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Abstract

We present the theoretical background of the PoPe and iPoPe verification scheme.
The verification that is performed uses the output of actual simulations of produc-
tion runs. With a small computing overhead it is possible to check that the problem
that is solved numerically is consistent with the equations that are to be addressed.
In fact, one shows that the numerical error determined by both procedures can be
split into a part proportional to the existing operators of the equations, thus mod-
ifying their control parameters, completed by a residual error orthogonal to these
operators. The accuracy of the numerical solution can be tested on the error as well
as on the modification of the control parameters.
To illustrate the method, the evolution equation of a simple mechanical system
with two conjugate degrees of freedom is used as simulation test bed. Importantly,
although dissipative, the trajectory equations evolve towards a chaotic attractor,
a strange attractor, characterised by a positive Lyapunov exponent and therefore
sensitivity to initial conditions. It is shown that the chaotic state cannot be ver-
ified with the standard Method of Manufactured Solution. We present different
facets of the PoPe verification method applied to this test case. We show that the
evaluation of the accuracy is case dependent for two reasons. First, the error that
is generated depends on the values of the control parameter and not only on the
numerical scheme. Second, the target accuracy will depend on the problem one
wants to address. In a case characterised by bifurcations between different states,
the accuracy is determined by the level of detail of the bifurcation phenomena one
wants to achieve.
A unique verification index is proposed to characterise the accuracy, and conse-
quently the verification, of any given simulation in the production runs. This PoPe
index then gives a level of confidence of each simulation. A PoPe index of zero char-
acterises a situation with 100% error level. One finds that although the accuracy is
poor the robust features of the solution can still be recovered. The maximum PoPe
index is determined by machine precision, typically in the range of 12 to 14. As
an illustration this PoPe index is used to choose between a high order integration
scheme and a reduced order integration scheme that is less precise but requires less
operations. For the chosen example the PoPe index indicates that the high order
scheme leads to a reduction of computer resources up to a factor 4 at given accuracy.
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1 Introduction

As numerical simulations grow in importance in the research activity, as codes become
more and more complex and as the resources dedicated to these simulations become in-
creasingly important it is most obvious that appropriate verification of the numerical
tools are mandatory. This issue has always been addressed but is becoming more and
more difficult as the numerical tools and the problems that are addressed become more
complex. When available analytical solutions of the problem at hand have been used.
However, with growing complexity of the problem at hand, numerically built solution are
currently being used.
The best known method with numerically built solution is the so-called Method of Manu-
factured Solutions (usually referred to as MMS) [12, 10]. It is regarded as state of the art
method to address complex code verification and is now used for fusion plasma simulation
tools [11, 13]. The MMS and a similar alternative verification scheme are recalled in Sec-
tion 3.2 and 3.3 respectively. The MMS method, however elegant, suffers from two main
drawbacks. First the MMS requires that one modifies the code to enforce that a chosen
function is the effective solution. Second, one cannot assess that the chosen function is
representative of all the simulations to be performed. These issues are discussed in Section
3. More importantly, one is led to assume that the solution chosen for the verification is
stable. This particular case is not generic of non-linear systems. The proposed alternative
verification scheme, that is less dependent of a particular target solution is called here
Method of Reverse Solution (MRS). This method requires less modifications of the code
but still depends on the particular time slots retained in the verification procedure.
The most appropriate verification procedure should be available for each production run
of the simulation effort, providing the possibility to give a figure of merit of the exactness
and accuracy of any particular simulation. The PoPe method, standing for Projection
on Proper elements, has been developed to achieve this task as well as investigating the
performance of reduced models [5, 4]. Since, it has been used to analyse the exactness and
accuracy of existing simulations [3]. Although the PoPe and iPoPe methods are based on
data analysis, they follow a defined mathematical procedure which differs from big data
analysis based on artificial intelligence routines [2].
In this paper we present the PoPe method using a simple simulation problem as illustra-
tion and test bed. The PoPe method is presented in Section 2 together with a simplified
alternative that we have named iPoPe for independent Projection on Proper elements.
The key idea is to build numerically an ensemble of operators using the simulation output
and project one particular operator, usually the time derivative, on this ensemble. The
simulation chosen to illustrate this method is presented in Section 3.1. We have chosen a
simple mechanical system, namely a compass driven by an alternating magnetic field and
subject to viscous damping. The trajectory in the 2D phase space is chaotic and, for non
vanishing damping, exhibits an attractor, called strange attractor, with fractal dimension
ranging between 1 and 2 depending on the values of the control parameters. Chaos being
generic in non-linear systems, verification methods must be able to handle such dynamics.
The standard MMS and the alternative MRS verification procedures are tested for the
chosen strange attractor in Section 3. The PoPe and iPoPe verification schemes applied
to the case of the strange attractor are presented and evaluated in Section 4. Finally a
Section dedicated to discussion and conclusion closes the paper.
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2 PoPe and iPoPe verification

2.1 PoPe analysis

The aim of the PoPe verification scheme is to analyse the exactness of a particular sim-
ulation using the output data of that particular simulation. The standard simulation
overhead when using this method is to save more data than one would normally consider
for a production run. Most of the work is then postponed to the post-processing stage.
The weight of this additional output can also be optimised as will be discussed in the
following. The alternative, with verification on the fly, leads to a larger overhead but
with the benefit of immediate verification and accuracy estimate of the simulation.

The problem solved numerically can most of the time be written in the following
mathematical generic form:

O
(m)
t −

K∑
k=1

O
(m)
k = 0 (1)

where O
(m)
k are the various operators that are added to yield O

(m)
t . The superscript (m)

refers to the mathematical equation, while in the following the superscript (n) will re-
fer to the mathematical approximation to be solved numerically and (s) for the actual
simulation realisation. In this form, the control parameters that specify the weight of
the different physical processes involved in Eq.( 1) are included in the definition of the
operators. The reference weight of each operator in Eq.( 1) is unity. A form with an
explicit dependence on the control parameters does not change the PoPe analysis. The
weights of some of the operators are then the values of the control parameters as in [4].
This is only a matter of presentation.

The problems solved numerically often take the form of an evolution, the operator Ot

then stands for a time derivative, hence the label t, governed by several effects charac-
terised by the right hand side operators Ok. We present PoPe in this rather standard
framework but the procedure holds to any problem of the form Eq.( 1). It is important
to underline that the PoPe method is very versatile and the choice and definition of the
operators is not constrained. In a standard way one follows the way these operators are
generated by the underlying physics, hence the choice of the time derivative for the opera-
tor Ot. But this is by no means mandatory. For instance, for a system converging towards
steady state with vanishing time derivative, one will want to avoid singularities and then
use another operator instead of the time derivative to define Ot. Implementing the PoPe
method, mostly in the post-processing stage, will clearly benefit from any insight into the
processes that govern the simulation at hand.

In order to perform numerical simulations, Eq.( 1) is transformed by discretising the
operators.

O
(n)
t −

K∑
k=1

O
(n)
k = 0 (2a)

This step introduces a first set of approximations and consequently of errors, that can
be a priori determined. The two equations Eq.( 1) and Eq.( 2a) cannot hold together,
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although one can enforce that the two equations exhibit the same symmetries and thus
the same conservation laws. When addressing the problem numerically, Eq.( 2a) is to be
solved so that Eq.( 1) is only solved approximatively. One can then rewrite this equation
as:

O
(m)
t −

K∑
k=1

O
(m)
k = O

(n)
t −

K∑
k=1

O
(n)
k + E(n) (2b)

The system addressed numerically Eq.( 2a) departs from the target mathematical system
Eq.( 1). The numerical simulation itself further contributes to the error build-up via the
rounding errors, as well as possible errors in the implementation. The effective equation
of a given simulation is then:

O
(s)
t −

K∑
k=1

O
(s)
k = 0 (3a)

Compared to the previous forms of the equations, Eq.( 1) and Eq.( 2a), numerical noise

governs the departure of the operators O
(s)
t and O

(s)
k from that implemented in the code,

O
(n)
t and O

(n)
k . An error is therefore generated at this step and the form of Eq.( 3a) to be

addressed is therefore:

O
(n)
t −

K∑
k=1

O
(n)
k = O

(s)
t −

K∑
k=1

O
(s)
k + E(s) (3b)

We find therefore that the equation that is consistent with the output data departs from
that considered initially due to errors with a known, potentially complicated error, E(n),
and an error E(s), which is simulation dependent and not controlled, therefore unknown.
The initial mathematical problem Eq.( 1) has therefore been changed in the simulation
process.

