is sufficient to run the

finite element program for six different unit initial strain tensors Ekl applied on
the unit-cell. With kl = {11, 22, 33, 23, 31, 12} each load case provides a column
vector of [D], [A], and [B]. Components of the displacement corrector matrix [D] are
stored at the nodes and those of the relocalization matrices [A] and [B] are stored
at integration points. The main steps for the numerical resolution of the first-order
problem are summarized in Fig. A.1.
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Apply unit strain field
Ekl

with kl = {11, 22, 33, 23, 31, 12}

Compute equivalent force vector{
F D

kl

}
=

∫
Y [B]⊤ [C]

{
Ekl

}
dY

Solve equilibrium equa-
tions [K] {Dkl} =

{
F D

kl

}
using

periodic boundary condition

Store {Dkl} at nodes

Compute and store {Akl}
and {Bkl} at integration points

Compute the homogenized
elasticity matrix {C0

kl}

Figure A.1: Flowchart summarizing the numerical resolution of
(

P1st

order

)
.
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Appendix B: Uni-directional laminated composite in tension

We consider a uni-directional laminated composite made of two layers as pre-
sented in Fig. B.1. The size of the structure is L = 8 mm, H = 5 mm and W =
1 mm. The two layers are assumed to be isotropic linear elastic with coefficients
(Em = 1000 MPa, νm = 0.3) and (Ef = 10Em, νf = 0.3).

u

(E , ν )
f f

(E , ν )
m m

Top

Bottom

(a) Structure geometry (b) unit-cell domain

Figure B.1: Illustration of the uni-directional laminated composite in tension. The structure is
sliding on Γu and a surface tension is applied on Γt.

Case 1: Flat Top and Bottom surfaces
In this case, periodicity conditions are applied to Top and Bottom surfaces. Both

homogeneous and heterogeneous solution fields depend only on the x1 variable. Es-
timated fields using relocalization process are supposed to match exactly with the
heterogeneous ones, even on the boundaries as there is no fluctuation of material
properties in the x2 direction (see εref

11 , εhom
11 and εest

11 in Fig. B.2). Therefore, no
boundary layer correction is needed.

Case 2: Free Top and Bottom surfaces
In this case, heterogeneous fields are expected to fluctuate at Top and Bottom

surfaces due to the heterogeneity of the material along these free edges. Therefore, a
boundary layer correction in these surfaces is necessary in order to correctly estimate
heterogeneous fields (see σref

11 , σest
11 and σcor

11 in Fig. B.2).
Results of stress fields are plotted in Fig. B.3 along the AB line showed in Fig. B.1.
The corrected stress field σcor

11 captures the fluctuation of the reference field σref
11 con-

trary to the estimated field σest
11 which is constant. The difference between relocalized
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and corrected fields at x1 = [0, 1] and x1 = [7, 8] in Fig. B.3 is due to the imperfection
of the proposed correction for corner cells.

εref
11 σref

11

εhom
11 σest

11

εest
11 σcor

11

Figure B.2: Results of the strain fields for case 1 (Periodicity conditions on Top and Bottom
surfaces) and stress fields for case 2 (Free Top and Bottom surfaces).
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Figure B.3: Results of the homogenized (hom), reference (ref), estimated (est) and corrected (cor)
stress fields corresponding to case 2 and plotted along the line AB.
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