
HAL Id: hal-03531143
https://hal.science/hal-03531143v1

Submitted on 18 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving CRPD Analysis for EDF Scheduling: Trading
Speed for Precision

Giuseppe Lipari, Fabien Bouquillon, Smail Niar

To cite this version:
Giuseppe Lipari, Fabien Bouquillon, Smail Niar. Improving CRPD Analysis for EDF Scheduling:
Trading Speed for Precision. The 37th ACM/SIGAPP Symposium On Applied Computing, Apr
2022, Brno, Czech Republic. �10.1145/3477314.3507027�. �hal-03531143�

https://hal.science/hal-03531143v1
https://hal.archives-ouvertes.fr

Improving CRPD Analysis for EDF Scheduling: Trading

Speed for Precision∗

Fabien Bouquillon1, Giuseppe Lipari2, and Smail Niar3

1Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille,
France , Univ. Polytechnique Hauts-de-France, CNRS, UMR 8201 - LAMIH,

F-59313 Valenciennes, France
2Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille,

France
3Univ. Polytechnique Hauts-de-France, CNRS, UMR 8201 - LAMIH, F-59313

Valenciennes, France

January 18, 2022

Abstract

Cache Related Preemption Delay (CRPD) analysis is a methodology for bounding the cost
of cache reloads due to preemptions. Many techniques have been proposed to estimate upper
bounds to the CRPD for Fixed Priority (FP) and Earliest Deadline First (EDF) scheduling.
Given the complexity of the problem, existing methods make simplifying assumptions to speed
up the analysis, but they also introduce large amounts of pessimism.

In this paper we present two contributions for reducing the pessimism in the CRPD analysis
of real-time systems that use set-associative cache memories. First, we present a new way to
compute a bound on the number of preemptions on a task under EDF scheduling. Second,
we propose a novel algorithm that trades off speed for precision in state-of-the-art analysis in
the literature. We show improvements in the schedulability ratio on classical benchmarks in
comparison with the state-of-the-art.

1 Introduction

Hard real-time systems are critical systems that require a careful analysis of their temporal behavior
to ensure the respect of the timing constraints. For this reason, an accurate model of the system
is necessary. Unfortunately, modern COTS hardware platforms present complex features that
are difficult to model and to analyze accurately. For example, modern single processor micro-
controllers feature cache memory, shared bus, DMA, etc. Such features contribute to improve the
average performance of the system, but are difficult to model, and many pessimistic assumptions
and large approximations are introduced in the real-time scheduling analysis.

The scheduling analysis of a real-time system requires an estimation of the Worst-Case Execu-
tion Times (WCETs) of all the tasks, and an analysis of their interactions. The WCET is usually
calculated by analyzing the task as if it executes in isolation on the target platform. However, even
when tasks are considered to be functionally independent, they can indirectly interfere with each
other due to shared hardware resources, like cache memory, bus, DMA, etc. Concerning the inter-
ference due to shared caches, a higher preemption-level task that preempts a lower preemption-level
task can evict some of the cache blocks of the latter; when the lower preemption-level task resumes
execution, it may need to reload the cache blocks, thus increasing its execution time.

∗This is an early version of the paper accepted at the SAC’22 conference.

1

Several solutions to this problem have been proposed in the literature, from non-preemptive
or limited-preemptive scheduling strategies, to fully preemptive systems with Cache Related Pre-
emption Delay (CRPD) analysis. In this paper we focus on improving the CRPD analysis of
single-processor fully preemptive real-time systems with one level of cache.

CRPD analysis works as follows: first, a WCET is computed for each task, assuming the task is
executed alone on the processor. The computed WCET includes the effect of cache misses caused
by the task itself (intra-task cache misses). A static analysis also produces one or more lists of
cache blocks used by the task.

The CRPD analysis computes an upper bound to the number of cache misses caused by pre-
emption to consider in the scheduling analysis. In Section 2 we briefly describe the current state
of the art CRPD analyzes.

One limitation of existing CRPD analyzes with Earliest Deadline First scheduling policy is the
computation of the number of preemptions on a given task. Since most of the existing analyzes
were originally designed for Fixed Priority, they consider a preemption interval (that is the interval
of time where a task may be preempted) to the task worst-case response time. However, computing
the task response time for EDF is computationally expensive (and very complex). For this reason,
existing CRPD analysis consider a preemption interval size that is equal to the relative deadline
of the task, thus introducing extra pessimism.

Another source of pessimism is the computation of the set of cache blocks (the useful cache
block set, or UCB) that may be evicted by a preemption. Existing analyzes use a single set for
every possible preemption point, thus simplifying the analysis by introducing extra pessimism. We
propose to consider a number M > 1 of UCB sets per each task, thus increasing precision without
exploding the complexity.

Summarizing, in this paper we present two improvements over the state of the art CRPD
analysis:

• a simple algorithm for computing a more precise preemption interval of a task scheduled by
EDF on a single processor; by reducing the preemption interval, we tighten the upper bound
on the number of preemptions a task can suffer;

• A simple algorithm to reduce the number of UCB sets per tasks to a given constant M > 1.

The paper is organized as follows. First we briefly discuss some related works. Then we
introduce the model and the notation in Section 3. We remind the methods presented in the
literature in Section 4. In Sections 5 and 6, we present our original contributions. We discuss the
complexity of the preemption interval length computation in Section 7. We evaluate our methods
against the state of the art [17, 3], and we present the results of the evaluation in Section 8.

2 Related Works

Many methods have been proposed in the literature to address the problem of the inter-task
interference due to cache memory. We can classify them into two different approaches.

The first approach consists in limiting task preemption. However, non-preemptive systems
may suffer from long blocking times: a long low preemption-level task may block an urgent high
preemption-level task for the duration of its execution, causing unwanted deadline misses.

A second approach is to reduce the pessimism of the CRPD analysis. Lee et al. [16] introduced
the notion of Useful Cache Block (UCB) as a block that is used by the task at some point in the
code, and that will be reused by the same task later in the code. They proposed a static analysis
of the binary code of the task to compute a set of UCBs for each preemption point. They also
propose to compute the cost of n preemptions for a task as the size of the union of the n largest
UCB lists. However, this technique suffers from a large pessimism because it analyzes each task
in isolation. In particular, it does not consider the set of cache blocks of the preempting tasks.