O
(m)
t −

K∑
k=1

O
(m)
k = E(n) + E(s) (4)

We now consider a data driven approach and assume that the simulation has been per-
formed so that the operators can be reconstructed using the output data. One then has
the relationship:

O
(r)
t −

K∑
k=1

O
(r)
k = E(r) (5)

where the superscript (r) now identifies the reconstructed operators. In the latter equation

the operators O
(r)
t and O

(r)
k are computed using the output data so that E(r) can also be

computed and is therefore known for the specific simulation and according to the specific

5



data saving process. Given Eq.( 5), one can also write this equation as:

O
(m)
t −

K∑
k=1

O
(m)
k = E(r) + δE(r) (6a)

δE(r) = δO
(r)
t −

K∑
k=1

δO
(r)
k (6b)

δO
(r)
t = O

(m)
t −O

(r)
t (6c)

δO
(r)
k = O

(m)
k −O

(r)
k (6d)

This system is not closed because the error δE(r) Eq.( 6b) is not determined and depends
on the departure between the reconstructed operators O(r) and the target mathematical
operatorsO(m) as defined in Eq.( 6c) and Eq.( 6d). However, the possible closure δE(r) = 0
can be considered whenever ||E(r)+δE(r)|| ≈ ||E(r)||. This can be made possible when the
reconstruction procedure is chosen to significantly more accurate than the discretisation
procedure implemented to perform the simulation so that:

||δO(r)
t || ≪ ||O(m)

t −O
(n)
t || (7a)

||δO(r)
k || ≪ ||O(m)

k −O
(n)
k || (7b)

and therefore ||δE(r)|| ≪ E(n). We shall assume this relation to be fulfilled in the fol-
lowing, and, in the examples of this paper, we will give numerically based evidence that
the reconstruction scheme is consistent with this approximation. In the specific case
where some parts of the discretisation scheme have been devised with highest accuracy,
so that the reconstruction scheme can only achieve the same precision, one is led to as-
sume O(m) ≈ O(r) for those parts of the discretisation scheme compared to the remaining
ones, which are therefore assumed to generate all the error.

Since E(r) is determined by the output data, it is known for a series of points in
phase space, at times ti and at phase space locations Xi. The label i labels one point in
the extended phase space combining time t and location X. It is to be underlined that
the only constraint on the data, and therefore on the number of data-points i and their
organisation in time and phase space, is to make possible a reconstruction procedure for
the operators with better precision than the chosen discretisation procedure used for the
simulations. In this framework Eq.( 6a) is only defined for these selected data-points i,
therefore:

O
(m)
t,i −

K∑
k=1

O
(m)
k,i = E

(r)
i (8)

In the following the superscripts (m) and (r) are dropped to simplify the notation. The
first step of the PoPe procedure is to build the error Ei for an ensemble of data points that
are representative of the simulation that has been performed. This data verifies Eq.( 8).
In a second stage, the error E is projected on the operators driving the evolution of the
system so that one can write:

Ei =
K∑
k=1

δckOk,i +Ri (9a)
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The coefficients δck stemming from the projection do not depend on the data-point and
only depend on the operator Ok. Part of the error Ei is orthogonal to the set of operators
Ok, which defines the residue Ri. Given Eq.( 9a), one can rewrite Eq.( 8) as

Ot,i −
K∑
k=1

(
ck + δck

)
Ok,i = Ri (9b)

When choosing ck to be the control parameter associated to the operator Ok, then δck is
the absolute error made on that control parameter for the selected operator and chosen
simulation. When one considers ck = 1, as done in this paper, then δck is the relative
error made on that control parameter. Irrespective of this choice one can write Eq.( 9b)
as:

Ei −
K∑
k=1

δckOk,i = Ri (10)

This linear equation depends on the K unknowns δck so that K data points are a priori
sufficient to determine them when setting Ri = 0, which then defines the orthogonality.
One can then readily expect that for each set of K data points a different realisation of
the K coefficient δck is computed. Three ways to address the possible statistics can be
chosen. First, one can define the ensemble of coefficients δck for each available K-tuple
of data-points and perform statistics on these realisations. Second, one can introduce
the statistics directly in the calculation of the coefficients, for instance by computing the
coefficients with a least square method using m-tuples of data-points with m ≥ K. If
Nmax is the number of available data points, choosing m = Nmax then yields a unique
value for each coefficient δck, k ∈ [1, K]. Third, when setting K ≤ m < Nmax, a mean
square method can be used to define the projection and statistics can be performed on
the results. It is to be noted that choosing a least square method with m = K, leads
to a calculation that is quite similar to that proposed in the first item of this list. One
can then recast the three possibilities that have just been described in terms of a specific
choices of the m-tuples of data-points used in least square calculations.

� Coefficients δck are computed using the least square calculation for each available
K-tuple of data-points, and statistics are performed given these realisations, case
with m = K.

� Coefficients δck are computed using the least square calculation with m-tuple of
data-points, with m > K. When K < m < Nmax, statistics on the coefficients δck
can be performed.

� The coefficients δck are computed using the least square calculation using all avail-
able data, hence with the Nmax-tuple of data-points, m = Nmax. A single value is
generated for each coefficient.

2.2 PoPe projection defined with the least square method

Let us define the separation di as:

di = Ei −
K∑
k=1

δckOk,i (11a)
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and then the distance dm:

d2m =
m∑
i=1

1
2
d2i (11b)

The least square method then generatesK-coupled linear equations defined by ∂d2/∂δck =
0, namely by setting that d2m is an extremum with respect to the variations of each δck.
These coefficients are an optimum result for the particular choice of the m-tuple. The
extremum equation obtained with respect to δck is then:

K∑
k′=1

δck′
m∑
i=1

Ok,iOk′,i =
m∑
i=1

EiOk,i (12)

When defining the scalar product ⟨F |G⟩ of the m-dimension vectors F and G by:

⟨F |G⟩ =
m∑
i=1

FiGi (13)

the extremum constraint takes the form of a projection:

K∑
k′=1

δck′ ⟨Ok|Ok′⟩ = ⟨Ok|E⟩ (14a)

this result being completed by the orthogonality of the residue:

⟨Ok|R⟩ =
〈
Ok

∣∣∣(E −
K∑

k′=1

δck′Ok′

)〉
= 0 (14b)

The least square method therefore defines a particular projection for a code output data.
Other projections can be defined. For instance, one can specify a weight for each m-tuple
allowing to enforce in the result a class of m-tuples. For example, in the case of K = 2
one can define the weight as ⟨O1|O1⟩ ⟨O2|O2⟩− ⟨O1|O2⟩2 than ought to reduce the impact
of co-linearity.

The PoPe method combines the idea of generating a phase diagram using a time series
of a single variable [9], here Ok,i where k labels a particular vector and i the index in the
time series for a chosen time delay. The vector (Ok,i), i ∈ [i1, i1 +m] is then assumed
to define a position at time i1 in a phase space of dimension m. However, compared
to the standard case with a single time series, we consider the case with several signals
generating different time series labelled here by k ≤ K. Each operator is then identified
to a function acting in a space of dimension m and requires a priori an infinite dimension
bases of function to represent it. We also introduce another difference in building the
vectors (Ok,i), 1 ≤ i ≤ m by choosing of the same set of indices i for all operators but
each set being chosen randomly. However, given the constraint Eq.( 1), we assume that
the trajectories are mostly embedded in the function-space of dimension K generated by
the K operators. A presumed small contribution exists and is transverse to that plane,
the residue R. Once a scalar product is defined, for instance that generated by the least
square method, projections can be computed and one can follow a particular simulation

8



Figure 1: Projection of the error E, on the plane of the operators O1 and O2, yielding the
coefficients δcO1 and δcO2 and defining the residue R in the direction orthogonal to this
plane. The projection in the plane (O1, O2) of the fluctuations of the error are indicated
by the grey region. Left hand side: sketch of the projection when O1 and O2 are near
orthogonal, the variation of the coefficients δcO1 and δcO2 are reduced. Right hand side:
sketch of the projection when O1 and O2 are nearly co-linear driving a larger uncertainty
on δcO1 and δcO2.

in the phase space generated according to this procedure, see Figure 1. To simplify the
situation, we sketch the problem in 2D, thus for two signals O1 and O2 generating the
time series. Two cases are then observed. When the two operators are independent, 1 left
hand side, the error E is projected in the plane (O1, O2), the coefficients δcO1 and δcO2

are well defined and their dispersion accounts for the numerical errors. However, when
the two operators are nearly co-linear, Figure 1 right hand side, large variations of δcO1

and δcO2 can occur. Increasing the dimension m of the phase space tends to reduce the
co-linearity, unless the operators O1 and O2 are ill chosen and actually co-linear (which
would be however a useful information regarding the system). Note that in Figure 1, the
numerical fluctuations are only indicated by their projection in the plane (O1, O2), the
shaded grey regions, and that, for convenience of the representation, the operators are
not shown to fluctuate. In practise, these fluctuations can govern transitions between left
and right hand side relevant geometry. Minimising the impact of the latter situations of
co-linearity by increasing the dimension m of the embedding space is performed at the
cost of reducing the description of the statistics of the fluctuations, eventually narrowing
the grey window to a single value.

