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IDENTIFICATION OF IMPULSE RESPONSES IN HEAT TRANSFER: DIRAC COMB PARAMETERIZATION, CUMULATED DOSES AND PARTIAL TIME MOMENTS

When thermal diffusion and possibly fluid advection occur in a material system, the transient temperature response in one point is a convolution product between an impulse response and a thermal source (heat power or temperature). Three conditions are required: i) the heat transfer model is Linear with Time Invariant coefficients, ii) the transient source is unique and separable and iii) a preexisting steady state thermal regime takes place, without necessarily being a uniform one. If discrete and exact observations of the source and of the temperature response are available, the corresponding impulse response can theoretically be retrieved using a deconvolution algorithm. It is independent from the source and can be seen as the identity card of the system. However, in a real calibration experiment, both signals are corrupted by noise and the experimental deconvolution constitutes an inverse problem of the identification type, which is ill-posed. So, some kind of regularization such as Tikhonov regularization for example, is required, in order to get a stable impulse response, with however presence of some bias. Here, another approach is explored. It is based i) on a parameterization of the three functions involved by projection onto a Dirac comb basis, ii) on the use of their cumulated doses to find the time support where the impulse response can be sought, iii) on the use of their partial and scaled time moments as observable quantities in a linear inversion procedure. This one can be implemented using a isochronous or a non-isochronous time step expansion for the parsimonious model that has to be inverted. The effect of noise of the input and output is not taken into account yet. NOMENCLATURE a thermal diffusivity, m.s -2 A matrix of the convolution model, K.s here c heat capacity, J.kg -1 .K -1 t C D one-sided Dirac comb q k C number of combinations of q elements among k,d left vector of the dosal-moment model,e slab thickness, m

F

matrix of the preconditioned dosal-moment model, -G matrix of the dosal-moment model, -, h h impulse response and vector, s - 

INTRODUCTION

The purpose of this paper is to test a new method for identifying the impulse response (output) of a dynamical thermal system using discrete noisy transient measurements of the excitation (input), here either a dissipated thermal power or a temperature change in some part of the domain, and of the response, the variation of a local temperature at any point in the system. An impulse response explains the causal relationship between an input and an output, and is linked to a convolutive model since the response is its convolution product with the input. The conditions of validity of this type of model are detailed in the first section of the paper. The commutative property of a convolution product implies that the identification problem, for known input and output is mathematically equivalent to a linear input estimation problem, for known output and impulse response.

When the thermal excitation is known, its temperature response can be observed using the analytical (separation of variables, Laplace transform, …) or numerical (state-space form, finite elements, …) solution of a direct linear problem, which is called a detailed model (the transient heat equation and its associated conditions). In that case, finding the impulse response corresponds to a model reduction, which is a specific type of identification or calibration problem where the inputs and outputs are noiseless. That is this type of model building procedure, based on the direct solution in the Laplace time domain and with the use of partial time moments, that is presented in the next part of the paper.

The presence of noise in the two signals makes this inverse problem, that is identification or input estimation, an ill-posed one and some regularization becomes compulsory. So, solution of this linear inverse problem in time can be achieved by various techniques such as Tikhonov regularization [START_REF] Tikhonov | Solution of Ill-posed Problems[END_REF], truncated singular value decomposition (TSVD) [START_REF] Asters | Parameter estimation and inverse problems[END_REF] or Beck's function specification method using future times [START_REF] Beck | Inverse Heat Conduction -Ill-Posed Problems[END_REF] or modal identification method [START_REF] Videcoq | Model reduction for the resolution of multidimensional inverse heat conduction problems[END_REF] to cite just a few. Regularization consists in imposing some external constraints on the equations of the inverse problem to be solved, in order to retrieve a stable solution. The price to be paid is that stability is achieved at the expense of the exactness of the solution, since it is earned with a deterministic bias.

The common features of the regularization methods for linear inverse problems where a time function is looked for, is to replace this unknown function, whose time argument is continuous and has a semiinfinite support [ [ 0, + ∞ by a vector of finite dimensions, that is with a number n of components.

The maximum number of retrievable components is equal to the number of times of measurement, which will be called m in the present paper. Defining the nature of these components, as well as their number n m ≤ , consists in making a choice of a specific type of parameterization.

Parameterization can be implemented by projection of the unknown function over a basis of various kinds of local time functions: unit door functions for parameterization as a piecewise constant function, hat functions for a linear interpolation between observation times, to cite just a few. This is for circumventing this type of difficulty that a parsimonious parameterization method, based on the notion of doses, and of projection of the three involved functions over a Dirac comb, that is proposed in the next part of the paper. This leads to the use of ratios of partial time moments of different orders as substitutes for the initial input and output signals in the identification process.

INTEREST OF CONVOLUTIVE MODELS IN HEAT TRANSFER

Time continuous convolutive models constitute the exact structure for modelling the local transient temperature solution of the heat equation and of its associated initial and boundary conditions, if these ones are Linear with Time Independent Coefficients (LTI). This can be demonstrated once this partial differential equation (PDE) system has been transformed, using the one-sided Laplace transformation, see [START_REF] Hadad | Modeling unsteady diffusive and advective heat transfer for linear dynamical systems: A transfer function approach[END_REF].