Tan et al. [22] take into account both the preempting and the preempted tasks. In order to
simplify the analysis and avoid combinatorial explosion, Tan et al. use a single set of UCB per
task, obtained as the union of all UCB set for every preemption point.

In Lunniss et al. [17] and Altmeyer et al. [3], the authors propose two approaches called UCB-
union multiset and ECB-union multiset. The first one consists in computing a global cost in

2

an interval of length t by combining the UCBs of all instances of lower preemption-level tasks
in the interval, and intersecting the result with the Evicting Cache blocks (ECB) of the higher
preemption-level task which causes the preemption. The number of elements in the resulting set
is an upper bound to the number of evicted cache blocks. In the ECB-union multiset approach,
all ECBs of higher preemption-level tasks are merged together and intersected with the UCB of
the preempted task to obtain a cost of preemption for the lower preemption-level task. Since none
of two methods dominates the other, the authors propose a combined approach to improve the
precision. Their framework has been initially proposed for Fixed priority scheduling systems. It
has been extended later to Earliest Deadlines First scheduling systems [17].

Shah et al. [21] reproduced CRPD analysis methods from Altmeyer et al. [3]. They show
that the generation of synthetic task sets used in [3] is unrealistic, and propose a different way
to generate task sets based on low-level analysis with LLVMTA. They also conclude that block
reload time has a low impact on the schedulability, something that we could not confirm in our
experiments. We will discuss this discrepancy in Section 8.2.

Previous papers mostly consider direct-mapped caches. Concerning the cache model and the
LRU replacement policy, Burguière et al. [12] present how to adapt existing CRPD analysis from
direct mapped caches to set-associative caches. They show that only adaptation for LRU replace-
ment policy is possible, since PLRU and FIFO cannot be bounded using the number of ways.

Altmeyer et al. [4] propose to use the ages of the UCBs and the number of reloading of ECBs to
eliminate the UCBs that cannot be evicted from the analysis. They demonstrate their algorithm
on the Papabench benchmark suite [20] where they compare against the UCB-union approach
with a cache of 8 ways and 32 cache rows. However, the number of tasks which can be involved
in the same preemption is smaller than the number of cache ways, therefore the results cannot be
generalized to an arbitrary cache setting.

Marković et al. [19] recently proposed two novel methodologies for Fixed priority fully pre-
emptive scheduling which improve the CRPD cost estimation of [3]. However the performances
between our approach and [19] cannot be compared due to the difference of scheduler as shown by
Lunniss et al. [18].

3 System model

3.1 Task Model

We consider a system composed ofN independent real-time sporadic tasks, denoted as T = {τ1, · · · , τn}.
A task τi is described by the classic tuple (Ci, Di, Ti), with Ci the worst case execution time, Di

the relative deadline, and Ti the minimum interarrival time. In this work we consider constrained
deadline tasks, i.e. each task τi has Di ≤ Ti. The worst-case execution time Ci is estimated
through a static analysis tool like OTAWA [6] assuming the task executing alone on the processor.
We consider sporadic tasks, i.e. the exact arrivals times of the instances of the tasks are not known
at analysis time, however the minimum distance between two consecutive instances of the same
task is Ti.

We assume that the tasks are scheduled by Earliest Deadline First. The preemption-level of
task τi is defined as πi = 1/Di. Baker [5] proved that, in EDF scheduling, a task τj may preempt a
task τi only if πj > πi. We assume that tasks are sorted in non-ascending order of preemption-level:
for any two tasks τj and τi, πj > πi implies j < i.

3.2 Cache model

We assume that tasks are executed on a single processor with a L1 cache memory. We consider
a set-associative, virtually-indexed, physically-tagged instruction cache. For simplicity, in this
paper we only consider the instruction cache (see the discussion in Section 9 for data caches).

A N-way set-associative cache memory can be described as a matrix of cache lines, the
basic memory block unit of a cache memory; cache lines are regrouped into cache sets of N
elements, also called ways.

In case of a virtually-indexed physically-tagged memory cache, the virtual memory is divided
in cache blocks, which are memory blocks of the size of a cache line. Each of these cache blocks

3

is assigned an index computed as the modulo between the virtual address of the cache block and
the number of cache sets, which corresponds to the cache set where the cache block may be stored.
As each task has its virtual memory, cache blocks from different tasks may have the same index:
to differentiate them, each on is assigned a tag computed from their physical address.

When the processor needs to access an instruction, the index and the tag are computed from
the virtual address. The tag is compared with all the cache blocks contained in the corresponding
cache set: if a match is found (hit), then its age in the cache set is updated according to the
replacement policy; if the tag is not found (miss), the cache block is loaded from the main memory
and stored in the cache set according to the replacement policy.

We assume a cache memory with the Least Recently Used replacement policy (LRU). Each
cache way in a cache set is assigned an age: at each access, ages are updated so that a cache block
with a more recent access than another has a lower age. When a cache block has to be loaded in a
cache set that is full, the least recently used cache block is evicted and the all the ages are updated
accordingly.

3.3 Useful Cache Blocks and Evicting Cache Blocks

To compute the Cache Related Preemption Delay, the notions of Useful Cache Block (UCB) and
Evicting Cache Block (ECB) have been defined in the literature. We recall the definitions here
and introduce the notation that will be useful in the rest of the paper.

3.3.1 ECBs

The evicting cache blocks of a task consist of all the cache blocks of this task that can evict cache
blocks of another task during a preemption. Most papers in the literature assume direct-mapped
caches (only one cache way in the cache memory), therefore the ECBs of a task are modeled as
a single set of cache set indexes. Indeed, in the case of a direct-mapped cache memory only one
cache block per set can be evicted.

In the case of a set-associative cache memory with the LRU replacement policy, a preempting
task that accesses a given cache block can replace all the cache blocks present in the corresponding
set in a chain reaction [12].