2.3 iPoPe analysis

In order to solve Eq.( 14a), one has to inverse a K ×K matrix to obtain the coefficients
δck, 1 ≤ k ≤ K. In this process all coefficients appear on the same footing. However,
when the operators of the system do not have the same magnitude, a small error on the
calculation of a large amplitude operator can have a large impact on an operator with
comparatively smaller amplitude. There is a possibility of propagating the error from a
particular operator on the coefficients of other operators. Furthermore, inverting a large
matrix as required for the standard PoPe method can be cumbersome. However, when
the matrix is diagonal elements each coefficient is computed independently. We generalise
this property to define the iPoPe method, for independent Projection on Proper elements.
This method addresses the projection operator after operator in a staged approach and
is identical to the PoPe solution when the matrix is diagonal. Let us choose k as the first
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element of the projection, then one determines the iPoPe coefficient as:

δck ⟨Ok|Ok⟩ = ⟨Ok|E⟩ (15a)

this result being completed by the calculation of the specific residue Rk orthogonal to Ok:

Rk = E − δckOk (15b)

Computing δck is then absolutely straightforward: δck = ⟨Ok|E⟩ / ⟨Ok|Ok⟩. The coeffi-
cient δck that is obtained maximises the importance of the operator Ok in generating the
error since one computes δck as if all the error was stemming from that operator. In a
second stage, one can compute the coefficient δck′ and a new residue as follows:

δck′ ⟨Ok′|Ok′⟩ = ⟨Ok′|Rk⟩ (16a)

this result being completed by the calculation of the specific residue Rk orthogonal to Ok:

Rk,k′ = Rk − δck′Ok′ (16b)

Step by step one can iterate the procedure until all coefficients are determined, and the
ultimate residue is computed. The simplicity of iPoPe is balanced by the number K! of
different ways it can be applied. The actual number of different values of the coefficients
is not quite as big since computing a coefficient at a given stage does not depend on the
various combinations retained at the following stages.

NiPoPe = K
K∑
k=1

(K − 1)!

(K − k)!
(17)

A systematic use of iPoPe considering all these combinations is prohibitive whenever K
is large. The method is thus of interest when a bias is introduced that defines an order in
which the coefficients are determined. One can also consider a mix of iPoPe and PoPe in
the procedure, giving a particular weight to a class of operators with iPoPe and treating
the remnant on equal footing with PoPe. Finally, one can use the first step of iPoPe
for each 1 ≤ k ≤ K, maximising the error measured by δck for each operator. These
possibilities underline the versatility of PoPe in analysing any simulation output. Also,
as a by-product of the method, one can investigate ⟨Ok|Ok⟩ the actual weight of the
operator in the balance as well as its change in time or space. All these features of the
PoPe or iPoPe methods provide an in depth analysis of the chosen simulation, both a tool
to investigate the physics and that to identify possible shortfalls of the chosen numerical
scheme.

3 Standard verification of strange attractor simula-

tions

3.1 The strange attractor model

The model we consider to present the PoPe verification method is the simple model of a
particle submitted to two electrostatic waves with different pulsation and identical wave
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Figure 2: Poincaré section of the strange attractor generated by Eqs.(18) , case a with
σchir = 7, hence B ≈ 3.0625, and ν = 0.2, left hand side, and case b with σchir = 2.3,
hence B ≈ 0.330625, and ν = 0.8 right hand side. Simulation with order 4 Runge Kutta
and 29 time steps per unit time.

vector and amplitude. Alternatively it can be understood as the model for a compass in a
two component magnetic field, one fixed and the other rotating, both components having
the same amplitude. The phase space motion is thus two dimensional (2D) with one
dimension standing for the position x, either the position of the particle or the angle of
the compass, and one for the momentum J , that of the particle of the angular momentum
of the compass. The normalised evolution equations for dx/dt and dJ/dt are :

dx

dt
= J (18a)

dJ

dt
= −2π B

(
sin

(
2πx

)
+ sin

(
2π(x− t)

))
− ν J (18b)

The parameter B, the normalised electric potential of the electrostatic waves or the am-
plitude of two components of the magnetic fields, is directly connected to the Chirikov
overlap parameter [7] σchir since the characteristic island width δi is δi = 2

√
B and the

chosen distance between the resonances is ∆ = 1 so that σchir = 2δi/∆ = 4
√
B. A fluid

viscosity damping term −νJ governs the contraction of the phase space volume to zero.
For convenience we introduce the Hamiltonian H0 of the non dissipative evolution so that:

H0 =
1
2
J2 −B

(
cos

(
2πx

)
+ cos

(
2π(x− t)

))
(19a)

dx

dt
=

∂H0

∂J
;

dJ

dt
= −∂H0

∂x
− ν J (19b)

The trajectory of the system is presented in a standard fashion, in the so-called Poincaré
sections, a stroboscope effect at time interval 1, which is the period of the driving force,
figure (2). Two cases will be considered in this work:
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� case a with control parameters σchir = 7, hence B ≈ 3.0625, and ν = 0.2, Figure 2
left hand side

� case b with control parameters σchir = 2.3, hence B ≈ 0.330625, and ν = 0.8, Figure
2 right hand side

The simulation of the strange attractor is chosen because it combines simplicity of
the numerical integration and sensitivity to initial conditions. The latter makes verifi-
cation slightly more challenging since any error, including numerical errors, governs an
exponential separation between trajectories. The chosen numerical time stepping schemes
are order 2 and order 4 Runge Kutta (RK2 and RK4 respectively). The sensitivity to
initial conditions is governed by the Lyapunov exponent defined as the average along the
trajectory defining the strange attractor of the largest eigen vector of the tangential map
[1]. The latter is readily determined:

dδx

dt
=

[
∂2
JH0(xt, Jt)

]
δJ (20a)

dδJ

dt
= −

[
∂2
xH0(xt, Jt)

]
δx− ν δJ (20b)

where xt, Jt is a phase space position belonging to the trajectory. The eigen values
associated to the tangential map are therefore:

λ
(±)
t = −ν

2
± ∆

1/2
t (21a)

∆t =
(ν
2

)2

− ∂2
JH0(xt, Jt)∂

2
xH0(xt, Jt) (21b)

One can readily check that the phase space contraction of the strange attractor is gov-
erned by the viscosity ν since its volume shrinks exponentially in time according to

exp(
〈
λ
(+)
t + λ

(−)
t

〉
t) = exp(−νt). The global property of the strange attractor is cap-

tured by the largest Lyapunov exponent Λ assuming Λ > 0. The latter measures the
sensitivity to initial conditions and is determined numerically [1]. The eigen values are
sometimes referred to as the local Lyapunov exponents which underlines the connection
between the actual Lyapunov exponents and the series of eigen values on a chaotic tra-
jectory.

3.2 Standard Method of Manufactured Solution for the strange
attractor

Let us consider the characteristic problem:

dX

dt
= F (X) (22a)

The standard Method of Manufactured Solution consists of selection a particular function
X0, time independent for simplicity, and modifying the initial equation Eq.( 22a) so that
X0 is a steady state solution, typically:

dX

dt
= F (X)− F (X0) (22b)
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Figure 3: For case a, σchir = 7 and ν = 0.2, investigation of the fixed point stability
for the standard Method of Manufactured Solution, trajectory with chosen fixed point
X = x0 = −0.17, J = 0 and initial distance from this fixed point d0 = 10−8. Left hand
side: trace of x (blue dotted curve) and J (black curve). Right hand side: variation of the
distance d from the fixed point, initial value d0 = 10−8 with rapid growth to macroscopic
values, d ≈ 1 on a time scale of δt ≈ 2.