This convolutive property is very general, but it requires several conditions to be respected: i) the LTI assumption means that all the equations of the PDE system should be linear and that their coefficients, that is the coefficients of the ( , ) T t x temperature terms, of its partial time derivative and of its first and second partial derivatives with respect to the space variables, should not depend of time. However they can depend of space, which means that heat diffusion in heterogeneous solids is also concerned. Simultaneous 3D advection in a porous material, in a fractured medium, or in any type of heat exchanger using sensible heat can also respect this LTI assumption. It only requires that the velocity field does not depend on time: this field is considered here as a space-but not a timedepending coefficient in the heat equation. This can also apply to heat or mass transfer in a turbulent steady state regime, as long as the time averaged Fourier or Fick diffusion equation is LTI, which means that the local coefficients of heat or mass diffusion, do not depend on time [START_REF] Chata | Estimation of an aerosol source in forced ventilation through prior identification of a convolutive model[END_REF],

ii)

the thermal excitation, called also the source, that can be either a temperature or a thermal dissipated power caused by a thermodynamic transformation of another kind of energy 

Here the impulse response ( ) h t characterizes the causal relationship between the source (input) and its response (output) at a local observed point or observed region in the same material system. The separable source is located in some part of the system, either at a local point source x , or over some part of the domain.

Let us note that with assumptions i) to iv), the impulse response ( ) h t is also the Green's function of the problem, which can be written according to N. Ozisik's notation [START_REF] Özişik | Heat Conduction[END_REF] 

- = = ≡  (1d)
where the upper bar over each quantity designates its Laplace transform, p being the Laplace parameter. The initial values of both the impulse response and of the input are zero here. ( ) h p , the Laplace transform of the impulse response, is called the transfer function. It is related to the choice of the locations of the excitation and of the response, that is on their mathematical spatial supports.

For the transient excitation, this spatial support is the only subset of the domain of study in ℝ 3 where it is not equal to zero.

If ( ) u t is a dissipated thermal power in watts, ( )

h p is an impedance in J.K -1 and ( ) h t is a time impedance in W.K -1 . If ( )
u t is an imposed temperature, ( ) h p can be called transmittance, which is dimensionless, whereas ( ) h t is a time transmittance in s -1 , see [START_REF] Hadad | Modeling unsteady diffusive and advective heat transfer for linear dynamical systems: A transfer function approach[END_REF]. 

STEADY STATE AND SLIDING VERSION OF THE CONVOLUTION PRODUCT

Steady state version

→ +∞ → → = ∞ = = = = (1g)
Comparison of equations ( 1f) and (1g) yields the following identity, with the use of equation (1d) written for

0 p = : 0 0 0 ( ( ( ) d 0) (0) ( ) d 0) ( ) d ss y y h h u u t t h t t t t ∞ ∞ ∞ = = = =    (1h)
This means that the steady state behavior of the input/output system, characterized by ss h , which is a steady state transmittance or a steady state impedance, can be derived from its transient behavior, using the ratio of the integrals of both functions, if they converge at infinity. The above relationship is valid for any input ( ) u t provided that it allows the occurrence of an asymptotic steady state regime for large times.

We have to remind here that, if a steady state can be observed, one has the following relashionship between the corresponding input and output:

=

ss ss ss y h u (1i)

Sliding version

Even if the input ( ) u t does not allow to reach a final steady state regime in the observed interval, another regime than the steady state one may be observed. It is the sliding regime, where a proportionality between output and input is reached, with the same proportionality coefficient as in steady state, but where both functions continue to vary:

( ) = ( ) ss y h u t t (1j)
The interested reader can refer to Appendix 1 for more information.

DOSAL PARAMETERIZATION OF THE 3 INVOLVED FUNCTIONS

In practice, only observed instantaneous values of the output signal 
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The upper tilda for the impulse response and for the excitation refers to their left moving averages over a time window of width t D . These interval averaged quantities are subscripted at the upper bound of each time step:

1 1 1 1 1 
) whith for or 

1 1 ( ( ') d ' ( ) ( ') d ' 1 1 and ( ) ( ) d ( ') d ' j j j j k j j k j k t t
D D D D - -+ - - - -+ -+ ≡ ≡ = = = = = -     ɶ ɶ ɶ ɶ ɶ (2b)
Equation ( 2a) is an approximation in the general case. It is exact if the deterministic covariances of ( ) h t and of ( ) ( )

flip k k u t u t t ≡ -are equal to zero over each of their common 1 , -     ∆ = j j j t t intervals.
This occurs if both functions are equal to their parameterized piecewise constant versions or if they vary linearly during each time interval for example. So, instead of using these parameterized versions of input and impulse response equal to their averaged interval values, j u ɶ or j h ɶ , the notion of dose of these functions is introduced over each j ∆ interval:

1 1 1 1 1 ( ') d ' for or ( ) j j k k j k k j j t j j j k j k j t x x t t x t x h u y y t u h h u D - = = -+ -+ = = =  = = =    ⌢ ⌢ ⌢ ɶ ɶ ɶ (3a, b)
This dosal representation, for example the ' j s h ⌢ for ( ) h t , is more intrinsic than the instantaneous values of this function, the ( ) ' j h t s , since it is related, in an exact way, to the integral 0 ( )

H t of ( ) h t : 1 0 0 0 0 0 0 1 ( ) = ( ) d ( ) ( ) and ( ) j j j t , j k j j k t h t t t t H t H H H H h h - =  = - = =   ⌢ ⌢ (3c)
Here the integral 0, j H is the cumulated dose of ( ) h t between times 0 0 and j t t = .