Therefore, in this paper we represent the ECBs of a task as a multiset : for each evicting cache
block index, the multiset contains W instances of the index, where W is the number of ways in
the cache set. From now on, we will use the symbol Ei for describing the multiset representing the
ECBs of a task τi.

For example, consider a task τi that accesses the cache blocks with index 3, 6, 7, 10 in a cache
set with 2 ways. Then Ei = {3, 3, 6, 6, 7, 7, 10, 10}.

3.3.2 Cache analysis

The WCET analysis builds a Control Flow Graph from the binary code, where each node is a basic
block of code, and edges are possible execution paths. A basic block is a segment of sequential
instructions in the binary code of the task (no jumps). A basic block can span several cache
blocks, and a cache block can contain instructions belonging to several basic blocks. Therefore,
we introduce the notion of line blocks, which are (portions of) basic blocks that are contained in
single cache blocks.

The analysis classifies the line blocks according to their behavior in the cache, as to compute
their impact on the execution time. In the literature [2] the must cache analysis is used to classify
the line blocks. In the must analysis, there are 4 categories for a line block: always miss, first miss,
always hit and first hit.

3.3.3 An example

Figure 1 represents the relation between the cache blocks and the basic blocks of an example task.
The cache memory is composed of two cache sets and it is depicted on the left. At its right, the
binary code of the task is composed of 4 cache blocks, their arrows in direction of the cache memory
point towards their respective cache set. Continuing to the right, we show the basic blocks and

4

Cache Memory

Task’s Cache Blocks

Basic Blocks and Line Blocks Control Flow Graph

Figure 1: Relation between Cache Blocks and Basic Blocks

line blocks as computed by the WCET analysis: for example, the yellow cache block is composed
of two line blocks, one in the purple basic block and the other in the green basic block.

On the right, we depict the CFG built from the binary during the WCET analysis. At the
beginning of the execution of the task the yellow cache block will be stored in one of the green
cache lines. As the yellow cache block is not present in the cache before the execution of the purple
basic block, the yellow line block will be classified as always miss. During execution, the program
will first move to the grey basic block, and the dark red cache block will be loaded into the blue
cache set. However, if the task jumps into the green basic block and returns to the grey one later
on, the dark red cache block will still be present in the cache. Therefore, it is classified as first
miss.

3.3.4 UCBs

Given a preemption point p in the code of a task, the set of UCBs represents all cache blocks
that are present in the cache and may be reused sometime later in the code. In fact, in case of
preemption at point p, in the worst case all the evicted cache blocks that are UCBs will be reloaded
later on, increasing the WCET of the task. Thus, only the cache blocks that can be classified as
first miss, always hit and first hit will be considered as UCBs. In our model, we suppose that the
line block that is preempted by another task is always evicted.

Therefore, each preemption point in the task is associated with a (possibly different) set of
UCBs. To reduce the complexity of the analysis, recent approaches in the literature [3, 17, 1, 19,
18, 11, 12] use a single set of UCB cache set index for the entire task: the set is computed as the
fusion of all UCBs for the different preemption points (see Section 3.4 for a definition of the fusion
operation).

In this paper, we use the more complete model of one UCB set per preemption point. Therefore,
in our model each task is characterized by a set of multisets (SOM) of UCBs. We mitigate
the combinatorial explosion of the analysis by using an approximation function that trades off
complexity against precision (described in Algorithm 1).

The multiset representing the UCBs of a task for a given preemption point p is denoted as Up
and the SOM representing the set of U for the task is denoted by U . For example, consider a task
τi that has two preemption points, where for the first preemption points 4 UCBs are present in
the cache with index 3, 6, 6, 7 and 2 cache blocks with index 7, 7 for the second preemption point.
Then U i = {{3, 6, 6, 7}, {7, 7}}. As several useful cache blocks may be stored at same time in the
same cache set, a Up may have multiple instance of the same index.

3.4 Operations on multisets

In this section we formally define multisets and SOM, and we define their operations.

Definition 1. A multiset is a set that may contain more than one instance of the same element.
Given an element a ∈ A, we denote as repA(a) the number of instances of a in A: for all x /∈ A,
repA(x) = 0.

We define the following operations on multisets:

• The size of a multiset, denoted by |A| is the number of elements in the multiset, including
repetitions.

5

• The multiset union between multisets A and B is a multiset, it is denoted by A]B, and it is
defined as:

∀x repA]B(x) = repA(x) + repB(x)

• The multiset fusion between multisets A and B is a multiset, it is denoted by A5 B, and it
is defined as:

∀x repA5B(x) = max(repA(x), repB(x))

• The multiset intersection between multisets A and B is a multiset, it is denoted by A u B,
and it is defined as:

∀x repAuB(x) = min(repA(x), repB(x))

Definition 2. A denotes a SOM, that is a set whose elements are multisets. The largest size of
any multiset in a SOM A is denoted as:

MS(A) = max
A∈A

(|A|)

Since A is a set, the usual operations of set union, set intersection and set difference apply,
respectively, with the usual symbols.

We extend the operations of multiset union and multiset intersection to SOM in the most
natural way: the multiset union (resp. intersection) between A and B is the SOM obtained by
applying the multiset union (resp. intersection) to every pair of elements of A and B. We define
the intersection between a multiset E and SOM A as the SOM obtained by applying the multiset
intersection of every element of A and the multiset E .

4 Reminder on CRPD Analysis

4.1 EDF analysis with CRPD

We consider systems scheduled with the Earliest Deadline First policy. In this work, we use the
processor demand bound analysis, first proposed by Baruah et al. [8]. We compute the processor
demand of the task set at each deadline in the interval [0, L], where L is an estimated upper bound
on the first idle time. The demand bound function [8] of a task τi in the interval [0, t] can be
computed as:

dbfi(t) = η(i, t) · Ci (1)

With η(i, t) an upper bound to the number of instances of the sporadic task τi that have arrival
and deadline in interval [0, t]:

η(i, t) = max

(
0,

⌊
t−Di

Ti

⌋
+ 1

)
(2)

The system is schedulable if and only if:

∀t ≤ L, dbf(t) =

N∑
i

dbfi(t) ≤ t (3)

In order to include the CRPD in the analysis, Lunniss et al. [17] redefined Condition 3 as:

∀t ≤ hp(τ), dbf(t) =

N∑
i

dbfi(t) + γ(t) ≤ t (4)

where hp(τ) is the hyperperiod of task set τ and γ(t) is an upper bound to the total CRPD in
interval [0, t].