.

For a complex system, the operator F implemented in the code is used to determine
F (X0) so that Eq.( 22b) yields exactly dX0/dt = 0 both theoretically and numerically.
One can then perform the numerical test that X0 is indeed a steady state solution, usually
by ensuring that the slightly perturbed solution X0 + δX converges back to X0. Such a
procedure is elegant but has two drawbacks: first it assumes that the system of interest
is such that the fixed point X = X0 of Eq.( 22b) is stable, second one must modify the
code to solve both Eq.( 22a) of interest and Eq.( 22b) for the test. Third, one furthermore
assumes that the chosen solutionX0 is representative of the solutions of interest. Given the
evolution equation Eq.( 22b) one can readily see that the eigen values are unchanged when
stepping from the strange attractor evolution equation to the MMS evolution system.
When the real part of the largest eigen value of the fixed point is positive, the fixed
point is unstable. Furthermore, due to the explicit time dependence of the potential
even a fixed point at initial time will exhibit a positive real part of the largest eigen
value after an evolution time shorter that 0.5. One can thus expect that in most cases,
disturbing the initial condition away from the fixed point X0 in Eq.( 22b) will not drive
a relaxation trajectory back to the fixed point. Using the form derived in Appendix A,
one can investigate numerically these features. The modified evolution equation for the
Method of Manufactured Solution does yield trajectories of particular interest. Cases that
have been tested start from a chosen fixed point −0.5 ≤ x ≤ 0.5 and J0 = 0 since it is
shown in Appendix A that all possible values of J0 can be investigated using a change of
variable and J0 = 0. An initial distance from the fixed point is chosen d0 = 10−8. The
evolution appears to lead to large values of J , either negative or positive and consequently
rapid rotation of the phase x, Figure 3 left hand side. As expected and discussed above,
in all cases that have been investigated, the trajectories depart from the fixed point as
exemplified by the growth of the distance d from the fixed point, Figure 3 right hand
side. This standard use of the Method of Manufactured Solution is therefore not fit
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Figure 4: Verification with the Method of Return Solution, sketch of the method.

– initial condition (ic) belonging to the trajectory of the system tic, xic, Jic,

– trajectory stepped forward for ∆t = 1
4
, reaches distance dx from the initial condition,

– then, trajectory stepped backward for ∆t, distance from initial condition dr.

for the chosen problem that exhibits chaotic trajectories. Since the latter situation is
generic, and of particular relevance for complex systems, those which require in particular
numerical simulation support, one is led to conclude that this method is of restricted
relevance for verification purposes.

3.3 Alternative Method of Manufactured Solution for the strange
attractor

As discussed in the previous Section, the limitation of the Method of Manufactured Solu-
tion as implemented lies in the assumption that the generated fixed point is stable. The
verification stage allows one to check that the numerical response exhibits this mathemat-
ical property and to determine with what precision the fixed point is recovered. Rather,
than enforcing an arbitrary fixed point, an alternative Method of Manufactured Solution
is based on a return to the initial condition: hence after N steps forward in time, the
subsequent N steps are performed with the opposite time step [8]. Mathematically the
system must therefore reverse to its initial position. However, the numerical errors, partly
amplified by the effect of the divergence of neighbouring trajectories, will distort the tra-
jectory and a distance dr is generated between the initial and final positions in phase
space, see Figure 4. This distance is averaged over the points belonging to the strange
attractor to yield a measure of the accuracy. The idea is therefore similar to the stan-
dard Method of Manufactured Solution except that the chosen reference solution is the
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Figure 5: Verification with the Method of Return Solution for case a, σchir = 7 and
ν = 0.2. Left hand side: distance between phase space initial conditions and positions
after ∆t = 0.25, hence after ∆t/δt times steps, dx black dots, and distance between initial
condition and return point dr blue dots versus the position of the initial condition x.
Right hand side: same data, histograms of the distances, dx black histogram, dr blue
histogram.

.

initial condition via the backward steps in time. We have called this verification scheme
the Method of Return Solution, or MRS. Of course the chaotic nature of the trajectory
plays a role in the distance dr that is observed since any error is exponentially amplified.
However, dr will be an increasing function of the effective numerical error and it provides
consequently a useful measure in the verification procedure, in particular to determine
the order of the numerical scheme.
For the strange attractor both the second and fourth order Runge Kutta schemes are

used varying the number of time steps per period from N = 23 = 8 to N = 212 = 4096.
As shown in Appendix B, one expects the error determined by MRS to scale like the order
of the time stepping scheme plus one1, hence a decrease of the error like N−3 for the order
2 Runge Kutta scheme, labelled RK2, respectively N−5 for the fourth order Runge Kutta
scheme, labelled RK4.

We first consider case a, with large Chirikov parameter, σchir = 7 and ν = 0.2, see
Figure 2 left hand side, and comparing the RK4 and RK2 schemes. For a series of points
belonging to the attractor, the evolution is stepped forward during a fourth of a period,
∆t = 0.25, the distance from the initial condition dx is then recorded, then the time step-
ping is reversed, and the trajectory therefore heads back towards the initial condition.
The distance dr between the initial and return points in phase space is then computed.
For a large time step with N = 23 steps per period, δt = 0.125, one can compare the
distribution of distances dx and dr, Figure 5 left hand side. These distances are plotted
versus the position x of the initial condition, black dots for dx and blue dots for dr. At

1This result holds when the distance dr is small enough to allow the expansion performed in Appendix
B, otherwise the scaling is determined by the time stepping as reported in Ref. [8].
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Figure 6: Verification with the Method of Return Solution for case a, σchir = 7 and ν =
0.2. Left hand side: histograms of log10(d) for various resolutions N , N = 23, 24, 25, 26, 27,
black histograms of dx black curves, histograms of dr blue curves. Right hand side:
similarity of the MRS error histograms of log10(dr) for N = 25 lower scale and N = 27

upper scale.

this low resolution one finds that dr is large typically ≈ 0.1dx with dx ≈ 2.. The maxi-
mum distance reached after a fourth of a period is comparable to the ”size” of the strange
attractor, typically up to 5, Figure 2 left hand side. One can analyse the distribution of
these distances, Figure 5, right hand side. The histograms of dr, blue curve, and dx, black
curve indicates that the distribution of dx is quite broad. Conversely, the measurement
of the error dr is characterised by a narrower histogram peaked on the smallest distance
dr = 0. The histograms of log10dx and log10dr yield more insight into the error. These his-
tograms for different resolutions are compared on Figure 6 left hand side. The resolution
is characterised by the number of steps N per unit time, the period of the potential, hence
defining the time step δt = 1/N . On Figure 6 left hand side are compared the simulations
for N = 23, N = 24, N = 25 and N = 26, the black curves that overlay correspond to
the histogram of dx while the various histograms in blue are those of dr. The latter shift
towards smaller distances as N is increased, while the former are typically unchanged.
The histograms drawn with thick lines correspond to the resolution N = 23. One can
remark that the shift towards the smaller values of the histograms of log10(dr) appears
to be at a constant value for each increase of N by a factor 2. One thus finds that the
distance dx does not exhibit qualitative changes as the resolution is improved, while the
measure of the MRS error exhibits a decrease with the resolution. The similarity between
these various histograms of dr is more clearly shown on Figure 6 right hand side, where
the resolution N = 25, lower scale, is compared to N = 27 resolution upper scale. Note
that the scales are identical but for a shift of log10(10

−3) from the lower to the upper
scale. The shaded region corresponds to the number of counts smaller than 10. One can
remark that the distribution of the distance dr appears to be nearly unchanged when N
is varied. This distribution is broad and skewed: for N = 27, one finds ⟨dr⟩ ≈ −7.875 and
a standard deviation δdr ≈ 0.66 with skewness ≈ −0.66. For each value of the resolution
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Figure 7: Investigation of the order of the numerical scheme with the Method of Return
Solution (MRS). For case a, σchir = 7 and ν = 0.2, comparison of the Runge Kutta
schemes of order two (RK2), up-down open triangles, and four (RK4) open circles. For
case b, σchir = 2.3 and ν = 0.8, precision with the Runge Kutta schemes of order four,
closed circles. The expected scaling exponents, N−5 for RK4 and N−3 for RK2, are
recovered.