VECTOR AND MATRIX FORM OF A CONVOLUTIVE MODEL

Discrete scalar model (3b) can be given a vector/matrix representation, if one considers the different quantities, that is the sampled output signal and the averages of ( ) h t and of ( ) u t at the end of the m intervals ∆ j or their corresponding doses. This representation is given here for the discrete times k t belonging to the [ ]

1 m t , t observation interval : ( ) ( ) with and t t = = ≡ ∆ ≡ ∆ y h u u h u u h h ⌢ ⌢ ⌢ ⌢ ɶ ɶ ɶ ɶ N N (4a, b)
where

1 1 1 2 2 1 2 3 3 2 1 3 1 2 1 0 ( ) with for or ; k k k k k y x x y x x x x h u y x x x x y x x x x x - - = ≡ ≡ =                                                 y x x ɶ ɶ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋯ N (4c) Here ( ) x N
is a lower triangular Toeplitz matrix whose columns are vector x and its lagged versions. The two forms of the discrete convolutive model given above can be used in the direct sense for simulating the output for known observations or measurements of the input, if the impulse response is known, see [START_REF] Hansen | Deconvolution and regularization with Toeplitz matrices[END_REF] for example.

In practice, since ( ) h t and of ( ) u t is only known on a time grid, in order to work with model (4a) or (4b) the vectors of interval averages h ɶ and u ɶ should be calculated by replacing them by their arithmetic averages according to equation (4d) below. 

prior prior k x x x x h u x - =                 ≈ + = ≡ = ≡                 x x x K x x K ɶ ⋱ ⋱ ⋮ ⋱ (4d, e)
This equality between the vector x ɶ of interval averaged of ( ) x t x ɶ defined in (3a) and K x is not pertinent if there is a discontinuity of ( ) h t or ( ) u t , for example in the case of a thermal excitation of a sample in a flash experiment, where ( ) h t is a function connecting the absorbed thermal power to the front face temperature of a sample, because of the existence of an infinite asymptote at 0 t + = . The same problem occurs in the case of a step excitation.

The sensitivity matrix of the convolution model linking the outputs y to the vector h of the instantaneous values of the impulse response, is derived from equations (4a) and (4d) and written for the maximum value k m = of the time index:

with ( ) t = = ∆ y A h A K u K N (4f)
Noisy input and output experimental signals can be inverted with this type of convolutive model using classical regularized linear least squares techniques with a whole domain approach, with however a possible bias in the estimate of h for long and small time values, such as alternate positive and negative oscillations whereas the exact ( ) h t should be zero, see [START_REF] Hadad | Experimental transfer functions identification: Thermal impedance and transmittance in a channel heated by an upstream unsteady volumetric heat source[END_REF] for example.

DIRAC COMB PARAMETERIZATION OF THE 3 INVOLVED FUNCTIONS

A further step can be made in the parameterization of ( ) 

h
∞ ∞ ∆ = ∞ ∞ ∆ = = ∞ -∆ = -∆ = ≡ = ≡ = =     ⌢ (5b,c,d)
Let us note here that the 3 ( )

DC

x t quantities, where subscript DC is defined above, are not functions since they are mathematical distributions.

TIME MOMENT FORM OF THE CONVOLUTIVE MODEL

Relationship between time moments for an infinite numbers of observations of input and output

Three time moments 

= = ∞ ≡  M (6a)
It is assumed here than the 3 moments k x M converge, which is discussed in the next section.

In theory, the 3 moments of a given order k are calculated starting from the corresponding cumulative doses ( ) 

k X t
i q i t k k i q q k k k q q q q q q x X t X t t x t t t x t t t t x x x x y, u h D = - - ∞ = ≈ = = =   ⌢ ɶ ⌢ ɶ M (6b)
Let us notice here that the expression of a dose k x ⌢ of function ( ) x t is only an approximation of its definition already given in equation (3a) for ( ) u t and ( ) h t . If one of these functions presents a discontinuity, or an asymptote in the ] ]

1 k k t , t
interval, either an analytical solution, in the time or in the Laplace domain, has to be found in between its bounds, or a parameterization with a smaller time step t D has to be implemented.

