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High-order multigrid strategies for HHO discretizations of elliptic
equations∗

Daniele A. Di Pietro† Pierre Matalon†‡§¶ Paul Mycek‡ Ulrich Rüde‡§

Abstract
This study compares various multigrid strategies for the fast solution of elliptic equations discretized

by the Hybrid High-Order method. Combinations of h-, p- and hp-coarsening strategies are considered,
combined with diverse intergrid transfer operators. Comparisons are made experimentally on 2D and
3D test cases, with structured and unstructured meshes, and with nested and non-nested hierarchies.
Advantages and drawbacks of each strategy are discussed for each case to establish simplified guidelines
for the optimization of the time to solution.

Keywords: Elliptic partial differential equation, Hybrid High-Order, multigrid, coarsening strategy.

1 Introduction
We address in this paper the fast solution of the linear system arising from the Hybrid High-Order (HHO)
discretization [9] of scalar elliptic equations. Originally introduced in [10], HHO has been made popular
amongst non-conforming methods by its native support of polyhedral elements, its optimal orders of con-
vergence, and its reduced number of degrees of freedom (DoFs) through the static condensation process.
In particular, the globally coupled unknowns remaining in the condensed system are located at faces, i.e.
supported by the mesh skeleton. This specific structure calls for tailored solvers. Multigrid methods, in
particular, require special intergrid transfer operators, inasmuch as the classical ones, used for continuous or
discontinuous finite element methods, handle element-defined approximations and are therefore not directly
applicable to face-defined ones. Other discretization methods also have globally coupled unknowns located
at faces, and adapted multilevel solutions have emerged. Amongst them, one can cite the discontinuous
Petrov–Galerkin method [21, 23] and the Hybridizable Discontinuous Galerkin method [17, 19, 24, 29]. Re-
garding HHO, an h-multigrid method was designed by the present authors for the diffusion equation in [12],
extended to non-nested mesh hierarchies in [13], and a p-multigrid method for the Stokes equation was
proposed in [5].

In this work, we focus on high-order approximation. High-order has many advantages in finite element
methods. Primarily, for smooth solutions, faster convergence rates with respect to the mesh size allow for the
use of a coarser mesh, which limits the memory storage of both the mesh and the matrix, whose global size is
usually more dependent on the number of elements than on the number of unknowns per element.The smaller
matrix size can also reduce the computational cost of the solution significantly. Additionally, high-order has
been shown to be strongly beneficial in the elimination of the numerical locking phenomenon [1, 2, 26]. In
this context, the design of efficient linear solvers optimized for high-order discretizations proves worthwhile.

In this paper, we propose a comparative study of various multigrid strategies for high-order HHO systems.
Three main strategies are explored, characterized by the type of coarsening they implement: (i) h-coarsening
only, where the mesh is coarsened and the same high polynomial degree is preserved at every level; (ii)
p-coarsening to lower the degree, followed by h-coarsening once the desired low order is reached; (iii) hp-
coarsening to simultaneously lower the degree and coarsen the mesh, followed by h-coarsening once the
desired low order is reached. In any case, we assume that the h-coarsening phase is able to carry on until
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a small enough system is reached. Similar studies have been conducted for the continuous Finite Element
method [25], the Discontinuous Galerkin method [4] and for Isogeometric Analysis [28].

This work follows up on [12,13], where an efficient h-multigrid method was designed. The convergence of
the algorithm, which preserves the polynomial degree at every multigrid level, is shown to be independent
of the mesh size (and weakly dependent on the polynomial degree). The intergrid operators defined in
those papers shall serve as a basis for the h-, p- and hp-strategies of the present work. In particular, the
prolongation operator leverages, in an intermediate step, the higher order potential reconstruction defined
by the HHO discretization. This operator allows the gain of one additional degree in the approximation of
the error during the intergrid transfer. However, the degree is lowered back to its original value at the end
of the prolongation operation in order to preserve the same value at all multigrid levels. Although this trick
brings a significant improvement of the convergence rate of the multigrid method (see [12, Section 4.4.1]),
lowering back the degree at the end of the prolongation seems to be a waste of possibly valuable higher-order
information. One can then legitimately wonder whether the reconstruction of higher degree could be better
exploited in a context of p-multigrid, where the extra degree could be preserved after prolongation. This idea
is at the origin of the alternative strategies discussed in this work. They consist in using the prolongation
operator designed for h-coarsening also when p- and hp-coarsening are employed, i.e., when two successive
levels do not hold on to the same polynomial degree.

The paper is organized as follows. Section 2 first introduces the diffusion equation with piecewise constant
permeability tensor as a model problem, then recalls its HHO discretization and the assembly of the discrete
problem. Section 3 defines the multigrid ingredients, especially the interlevel transfer operators used to build
the method. The term “interlevel transfer operators” is used to cover both the h- and p-multigrid cases. In
Section 4, we define the high-order strategies we consider. In short, they correspond to the combination of
interlevel transfer operators and a global coarsening strategy defining problem reductions with respect to
h, p and hp. In the numerical tests of Section 5, the various strategies are compared on different 2D and
3D test cases with practical, moderate orders of approximation. Structured, unstructured and non-nested
mesh hierarchies are used. The multigrid method is employed both as a solver and as a preconditioner
to a Krylov iteration. Finally, the concluding Section 6 presents guidelines for the best strategy for each
test case. In particular, if the setup is neglected, we find that, in the majority of cases, the most efficient
one is found amongst the most intuitive strategies, namely, h-multigrid only and p-multigrid on top of
h-multigrid at low order. Strategies designed to take advantage of the high-order reconstruction without
subsequent degree reduction seem unrewarding in practice. Even though they can sometimes prevail, the
gap measured with the other strategies is in general not large enough to be significant. Nonetheless, the
strategy involving simultaneous hp-coarsening can prove to be useful if the setup cost cannot be neglected.
Besides these conclusions, insofar as all strategies yield an optimal solver, the provided numerical results also
offer important insight about the practical computational cost behind the solution of large scale problems
and give estimations of what can be achieved.

2 Model problem and HHO discretization
2.1 The diffusion problem

Let Ω ⊂ Rd, d ∈ {2, 3}, be an open, connected, bounded polyhedral domain with boundary ∂Ω. We consider
the following boundary value problem: Find u : Ω→ R such that{

−∇ · (K∇u) = f in Ω,
u = 0 on ∂Ω,

(2.1)

where f : Ω → R denotes the source function and the permeability tensor K : Ω → Rd×d is assumed to be
symmetric, uniformly positive definite and piecewise constant over a fixed partition of Ω into polyhedra.
2.2 Mesh definition and notation
Let the coupleMh := (Th,Fh) define a mesh of the domain Ω, i.e., Th is a set of open, polyhedral elements
such that

⋃
T∈Th

T = Ω, Fh is the set of element faces, and h := maxT∈Th
hT with hT denoting the diameter

of T . The mesh is assumed to match the geometrical requirements of [9, Definition 1.4]. Fh is split into two
disjoint subsets: FB

h , collecting the boundary faces lying on ∂Ω, and F I
h, collecting the faces located in Ω.