N , theses statistics are performed with 320064 different initial conditions chosen on the
strange attractors computed with the different resolutions. The similarity of the distribu-
tion of the error for these different resolutions underlines the fact that the error governed
by the time integration scheme is of the form f(xic, Jic, tic)δ

5
t . Provided the change of

phase space position xic, Jic at time tic is statistically identical for each resolution, then
the realisation of the function f will be identical, hence with the same shape of its distri-
bution function, while the dependence on δ5t will govern a shift of the form −N log10(2).

One can then analyse the dependence of the error on the resolution N that determines
the time step δt = 2−N , Figure 7 left hand side. For the reference case a, σchir = 7,
ν = 0.2, one checks that the error ⟨dr⟩ scales like N−5 for the order four Runge Kutta
scheme, blue open circles, and N−3 for the order two Runge Kutta scheme, black upside
down triangles. The scaling appears to hold over the whole range of values of N , but
for a small departure at N ≈ 23. For completeness, the results for case b, σchir = 2.3,
ν = 0.8, are also plotted. These simulations are performed with the fourth order Runge
Kutta time stepping. One recovers the appropriate slope associated to the order of the
scheme, and, as can be expected, one can observe that the error levels-off when the error
becomes comparable to machine precision. However, one finds that the error exhibits a
quite different magnitude when comparing case a andb. This agrees with the fact that
the sensitivity to initial conditions is characterised by a different Lyapunov exponent,
which is larger in case a than in case b. This governs a larger exponential growth of
the error in case a compared to case b. In the present examples the difference in the
MRS error is close to three orders of magnitude. The test for one regime of parameters
does not allow one predicting the precision for another. Consequently, the accuracy test,
combining verification and analysis of the effective precision, should be made for each
particular regime addressed in the simulation effort.
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Figure 8: Strange attractor for case a, σchir = 7, ν = 0.2 and time stepping with N = 23

steps per unit time. Left hand side: fourth order Runge Kutta integration scheme. Right
hand side: second order Runge Kutta integration.

When considering the phase portrait of the attractors, the eye inspection indicates
that the accuracy issue is more demanding than simply assessing the precision of the
numerical scheme. This is particularly noticeable with low resolution simulations, Figure
8. With N = 23 steps per unit time, the achieved phase portrait with both RK4, Figure
8 left hand side, and RK2, Figure 8 right hand side, depart significantly from that dis-
played on Figure 2 left hand sides obtained with the same control parameters but with
N = 29 and RK4. Based on this eye inspection, these low resolution results appear to be
inaccurate and consequently misleading. Therefore, knowing the error and checking its
scaling when changing the resolution is a verification of the numerical scheme but does
not provide a clear measure of the accuracy. The way to proceed to a correct accuracy
assessment appears to be unanswered but for the naive statement ”the smaller the error,
the better”. This quest for minimum error is naive because: (i) it relies implicitly on
infinite resources, (ii) it does not discuss the actual need in terms of precision, (iii) it
cannot guaranty exactness for chaotic systems since the sensitivity to initial conditions
implies that any error, however small, will be amplified to macro-scales. The alterna-
tive to the naive statement is to focus on numerical measurements that are relevant in
terms of physics. Regarding the strange attractor, the largest Lyapunov exponent can
be regarded as such a measurement, Figure 9, left hand side. One can observe that the
results obtained with the RK4 scheme are characterised by a nearly constant value of
the Lyapunov exponent with not distinct trend when increasing the precision. For the
simulation conditions σchir = 7, hence B ≈ 3.0625, and ν = 0.2, the only significant
change with RK4 is that between the simulation with N = 23, with Λ+ ≈ 0.95 and the
other simulations with larger values of N where Λ+ ≈ 1.0 is observed. However, when
considering the results obtained with the RK2 integration scheme, one finds a large varia-
tion until N ≥ 28. The negative values of the Lyapunov exponent are confirmed by phase
portraits with fixed points with transients trajectories spiralling in towards them. Based
on the largest Lyapunov exponent one can argue that one must consider N ≥ 28 for the
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Figure 9: Accuracy investigation for the cases a, σchir = 7, ν = 0.2, open symbols, andb,
σchir = 2.3, ν = 0.8 closed symbol with the RK4 and RK2 integration schemes, circles,
respectively head down triangles. Left hand side, calculation of the largest Lyapunov ex-
ponent Λ+. Right hand side, relative error on the value of ν determined by the calculation
of the rate of decrease of the phase space volume.

RK2 integration scheme, while N ≥ 24 would suffice with the RK4 integration scheme.
However, the examination of the Lyapunov exponent for the latter does not provide a
clear measure to discriminate the accuracy. Still, considering these two critical number
of steps, and since the cost of the RK4 scheme compared to RK2 is typically a factor 2
in the number of operations to be done, one finds a net gain of a factor 8 in computing
resources by implementing the RK4 scheme rather than RK2 for this problem.

An alternative measure to evaluate the results is to determine the exponent that
characterises the shrinking of the phase space volume, therefore for a given precision
N : Λ+ + Λ− = −νN . The benefit is that one expects the exponents νN to converge
towards ν when N is increased. The relative error |ν − νN |/ν thus appears to be a more
precise measure to evaluate the exactness of the numerical scheme. However, determining
numerically the exponent νN adds a cost in computing resources of about 50% and yields
an output that is known a priori but for the error in computing it. Another caveat is that
this error can also be specific of the calculation of νN and consequently not relevant to
assess the correctness of the evaluation of the Lyapunov exponent. For the three cases that
have been analysed, one finds that the relative error |ν−νN |/ν decreases as expected when
N is increased, but this gain in accuracy appears to level-off at a value of the order of 10−5

for case a σchir = 7, ν = 0.2 and 10−7 for the case b σchir = 2.3, ν = 0.8. The accuracy
of this measure is again dependent on the problem of interest. The fact that the relative
error appears to level-off also provides a possible rule to determine the reference precision
as the effective lower bound as well as the optimum value of N where the role over occurs.
For the RK4 scheme one finds typically N ≈ 27, while for the RK2 scheme N ≳ 29 seems
appropriate. This criterion to evaluate the exactness still indicates that using the RK4
scheme compared to RK2 yields a net gain of a factor 2 in computing resources. The
analysis of the relative error on the calculation of ν indicates that the lowest resolution

19



Figure 10: Error ERK obtained with the Manufactured Method Solution for the Runga
Kutta schemes, order 2 blue open circles and order 4 black open squares. The correspond-
ing slopes for order 2 and order 4 error are indicated by dash dot lines, respectively blue
for order 2 and black for order 4. The dashed black line is indicative of the slope N1

which fits the loss of accuracy when N is too large.

yields an error exceeding unity, which is clearly too big. Comparing the relative error to
the calculation of the Lyapunov exponent, one can determine the empirical rule that the
relative error on the calculation of ν should be smaller that 10−3. The full analysis with
the Method of Return Solution provides a verification of the numerical scheme and also
yields case dependent rules to assess the exactness of the simulation. However, such an
analysis must be performed and results checked for each class of simulations of interest.

4 PoPe verification for the strange attractor

4.1 Manufactured Solution testing of the PoPe operators

Before addressing the PoPe verification of the strange attractor simulations we first verify
the Runge Kutta schemes, RK4 and RK2 with a standard method, akin to the Method
of Manufactured Solutions. Let us consider a problem with known solution so that one
can measure the error. We thus consider the equation

dJ

dt
= − sin

(
2 ∗ πt

)
(23)

with known solution J(t) = cos(t) for initial conditions J = −1 at t = −π. One can
then compute the error ERKi(N) = max(|JRKi(N, t) − JM(t)|)t where JRKi is the value
of J computed with the Runge Kutta scheme of order i, and JM the known analytical
solution. We retain here the largest error taken over one period of the solution. Changing
the number of steps per period according to N = 2n with 3 ≤ n ≤ 25, hence the step 1/N ,
allows one checking the implementation of the Runge Kutta schemes, Figure (10). On
can thus observe that the error behaves with the appropriate order until the number of
steps is so large that the numerical noise, typically proportional to the number of steps N
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becomes larger than the error governed by the numerical scheme. One can thus state that
this check is a verification of the Runge Kutta schemes used to determine numerically
the trajectories that generate the strange attractors. However, as discussed in Section
3.2, this verification gives no information regarding the accuracy: (i) because the chosen
solution has different characteristic properties compared to the problem to be addressed,
(ii) because a criterion must be defined to be able to discuss the accuracy.