Another remark concerns the replacement of the m sampled values ( )

k
x t of each of the three exact involved functions, noted ( )

x t above, on the time grid, by m time moments k x M . These time moments are the results of an integral transformation, whose kernel is a power product k t of time t , and which can be called the 'Time Power Transformation' and which can be written the following way:

0 [ ( )] = ( ) d k k k x x t t x t t ∞ =  M M (6c) 
A square matrix t P of the time powers is introduced for their calculation:

1 2 2 2 2 1 2 1 2 1 2
with and

m m m m m m m x x x x t t x t t t t t t t t t t D             = = =               P K x P ⋯ ⋯ ⋮ ⋮ ⋮ ⋮ ⋯ M M M M M (6d) 
The moment of order zero, 0

x M does not appear in the above vector of moments x M since its status, linked to the steady state regime is very specific in a transient experiment. It will be used as a normalization constant further on.

The Laplace transform of the Dirac comb (non-continuous) parameterization (5b,c,d) of the three involved functions, also called star transform or starred transform [START_REF] Gopal | Digital Control Engineering[END_REF][START_REF]Starred transform[END_REF] in the control science literature, is introduced: 

0 0 1 1 ( ) ( ) = ( )
τ τ τ D ∞ ∞ ∞ = ∞ = ≡ - = - ≡ - = - ≡ =     ⌢ (7a,b)
The Taylor expansion of the exponential of function exp ( ) p t with respect to its argument ( ) pt -

is: 0 (-1) exp ( ) ( ) ! k k k k p t t p x t k ∞ = - ≡  (7c)
This is substituted in equations (7a) and (7b) defining the starred transform of the parameterized form (5c) and (5d) of each of the 3 functions, taking the definition (6a) of the time moments into account: 

(-1) ( ) for or ! k DC k x k k x p p x y, u h k ∞ = = =  M (7d) 
The above equation shows that the inverse time power transformation defined in equation (6c) has no analytical expression, in terms of functions, since it requires inversion of the starred transform given in (7d): the inverse Laplace transform of k p is the Dirac distribution δ ( ) t , for 0 k = , and its successive derivatives, for higher values of its order k .

The Laplace (starred) transform form of the parameterized (DC) form of the convolutive model is:

( ) ( ) ( ) DC DC DC p p p y h u = (7e)
The expressions (7d) of the starred transforms are substituted in the Laplace model (7e):

0 0 0 0 0 (-1) (-1) (-1) (-1) ! ! ! ( )! k i k i i q q i q i i q k k i j i j q y u h u h q p p p p k i q i q + ∞ ∞ ∞ ∞ ∞ + = = = = = = = +      M M M M M (7f)
Term to term identification of the coefficients of the k p term in equation (7f) yields the following identity [START_REF]Wikipedia[END_REF]:

0 ! with for 0 to ! ( )! q k k q q k k k q q y u h k k C C k q q k q - =   = ≡ ≡ = ∞   -    M M M (7g) 
Here, j k C is the binomial coefficient in the development in the product of two polynomials of degree k (Pascal's triangle). It is the number of different combinations of j terms in a set of k elements. Equation (7g) is written for the zero order moments:

0 0 0 y u h = M M M (8a)
Dividing the moment of each function in equation (7g) by its moment of zero order, makes the different moment ratios

x k R of the three functions appear, using equation (8a):

0 1 0 0 0 0 if 1 with for or k k q k q q y q k q k k k k k q q q x k k u h y u u h y u h x x C C k / x y, u h - - = = =  - = ≥ = ≡   M M M M M M M M R R R R R (8b,c)
The moment ratios of the three functions are calculated using equation (6b) :

1 1 for or

x k i i k i i i t / x y, u h x x ∞ ∞ = = = =   ɶ ⌢ ⌢ R (8d)
Equation (8d) make three dosal fractions x q α appear : for or

x q x x q i i i i i i i t x / x x y, u h α α ∞ ∞ = = ≡ = ≡   ⌢ ⌢ ɶ R (8e)
These dosal fractions measure the weight of the local dose i x ⌢ in the total cumulated dose of ( )

x t over the [ [ 0, + ∞ time interval.
So, equation (8c) is rewritten as a function of these dosal fractions, whose sum should be equal to unity. This yields, after permutation of the two summation signs, and with a simplified notation for the dosal fractions :

1 1 1 with ; q k y u h y u i i i i i i i i i k i k k k i k k q i i q q k u b t b C t ; α α α α α α α D D ∞ ∞ - = = = = - = = = = -    ɶ ɶ R R R (8f)
A square system of linear equations with an infinite number of equations and of unknowns q α is obtained if this equation is written for each order 1 k = to infinity. However, the following constraint for the unknowns has to be reminded :

1 1 i i α ∞ = =  (8g)

PARTIAL TIME MOMENT FORM OF THE CONVOLUTIVE MODEL

Physical interpretation of the partial moments of order 0 and final steady state regime

We assume here that, in an identification experiment with noiseless measurements: i) that the number of measurement times is 

  - = - - - -       (9b)
The second term in brackets in the right-hand side of this equation, that is called ( ) f p is equal to zero in case b), when steady state input and output are equal to zero.