For all T ∈ Th, we collect into FT the faces of T . Reciprocally, for all F ∈ Fh, TF collects the elements that
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admit F as a face. We also denote by nTF the unit vector normal to F pointing out of T . In the context
of problem (2.1), we further assume that the diffusion tensor K is constant over each element, and we let
KT := K|T for all T ∈ Th, as well as KTF := KTnTF · nTF for all F ∈ FT . Finally, for all X ∈ Th ∪Fh, we
denote by (·, ·)X the standard inner product of L2(X) or L2(X)d.
2.3 Local and broken polynomial spaces
The HHO method hinges on discrete unknowns representing polynomial functions local to elements and
faces. So, for all m ∈ N0 and all T ∈ Th (resp. F ∈ Fh), we denote by Pm(T ) (resp. Pm(F )) the space
spanned by the restriction to T (resp. F ) of d-variate polynomials of total degree ≤ m. From these local
polynomial spaces, we can construct the following broken polynomial spaces, respectively supported by the
mesh and its skeleton:

Pm(Th) := {vTh
:= (vT )T∈Th

| vT ∈ Pm(T ) ∀T ∈ Th} ,
Pm(Gh) := {vGh

:= (vF )F∈Gh
| vF ∈ Pm(F ) ∀F ∈ Gh} for all Gh ⊂ Fh.

Typically, the latter space will be used with Gh = Fh and Gh = FT for T ∈ Th. For all X ∈ Th ∪Fh, denote
by πmX : L2(X)→ Pm(X) the L2-orthogonal projector onto Pm(X) such that for all v ∈ L2(X),

(πmXv, w)X = (v, w)X ∀w ∈ Pm(X). (2.2)

2.4 Discrete formulation
We suppose given the polynomial degree k ∈ N0. The global and local spaces of hybrid variables are
respectively defined as

Ukh :=
{
vh = (vTh

, vFh
) ∈ Pk(Th)× Pk(Fh)

}
,

UkT :=
{
vT = (vT , vFT

) ∈ Pk(T )× Pk(FT )
}
∀T ∈ Th.

For any vh ∈ Ukh, we denote by vT ∈ UkT its restriction to T ∈ Th. The homogeneous Dirichlet boundary
condition is strongly accounted for in the following subspaces:

Pk,0(Fh) :=
{
vFh
∈ Pk(Fh) | vF = 0 ∀F ∈ FB

h

}
, Ukh,0 := Pk(Th)× Pk,0(Fh).

The global HHO bilinear form associated to the variational formulation of problem (2.1) is ah : Ukh×Ukh → R
such that ah(uh, vh) :=

∑
T∈Th

aT (uT , vT ) where, for all T ∈ Th, the local bilinear form aT : UkT × UkT → R
is defined as

aT (uT , vT ) := (KT∇pk+1
T uT ,∇pk+1

T vT )T + sT (uT , vT ).
In this expression, the first term is responsible for consistency while the second is required to ensure stability
of the scheme. The consistency term involves the local potential reconstruction pk+1

T : UkT → Pk+1(T ), defined
such that, for all vT ∈ UkT , pk+1

T vT satisfies
(KT∇pk+1

T vT ,∇w)T = −(vT ,∇ · (KT∇w))T +
∑
F∈FT

(vF ,KT∇w · nTF )F ∀w ∈ Pk+1(T ),

(pk+1
T vT , 1)T = (vT , 1)T .

(2.3a)

(2.3b)

Given the local interpolate vT ∈ UkT of a function v ∈ L2(Ω), pk+1
T reconstructs an approximation of v of

degree k + 1, i.e., one degree higher than the element or face components. The stabilization bilinear form
sT depends on its argument only through the difference operators δkT : UkT → Pk(T ) and δkTF : UkT → Pk(F )
for all F ∈ FT , respectively defined such that, for all vT ∈ UkT ,

δkT vT := πkT (pk+1
T vT − vT ) and δkTF vT := πkF (pk+1

T vT − vF ) for all F ∈ FT .

These operators capture the higher-order correction that the reconstruction pk+1
T adds to the element and

face unknowns, respectively. A classical expression for sT : UkT × UkT → R is

sT (vT , wT ) :=
∑
F∈FT

KTF

hF
((δkTF − δkT )vT , (δkTF − δkT )wT )F .
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The global discrete problem then reads

Find uh ∈ Ukh,0 such that ah(uh, vh) =
∑
T∈Th

(f, vT )T ∀vh ∈ U
k
h,0. (2.4)

2.5 Assembly
The choice of basis functions for the local polynomial spaces defines the local contributions for the assembly
of the algebraic problem corresponding to (2.4). For all T ∈ Th, those contributions are, respectively for the
left- and right-hand side, the matrix AT and the vector BT such that

AT :=
(

ATT ATFT

AFTT AFTFT

)
, BT :=

(
bT
0

)
, (2.5)

in which the unknowns have been numbered so that element unknowns come first and face unknowns follow.
We refer to [9, Appendix B] for further details. Assembly of the local contributions and enforcement of the
Dirichlet condition by elimination of the boundary unknowns yield the global linear system(

AThTh
AThFI

h

AFI
h
Th

AFI
h
FI

h

)(
vTh

vFI
h

)
=
(

bTh

0

)
. (2.6)

Note that AThTh
is block-diagonal, with the blocks (ATT )T∈Th

. It is therefore inexpensive to invert, which
is advantageously used in the so-called process of static condensation. Indeed, the element unknowns can be
expressed in terms of the face unknowns in the first equation of (2.6), yielding

vTh
= −A−1

ThTh
AThFI

h
vFI

h
+ A−1

ThTh
bTh

, (2.7)

i.e.,
vT = −A−1

TTATFT
vFT

+ A−1
TTbT ∀T ∈ Th, (2.8)

where vT denotes the restriction to T of vTh
, and vFT

the restriction of vFI
h
to the faces of T interior to

the domain, completed by zeros for boundary faces. Finally, replacing vTh
with its expression (2.7) in the

second equation of (2.6) gives the so-called trace or condensed system

ÃvFI
h

= b̃ where Ã := AFI
h
FI

h
−AFI

h
Th

A−1
ThTh

AThFI
h
, b̃ := −AFI

h
Th

A−1
ThTh

bTh
. (2.9)

Solving (2.9) for the face unknowns is the costliest operation and the purpose of our multigrid methods,
after which the element unknowns can be locally and independently recovered via (2.8).

3 Multigrid ingredients
3.1 Multilevel hierarchy
Assume a multigrid hierarchy of L levels indexed by ` ∈ {1, . . . , L} and sorted so that L refers to the finest
level and 1 to the coarsest one. For each level ` ∈ {1, . . . , L}, denote by h` the corresponding mesh size. For
the sake of simplicity, the quantities so far subscripted by h are now simply subscripted by ` instead of h`,
so we denote byM` := (T`,F`) instead ofMh`

:= (Th`
,Fh`

) the mesh at level `. Finally, denote by k` the
HHO polynomial degree at level `. Relative to those levels, consider a hierarchy of (not necessarily nested)
polyhedral meshes (M`)`∈{1,...,L} satisfying the requirements of Section 2.2. Considering two successive
levels ` (fine) and `−1 (coarse), the coarsening principles impose that k`−1 ≤ k` and h`−1 ≥ h`. Specifically,
we distinguish three coarsening strategies:

• k`−1 < k` andM`−1 =M` (p-coarsening),

• k`−1 = k` and h`−1 > h` (h-coarsening),

• k`−1 < k` and h`−1 > h` (hp-coarsening).