4.2 PoPe error analysis for the strange attractor

The PoPe verification is based on data mining using the output of production runs. From
the saved data it is possible to reconstruct the values of the different operators that drive
the problem at hand. For the strange attractor, the series of values of xi, Ji and ti, where
the index i identifies the number in a time series, hence xi = x(ti) and Ji = J(ti) are
used for the verification. Provided the time series are saved with the same time step has
that used by the numerical scheme, one can proceed to verification. Rather than using
Eq.( 18), which is actually implemented in the code, we consider the equivalent second
order equation:

d2x

dt2
= −2π B

(
sin

(
2πx

)
+ sin

(
2π(x− t)

))
− ν

dx

dt
(24)

One can note that in the verification procedure chosen here an equivalent but different
mathematical setting of the problem is addressed. Computing the various operators of
Eq.( 24) using the output data is straightforward for the right hand side. For the time
derivative operators, one has to rebuild the time derivatives using alternative schemes. We
have used here finite difference up to order 8. Similarly to the Runge Kutta integration
these derivatives are checked independently by comparing the derivative of sin(t) to cos(t),
Figure (11). The measured errors Efd are observed to compare well with the expected
orders of the finite difference schemes until precisions reaches the machine noise. The
number of operations is then too large, no precision can be gained due to the numerical
scheme, but the impact of the numerical noise, increasing with the number of steps,
overwhelms the accuracy of the schemes. This governs an increases of the error with
slope 1.

For each point i, position xi at time ti, of the trajectories, one can then compute the
error Ei as:

E
(r)
ok,i =

[d2x
dt2

](r)
ok,i

− RHS
(r)
ok,i (25a)

RHS
(r)
ok,i = −2π B

(
sin

(
2πxi

)
+ sin

(
2π(xi − ti)

))
− ν Ji (25b)

where
[
d2x/dt2

](r)
ok,i

is the reconstructed (superscript (r)) second derivative of x with re-

spect to t, computed with finite difference schemes at order k, indicated by the subscript
ok. To simplify the notations, the superscript (r) will be dropped in the following. The
error Ei then depends on that of the reconstruction scheme, but for the issues of interest
it mostly depends on the error made to generate the trajectory, typically governed by the
time step of the Runge-Kutta integration scheme and the order of the latter scheme. To
illustrate this procedure we consider case b with control parameters σchir = 2.3, ν = 0.8,

21



Figure 11: Error Efd obtained by comparing the derivative of sin(t) to cos(t) obtained
with finite difference, order 2 blue open circles and order 4 black open squares, order
6 blue full circles and order 8, full black squares. The theoretical decay rates are also
indicated by the dash dot and dashed lines. The dashed black line with positive slope N1

fits the loss of accuracy when N is too large.

integration scheme RK4 and number of steps per unit time N = 23. The second derivative
of x, reconstructed with the finite difference scheme of order 6, is plotted versus the right
hand side RHS

(r)
ok,i of Eq.( 24), Figure 12 left hand side. As expected for a computation

with good accuracy, the points lie close to the diagonal. However, one can notice for
this case with a low resolution integration that a thickness is noticeable. Stepping to the
error, hence the distance to the diagonal, Figure 12 right hand side, one finds that the
error reaches 0.1 and exhibits a structure somewhat reminiscent of that of the strange
attractor organised in self similar sheets, together with some form of symmetry regarding
the amplitude and the sign. Some properties of the error are better seen when consid-
ering its logarithm, Figure 13 left hand side. One can notice that most of the data of
log10(|Eo6|) appears to lie in the range −2± 1, but excursions can be seen towards small
errors while there seems to be a clear upper bound. The structure in the error is still
visible, which underlines the fact that the error is not homogeneous. This is all the more
visible that the number of points used here is large: it corresponds to the finite time
integration of Nt = 104 unit times multiplied by the number of time steps per unit time
N = 28. Increasing N governs an increase of the statistics, highlighting some details of
the results. The histogram of the logarithm of the error contracts the heavy tail effect
towards the large errors while expanding the region of small error. It is too be noted that
the exponential reduction of the bin size towards the smallest errors drives an exponen-
tial reduction of the number of counts. An exponential fall-off of the number of counts
towards the small values of log10(|Eo6|) is then indicative of a near constant distribution
of |Eo6|. The histogram of the error, Figure 13 right hand side, illustrates these charac-
teristic features. Towards the large errors the histogram indicates that the interpretation
in terms of a maximum error appears to hold as highlighted by the sharp transition from
close to maximum probability to near zero probability for a small increase of the error.
In the vicinity of the maximum of the histogram, a Gaussian like feature could describe
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Figure 12: PoPe error for case a σchir = 2.3, ν = 0.8, RK4 integration with N = 28

points per unit time, reconstruction with finite difference of order 6. Left hand side:
Reconstructed second order derivative of x versus the Right Hand Side (RHS) of Eq.( 24).
Right hand side: Error Eo6 versus the RHS.

Figure 13: PoPe error for case a, σchir = 2.3, ν = 0.8, RK4 integration with N = 28 points
per unit time, reconstruction with finite difference of order 6. Left hand side: Left hand
side log10(|Eo6|) versus the RHS of Eq.( 24). Right hand side, histogram of this error,
the shaded area indicating the region with small statistics and consequent large relative
fluctuations. All histograms are build using 5 bins par standard deviation.
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Figure 14: PoPe error for case a, σchir = 7.0 and ν = 0.2, RK4 integration with N = 28

points per unit time, reconstruction with finite difference of order 6. Left hand side:
Histograms for different values o J and normalised statistics. Right hand side, variation
of the mean ⟨logEo6⟩, max and min of logEo6 as well as the characteristic width of the
distribution function determined by the standard deviation δlogEo6, namely ⟨logEo6⟩ ±
δlogEo6.

the data. This suggests a Log-normal feature of the distribution for the error. Localised
peaks in this region, more readily noticeable for a plot of the histogram in linear scale,
could be reminiscent of the observed inhomogeneity of the error. Finally, towards the
smallest errors, the histogram exhibits an exponential decay, hence the signature of a
near constant distribution when the error tends towards zero. On the figure, the dashed
region is that with reduced statistics, namely a number of counts smaller that 10 and
therefore a typical statistical error of the order of 1/

√
10.

The analysis of the error is made either by setting E as random variable or considering
logE = log10(|E|). The former is more sensitive to the large values and is sign dependent
while the latter is sensitive to the small errors, ignoring their sign. However, as recalled
above, the interpretation in terms of probability distributions is less straightforward for
the latter given the changing bin size, which must be properly taken into account. For
standard situations with small amplitude error, |E| < 1, the random variable logE is
negative. When computing the standard deviation δlogE, one can decide for either signs.
Usually it is defined as the square root of the variance, hence positive, but when comparing
its value to the mean value ⟨logE⟩, negative in a standard case with small errors, the con-
venient choice is the negative sign. When considering the range of values ⟨logE⟩ ± δlogE
the sign of δlogE is not an issue.

Of interest in the error analysis are particular dependences of the error, for instance
variations in the phase space. Such an analysis can be performed by splitting the data
according to a range of values of J = dx/dt. For each subset of the data one can deter-
mine the average ⟨logE⟩ and standard deviation δlogE. The normalised error function
can then be defined as (logE − ⟨logE⟩)/δlogE with the same meaning for each chosen
range of values of J . This procedure provides a way to investigate the inhomogeneity of
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the error, Figure 14 left hand side. The data used to build this histogram is that of case
a with control parameters σchir = 7, ν = 0.2, with the RK4 time integration scheme and
stepping with 210 points per unit time and finally with an order 6 finite difference recon-
struction scheme. One finds that the histogram exhibits a dependence on J combining a
change in occurrences, these decreasing for larger |J | as well as a structure with double
peaking for smaller |J |. The latter can be indicative of further structure in the error,
such as a dependence on x and on time, here understood as the phase shift in the time
dependent potential. A full separation of such a 3D investigation of the error would help
determining the origin of the error and means to improve the numerical scheme. However,
for the simple problem at hand, brute force precision increase is possible and the need for
such a detailed numerical analysis is not required.
The same analysis of the dependence on J is done for the mean ⟨logE⟩, standard devi-
ation δlogE and maximum and minimum value, Figure 14 right hand side. The mean
and maximum of logE exhibit a comparable dependence on J with the larger values for
the larger |J |. The standard deviation is also found to vary but the change is small. The
largest variation is observed for the minimum value, which is the most sensitive to poor
sampling. However, a trend to smaller error at small |J | can also be seen regarding the
latter. In the following, the dependences on phase space location of the points used in
computing the error will not be taken into account. One has to keep in mind however that
some aspects features of the result, for instance the cut-off at large error, can be related
to an underlying inhomogeneity. As a final remark, one can remark that ⟨logE⟩+ δlogE,
is comparable to the maximum value that can be achieved.