Case a) is considered from here on. This equation (9b) is written for 0 p = , whatever the case (a or b) :

The ( )

f
0 0 0 0 ( ) d (0) ( ) d (0) ss ss t t y u y t t h u t t M M h = ⇔ =   (9e,f)
Here the two definite integrals of input and output above, are called partial time moments of zero order here, see the general definition (10b) further on. So, comparing (9f) and (1h) yields : 0

/ ss y u h M M = (9g) 
This means that the steady state transfer function can be calculated not only with the ratio of the zero order moments, but also with the corresponding ratio of partial moments, provided that the input belongs to the case a) or b).

Partial time moment model So, whatever the case a) or b) met, a steady state regime or a sliding one has been reached past the finite time ss t . We will then choose, in the following parts of this paper, the number of measurements m such as:

f m ss ss m n t t t = = = ⇔ (10a)
As a consequence, the time moments of any order of the 3 functions, defined in (6b) are replaced by the corresponding partial time moments, that are defined below, with a modification of the corresponding fonts for keeping this change tractable:

1 ( ) = for or m k m i i k k i x M X t t x
x , y h

= ≡ =  ⌢ ɶ (10b) 
The definition (8c) of the moment ratios are changed accordingly, since they become ratios of partial time moments and, in the same way, the infinite upper bounds in equations (8d) and (8e) are replaced by ss m n = with the dosal fractions i α of the impulse response that are now redefined with respect to (8e), which yields :

0 0 1 1
for or and with

h i i x k k m h q q i i i i i i x x m R M / M x y, u h R t h / h h / M α α = = = ≡ ≡ ≡ ≡   ⌢ ⌢ ⌢ ɶ (10c) 
Let us note that in case b), the moments of different orders and their partial versions are identical, and the same is true for the corresponding ratios: and for 0 to and for or

x x k k k k x x M R k m x y, u h = = = ≡ M R (10d) 
As a consequence, the new version of equations (8f) and (8g), which is valid for case b) only, becomes:

1 1 1 for 1 to with q m m k i i i i k i k i k k q i i q q k u b t k m b C R t α α D - = = = = = ≡    ɶ ɶ (10e,f)
The problem of validity of the above equations for case a) is studied in Annex 1. M = M may take very high values for large values of their order k , and the same problem occurs for the i q t ɶ term in the definition (10f) of the k q b coefficients.

Scaling of the partial time moments and solution of the inverse problem of identification of the dosal fractions for a noiseless calibration experiment of type b)

So, the partial time moments, as well as their ratios are scaled using adhoc powers of the time variable with a change of the font of the corresponding quantities:

; for 1 to and or

x k k x x k m m k k k x M / t R / t k m x y u ≡ = = ≡ ɶ ɶ m r (11a)
The scaled ratios of partial time moments of both input and output are expressed in terms of corresponding dosal fractions u q α and y q α :

0 1 1 for or 1 for 1 m m x k k x k x / M x y u k x τ τ τ α = = = = =  < ≥   ℓ ℓ ℓ ℓ ℓ ℓ ℓ ⌢ r (11b)
The interest of this scaling is to make the ratios of the scaled partial time moments of input and output decreasing functions of their order. Moreover, they are both smaller than unity. Equations (10e) and (10g) are modified in order to take this scaling into account: 

q m m k i k i i k y u i k i k k q q q u m g k m g C t / t α τ α τ τ α α α D D = = - = = = ≡ ≡ ≡ -    ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ɶ ɶ r (11c)
So, equation (11c) is given a vector/matrix form, which will be called the dosal-moment model :

1 2 1 1 1 2 2 2 1 2 2 2 2 1 2
with and ; ;

y u m y u m m m m y u m m m m τ τ τ τ τ α α α τ τ τ α α α τ τ τ α α α   -           -       = = = = =             -         G α d d P α P α α ⋯ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ Δ Δ (11d) 
A last difficulty is still present for the calculation of the k q g coefficients, since the number of combinations q k C takes very large values for large moment orders k . So, both sides of equation should be divided by the maximum value of q k C for a given order k , that is by floor ( ( 1) 2) k / + where floor (.) is the integer part function. So, equation (11c) becomes:

( )

1 1
for 1 to with and floor ( ( +1) /2)

k k q q k k m m k i k i k i k i k i f / C k m f g / C q k α τ α D = = = = ≡ =   ℓ ℓ ℓ (11e)
The expression of k i f can be simplified:

1 ( )! with ! ( )! ! k q q k k k k k i k i k q k q k q q q u C q k q f a a q k q C τ - = - = ≡ = -  r (11f) or 1 1 1 if ; 1 if ; if k k q q q q k q k k q k k q k i i k k
q i k q a q q a q q a q q k q i q i

--

= = + -+ = < = = = > -+ + ∏ ∏ (11g)
Equation (11d) is given a vector/matrix form: 

m q q q m C C C τ - -       = = =         F α C P α F C G C ⋯ ⋯ ⋮ ⋮ ⋱ ⋮ ⋯ Δ (11h)
This last model will be called the preconditioned dosal-moment model.