We further assume that mesh coarsening not only involves the coarsening of the elements, but also that of
the faces; see [12, Section 4.4.3] for details and justifications.
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3.2 Interlevel transfer operators
In this section, we consider two successive levels ` (fine) and `− 1 (coarse), and define various prolongation
and restriction operators.
3.2.1 Prolongation by decondensation (for h-, p- and hp-coarsening)
The prolongation operator employed in our previous works [12, 13] in the context of h-multigrid is here
extended to the cases where k` > k`−1 and/orM`−1 =M`, in order to handle p- and hp-coarsening as well.
Its philosophy and construction remain unchanged, and hinge on a sequence of operations: decondensation
of the cell unknowns to reconstruct a potential in the cells from values on the coarse faces; increase of the
polynomial degree via the higher-order reconstruction operator; transfer to the fine mesh; trace on the fine
faces. This sequence is formalized by the definition of the following operators:

• Θk
` : Pk(F`)→ Pk+1(T`) for all ` and k:

Let vF`
∈ Pk(F`) denote the argument of Θk

` . For all T ∈ T`, let us denote by vFT
:= (vF )F∈FT

the
restriction of vF`

to T , and by vFT
:= (vF )F∈FT

its algebraic representation as vectors of coefficients
in the chosen polynomial bases. With these notations, we define the algebraic volumic potential vT by
reversing the static condensation, i.e. via (2.8) without the constant term:

vT := −A−1
TTATFT

vFT
. (3.1)

Once the potential vT ∈ Pk(T ) is retrieved from (3.1) via its algebraic representation, we improve its
accuracy through the higher-order reconstruction operator pk+1

T defined by (2.3). The local contribution
to Θk

` is therefore given by
(Θk

` vF`
)|T := pk+1

T (vT , vFT
). (3.2)

• Jk`−1,` : Pk(T`−1)→ Pk(T`) for all ` and k:
This operator handles the transfer from the coarse to the fine cells without altering the polynomial
degree. If the meshes are nested, then Jk`−1,` is merely defined as the natural injection operator, induced
by the embedding of the function spaces. In particular, if both meshes are identical (p-coarsening), it
reduces to the identity. If the meshes are non-nested, we define Jk`−1,` as the L2-orthogonal projector
onto Pk(T`).

• Πk,k′

` : Pk(T`)→ Pk′,0(F`) for all `, k, k′:
Let v := (vT )T∈T`

∈ Pk(T`) denote the argument of Πk,k′

` . Let F ∈ F` and, if F ∈ F I
` , let T1, T2 denote

the distinct elements in TF ⊂ T`. The local contribution of F corresponds to a weighted average of the
traces of degree k′ computed on both sides of F :

(Πk,k′

` v)|F :=
{
wT1F π

k′

F (vT1|F ) + wT2F π
k′

F (vT2|F ) if F ∈ F I
` ,

0 otherwise,
(3.3)

with the weighting values wTiF := KTiF

KT1F +KT2F
for i ∈ {1, 2}. Note that, if k ≤ k′, πk′F corresponds to

the natural injection. The degree is actually reduced only if k > k′.

We refer the reader to [12, 13] for more details about these operators. The prolongation operator by decon-
densation P : Pk`−1,0(F`−1)→ Pk`,0(F`) is defined as

P := Πk`−1+1,k`

` ◦ Jk`−1+1
`−1,` ◦Θk`−1

`−1 . (3.4)

The definition of P is represented in Figure 1. In this composition, we start at the coarse level ` − 1, from
face-defined polynomials of degree k`−1. The application of Θk`−1

`−1 results in a broken cell-defined polynomial
of degree k`−1 + 1. Jk`−1+1

`−1,` operates its transfer to the fine meshM` (possibly equal toM`−1, in which case
J
k`−1+1
`−1,` is the identity). Finally, Πk`−1+1,k`

` defines polynomials of degree k` on the fine faces. Notice that,
in the case of p- or hp-coarsening, k`−1 +1 ≤ k`, so no degree reduction is performed in (3.3). The use of this
operator with p- and hp-coarsening then gives rise to novel strategies in which, unlike with h-coarsening, no
information is lost in the degree reduction. These strategies are discussed in Section 4.
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Pk`−1(F`−1)

Pk`−1+1(T`−1) Pk`−1+1(T`)

Pk`(F`)

Θk`−1
`−1

J
k`−1+1
`−1,`

Πk`−1+1,k`

`

P

Figure 1: The prolongation operator P by decondensation.

3.2.2 Prolongation by natural injection (for p-coarsening only)
In p-coarsening, we work with the same mesh at both levels so that, in particular, F`−1 = F`. Then,
k`−1 < k` implies Pk`−1(F ) ⊂ Pk`(F ) for all F ∈ F`−1, which justifies the natural injection operators

I
k`−1,k`

F : Pk`−1(F ) 3 v 7→ v ∈ Pk`(F ) ∀F ∈ F`−1. (3.5)

The global prolongation operator by natural injection Ik`−1,k` : Pk`−1(F`−1)→ Pk`(F`) is locally defined for
all v ∈ Pk`−1(F`−1) by

(Ik`−1,k`v)|F := I
k`−1,k`

F (v|F ).

3.2.3 Restriction by adjoint (for h-, p- and hp-coarsening)
The restriction operator is defined as the adjoint of the prolongation operator with respect the coarse and fine
skeleton-defined inner products. Consequently, the matrix representation of the restriction is the transpose
of the matrix representation of the prolongation.
3.2.4 Restriction by L2-orthogonal projection (for p-coarsening only)

p-coarsening implies F`−1 = F`, and we denote by πk`,k`−1 : Pk`(F`) → Pk`−1(F`−1) the L2-orthogonal
projector defined such that for all F ∈ F`−1 and all v ∈ Pk`(F`), (πk`,k`−1v)|F := π

k`−1
F (v|F ), with π

k`−1
F

verifying (2.2). It is interesting to notice that πk`,k`−1 is the adjoint operator of the natural injection Ik`−1,k`

w.r.t. the L2-inner product on the mesh skeleton. Indeed, for all F ∈ F`,

(πk`−1
F v, w)F

(2.2)= (v, w)F
(3.5)= (v, Ik`−1,k`

F w)F ∀(v, w) ∈ Pk`(F )× Pk`−1(F ).

3.3 Smoothers
In order to relax together the set of unknowns related to the same local polynomial, block versions of
standard fixed-point methods are used. Block Jacobi, block SOR and their derivatives are typical choices.
In our numerical tests, we use block Gauss–Seidel. The block size corresponds to the number of degrees of
freedom per face, which is given, for each level `, by

dim(Pk`(F )) = (k` + d− 1)!
k`! (d− 1)! .

Notice that the block size depends on the multigrid level and the coarsening method. If level `−1 is obtained
from level ` by p-coarsening, then the block size at level ` is relative to k` and the block size at level ` − 1
is relative to k`−1 < k`. Considering a 3D example with k` = 3 and k`−1 = 1, the block sizes shall be 10 at
level ` and 3 at level ` − 1. On the contrary, if only h-coarsening is used, then k` remains constant across
the multigrid levels, and so does the block size.
3.4 Efficient implementation with hierarchical, L2-orthogonal bases
As pointed out in [5], the implementation of the p-multigrid part of the algorithm can be optimized by
using modal, hierarchical, and L2-orthogonal local polynomial bases on the faces. Assume k` > k`−1 and
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M`−1 = M`. Let F ∈ F`. Suppose Bk`

F a hierarchical, orthogonal basis of Pk`(F ). The hierarchical
structure allows us to extract from Bk`

F the basis functions of degree at most k`−1 to obtain a basis Bk`−1
F of

Pk`−1(F ) with the same properties. Let nk`
:= card(Bk`

F ) and nk`−1 := card(Bk`−1
F ). The following efficient

implementations are then possible:

1. Natural injection: given v ∈ Pk`−1(F ) and v ∈ Rnk`−1 the vector of coefficients in the decomposition of v
on the modal basis Bk`−1

F , the algebraic representation of Ik`−1,k`

F v is obtained by simply extending v to
Rnk` , via the padding of (nk`

−nk`−1) zero coefficients. This operation can then be applied dynamically
without any storage or preliminary construction in a setup phase. Note that this implementation only
hinges on the basis being hierarchical, orthogonality is not requested.