In the reconstruction process, we have underlined the need to use a scheme with better
or at least equivalent precision to that of the code. This is tested by comparing different
orders of the finite difference schemes used to reconstruct the second time derivative of
x from the time trace of x provided by the code output. One can then compare the
histograms of the error obtained for each reconstruction procedure. As shown on Figure
15 left hand side, the histograms obtained for the order 6 and order 8 reconstruction
are identical. The error is therefore checked to be generated by the code and not the
reconstruction scheme with finite difference of order 6 and 8. Conversely, for the chosen
RK4 simulation of case a, the order 4 and order 2 reconstruction schemes lead to different
histograms shifted towards large errors. In these two case the error of the code is less
important than that of the reconstruction schemes and verification cannot be achieved.
The results of this figure have been obtained with 210 points per unit time and are av-
erages over the 20 points describing the J-dependence illustrated on Figure 14 left hand
side. Compared to the histogram Figure 13 obtained at low resolution, one can remark
the sharp cut-off at highest error, a structure in the vicinity of the maximum and the
exponential fall-off towards the smallest errors as expected for a constant distribution
with exponential reduction of bin size.

The analysis of the error logE can also be used to recover the order of the integration
scheme of the code, Figure 15 right hand side. For case a σchir = 7, ν = 0.2 the RK4
and RK2 schemes are compared. One finds that the error logE scales with the expected
scaling, N−4 for RK4 and N−2 for RK2. Furthermore, as for the error analysis with the
Method of Return Solution Figure 7, one finds that the actual value of the error depends
on the case that is investigated, as shown by case b σchir = 2.3, ν = 0.8 and RK4 scheme
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Figure 15: Left hand side: PoPe error for case a σchir = 7 and ν = 0.2, RK4 integration
with N = 28 points per unit time, comparison of the histograms of logE obtained with
finite difference scheme of order 2 head down triangles dashed blue curve, and order 4
head up triangles dashed black curve, order 6 black plain line and order 8 blue plain line
open blue circles. Right hand side: variation of the mean error ⟨logE⟩ with the number of
steps of the integration scheme for the Runge Kutta schemes of order 2, black curve head
down open triangles, and order 4, blue curves with circles and for the control parameters
of case b, σchir = 2.3 and ν = 0.8, closed symbols, and case a, σchir = 7 and ν = 0.2 open
symbols.

which exhibits the RK4 scaling N−4 but with a smaller error, typically by two and three
orders of magnitude. As observed in the test of the Runge Kutta schemes Figure 10 one
can also notice an increase of the error at largest values of N when the error drops to the
level of machine precision. The aim of the PoPe analysis is to provide a figure of merit in
terms of accuracy of a given production simulation. The average logarithm of the error
⟨logE⟩ plotted on Figure 15 right hand side can be regarded as such a figure of merit.
The smaller ⟨logE⟩ the more accurate the simulation. However, a crucial point is then
to provide a criterion to assess that a simulation is acceptable, which is an issue since
computer resources give access to finite accuracy simulations. One can readily consider
that ⟨logE⟩ ≳ 0, hence a mean error exceeding 100%, is a criterion to reject simulations.
One then finds that for the control parameter σchir = 7, ν = 0.2 the RK4 simulation
with N = 23 and the RK2 simulations with N = 23 and N = 24 can be considered too
inaccurate and rejected on the basis of this criterion. Compared to the set of simulations
that yield a wrong Lyapunov exponent, Figure 9, and an inappropriate strange attractor
structure in phase space, Figure 8, the present chosen criterion only reject 3 out of 6 sim-
ulations identified as being with too poor resolution and generating misleading results.
Of course one could tune the threshold value for rejection, but with the likely result that
this critical value is case dependent, hence yielding a criterion without universality. There
is therefore a need for a more effective criterion. One possibility is to take into account
the features of the histogram of the error logE, Figure 16. Given the standard deviation
δlogE, which is negative since logE is related to the logarithm of the error, a more appro-
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Figure 16: Key features of the histogram of the error logE, the mean ⟨logE⟩ blue open
circles, the mean value plus the standard deviation ⟨logE⟩ + δlogE, blue open head-
up triangles, the mean value minus the standard deviation ⟨logE⟩ − δlogE, blue open
head-down triangles, and finally minimum and maximum of the distribution of logE,
respectively head-down full black triangles, and head-up full black triangles. The dashed
horizontal line locates logE ≈ −0.3 hence an error E of 50%. Left hand side: case a,
σchir = 7 and ν = 0.2 RK4 integration scheme. Right hand side: case a, σchir = 7 and
ν = 0.2, RK2 integration scheme.

priate criterion would be to reject simulations such that ⟨logE⟩ + δlogE ≳ 0. The RK2
simulation with N = 25 = 32 is then added to the previous list. For the RK2-simulation
with N = 26 = 64 one can notice that the maximum value of logE is larger than zero,
while ⟨logE⟩+ δlogE ≳ −0.3, hence an error E larger than 50%. Given the sharp cut-off
towards the large values of logE, it appears reasonable to extend the rejection criterion
to this simulation. Still, one simulation with a wrong Lyapunov exponent, the RK2 run
with N = 27, is not excluded by this extended criterion.

The analysis of the PoPe error performed in this Section already yields useful in-
sight into the accuracy of the simulations that are performed. It is possible to define
a criterion based on the magnitude of the error to exclude simulations with too poor
accuracy. However, we have found that there is not clear-cut way to assess the exact-
ness of the physics for simulations with reduced precision. The simulations with order 2
Runge Kutta integration for case a σchir = 7, ν = 0.2 exemplify this issue. While the
simulation with N = 26 exhibits a correct Lyapunov exponent and phase space portrait,
the simulation with N = 27 has a wrong Lyapunov exponent and different phase space
portrait. Characterising the accuracy with ⟨logE⟩ + δlogE as figure of merit, one finds
⟨logE⟩+δlogE ≈ −0.30 for the former and ⟨logE⟩+δlogE ≈ −0.96 for the latter. At this
stage, the magnitude of the PoPe error does not appear to provide a robust and universal
criterion that would allow one identifying systematically the simulations that have too
poor resolution.
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4.3 Projection of the error, PoPe verification

4.3.1 Simplified PoPe analysis: 2 operator reduction

Given the computed error, the proposed way to evaluate the accuracy with PoPe is to
determine the class of equations that yield a comparable behaviour and that cannot be
discriminated. Let us rewrite the system Eq.( 25) in terms of two operators O1,2 and O3.