To compute γ(t), we use the Combined approach of Lunniss et al. [17]. This approach is the
combination of two methods, the UCB-union multiset and the ECB-union multiset.

As our task model differs from the state of the art (we use a SOM to represent the UCBs
of the task instead of a simple multiset), we denote by ECB-union SOM the modified version of

6

the second approach based on our task model, and Combined SOM will be the combination of
UCB-union multiset and ECB-union SOM. In order to present the following equations in short
form, we use (Uk)x as a short form for the multiset union of Uk with itself x times.

Given a SOM of UCBs Uk for all the possible preemption points of task τk, a single multiset
UCB can be computed as:

Uk = 5
∀UP

k ∈Uk

UPk

4.2 UCB-union multiset

First, the maximum number of preemptions by task τj in interval [0, Di] is computed as:

Prj(Di) = max

(
0,

⌈
Di −Dj

Tj

⌉)
(5)

Then, the method constructs the multisets of UCBs and ECBs for the interval [0, t]:

Mucb
t,j =

⊎
∀k,t≥Dk>Dj

(Uk)Prj(Dk)·η(k,t) (6)

Mecb
t,j = (Ej)η(j,t) (7)

where (Ej)x is a short form for the multiset union of Ej with itself x times. Finally, the overall
preemption cost is computed as the intersection of the ECB and UCB multisets obtained above:

γucbmj (t) = BRT · (|Mucb
t,j uMecb

t,j |+ Y (j, t)) (8)

Y (j, t) = min

 ∑
∀k,t≥Dk>Dj

(
Prj(Dk) · η(k, t)

)
, η(j, t)

 (9)

with BRT the block reload time of a cache block from the main memory. As we consider
the preempted line block cache block evicted for each preemption, we add Y (j, t) to the cost to
consider this assumption.

4.3 ECB-union SOM

This approach is the version of ECB-union multiset modified by using a SOM to represent the
UCBs of a task for the different preemption points. To obtain the same result as ECB-union

multiset, U ′k can be used instead of Uk with U ′k = {Uk}.
The first step consists in taking the SOM of UCBs for the preempted task, and compute the

size of the worst-case intersection with higher preemption-level tasks’ ECBs:

Qmax
j (Uk) = max

∀U∈Uk

(∣∣U u E ′j∣∣)+ 1 (10)

With E ′j defined as:

E ′j = (
⊎

∀h,Dh<Dj

Eh)] Ej

Notice that we add 1 to the cost to consider the preempted line block cache block as evicted.
Then, the algorithm computes a multiset as the union of all costs of the multisets computed for
the preemptions that occur in interval [0, t]:

Qt,j =
⊎

∀k,t≥Dk>Dj

(
({Qmax

j (Uk)})Prj(Dk)·η(k,t)
)

(11)

Finally:
γecbSOM
j (t) = BRT · sum max elems(Qt,j , η(j, t)) (12)

where function sum max elems(A, n) computes the sum of the n greatest elements in multiset A.

7

Notice that we slightly changed the algorithm of [17], in particular we modified Equation (10):
instead of using a multiset which represents the UCBs of all the tasks, we changed the Equation
to use only the multiset of UCBs at the point p of the task which is involved in the worst CRPD
cost. This modification actually improves the performance of ECB-union multiset as it reduces
the pessimism of considering additional cache blocks.

The combined SOM approach is the minimum between the demand bound of the task set
computed with the previous approaches.

dbf combinedSOM(t) = min(dbfucbm(t), dbfecbSOM (t)). (13)

5 Preemption Interval

In [17], in the case of EDF scheduling the number of preemptions on a job of task τi is computed
using the relative deadline Di. In particular, all instances of jobs with arrival and deadline in [0, Di]
may preempt τi. This is a pessimistic assumption because jobs that arrive after the completion of
τi are counted as preempting jobs. A less pessimistic assumption would be to consider only jobs
that arrive before the worst-case response time of τi. However, computing an upper bound to the
response time of a task in EDF is complex.

In this paper, we propose to use the concept of preemption interval : an upper bound Ii to the
length of interval of time where a job of task τi may be preempted. Therefore Ii is a bound on
the length of the interval between the start of the execution of any job of τi and its completion.
Indeed, a task can be preempted only after it has started its execution, and before it completes.

Please notice that Ii is different from the worst-case response time Ri: the latter corresponds
to the size of an interval starting from the job’s arrival until its completion. As the start time of
a job is always greater than or equal to its arrival time, it follows that Ri ≥ Ii by definition.

Let η′i(j, t) be the number of jobs of task τj that can preempt τi on an interval of length t, with
t ≤ Di.

Lemma 1. The number of preemptions by higher preemption-level task τj on task τi on any
contiguous interval of size t inside [0, Di] (with t ≤ Di) is:

η′i(j, t) = min

(⌈
t

Tj

⌉
,Prj(Di)

)
.

Proof. η′i(j, t) cannot be larger than Prj(Di), that is the maximum number of preemptions of τj
on τi. Also, since any job of τj must arrive inside the interval, η′i(j, t) cannot be larger than the
number of jobs of τj arriving in any contiguous interval of size t. The latter can be computed as⌈
t
Tj

⌉
. Hence the lemma is proved.

Preempting jobs, that arrive during the preemption interval Ii of a task τi, contribute to
increasing the length of the interval: in fact, we must account for their execution and for their
cache impact.

Thus, to compute Ii we use an iterative formula starting with the WCET of the task. Since the
preemption interval can only increase with the preempting jobs and cannot be greater than the
relative deadline, we can use η′i(j, t) to count the number of instances of τj that can increase the
preemption interval. The WCET of the preempting jobs and the CRPD provoked by them must
be added to the WCET of the task to obtain the new preemption interval. The iterative procedure
is guaranteed to stop, since η′i(j, t) is bounded by a constant Prj(Di).