2. L2-orthogonal projection: reciprocally, given v ∈ Pk`(F ) and v ∈ Rnk` the vector of coefficients in
the decomposition of v on the modal basis Bk`

F , the algebraic representation of πk`−1
F v is obtained

by shrinking v to a size of nk`−1 , i.e. by discarding the coefficients corresponding to the degrees
> k`−1. Like the preceding operator, the projection can then also be applied on the fly, without setup.
This implementation hinges on the orthogonality of the basis functions, and is easy to prove via the
orthogonal direct sum Pk`(F ) = Pk`−1(F )

⊕
span(Bk`

F \ B
k`−1
F ).

3. Assembly of the coarse matrix: instead of resorting to the rediscretization of the equation at the
order k`−1, for the same reasons as for the L2-orthogonal projection, it suffices to discard the high-
order coefficients in the matrix of level `. It corresponds to extracting the top-left corner of size
nk`−1 × nk`−1 from each original block of size nk`

× nk`
. One can remark that the matrices of both

the natural injection and the L2-orthogonal projection are rectangular identity matrices (one being
the transpose of the other), so, in the case where they are both used as transfer operators, the coarse
matrix also corresponds to the Galerkin operator. The two-grid scheme is then in the configuration of
the variational framework, ensuring convergence.

3.4.1 Practical implementation of suitable polynomial bases
First of all, recall that the above optimizations require only the face polynomial bases to be hierarchical
and orthogonal. In principle, the bases for the elements do not have to be. However, in the presence of
distorted elements, non-orthogonal bases may dramatically affect the condition number of the matrix. In
this case, or if high precision is required from the approximation, using orthogonal bases for the elements is
also recommended.

An orthogonal basis can be locally constructed by applying the Modified Gram-Schmidt (MGS) algorithm
(w.r.t. the local L2-inner product) to an initial hierarchical basis composed of Cartesian products of local
monomials. Note that MGS also performs normalization, which means that the basis functions are scaled
according to the size of the element in which they are defined. This can, in fact, raise numerical issues in the
simultaneous presence of large and comparatively small elements, which typically happens when the mesh
is locally refined. Although we find that the normalization has little effect on the condition number, the
scaling of the basis functions is strongly affecting the convergence properties of our multigrid method in the
presence of aggressive local refinement. To maintain a scaling of the basis functions that is suited for the
multigrid algorithm, we employ MGS without the normalization step.

The local orthogonalization of the bases induces additional computational cost. Besides the actual or-
thogonalization process, the computation of the integrals during assembly requires more work. Indeed, the
basis functions are defined as linear combinations of the non-orthogonal, initial polynomials. Consequently,
in an implementation with quadrature, the evaluation of a basis function on a quadrature point implies the
evaluation of all the initial polynomials occurring in the linear combination. That said, the cost can be
reduced significantly with more efficient quadrature-free methods. We especially refer to [11, Section 5.3].
Nonetheless, to avoid extra cost, one should use an already orthogonal basis whenever possible. Especially,
the Legendre basis is L2-orthogonal on the unit interval. It can then be used on the faces of 2D problems
(edges) and, in the form of tensor products, on shapes that can be mapped to Cartesian reference shapes.
It typically includes, in 2D, quadrilateral elements, and in 3D, quadrilateral faces and hexahedral elements.
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4 High-order multigrid strategies
4.1 Multigrid algorithms under consideration
Suppose a fixed hierarchy of M meshes, which will serve for the implementation of (M − 1) h-coarsening
operations. Note that the term of h-coarsening does not refer to how the mesh hierarchy is actually built. It
refers in an abstract way to the relation linking a fine mesh to its immediately coarser one in the hierarchy.
Consequently, we speak of h-coarsening between two meshes even if the fine one was obtained by refinement
of the coarse one. We assume that the problem assembled on the coarsest mesh is small enough for the linear
system to be solved directly, regardless of the polynomial degree. We then consider three types of strategies
according to the successive coarsening operations they perform to build the coarse multigrid levels, starting
from the fine problem:

• “h only”: one multigrid level is built for each mesh in the hierarchy, meaning that M levels are built,
linked by (M − 1) h-coarsening operations. The original polynomial degree is conserved at every level.

• “p then h”: first, p-coarsening is successively performed to construct a first set of levels. Once the
polynomial degree has been reduced to k = 1, the mesh hierarchy is used to build further coarse levels.

• “hp then h”: first, hp-coarsening is used to simultaneously lower the degree and coarsen the mesh.
Then, assuming that k = 1 is reached before exhausting the mesh hierarchy, the remaining meshes
are used to construct further coarse levels. This assumption is usually verified in practice for large
problems and moderate values of the original polynomial degree.

In what follows, h-coarsening is realized by successively doubling the mesh size. Concerning p-coarsening,
multiple p-multigrid algorithms have shown that it is not necessary to lower the degree by only one at each
step. Decreasing the degree more aggressively [4,5, 14,18,25], or even going directly to the low order in one
single p-coarsening step [22], often proves to be more efficient. In the present multigrid method, we have
empirically identified that the best performance with p-multigrid seems to be achieved when lowering the
degree by two. In case of “p then h” coarsening, we then enforce k`−1 := max{k` − 2, 1} for the p- part.
However, in case of the naturally more aggressive hp-coarsening, we only decrement the degree by one at
each step, i.e. k`−1 := k` − 1.

When two successive levels do not share the same mesh, i.e., in case of h- or hp-coarsening, we use the
prolongation P constructed by decondensation (cf. Section 3.2.1). The associated restriction operator, in this
case, is its adjoint (cf. Section 3.2.3). Otherwise, when the levels are linked by p-coarsening, we explore two
possibilities: (i) the prolongation by natural injection Ik`−1,k` (cf. Section 3.2.2) along with the restriction by
L2-orthogonal projection πk`,k`−1 (cf. Section 3.2.4); (ii) the prolongation by decondensation P along with
its adjoint. These settings define four global strategies, summarized in Table 1. Note that not all possible
combinations are considered. We have retained only those that can ensure the symmetry of the multigrid
operator. The strategies of Table 1 are represented in Figure 2 on an example with k = 3 and a hierarchy of
four meshes.

p-coarsening h- or hp-coarsening
Strategy name Coarsening Degree reduction prolong. restrict. prolong. restrict.

h-only h only 0 P P>

p-h p then h 2 Ik`−1,k` πk`,k`−1 P P>

p-h* p then h 2 P P> P P>

hp-h hp then h 1 P P>

Table 1: High-order multigrid strategies. The column “Coarsening” refers to the coarsening algorithm
followed to successively construct the coarse multigrid levels from the fine one. The third column quantifies
the “Degree reduction” between two successive levels ` and ` − 1 linked by p- or hp-coarsening: the value
corresponds to m in the enforced relation k`−1 := max{k` − m, 1}. The remaining columns on the right
indicate the prolongation and restriction operators used in case of p-coarsening on one hand, and h- or
hp-coarsening on the other hand.
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Figure 2: The multigrid strategies of Table 1, given a fine problem with k = 3 and a hierarchy of four meshes.
The black, connected dots correspond to the multigrid levels, the uppermost rightmost one representing
the finest level. The most relevant prolongation operators are also plotted. As such, the operator P is
decomposed according to the suboperators in (3.4), where the subscripts related to levels have been omitted
for readability. Superscripts, related to degrees, are however conserved. Blue arrows raise the degree, red
ones decrease it, and dotted black ones have no effect on the degree.