PARSIMONIOUS PARAMETERIZATION USING DOSAL FRACTIONS

First dimension reduction using a coarser isochronous time grid Model (11d) or (11h) has been constructed using the same finite Dirac comb , ( )

m t C t ∆
for the input, the output and the impulse response. Its infinite version , ( ) ( )

t t C t C t ∆ ∞ ∆ =
is defined in equation (5a) and the finite version for the corresponding square parameterization of these three functions is:

, 1 ( ) δ ( ) m m t i C t t i t ∆ = = -∆  (12a)
However, in order to get a parsimonious parameterization of the impulse response, it is interesting to project ( ) h t over a Dirac comb , ( )

t n C t ∆
that corresponds to a smaller number n m < of scalar unknowns in the identification problem. This corresponds to the application of the parsimony principle that states that the number of degrees of freedom of the model to be identified, that is the number of independent dosal fractions of the impulse response here, has to be chosen at a pertinent level. This pertinent level should not be too large, for keeping the estimation bias as small as possible , but not too small, to make inversion robust enough. 

= - - = + = = + = = = (15a) 
Here ( ) f z t is the impulse response, an impedance, linking the front face temperature to the absorbed power at the same location, whereas a is the thermal diffusivity of the material.

The four functions are plotted in figure 2, while the characteristics of the simulation are given in Table 1.

Table 1 Data of the direct simulation -slab with a power absorption on its front face quantity In order to get the steady state value ss w of the transmittance ( ) w t deduced from the discrete observations of y and u , the cumulated doses 0 ( ) Y t and 0 ( ) U t of these functions, defined in equation (6b), are calculated. Their ratio is plotted in figure 3, together with the cumulated dose 0 ( ) W t of w . Both functions converge asymptotically to a nearly common value, with In order to test the non-isochronous parsimonious dosal-moment model a useful number of components n of vector d , see equation (11d), has to be chosen. So, the cumulated value k D of its components are defined:

1 k q k q D d = =  (15b) 
and these values are divided by the last and larger value of order m , that is m D , and is plotted versus current order k in figure 6. One sees that the order 5 k = corresponds already to 99,86 % of the asymptotic level equal to unity. This means that a maximum of 6 n = partial time moments can be used. This corresponds to an average step expansion factor 166 7 m / n . µ = = . The conversion of this truncation of the number of useful moments into a new non-synchronous time grid remains to be worked out.

CONCLUSIONS AND PERSPECTIVES

In this exploratory study a connection has been made between transient thermal problems of linear time invariant structure and the convolutive input/output models, with a focus on the conditions when these models can be used without much bias. The notion of doses of the input, of the output and of the impulse response have been introduced, in order to replace the instantaneous values of each of these functions. The corresponding identification problem has been presented, with the introduction of a lower Toepliz matrix that can be used in an inverse input problem, with classical regularization techniques such as TSVD for example.

In an atempt to get a direct model with fewer components for the impulse response than the number of measurements of both input and output, a parametrization of the three involved functions by projection over a one-sided Dirac comb has been introduced. This allowed to get analytical relationships between their moments of different orders. An explicit dosal-moment model has been obtained, with a very interesting property for the zero order moments which allows a robust estimation of the steady state version of the impulse response. The unknowns of this model are the dosal fractions of this function that are related in a linear way to the residual of the problem of estimation of the unique scalar parameter present in the steady state model.

Two different ways of reducing the dimensionality of this model by a decrease of the number of unknowns, through the introduction of easer a coarser isochronic time grid, or by a non-isochronic one, have been proposed. These have been tested on a 1D test case where only diffusion is present.

It has been shown that the partial time moment model does not seem to be appropriate for estimating the impulse response in an inverse procedure.

So, much work remains to be applied to this subject, that is to use a non-isochronous time grid where the average time step expansion factor that could be used first to decrease the deterministic bias in the identification problem and second to control the statistical dispersion in the estimate, caused by the presence of noise in the experimental sampling of the input and output signals.

To this end, two perspectives, non tested in this paper, are considered here for using the (7g) relationship between moments of different orders:

-the calculation of these moments, in a direct way, can justify or discard the assumption of convolutive form for a model linking input and output when the corresponding signals have been sampled on a lapse of time where a final steady state has been observed for the two signals. This could be the case, for example, when the question of possible thermodependency of the thermophysical properties of the constitutive materials of the physical system, caused by a large amplitude of the excitation arises. This could also bring an answer about the effect on heat transfer of possible transient variations of the velocity field (case of a system incorporating a fluid flow or a system with moving parts). Of course, this potential use should be made together with a statistical study of the effects of the measurement noise on the calculation of the moments.

-the quadrature of the moments present in the (7g) relationship can be used as a constraint, that is a regularization term, in a least square approach, as a substitute to the classical Tikhonov techniques based on squared norms of the function looked for or of its derivatives. This can also been viewed as a linear Bayesian estimation technique.

  made at isochron discrete times k k t t D = , which means that they are sampled instantaneous values of this time continuous output function, where / f m t t D = is the time step and k the corresponding integer subscript, with 0 k ≥ . Their values are calculated through a numerical quadrature of the convolution integral (1b):
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  A difficulty arises for the estimation of the dosal fractions through the solution of equations (10e) and (10g) since partial moments

  to a slab of light insulating material. With diffusion, but without advection in the system, a very high value of the losses is compulsory to allow a return to a zero thermal equilibrium within a not too long time, for this kind of thermal excitation. The above value of r h means that high advection, with an external liquid flow at zero temperature, is indirectly present in the modelled system.