Theorem 1. The following iterative equation gives an upper bound to the preemption interval of
task τi:

I
(0)
i = Ci

I
(k)
i = Ci + γ′(I

(k−1)
i) +

∑
j|Dj<Di

Cj · η′i(j, I
(k−1)
i) (14)

where γ′(Ii) is the CRPD provoked by the preempting jobs during interval Ii. The iteration stops

when I
(k)
i > Di (unschedulable) or I

(k−1)
i = I

(k)
i .

8

Proof. Only higher preemption-level tasks can interfere with the execution of a given task. In
our model, we only consider two resources, the processor and the cache memory, thus the possible
sources of interference are the suspension of the execution by a higher preemption-level task, and its
CRPD. Lemma 1 provides an upper bound on the number of preemptions in interval Ii. Therefore,
the value obtained in the last iteration represents an upper bound to the length of the preemption
interval, or the fact that the task is not schedulable.

Computing the CRPD during the Preemption Interval. Equations 6, 7, 9, 11, 12 use
Prj(Di) to count the number of preemptions by task τj on a job of τi.

We assume to compute the preemption interval in the task order from τ1 (the task with the
highest preemption level) to τn (the task with the lowest preemption-level). Of course, I1 = C1.
We define Pr′j(Di) as:

Pr′j(Di) = min

(⌈
Ii
Tj

⌉
,

⌈
Di −Dj

Tj

⌉)
(15)

and we use Pr′j(Di) instead of Prj(Di) in the above equations. Also, to properly bound the number
of preempting jobs from higher preemption-level tasks during the computation of a preemption
interval Ii, we use η′i(j, Ii), which represents the number of jobs arriving in the preemption interval
Ii and with relative deadline less than Di, instead of η(j, Ii).

6 Reduce the number of UCBs

As we use a multiset to represent the UCBs for each preemption point in the task, the size of
the obtained SOM may be too large. Indeed the complexity of the Combined SOM approach
depends on the size of the SOM of each preempted task.

Algorithm 1 describes the reduce operation on a SOM A. The algorithm removes the multiset
X with the minimum size from the input vector (lines 3 and 4); then it performs a multiset fusion
of X with every other multiset of R, and selects the one that gives the smallest result (lines 6-11);
then, it removes this multiset and adds the result of the fusion (line 12). It repeats the operation
as long as the size of R is greater than M (while loop at line 2).

The resulting SOM contains at most M multisets. We highlight that the reduce operation
may increase the size of the multisets, thus introducing some pessimism; however, by selecting the
merged multiset with smaller sizes, the pessimism is kept in check.

Algorithm 1 reduce()

Require: A vector of multisets A
Require: Max size M
Ensure: A vector of multisets R
1: R← A
2: while |R| > M do
3: X← multiset with minimum size in R
4: R← R \ {X}
5: L← X5 Y, with any Y ∈ R
6: for Z ∈ R do
7: if |X5 Z| < |L| then
8: L← X5 Z
9: Y ← Z

10: end if
11: end for
12: R← R ∪ {L} \ {Y}
13: end while
14: return R

9

7 Complexity

We denote by ω an upper bound to the maximum number of instances of any task contained in
the hyperperiod H:

ω = max
∀τi∈τ

(bH −Di

Ti
c+ 1)

We denote by ψ an upper bound of the maximum number of preemptions by any task on any job
from another task as follows:

ψ = max
∀τj ,τi∈τ ;j<i

(Prj(Di))

The complexity of any multiset operation (union, intersection, etc.) is bounded by O(Z2) with Z
the number of cache sets (we represent a multiset as a list of pair (value, repetition factor)). The
complexity of any operation between a multiset and a SOM is O(MZ2), with M the number of
element in the SOM.

7.1 Complexity of UCB multiset

In the UCB multiset union approach, we need to perform the union of the UCBs of lower preemption
level tasks. In the worst-case, the complexity is O(NZ2). As a task τi can be preempted at most
ωψ times by another task τj , the complexity of the union between all the lower preemption-level
tasks is O(ωψNZ2). The intersection with the ECB has complexity O(Z2), thus the complexity
for a preempting task is again O(ωψNZ2), and the total complexity is O(ωψN2Z2).

7.2 Complexity of ECB-union SOM

The ECB-union SOM approach can be split in three steps: the computation for the preempting
task, building the list of costs, and summing the largest costs. The first step is a union between all
the preempting tasks ECBs, thus its complexity is O(NZ2). The second step consists of listing all
the preemption costs, its complexity is O(NωψMZ2), with M the maximum number of multisets
that a SOM can contain.

The last step consists sorting and summing the ω greatest values. The number of element in
the list is bounded by Nωψ, thus the complexity is O(ω2Nψ log(Nωψ)). The complexity for the
three steps is O(Nωψ(ω log(Nωψ) + MZ2)). Since we do this for N tasks, the final complexity
can be bound by O(N2ωψ(ω log(Nωψ) +MZ2)).

Since ω and ψ are pseudo-polynomial in the size of the input (they depend on periods and
relative deadlines), we can state that the overall complexity is pseudo-polynomial, hence in the
same complexity class as the original demand bound function.

The iterative formula for computing the preemption interval has the same structure of the
response time analysis in Fixed Priority analysis, hence it is also pseudo-polynomial in the input.

8 Evaluation

8.1 Experiments Setup

To evaluate the impact of the preemption interval on the schedulability. We consider a single core
ARM7 processor with one level of set-associative cache memory. We use OTAWA [6] to compute
the WCET of the tasks and the list of UCBs and ECBs. Blocks are collected based on a must
analysis of cache memory [1]. Tasks are chosen from the Malärdalen benchmark suite [14] and
from TACLeBench [13].

The analysis has been repeated multiple times with different cache configurations: 2KB, 4KB,
with 2 and 4 ways. The size of a cache line has been fixed to 32 bytes, as it is a standard in ARM
processors, like the MCore A7.