4.2 Interpretation
While h-only and p-h (see Table 1) correspond to the most classical and intuitive options, p-h* and hp-h
are more original. Both these alternatives are designed to circumvent the loss of information induced by
the use of the higher-order reconstruction in the operator P in the original h-only strategy. Indeed, if the
reconstruction of polynomials in the cells (performed by Θk`−1

`−1 ) raises the degree to k`−1+1, it is lowered back
to k`−1 in the trace operation on the fine faces (performed by Πk`−1+1,k`

` , where k` = k`−1); see Figure 2a.
Although this trick ultimately improves the accuracy of the trace of degree k`−1, one might wonder whether
preserving the higher degree k`−1 + 1 on the trace could be more efficient. This supposes that the fine level
be associated to a degree greater or equal to k`−1 +1. If so, either the fine level also has a finer mesh, yielding
the strategy hp-h (see Figure 2d), or it has the same mesh (i.e. p-coarsening only is enforced), yielding p-h*
(see Figure 2c).

We can also interpret p-h* with respect to p-h. In the p part of p-h, each local polynomial of degree
k`−1 is simply injected identically into a larger polynomial space, namely, of degree k`−1 + 2 (recall that in
our configuration, a reduction of 2 degrees is performed between level ` and level `− 1); see Figure 2b. This
injection leaves the burden of solving for the two degrees separating the levels to the fine grid smoother.
On the other hand, the operator P that is used in p-h* instead of the natural injection actually offers the
computation of one degree of approximation higher. Thus, here, only one polynomial degree needs to be
handled by the fine smoother. However, P does not deliver on the fine level an identical representation of
the coarse function, which may have negative consequences. The numerical experiments of Section 5 indeed
show that p-h* is usually less efficient than p-h.

hp-h can be similarly interpreted with respect to h-only. While in h-only, the reconstructed higher
degree is lowered back, it can be conserved in hp-h, which may counterbalance the elevated aggressiveness
of the hp-coarsening. The numerical tests of Section 5 show that hp-h sometimes prevails over h-only.

5 Numerical tests
5.1 Experimental setup and implementation
The multigrid strategies described in Section 4 and summarized in Table 1 are used to solve the condensed
linear system (2.9), either as a solver or as a preconditioner for a Krylov method. The smoother used at every
level is the block Gauss–Seidel method, with block size corresponding to the number of unknowns per face (cf.
Section 3.3). Following the recommendations of [12, Section 4.2.2], we use V-cycle with post-smoothing only.
In particular, we use V(0,3) in 2D and V(0,6) in 3D, which have been found to optimize the performance
of the multigrid method (in terms of computational work and execution time). These unsymmetrical cycles
prevent the use of the standard conjugate gradient (CG) as outer iteration. Instead, such a nonsymmetric
preconditioner may be used in a flexible conjugate gradient (FCG), as justified in [6]. We stress that we
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obtain significantly better performance with our unsymmetrical cycles and FCG than with symmetrical
cycles and CG. We then choose FCG (see [20] for the detailed algorithm) as outer Krylov method for the
use of our multigrid method as a preconditioner. Denoting by ri the algebraic residual of (2.9) at iteration
i and || · ||2 the Euclidean norm on the space of coefficients, the solver stops when ||ri||2/||b̃||2 is lower than
a given tolerance.

Our software uses shared-memory parallelism with a maximum of 24 parallel threads. Parallel execution
is employed in the assembly and the setup phase of the algorithm, since here only local computations are
performed. Specifically, this applies to the following operations: (i) the assembly of the coarse matrices
obtained by rediscretization of the problem on the coarse meshes in the context of h- and hp-coarsening;
(ii) the extraction of the coarse matrices from the fine one when performing p-coarsening using orthogonal
bases; (iii) the assembly of the prolongation operators P (3.4); (iv) the factorization of the diagonal blocks
of the operators for future use in the block Gauss–Seidel iterations. Note that, assuming orthogonal bases,
the prolongation by natural injection and the restriction by L2-orthogonal projection do not need any setup
(cf. Section 3.4).

The block Gauss–Seidel smoother, however, is an inherently sequential algorithm. We have therefore
chosen to adhere to the sequential ordering to avoid the situation that the convergence rates could depend
on the specific parallelization strategy. This is necessary, since the main purpose of this current study is to
compare high-order solution strategies independently of parallelization issues. To this end, we have defined
metrics of computational cost that do not depend on the specific implementation and parallelism: theoretical
computational work and number of iterations. As a complement to this, we will also cite CPU times.

The theoretical computational work is expressed in work units (WUs), where one WU amounts to the
number of flops involved in one application of the fine grid matrix (namely, twice the number of non-zeros
in the matrix). The number of WUs can be interpreted, for instance, as the cost corresponding to the same
number of Richardson iterations. This notion of a WU is commonly used in the multigrid literature to
express the performance of an algorithm in light of the textbook multigrid efficiency [7,27]. In particular, the
textbook paradigm quantifies the unspecified constant in the optimality property. According to Brandt [7],
an ideal multigrid algorithm should solve a system with an algebraic error below the discretization error for
a computational cost no higher than 10 WUs.
5.2 Square domain, Cartesian mesh
To establish a baseline, let us start with the square domain Ω := [0, 1]2, discretized by a uniform, Cartesian
mesh. The tensor K is the identity matrix. The source function f is computed with respect to the exact
solution u : [0, 1]2 3 (x, y) 7→ sin(4πx) sin(4πy). The problem is discretized by the HHO method with k = 5.
At this high degree, a mesh of 128 × 128 square elements is enough to achieve an L2-error lower than
10−12, close to machine precision. The mesh hierarchy is composed of four embedded Cartesian meshes.
Orthogonal Legendre polynomials are chosen as local polynomial bases for both cells and faces, which allows
the optimizations described in Section 3.4.

The multigrid method is employed as a solver to solve the condensed linear system (2.9), using each of
the strategies of Table 1. The tolerance defining the stopping criterion is set to 10−12, in accordance with
the discretization error. Figure 7 presents bar plots that compare the performance of the various strategies.
In (a), the computational work of the iteration phase is expressed in equivalent number of WUs. In (b),
this work is measured in terms of CPU time. In (c), the convergence is evaluated in terms of the number of
iterations to reach convergence. In (d), the setup cost is measured in CPU time. Table (e) gives additional
information about the multigrid method, namely, the number of levels built and the asymptotic convergence
rate %, defined as the geometric mean of the residual convergence ratios of the last five iterations:

% := 5

√
||rn||2
||rn−5||2

,

n denoting the last iteration. Finally, plot (f) stresses the robustness of the convergence of the methods with
respect to the mesh size.

First, one can see that the results of the iteration phase in computational work and CPU time are
consistent, yielding the same ranking. In particular, p-h (in red) is found to be the most computationally
efficient strategy, with about half the theoretical cost of the h-only strategy (in blue). Clearly, this is due to
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its better convergence rate (see plot (c)). Second, plot (d) shows that p-h also has the cheapest setup, due
to the fact that (i) the levels issued from the p-coarsening operations do not need rediscretization (the coarse
matrices are extracted from the fine one), (ii) the three rediscretizations performed after the h-coarsenings
are made at the low order k = 1, and (iii), the transfer operators between levels related by p-coarsening
do not require any setup. In comparison, the h-only strategy rediscretizes the problem three times on the
coarse meshes at the high order k = 5, which is costlier, and the respective prolongation operators P also
have to be built at that high order. Next, one can remark that the strategy p-h* does not seem to pay
off. One could have expected the operator P , here used for p-multigrid, to have a greater impact. Indeed,
while the natural injection leaves the burden of solving the two polynomial degrees separating the levels to
the fine smoother, the operator P actually offers the computation of one degree of approximation higher,
leaving only one remaining degree to be handled by the fine smoother.