Figure 2 .

 2 Figure 2. Exact input, output and transmittance.

Figure 3 .

 3 Figure 3. Cumulated doses and steady state transmittance In order to see whether the dosal-moment model can be inverted, the dosal fractions of u , y , w are plotted versus the components of vector t ɶ , in figure 4. The area below each curve is equal to unity. The variation of the non-transformed source term α D of the same model, see equation (11d) is also plotted in the same figure. This term, which changes sign in the relaxation phase of u , is proportional

Figure 4 .

 4 Figure 4. Exact dosal fractions. The condition number of the truncated singular decomposition of convolution matrix , see (4f), with a truncation that keeps a number n of singular values, with 1 n m ≤ ≤ is plotted in figure 5. On the same figure, the condition number of the rectangular FV product matrix of the isochronous parsimonious dosal-moment model, see equation (12g) is shown for three low values of n . The corresponding condition numbers are much higher than their TSVD counterparts and it is clear that this last model cannot been used for identifying the impulse response.

Figure 5 .

 5 Figure 5. Comparison of singular values of the TSVD decomposition of the matrix of the convolution model and of the matrix of the parsimonious isochronous dosal-moment model

  

  

  Exactly the same parameterization can be implemented for the input ( ) u t and also for the output ( ) y t , since a series of discrete observations k u or k y of one of these functions can be considered as the result of a sampling process, that is a projection of the corresponding continuous function over a one-sided Dirac comb

								( ) C t t ∆	defined as :				
											( ) C t t ∆	=	1  i ∞ =	δ ( t i t -∆	)	(5a)
	where δ ( ) t is the Dirac distribution. So, if the sampling of each of the three functions involved in the
	convolution model is fine enough, its output	( ) y t coincides with its parameterized version
	y	param	( ) t	=	( ) y t DC	at each time of the discrete observation grid , with :
											( ) y t DC	y	( ) k t		for	k	1 to
			whith	( ) y t DC		0	( ) ( ) d C t y t t t		k	1	( ) δ ( k y t t k t	)	(	DC h	*	u	DC	)	( ) t
			and		( ) x t DC		0	( ) ( ) d C t x t t t	i	1	x	j	δ ( t j t	)	for	x h	or	u
																t if, instead of characterizing it by its
	averaged constant value j h ɶ over the whole span of each of the j ∆ interval, one replaces it by a Dirac ⌢
	pulse of level j h	located at its end time, that is at the upper bound j t , of this interval. That means
	that no assumption is made on the continuous shape of ( ) h t inside the open interval	 	1 t , t j -	j	  , while
	the integral relationship (1b) is automatically verified at the discrete observation times j t of the time
	grid {	1 2 t , t , , t ∞ = ∞ ⋯	{	.					

  stationary point for the input/output system. After this time, if the input is kept at this level, the same is true for the output and a final steady state regime exists. is reached for the input at time ss t , for any case a) or b), and if it is kept constant past this time, the definition of the Laplace transform of input and utput the is written the following way:

	If one assumes that the value	u	ss	=	u	( t	ss	)
								( ) x p	=	0 with ss t 	( ) exp ( ( ) for ) d ss ss x t p t t x t x -=	ss x u x + =	or ss t ∞ 	exp ( y	-	) d p t t	(9a)
	Substitution into equation (1d) yields:			
	0 t	ss	( ) exp ( y t	) d p t t h p ( )		0 t	ss	( ) exp ( u t	) d p t t	exp (	p t	ss	)	ss p y	( ) h p p	u	ss
																	m t =	f	/	h t n ∆ ≥	2	, where 2 h n is the upper bound of
		the support of ( ) h t defined in the introduction,
	ii) that the chosen input ( ) u t and its response ( ) y t verify one of the two properties:
		a)	( ) u t and ( ) y t have both zero left partial derivatives at the same specific time called
				t	ss	=	f ≤ , as in equation (1e) where ( ) n t t ss D u t was a time step, and the value ( ) ss t u	of
				the input is different from zero. Consequently, it is the same for the ouput value ( ) ss t y	. This
		time corresponds to a b) ( ) u t and ( ) y t are equal to zero at a time also called ss ss t n t t D = ≤ , when the system f
				enters a final steady state regime if the input is kept at a zero value later on. This case is
				similar to case a), but the final steady state regime corresponds to a zero level for both functions, that is a return to the initial steady state level that existed at time 0 t = and
				before.									