Following of [10], we set the Block Reload Time BRT = 50, 100, 200. In all configurations
we considered the LRU replacement policy. In Table 1 we report the value of the WCET (in
processor cycles) and the size of the ECB multiset for the corresponding benchmarks. The number
reported for the UCB is the size of the multiset obtained by merging all the UCB multisets for

10

Tasks Bench WCET Nb ECB Nb UCB
fibcall Malärdalen 5235 14 7
lcdnum Malärdalen 9132 16 8

duff Malärdalen 12034 20 10
binarysearch TACLeBench 21511 42 21

insertsort TACLeBench 26086 58 29
iir TACLeBench 31439 62 31

complex updates TACLeBench 62040 64 34
ns Malärdalen 88058 32 16
cnt Malärdalen 112574 54 27
ud Malärdalen 132411 64 36

fir2dim TACLeBench 228105 64 36
ludcmp TACLeBench 340181 64 37

crc Malärdalen 442317 64 32
expint Malärdalen 554166 46 25

nsichneu Malärdalen 569174 64 32

Table 1: List of tasks used in the experiments: Cache size of 2KB, 2 ways, BRT= 200 cycles.

each preemption point using the fusion operation. Please notice that the WCET and the number
of UCBs and ECBs depends on the cache configuration.

To adhere to a more realistic setting in a real compiler and linker, once the tasks have been
selected to build a task set of 6,8,10 or 12 tasks, their memory locations are randomly assigned
by adding a random offset to the cache sets index of their cache block addresses such that: U ′ki =
(U ′Ki +φ)modΛ with Λ the number of cache sets in the cache, and φ a random number in [0,Λ−1].

We generate a set of utilizations using the UUnifast algorithm [9], and we compute a tentative
period T primei = Ci

Ui
. In order to generate realistic workloads, and to avoid an excessive length of the

hyperperiod of the task sets, we approximate the value of T ′i to a value Ti taken from a list of peri-
ods (expressed in thousands of “ticks”): {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000},
taken from [15]. Then, we assign each task a relative deadline uniformly chosen in interval
[max(Ci, 0.9Ti), Ti]. Finally, all schedulability analysis were performed with the data computed in
the previous step.

All the algorithms have been implemented in an open-source C++ program that will be made
available to reviewers upon request (due to double blind review rules).

8.2 Results

All experiments have been conducted using the tasks of Table 1, taken from [14] and [13], and
applying all algorithms on 1000 randomly generated task sets per utilization point.

In all the figures the No-CRPD curves represent the results of the dbf analysis without consid-
ering the CRPD cost, and it is reported as a reference for the other algorithms. We decide to use
the combined approach from Lunniss et al. [17] to see the impact of the preemption interval. Our
approach is labeled as Combined-PI and Combined-pp-PI for Combined preemption interval and
Combined preemption points and preemption interval. The original version from the literature are
denoted as Combined and Combined-pp. To the best of our knowledge, the combined approach is
the best approach so far for EDF scheduling. For both Combined-PI and Combined we use the
reduce operation 1 to consider only one multiset of UCBs per task. For each point, we also report
the 95% confidence interval, computed as:

CI = p̂± Z∗
√
p̂ · (1− p̂)

n

where p̂ is the ratio of schedulable task sets for a given workload, n is the sample size (here 1000),
and 1.96 is the value for Z∗.

Impact of the cache size The variation of the cache size has a strong impact on the Combined
and Combined-PI-pp methods. Consider the experiments in Figure 2a and Figure 2b, whose only

11

 0

 20

 40

 60

 80

 100

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Pe
rc

e
n
ta

g
e
 o

f
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

Workload

Combined-PI-pp
Combined-pp

No CRPD
Combined-PI

Combined

Schedulability considering CRPD

(a) Schedulability of ntasks = 12 with cache of
2KB, 2 ways, BRT = 200 and Mreduce = 4

 0

 20

 40

 60

 80

 100

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Pe
rc

e
n
ta

g
e
 o

f
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

Workload

Combined-PI-pp
Combined-pp

No CRPD
Combined-PI

Combined

Schedulability considering CRPD

(b) Schedulability of ntasks = 12 with cache of
4KB, 2 ways, BRT = 200 and Mreduce = 4

Figure 2: Impact of cache size.

 0

 20

 40

 60

 80

 100

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Pe
rc

e
n
ta

g
e
 o

f
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

Workload

Combined-PI-pp
Combined-pp

No CRPD
Combined-PI

Combined

Schedulability considering CRPD

(a) Schedulability of ntasks = 12 with cache mem-
ory of 4KB, 2 ways, BRT = 200 and Mreduce = 2

 0

 20

 40

 60

 80

 100

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Pe
rc

e
n
ta

g
e
 o

f
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

Workload

Combined-PI-pp
Combined-pp

No CRPD
Combined-PI

Combined

Schedulability considering CRPD

(b) Schedulability of ntasks = 12 with cache mem-
ory of 4KB, 4 ways, BRT = 200 and Mreduce = 2

Figure 3: Impact of number of ways.

 0

 20

 40

 60

 80

 100

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Pe
rc

e
n
ta

g
e
 o

f
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

Workload

Combined-PI-pp
Combined-pp

No CRPD
Combined-PI

Combined

Schedulability considering CRPD

(a) Schedulability of ntasks = 6 with cache memory
of 4KB, 2 ways, BRT = 200 and Mreduce = 4

 0

 20

 40

 60

 80

 100

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Pe
rc

e
n
ta

g
e
 o

f
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

Workload

Combined-PI-pp
Combined-pp

No CRPD
Combined-PI

Combined

Schedulability considering CRPD

(b) Schedulability of ntasks = 12 with cache mem-
ory of 4KB, 2 ways, BRT = 50 and Mreduce = 4

Figure 4: Impact of number of tasks and BRT.

12

difference is the size of the cache (2KB and 4KB, respectively). The Combined analysis loses 10%
of schedulable task sets already at U = 0.8 as we increase the size of the cache, whereas Combined-
PI-pp increases its performances for all values of the workload. In particular, at U = 0.875
Combined-PI-pp increases its performance by more than 10%. We explain this difference with the
fact that using only one UCB set per task produces larger UCB set as the cache size increases,
thus increasing pessimism.