Although the lowest possible discretization error is already achieved, the mesh is refined multiple times
to increase the problem size in order to exhibit the asymptotic behaviour of the solver. The flat curves of
Figure 7f clearly show the optimality of each method, the convergence rates of which are independent of the
number of unknowns.

Figure 8 presents the analogous information as Figure 7, this time using the multigrid method as a
preconditioner for FCG. Note that the number of iterations displayed here corresponds to the iterations of
the preconditioned FCG solver. One can see that the strategy rankings of Figure 7 are preserved and that
the overall computational cost is reduced. In particular, the linear system is solved to machine precision with
a computational work corresponding to about 65 WUs. This is significantly higher than what is expected
for classical textbook multigrid efficiency (TME), which suggests that 10 WUs should suffice to solve the
linear system. However, e.g. [27, p. 318] states that, in many cases, solvers require an order of magnitude
higher cost than the ideal goal of 10 WUs. In our case, additional difficulties arise because of the high order
of the discretization, the face-based nature of the system, and the correspondingly more complex matrix
structure. This makes it unclear whether TME with 10 WUs could be achieved. Note also that 10 WUs
are only claimed for multigrid when used in a full multigrid setting (i.e. a nested iteration), when the initial
guess is recursively computed by multigrid employed on a coarser level. In our current experiments, we only
use V-cycles that are insufficient to reach TME. We point out, however, that TME has been attained, e.g.,
in [16] for conforming 3D discretizations.

Having here a fast higher order solver at our disposal, we take this opportunity to emphasize the im-
portance of using high order in the global solution process, when the exact solution is smooth. Figure 3a
presents, for each value of k ∈ {2, 3, 4, 5}, how finely the unit square must be decomposed by Cartesian
elements (and how large the resulting linear system must be) to achieve an L2-error < 10−12. Clearly, the
higher the polynomial degree, the coarser the mesh and the smaller the linear system. Figure 3b illustrates
the time spent solving each of those problems, including initial assembly and setup, using the FCG solver
preconditioned by the multigrid method with strategy p-h. It shows that, for approximations resulting in
equivalent L2-errors, high orders have a clear advantage over low ones in terms of global time to solution. As
a consequence, if the solution is smooth, raising the order of approximation is more efficient to improve the
solution quality than refining the mesh, but of course this requires that a suitable and efficient solver is avail-
able. If the solution is non-smooth, the higher orders cannot be fully exploited and their effect is mitigated
(cf. Section 5.4 and Figure 5). A classical solution consists in resorting to posteriori-driven adaptivity.
5.3 Square domain, unstructured triangular mesh
Using the problem settings of the preceding test case, the square domain is now discretized by a Delaunay
triangulation. The initial triangulation is refined until the mesh is fine enough for the approximate solution
to achieve an L2-error lower than 10−12. Setting k = 5, the fine mesh is composed of about 11,000 elements,
for a system size of about 100,000 rows. The mesh hierarchy obtained (three meshes) is used to model the
operations of h-coarsening in the multigrid method. The polynomial bases are chosen as the orthogonal
Legendre basis on the faces (here, edges) and, in the elements, local monomials are orthogonalized element-
wise (cf. Section 3.4.1).

Figure 9 presents the numerical results of the different strategies when the multigrid method is used as a
solver. The ranking, here, differs from that of the preceding test case with Cartesian meshes, The change of
element type seems to favour the strategies prioritizing mesh coarsening, namely, h-only and hp-h. Note
that they are also the ones with the costliest setup, due to the rediscretizations at high orders on the coarse
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k Mesh size Elements Unknowns
2 h 10242 6,285,312
3 2h 5122 2,093,056
4 4h 2562 652,800
5 8h 1282 195,072

(a) For each value of k, Number of Cartesian elements and
respective number of unknowns in the system
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(b) Time to achieve equivalent L2-errors for various values
of k, w.r.t. the discretizations of (a)

Figure 3: Table (a) presents, for each value of k, how fine the unit square must be refined by Cartesian
elements (and how large the linear system must be) to achieve an L2-error < 10−12. Plot (b) shows, for
each of those problems, the time spent on initial assembly, setup of the multigrid solver (strategy p-h), and
solution of the system using the preconditioned FCG.

meshes. This makes them competitive only when the system needs to be solved many times. If the system
needs to be solved with one or few right-hand sides, then strategies leveraging p-coarsening have a clear
advantage. Moreover, one can remark the higher cost of the setup in comparison with Cartesian elements,
owing to the dynamic orthogonalization of the local polynomial bases.

Figure 10 presents the results of the multigrid method as a preconditioner. Note that the ranking given
by the computational work and the CPU time ((a) and (b), respectively) do not concur. For this reason, we
avoid drawing conclusions and recall the bias these results are subject to. First, the intergrid transfers of
the p-multigrid part of p-h perform no theoretical flops, although their execution does consume CPU time,
which makes the computational work of p-h more optimistic than its CPU time. This remark is nonetheless
to be mitigated by the fact that, in p-h , the intergrid transfers consumes less than 2% of the CPU time.
The second bias is the dependency of the CPU time on the implementation, contrary to the theoretical
computational work, which is objective. On the other hand, the CPU time usually reflects the practical
time to solution more accurately. Following this criterion, the ranking of the strategies follows that of the
multigrid used as a solver, i.e. a preference for h-only and hp-h.
5.4 Kellogg heterogeneous problem
The Kellogg problem is a well-known heterogeneous diffusion benchmark problem. The square domain is
partitioned into four quadrants (Ωi)i=1,...,4 such as in Figure 4a, and the diffusion coefficient K is such
that K|Ω1 = K|Ω3 = κ1I and K|Ω2 = K|Ω4 = κ2I, where I is the identity matrix and κ1, κ2 are positive
scalar values. The source function is f = 0. The discontinuities in the coefficient reduce the regularity of the
solution, which isH1+ε, 0 < ε ≤ 1. This low regularity makes it a difficult problem, often used as a benchmark
for adaptive element methods. Indeed, the exact solution is known. In our case, we follow [15, Example 5.4]
and refer to it for the solution’s analytical formula. In particular, the heterogeneity ratio is κ1/κ2 ≈ 161,
inducing ε = 0.1 and leading to the solution plotted in Figure 4b. Non-homogeneous Dirichlet conditions
are enforced on the boundary of the domain.

While the preceding test cases could be solved at machine precision with very few unknowns, the low
regularity of the Kellogg solution requires a finer mesh, corresponding to a larger problem size. In particular,
we use a hierarchy built by successive refinements of an unstructured mesh locally refined around the central
singularity (see Figure 4c), and set k = 5. The fine mesh has over 350,000 elements, producing over 3 million
unknowns. The L2-error reached with this setting is about 3.10−3. Figure 11 presents the numerical results
of the various high-order multigrid strategies to solve the system (cf. Table 1). Given the discretization
error, a tolerance of 10−3 would be sufficient. However, to stress the convergence of the algorithm, we set
it to 10−12. The rankings match those of the preceding test case (unit square with unstructured triangular
mesh), presenting h-only and, to a lesser extent, hp-h, as the most suitable alternatives if the setup can
be neglected. This tends to strengthen the hypothesis that unstructured triangular meshes favour strategies
that prioritize h-coarsening. In particular, h-only has clearly the best asymptotic convergence rate (0.27
versus about 0.40 or more for the other strategies; see (e)).
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Figure 4: Kellogg problem.