  p term is the Laplace transform of

														( ) f t	≡	y	ss	-	0 u H t t ( ss -	ss	)	, where function 0 ( ) H t is the
	cumulative dose of the impulse response ( ) h t defined in equation (6b). The choice of ss t is arbitrary
	since, within a tolerance chosen by the inverter, one assumes that	y	ss	≈	( ) for ( ) y t u t ∞	=	u	ss	if	t t ≥	ss
	. This means that for times past ss t , one is very close to the sliding regime defined in (1j) and one can
	write:																				
	y	ss	≈	ss h u	ss	=	0 H t u ( ) ss	ss		( ) f t		≈	(	0 H t ( ) ss	-	0 H t t ( -	ss	)	)	u	ss	(9c)
	A first order Taylor expansion allows a calculation of ( ) f t
				( ) f t	≈	d d H t	0	t	ss	( t t u ) ss -	ss	=	( ) ss h t	(	) t t u ss -	ss	(9d)
	At this point, one can note that time ss t is larger than 2 h t , the upper bound of the support of the impulse
	response ( ) h t defined in the introduction, otherwise, for a level ss u maintained constant for the input,
	the ( ) y t output would change past time ss t , instead of being observed at a constant level ss y , see
	equation (1b). So ( ) ss h t is equal to zero and ( ) f t , and consequently ( ) f p can be neglected in equation
	(9b).																				

Here (.) j is the function that associates the index j of the time of the coarse grid to the index i of the time of the original grid, this coarse time being the first one equal to or larger than the original time. It is defined as : ( ) = 1 + floor ( ) if 1 and ( )

One can show that the dose fractions of the impulse response in the original grid i α are linked to the ones in the coarse grid j µ α by one of the two relationships below, depending on the presence or the absence of an interface of two coarse intervals between two successive interpolated points:

( ) 

The ( ) . So, a dosal conversion matrix V of size x m n has to be constructed:

where superscript T designates the transpose of a matrix. 

In order to estimate n coarse dosal fractions of the impulse response starting from m dosal fractions of both input and output, the parsimonious model (12g) is inverted in the ordinary least square sense, which yields:

( )

The root mean square residual ( )

RMS res

µ is an increasing function of the step expansion factor µ :

where . is the Euclidian norm in ℝ m .

Second dimension reduction using a coarser non-isochronous time grid Return to equation (11d)

shows that the right hand term, called d below (size x 1 m ) is proportional to the difference between the transient response and its steady state version:

This vector d , without the 0 1/ y M factor, is the 'Scaled Time Power Transform' of this difference, see equation (6d), just replacing the time power matrix t P by its scaled version, the scaled time power matrix τ P . One feature of this transform is to be more sensitive to the dosal fractions associated with long times, especially for high values of the order k . This means that rows of (14a) where the k d component of vector d is zero, or close to zero, do not bring much information about the corresponding linear combinations of the dosal fractions of the impulse response i α in the left hand side, and should be left aside in the model. Depending of the threshold given for discarding a row, the number n m < of lines worth keeping will be equal to the size of parsimonious vector to be estimated, the same way as in the above isochronous parameterization.

So, the notation will be the same and we will call m / n µ = the average step expansion factor. We want to choose the vector of times ' t , in such a way that the bounds of each

correspond to about the same variation for the cumulated values of the s k d ' , in order to increase the sensitivity of the output d of this model to the values of the dosal fractions of the impulse response related to the first times. This idea will be applicated in the next section.

APPLICATION OF THE PARSIMONIOUS PARAMETERIZATION

We have sought a configuration where only linear heat diffusion occurs, and which is of the b) type detailed further up: the final state, that is the final values of u and y , should be zero and the final time of the simulation f m ss t t t = = should be larger than the upper bound time 2 nh t of the support of the impulse response.

So, a slab of thickness e , conductivity λ and volumetric heat capacity c ρ is considered. The front face of this slab absorbs a surface thermal power ( )

, which is a door function in time, and linear losses with a heat transfer coefficient r h and a zero temperature environment are considered on the rear face. The initial temperature field is supposed to be uniform at a zero level.

The impulse response that is looked for relates the rear face temperature y to the front face temperature u , which means that function h is a thermal transmittance, expressed in 1 s -, which will be noted w now on.

The three involved functions are calculated in Laplace domain using the thermal quadrupole method with an inversion of the transforms using Stehfest's algorithm [START_REF] Maillet | Thermal Quadrupoles -Solving the heat equation through integral transforms[END_REF].

The front face thermal power, the transmittance, the front face temperature and the real face temperature have the following forms in Laplace domain:

APPENDIX 1 -CASE OF A FINAL STEADY STATE REGIME DIFFERENT FROM THE INITIAL ONE

The validity of equation (10d) for a calibration where input ( ) u t belongs to case a), that is with a return to a steady state different from the initial one after a finite a time ss t , is problematic, for orders k larger than zero, for two reasons: i) and

M differ in the general case for or x y u = and, as a consequence, such is also the case for and

M does not necessarily exist for or x y u = , because the total discrete cumulative dose ( ) i k X t used in its definition (6b) does not always converge when the subscript i of time goes to infinity.

Detection of the sliding regime However, in case a), an interesting property can be noticed for the moments of zero order when the cumulative doses 0 ( ) Y t and 0 ( ) This property should be verified for each moment ratio of order 1 to k m = present in model (11h) in order to be able to apply it in an experiment of type a).