Impact of the number of cache ways and cache sets. Figures 3a and 3b show two different
scenarios that use a 4KB cache, the first with 2 ways and the second with 4 ways. As you can
see, the second scenario provides better performance than the first scenario while the performance
of different versions of the combined approach are closer. We explain this by observing that our
algorithms is more effective in reducing the pessimism as the scenario becomes more competitive
(less number of ways).

Impact of the number of tasks. The number of tasks has a strong impact on the schedu-
lability ratio. Comparing Figure 2b (12 tasks) with Figure 4a (6 tasks), we notice two things:
first, by increasing the number of tasks, the performance of Combined-PI decreases to become
closer to combined; Second, by increasing the number of tasks, the performance of Combined-PI-
pp decreases slower than the performance of Combined-pp, increasing the gap between the two
approaches. This means that the combination of the Preemption Interval and the use of several
UCB multisets to describe preemption points is more useful with a high number of tasks.

You may notice that overall the schedulability ratio is lower in the case of a task set with 6
tasks compared to a task set of 12 tasks at U = 0.975. This is due to the algorithm we use for
generating the task set: in fact, in order to obtain the same workload, a set of 6 tasks must have a
higher average workload per task Ci

Di
than a set of 12 tasks. Therefore, a set of 6 tasks is marginally

less schedulable than a set of 12 tasks.

Impact of the block reload time. By comparing Figure 2b and Figure 4b, we conclude that
the block reload time has a strong impact on schedulability, since 90% of task sets are schedulable
with combined-PI-pp and a BRT = 50 compared to 50% in the case of BRT = 200 at U = 0.9.
With a BRT = 50 the gap between Combined-PI-pp and Combined-pp is smaller and we observe
the same between Combined-PI and Combined. However, there is an augmentation of 40% in the
schedulable task sets between Combined and Combined-PI. This gap shows the gain in precision
when using the reduce operation. As you will see later in the section, using the reduce heuristic
allow us to find a compromise between the accuracy of the analysis and its complexity.

The impact of the BRT on the schedulability contradicts the conclusions of Shah et al. [21].
However, we observe that in the experiments of [21] the task sets are generated differently: the
WCET of all tasks is almost proportional to the BRT (probably due to the different WCET
analysis tool), and the periods are computed as Ti = Ci

Ui
≈ kiBRT

Ui
, with Ui randomly generated by

UUnifast. Therefore, the dominant factor in their experiments is the number of preemptions, and
not the value of BRT. In our case, 1) the WCETs and the UCBs and ECBs have been computed
by OTAWA, and the WCETs are not proportional to the BRT; 2) periods are selected from a list.
We believe that our experimental setting presents a better approximation of a real application.

Analysis time. We can see in Figure 6 the analysis time of schedulable task sets for the different
approaches with 4 configurations of task set sizes: 6, 8, 10 and 12 tasks with a processor load of
0.85. The other parameters are a reduce operation parameters Mreduce equal to 4 with BRT = 200
and a cache memory of 4KB and 2 ways. Between the first and the last case (6 and 12 tasks,
respectively), we observe a multiplying factor of 10 for the analysis time of the combined approach
with SOM as model for the UCBs.

The reduce operation has a strong impact on the analysis time of schedulable task sets as you
can see with Figure 5a and Figure 5b. Both experiments use the same cache configuration, a 2KB
with 4w cache memory with a BRT = 50. The task set is of size 12 for both experiments and the
reduce operation parameter Mreduce is set to 4 in the first configuration and 2 in the second. As you
can see, multiplying by two Mreduce doubles the gap between combined-PI and combined-PI-pp
time analysis. The same observation is also true between Combined and Combined-pp. We think

13

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

ti
m

e
 i
n
 s

e
co

n
d

Workload

Combined-PI-pp
Combined-pp
Combined-PI

Combined
No CRPD

Schedulable task set analysis time considering CRPD analysis

(a) Analysis time for ntasks = 12 with cache mem-
ory of 2KB, 4 ways, BRT = 50 and Mreduce = 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

ti
m

e
 i
n
 s

e
co

n
d

Workload

Combined-PI-pp
Combined-pp
Combined-PI

Combined
No CRPD

Schedulable task set analysis time considering CRPD analysis

(b) Analysis time for ntasks = 12 with cache mem-
ory of 2KB, 4 ways, BRT = 50 and Mreduce = 2

Figure 5: Impact of their reduce operation on analysis time.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

6 8 10 12

ti
m

e
 i
n
 s

e
co

n
d

task set size

Combined-PI-pp
Combined-pp
Combined-PI

Combined
No CRPD

Schedulable task set analysis time considering task set size

Figure 6: Analysis time for a cache memory of 4KB, 2 ways, U = 0.85, BRT = 200 andMreduce = 4

that using all the UCB multiset obtained by the WCET analysis for each task is not scalable. It
also shows the importance of heuristics such as the reduce operation to keep the complexity in
check, to increase the number of schedulable task sets that the analysis can verify.

9 Conclusions and future works

In this paper we improve the precision of CRPD analysis while proposing a compromise with the
complexity of the analysis. We target fully preemptive real-time tasks scheduled by EDF on single
processor systems with set-associative caches. In particular, we propose two original contributions:

• A method to precisely compute the Preemption Interval length of each task (Section 5), thus
the number of preemptions that a task can undergo;

• A heuristic to keep the complexity of analysis in check (Algorithm 1).

In this paper we worked on the basic techniques behind the CRPD analysis. For simplicity,
we decided to focus on single-processor architectures with one single level of cache and we only
consider instruction caches. While this is a very limited setting compared to modern architectures,
we believe that our propositions represent a building brick that can be reused to improve CRPD
analysis in more complex settings like multilevel caches and multicore systems with private and
shared caches.

Regarding possible extensions for data caches, we believe that the problem lies mostly in the
correct computation of the UCBs and ECBs for data, especially in the presence of pointers in the
code. We are currently investigating the application of the static analysis techniques described
in [7], based on abstract interpretation using polyhedra, to detect UCB and ECB for data caches.