Figure 12 presents the results of the multigrid methods as preconditioners to FCG. As in the preceding test
case, the rankings provided by the computational work (a) and the iteration CPU time (b) are not consistent,
so we avoid drawing conclusions. That said, following the CPU time criterion, our implementation favors
again h-only and hp-h for use as preconditioners. Recall also that, surprisingly, while p-h* was more
efficient than p-h as a solver, it is the other way around when these strategies are used as preconditioners.

Figure 3 has shown the clear advantage of high order on the overall time to solution when the exact
solution is smooth. For the sake of comparison, Figure 5 reproduces the experiment on the Kellogg problem,
i.e. when the solution is non-smooth. Figure 5a presents, for each polynomial degree k ∈ {1, 2, 3, 4, 5}, the
coarsest mesh required (still obtained from successive refinements of an initial coarse mesh such as Figure 4c),
as well as the corresponding number of unknowns, to achieve an L2-error smaller than 5× 10−3. As there is
no distorted or stretched element, we simply use the monomial bases in cells and on faces to save up the cost
of the orthogonalization in this experiment. Figure 3b presents the overall time to solution (including initial
assembly and multigrid setup) to solve those problems. The system is solved using the h-only strategy
as a preconditioner (found to be the most efficient solver in computational time, setup excluded, for this
problem; see discussion above). The tolerance is set to 10−3, in accordance with the discretization error. As
a consequence, the solver converges in less than four iterations, which makes this step almost negligible. The
results here are more difficult to interpret than on the smooth test case because the L2-error is hard to reduce,
which means that a small decrease of the error may actually demand a lot of additional work. Consequently,
as the problems of Figure 5a do not generate exactly the same L2-errors, comparing their computational
costs under the assumption that they achieve equivalent L2-errors is somewhat erroneous. However, this
setting is enough to roughly illustrate the limitations of high orders. Considering the approximate solutions
yielded by all problems of equivalent quality, the problem with k = 3 is a sweet spot, and a better option
than k = 4 on the same mesh or k = 5 on a mesh with twice the mesh size. Furthermore, noticing that
problems with k = 1 and k = 4 in fact generate the same discretization error, one can see that it is more
efficient to choose k = 1 on a fine mesh than k = 4 on a coarser one.
5.5 Cubic domain, Cartesian mesh
Ω := [0, 1]3, discretized by an uniform, Cartesian mesh. The tensor K is homogeneous and isotropic.
The source function f is computed with respect to the manufactured solution u : [0, 1]3 3 (x, y, z) 7→
sin(4πx) sin(4πy) sin(4πz). The problem is discretized by the HHO method with k = 3 on a mesh composed
of 643 cubic elements, generating about 8 million unknowns. With this configuration, the approximation
achieves an L2-error of 3.10−7. The mesh hierarchy is composed of four embedded Cartesian meshes. Or-
thogonal Legendre polynomials are chosen as local polynomial bases for the cells and faces, which allows the
optimizations described in Section 3.4.

Figure 13 (resp. Figure 14) presents the results of the multigrid method used as a solver (resp. as a
preconditioner), with the various high-order strategies of Table 1. Clearly, as in 2D, the p-multigrid approach
prevails with Cartesian meshes.
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k Mesh size Unknowns L2-error
1 h 1,065,728 4.45× 10−3

2 2h 399,552 4.68× 10−3

3 4h 133,120 4.77× 10−3

4 4h 166,400 4.45× 10−3

5 8h 49,872 4.75× 10−3

(a) For each value of k, Number of Cartesian elements and
respective number of unknowns in the system
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(b) Time to achieve equivalent L2-errors for various values
of k, w.r.t. the discretizations of (a)

Figure 5: Table (a) presents for the Kellogg problem and for each value of k, how fine the unit square must
be discretized by Cartesian elements (and how large the linear system must be) to achieve an L2-error lower
than 5× 10−3. Plot (b) shows, for each of those problems, the time spent on initial assembly, setup of the
multigrid solver (strategy p-h), and solution of the system using the preconditioned FCG.

5.6 Cubic domain, structured tetrahedral mesh
This test case follows the settings of the preceding one, except for the mesh type, which is now tetrahedral.
The elements are arranged in a structured manner: the domain is uniformly subdivided in a Cartesian way,
where each cube is itself subdivided into six tetrahedra through the Kuhn triangulation (see [3, Figures 8 and
9]). This decomposition allows an easy and practical mesh coarsening, in the sense that halving the number
of cubes in the Cartesian decomposition results in a coarse mesh that embeds the fine one, with both meshes
comprising the same tetrahedral shapes, therefore the same aspect ratios. This way, we build a hierarchy
of six nested meshes, the finer one composed of 262,144 elements. With k = 3, the arising linear system
contains about 4 million unknowns and the approximation generates an error of 5.10−6. The monomials are
locally orthogonalized to allow the optimizations described in Section 3.4.

When the multigrid method is used as a solver, the results of Figure 15 favor the h-only strategy,
agreeing with the similar test case in 2D (cf. Section 5.3). As a preconditioner (Figure 16), h-only is still
favored by the CPU times of the iterations, although to a lesser extent.
5.7 3D complex domain, non-nested meshes
This test case is the complex geometry of a Geneva wheel with unstructured tetrahedral mesh, represented
in Figure 6a. The source f is a piecewise polynomial function. The main difficulty of this test case lies in the
construction of the mesh hierarchy. Indeed, proceeding by tetrahedral refinement of an initial coarse mesh
degrades the aspect ratio of the elements, causing bad performances of our multigrid method, highly sensitive
to the mesh quality (cf. [12, Section 4.5]). The use of non-nested meshes circumvents the problem. We then
use independent Delaunay triangulations of the domain, choosing the mesh sizes so that each pair of successive
meshes enforces a geometric coarsening ratio of two. In order to avoid prohibitive computational costs, the
L2-orthogonal projection Jk`−1,`, introduced for all k ≥ 0 in Section 3.2.1, is computed approximately via
the method described in [13, Section 3.3]. In particular, the strict definition of Jk`−1,` involves the evaluation
of the geometric intersections between all overlapping fine and coarse elements, which induces complex and
costly computations. Instead, the intersection of a coarse element Tc ∈ T`−1 and an overlapping fine one
Tf ∈ T` is approximated in the following manner:

Tc ∩ Tf ≈
⋃
{t ∈ Sub(Tf ) s.t. barycenter(t) ∈ Tc}, (5.1)

where Sub(Tf ) is a fixed subdivision of Tf , obtained in practice by tetrahedral refinement. With this method,
the L2-inner product between a coarse basis function and a fine one attached to the overlapping element
Tf is decomposed into a sum of integrals over tetrahedra, namely, those whose barycenter is included in
Tc. The numerical tests in [13] showed that one Bey’s refinement is enough to construct an approximate
L2-orthogonal projection operator accurate enough to be successfully used in our multigrid method up to
k = 2. From k = 3, two refinement steps are necessary. However, given that Bey’s method decomposes a
tetrahedron into eight smaller ones, the computational work required to assemble the operator is multiplied
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(a) Tetrahedral mesh of a Geneva wheel.

by eight for each additional refinement. As we find two refinements too costly in practice when integrals are
computed by quadrature rules, we limit ourselves to k = 2 for the strategies h-only and hp-h. For higher
orders, strategies lowering the degree before dealing with the non-nested meshes are recommended.