14

10 Acknowledgments

This work is partially funded by the French National Research Agency, Corteva project (ANR-17-
CE25-0003).

References

[1] S. Altmeyer and C. Burguière. A new notion of useful cache block to improve the bounds
of cache-related preemption delay. In 21st Euromicro Conference on Real-Time Systems
(ECRTS), pages 109–118, Los Alamitos, CA, USA, jul 2009. IEEE Computer Society.

[2] Sebastian Altmeyer and Claire Maiza Burguière. Cache-related preemption delay via useful
cache blocks: Survey and redefinition. Journal of Systems Architecture, 57(7):707–719, 2011.

[3] Sebastian Altmeyer, Robert I Davis, and Claire Maiza. Improved cache related pre-emption
delay aware response time analysis for fixed priority pre-emptive systems. Real-Time Systems,
48(5):499–526, 2012.

[4] Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience analysis: tightening the crpd
bound for set-associative caches. ACM Sigplan Notices, 45(4):153–162, 2010.

[5] T. Baker. A stack-based resource allocation policy for realtime processes. In Proceedings 11th
Real-Time Systems Symposium, pages 191,192,193,194,195,196,197,198,199,200, Los Alamitos,
CA, USA, dec 1990. IEEE Computer Society.

[6] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. Otawa: An open
toolbox for adaptive wcet analysis. In Sang Lyul Min, Robert Pettit, Peter Puschner, and
Theo Ungerer, editors, Software Technologies for Embedded and Ubiquitous Systems, pages
35–46, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[7] Clément Ballabriga, Julien Forget, Laure Gonnord, Giuseppe Lipari, and Jordy Ruiz. Static
analysis of binary code with memory indirections using polyhedra. In Constantin Enea and
Ruzica Piskac, editors, Verification, Model Checking, and Abstract Interpretation, pages 114–
135, Cham, 2019. Springer International Publishing.

[8] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic
tasks on one processor. In Proceedings 11th Real-Time Systems Symposium, pages
182,183,184,185,186,187,188,189,190, Los Alamitos, CA, USA, dec 1990. IEEE Computer So-
ciety.

[9] E. Bini and G. C. Buttazzo. Biasing effects in schedulability measures. In 2012 24th Euromicro
Conference on Real-Time Systems, pages 196–203, Los Alamitos, CA, USA, jul 2004. IEEE
Computer Society.

[10] Roman Bourgade, Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat.
Accurate analysis of memory latencies for WCET estimation. In Giorgio Buttazzo and Pascale
Minet, editors, 16th International Conference on Real-Time and Network Systems (RTNS
2008), Rennes, France, October 2008. Isabelle Puaut.

[11] R. J. Bril, S. Altmeyer, M. Heuvel, R. I. Davis, and M. Behnam. Integrating cache-related
pre-emption delays into analysis of fixed priority scheduling with pre-emption thresholds. In
2014 IEEE Real-Time Systems Symposium (RTSS), pages 161–172, Los Alamitos, CA, USA,
dec 2014. IEEE Computer Society.

[12] Claire Burguière, Jan Reineke, and Sebastian Altmeyer. Cache-Related Preemption Delay
Computation for Set-Associative Caches - Pitfalls and Solutions. In Niklas Holsti, editor, 9th
International Workshop on Worst-Case Execution Time Analysis (WCET’09), volume 10 of
OpenAccess Series in Informatics (OASIcs), pages 1–11, Dagstuhl, Germany, 2009. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. also published in print by Austrian Computer
Society (OCG) with ISBN 978-3-85403-252-6.

15

[13] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sorensen, Peter Wägemann, and Simon Wegener.
TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Research.
In Martin Schoeberl, editor, 16th International Workshop on Worst-Case Execution Time
Analysis (WCET 2016), volume 55 of OpenAccess Series in Informatics (OASIcs), pages
2:1–2:10, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[14] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET
Benchmarks: Past, Present And Future. In Björn Lisper, editor, 10th International Workshop
on Worst-Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess Series in
Informatics (OASIcs), pages 136–146, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. The printed version of the WCET’10 proceedings are published by
OCG (www.ocg.at) - ISBN 978-3-85403-268-7.

[15] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for
free. In 6th International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), 2015.

[16] Chang-Gun Lee, Hoosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seongsoo Hong,
Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling. IEEE transactions on computers, 47(6):700–713,
1998.

[17] W. Lunniss, S. Altmeyer, C. Maiza, and R. I. Davis. Integrating cache related pre-emption
delay analysis into edf scheduling. In IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 75–84, Los Alamitos, CA, USA, apr 2013. IEEE
Computer Society.

[18] Will Lunniss, Sebastian Altmeyer, and Robert Davis. A comparison between fixed priority
and edf scheduling accounting for cache related pre-emption delays. Leibniz Transactions on
Embedded Systems, 1(1):01–1–01:24, 2014.

[19] Filip Marković, Jan Carlson, Sebastian Altmeyer, and Radu Dobrin. Improving the Accuracy
of Cache-Aware Response Time Analysis Using Preemption Partitioning. In Marcus Völp,
editor, 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), volume 165 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:23, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[20] Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean-Paul Bahsoun, and Marianne De Michiel.
PapaBench: a Free Real-Time Benchmark. In Frank Mueller, editor, 6th International Work-
shop on Worst-Case Execution Time Analysis (WCET’06), volume 4 of OpenAccess Series
in Informatics (OASIcs), Dagstuhl, Germany, 2006. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[21] Darshit Shah, Sebastian Hahn, and Jan Reineke. Experimental Evaluation of Cache-Related
Preemption Delay Aware Timing Analysis. In Florian Brandner, editor, 18th International
Workshop on Worst-Case Execution Time Analysis (WCET 2018), volume 63 of OpenAccess
Series in Informatics (OASIcs), pages 7:1–7:11, Dagstuhl, Germany, 2018. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[22] Yudong Tan and Vincent Mooney. Timing analysis for preemptive multitasking real-time
systems with caches. ACM Transactions on Embedded Computing Systems (TECS), 6(1):7,
2007.

16