Figure 17 presents the results of the various strategies of multigrid method used as a solver. Interestingly,
hp-h is found to be the most efficient. As a preconditioner, following Figure 18, hp-h is still favored
by the CPU times of the iteration step. One can remark the high computational cost compared to the
other problems. This can be explained by (i) the very use of the L2-orthogonal projection, which is an
approximation in itself (even computed exactly) and therefore implies a loss of precision with respect to the
initial function it is applied to; (ii) compared to nested meshes, the stencil of the prolongation is enlarged,
thus increasing the cost of the grid transfers: indeed, while in the case of nested meshes, each fine element
is included in only one coarse element, a non-nested fine element usually overlaps multiple coarse elements,
thus multiplying the size of the corresponding stencil.

6 Conclusion
In this paper, we defined and compared several high-order multigrid strategies (cf. Table 1) for the fast
solution of elliptic equations discretized by the HHO method. Assuming that the integrals are computed with
quadrature rules, the setup phase can become time-consuming in high-order and, according to the strategy,
even take a significant part of the computations, especially if the bases have to be locally orthogonalized.
Consequently, if the arising linear system needs to be solved with only one right-hand side, then the usual
method consisting in plugging a p-multigrid on top of an h-one (strategy p-h) clearly stands out, owing to its
very cheap setup. Otherwise, if the system is to be solved with many right-hand sides, the best option may
differ according to the space dimension and the type of mesh. The most important take-away of this study
is that the best choice may significantly reduce the time to solution as compared to other strategies. This
remark should encourage users to put different strategies to the test in order to find out the most efficient
one for their specific case study. Based on our numerical experiments, we can, nonetheless, attempt to draw
simplified conclusions to help in this process. In particular, the strategy p-h*, especially designed to exploit
the higher-order reconstruction without loss of information, yields disappointing results while being also the
least intuitive strategy. It can therefore be discarded in practice. hp-h, also designed to exploit the higher-
order reconstruction, often shows performances close to h-only while having a much cheaper setup. In 2D,
while Cartesian meshes see p-h prevailing, h-only and hp-h are favored in more general cases. In 3D, on
the other hand, the results are not so clear. Nonetheless, it is to be noted that in complex cases, where non-
nested meshes and approximate L2-orthogonal projections are employed, setup computations are severely
more demanding at high-order, rendering h-only hardly practicable. This conclusion could be modified by
the use of more efficient strategies for the numerical computation of integrals such as the technique of [8].

The best strategy for the method used as a solver is also often the one prevailing when the method is
used as a preconditioner. Even if the multigrid method is already optimal as a solver, the preconditioning
technique allows to save, on average, about 25% of the computational work.

Another meaningful remark is that the computational work required exhibits large variations according
to the type of mesh. Typically, a solution on an unstructured mesh may demand twice the work of that on
a Cartesian mesh.
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Figure 7: Unit square, Cartesian mesh 128×128, k = 5. The multigrid method is used as a solver with
the strategies of Table 1. Convergence is assumed achieved once the backward error reaches the tolerance of
10−12.
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(e) Additional information: type and number of coarsening operations performed, number of levels built, number of
iterations of preconditioned FCG (it), asymptotic convergence rate (%).

Figure 8: Unit square, Cartesian mesh 128× 128, k = 5. The multigrid method is used as a precondi-
tioner to FCG with the strategies of Table 1. Convergence is assumed achieved once the backward error
reaches the tolerance of 10−12.
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Figure 9: Unit square, unstructured triangular mesh, k = 5. The multigrid method is used as a
solver with the strategies of Table 1. Convergence is assumed achieved once the backward error reaches the
tolerance of 10−12.
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Figure 10: Unit square, unstructured triangular mesh, k = 5. The multigrid method is used as a
preconditioner to FCG with the strategies of Table 1. Convergence is assumed achieved once the backward
error reaches the tolerance of 10−12.
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Figure 11: Kellogg problem, k = 5. The multigrid method is used as a solver with the strategies of
Table 1. Convergence is assumed achieved once the backward error reaches the tolerance of 10−12.
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Figure 12: Kellogg problem, k = 5. The multigrid method is used as a preconditioner to FCG with
the strategies of Table 1. Convergence is assumed achieved once the backward error reaches the tolerance of
10−12.
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Figure 13: Unit cube, Cartesian mesh of 643 elements, k = 3. The multigrid method is used as a
solver with the strategies of Table 1. Convergence is assumed achieved once the backward error reaches the
tolerance of 10−12.
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Figure 14: Unit cube, Cartesian mesh of 643 elements, k = 3. The multigrid method is used as
a preconditioner to FCG with the strategies of Table 1. Convergence is assumed achieved once the
backward error reaches the tolerance of 10−12.
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(e) Additional information: type and number of coarsening operations performed, number of levels built, number of
iterations (it), asymptotic convergence rate (%).

Figure 15: Unit cube, structured tetrahedral mesh, k = 3. The multigrid method is used as a
solver with the strategies of Table 1. Convergence is assumed achieved once the backward error reaches the
tolerance of 10−12.
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h-only 4 h- 5 14 0.16
p-h 1 p-, 4 h- 6 16 0.19
p-h* 1 p-, 4 h- 6 15 0.17
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(e) Additional information: type and number of coarsening operations performed, number of levels built, number of
iterations of preconditioned FCG (it), asymptotic convergence rate (%).

Figure 16: Unit cube, structured tetrahedral mesh, k = 3. The multigrid method is used as a
preconditioner to FCG with the strategies of Table 1. Convergence is assumed achieved once the backward
error reaches the tolerance of 10−12.

22



h-
on

ly p-
h
p-

h*
hp

-h
0

200

400

W
U
s

(a) Iteration comput. work

h-
on

ly p-
h
p-

h*
hp

-h
0

200
400
600
800

C
PU

tim
e
(s
)

(b) Iteration time

h-
on

ly p-
h
p-

h*
hp

-h
0

10
20
30
40

It
er
at
io
ns

(c) Number of iterations

h-
on

ly p-
h
p-

h*
hp

-h
0
2
4
6
8
·104

C
PU

tim
e
(s
)

(d) Setup time

Strategy Coarsening Levels it %

h-only 5 h- 6 36 0.59
p-h 1 p-, 5 h- 7 37 0.60
p-h* 1 p-, 5 h- 7 36 0.58
hp-h 1 hp-, 4 h- 6 38 0.59

(e) Additional information: type and number of coarsening operations performed, number of levels built, number of
iterations (it), asymptotic convergence rate (%).

Figure 17: Geneva wheel, non-nested unstructured meshes, k = 2. The multigrid method is used as
a solver with the strategies of Table 1. Convergence is assumed achieved once the backward error reaches
the tolerance of 10−12.
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(b) Iteration time
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(d) Setup time

Strategy Coarsening Levels it %

h-only 4 h- 5 27 0.44
p-h 1 p-, 4 h- 6 24 0.40
p-h* 1 p-, 4 h- 6 23 0.37
hp-h 2 hp-, 2 h- 5 28 0.45

(e) Additional information: type and number of coarsening operations performed, number of levels built, number of
iterations of preconditioned FCG (it), asymptotic convergence rate (%).

Figure 18: Geneva wheel, non-nested unstructured meshes, k = 2. The multigrid method is used
as a preconditioner to FCG with the strategies of Table 1. Convergence is assumed achieved once the
backward error reaches the tolerance of 10−12.
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