Eok,i =
[d2x
dt2

](r)
ok,i

− RHS
(r)
ok,i (26a)

RHS
(r)
ok,i = O

(r)
1,2,ok,i + O

(r)
3,ok,i +R

(r)
ok,i (26b)

O
(r)
1,2,ok,i = 2π B

(
sin

(
2πxi

)
+ sin

(
2π(xi − ti)

))
(26c)

O
(r)
3,ok,i = ν Ji (26d)

As highlighted by the notation the former operator O1,2 is in fact the sum of the operators
identified as O1 = 2π B sin

(
2πxi

)
and O2 = π B sin

(
2π(xi − ti)

)
. The reduction to two

operators and the possibility of defining the relevant operators to be addressed by the
PoPe verification scheme is part of the freedom and versatility of the method. Beyond
simplifying the presentation of the results, the choice made in splitting the operators can
be seen as governed by the properties of these operators. Indeed, both O1 and O2 are
computed analytically given xi and ti, while O3 is reconstructed with a finite difference
scheme. The label i is the index of the saved data of a given simulation, ranging typically
from 1 to Nmax. In the present subsection the reference to the order of the reconstruction
scheme, order k labelled ok and the superscript (r) are omitted to simplify the notations.
We now want to determine the coefficients δcO1,2 and δcO3 as well as the residue R defined
by:

Ei = δcO1,2O1,2,i + δcO3O3,i +Ri (27a)

E = δcO1,2O1,2 + δcO3O3 +R (27b)

In Eq.( 27a) the two coefficients δcO1,2 and δcO3 are defined as independent of the reali-
sation i of the error Ei. One can then define the vector E = {Ei} as an Nmax-dimension
vector with components Ei, similarly for O1,2, O3 and R. Equation (27b) is then the
vector form of Eq.( 27a) for each vector component. This equation can be understood as
the projection of E on the two vectors O1,2 and O3 plus the vector R which stands for
the part of E with zero projection on O1,2 and O3. Let us use the notation ⟨E|O⟩ for the
projection of E on O, one can then split Eq.( 27b) into:

δcO1,2 ⟨O1,2|O1,2⟩+ δcO3 ⟨O3|O1,2⟩ = ⟨E|O1,2⟩ (28a)

δcO1,2 ⟨O1,2|O3⟩+ δcO3 ⟨O3|O3⟩ = ⟨E|O3⟩ (28b)

Provided the projection is actually defined, then the system (28) is a set of two coupled
linear equations with unknowns δcO1,2 and δcO3 that can readily be solved provided the
determinant is different from zero, namely that the two vectors O1,2 and O3 are not
co-linear.

⟨O1,2|O1,2⟩ ⟨O3|O3⟩ − ⟨O3|O1,2⟩2 ̸= 0 (29a)
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Given δcO1,2 and δcO3 solution of Eq.( 28), the residue is then computed as the part of
the error that is not aligned along O1,2 or O3, R = E − δcO1,2O1,2 − δcO3O3. When the
system is solved with no error, hence E = 0, one finds δcO1,2 = δcO3 = 0 and R = 0. The
two coefficients δcO1,2 , δcO3 and the residue R therefore characterise the numerical error.

One can first remark that one only needs two linear equations of the form Eq.( 27a) to
determine a set of coefficients δcO1,2 and δcO3 . Let us consider one of the possible pair (i, j)
of points belonging to the strange attractor, one can determine the coefficients δcO1,2(i, j)
and δcO3(i, j) associated to the pair (i, j). Considering several pairs (i, j) then determines
an ensemble of values for the pair (δcO1,2 , δcO3) which can be analysed statistically. This
procedure holds insofar that the points i and j are not co-linear, hence:

O1,2,iO3,j −O3,iO1,2,j ̸= 0 (29b)

In practise, the issue of co-linearity can occur when the determinant is small, hence when
(O1,2,i, O3,i) is close to being co-linear to (O1,2,j, O3,j) but the error (Ei, Ej) is not aligned
on these vectors. Since this property is governed by the error, some randomness in this
difficulty can be expected. The generation of spurious values for (δcO1,2 , δcO3) is therefore
expected as a consequence of co-linearity but all the cases characterised by a small deter-
minant will not lead to large values of (δcO1,2 , δcO3) that are obviously not correct.

A means to overcome this issue is to define the projection scheme on the basis of the
method of least square minimisation. For the present example, one defines the relative
position di as:

di = Ei − δcO1,2O1,2,i − δcO3O3,i (30a)

and one then determines the coefficients δcO1,2 , δcO3 as those minimising the distance:

1
2
d2 = 1

2

∑
i

d2i =
1
2

∑
i

[
Ei − δcO1,2O1,2,i − δcO3O3,i

]2
(30b)

Setting the derivatives of d2 with respect to δcO1,2 and δcO3 to be equal to zero, one
obtains:

δcO1,2

[∑
i

O2
1,2,i

]
+ δcO3

[∑
i

O1,2,iO3,i

]
=

[∑
i

O1,2,iEi

]
(31a)

δcO1,2

[∑
i

O1,2,iO3,i

]
+ δcO3

[∑
i

O2
3,i

]
=

[∑
i

O3,iEi

]
(31b)

If a single point is chosen the two equations Eq.( 31a) and Eq.( 31a) are identical. The
summation must therefore be made with at least two points and can be extended up
to all available points. The latter limit corresponds to the calculation with the scalar
product introduced above in an Nmax dimension space. For the other situations we define
an m-dimension space scalar product of two vectors:

⟨F |G⟩m =

jm∑
i=j1

FiGi (32)
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Figure 17: Nstat, the number of m-tuples used for the statistics. Two procedures are used,
a set with Nstat large enough to determine histograms, blue line with open circles, and a
series with reduced statistics to only determine the mean and standard deviation, black
head-down triangles. The latter series is completed by the calculation for m = Nmax

yielding a single value, thus equal to the mean with zero standard deviation.

The subscript m that is added in these notation stands for the number of points from j1
to jm that are used in the sum. The scalar product and the solution can also depend on
the choice that is made for the m-tuples. The latter freedom of choice will be used in
the following to make statistics on the results at given number of points m but different
choices of m-tuples. With only two points m = 2 one can show that the problem of
co-linearity is identical to that discussed above and one can expect that as m is increased,
the weight of the co-linearity generating outliers in the results will be decreasing.

We first investigate the impact of the choice of the number of points m that are used in
the summation defining the scalar product; equivalently the dimension of the space where
the vectors E, O1,2, O3 are defined. As first indicator, we consider

〈
δcO1,2

〉
m,Nstat

, hence

the average value of the coefficient δcO1,2 for a random choice of Nstat m-tuples chosen
within a set of Nmax = 5 119 993 points of a given strange attractor simulation. Two
different procedures have been used to investigate the statistics of the coefficients δcO1,2

and δcO3 Figure 17. In a first set of verification tests, the m-tuples are chosen randomly
and the number Nstat of m-tuples is large, this series is labelled ext. The number of m-
tuples Nstat is set in such a way that m × Nstat = Nmax/4 for m ranging from 21 to 28.
For these different tests the number of points that are actually involved in the analysis is
therefore constant. For 28 ≤ m ≤ 214, Nstat is maintained constant, Nstat = Nmax/(4×28),
irrespective of the space dimension m, in order to have enough points to determine the
distribution functions of the coefficients. This first procedure yields the points of Nstat

versus m with blue open circles on Figure 17 and labelled ext. A second series of m-tuples
is made with reduced statistics, and labelled red. In this procedure only the mean and
standard deviation are computed. The connection between the number of points used
for the statistics Nstat and the dimension m of the vector space is then illustrated by the
points with black head-down open triangles on Figure 17. This series is completed by
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Figure 18: For the operator O1,2, effect of the number of m-tuples on the statistical
results, blue open circle labelled ext for extended data bases with Nstat large, black head-
down triangles labelled red for reduced data bases, hence Nstat small. Left hand side:
mean value of log10(|δcO1,2|). Right hand side: mean value of δcO1,2 and comparison to
exp(

〈
log10(|δcO1,2|)

〉
), closed blue circles.

the calculation for m = Nmax yielding a single value, thus equal to the mean with zero
standard deviation.

4.3.2 PoPe verification of the drive operator O1,2

The statistics are performed both for the random variables δcO1,2(m) and log10(|δcO1,2(m)|).
The latter data is less sensitive to outliers with very large values and more sensitive to
the very small values of the coefficients. These statistics are applied to the RK2 run with
resolution N = 29 steps per unit time for case a: σchir = 7, ν = 0.2. The mean value
of δcO1,2 is first addressed, Figure 18, left hand side with statistics on log10(|δcO1,2|) and,
right hand side statistics on δcO1,2 . For both cases one readily finds a convergence of the
error as m is increased, the value for the limit m = Nmax being identical for the two
statistics since only one value is available. One can also notice that the investigation with
the reduced statistics, labelled by black head-down triangles, yields appropriate results for
large values of m, the reduced number of points for these statistics being compensated by
the large number of data points used for the least square calculation. One can also notice
that the variation of the error from m = 4 to m ≈ 28 is of the order of 30%. This variation
is observed for

〈
log10(|δcO1,2|)

〉
, Figure 18 left hand side, and for

〈
δcO1,2

〉
, Figure 18 right

hand side. Although similar, the statistic on δcO1,2 and log10(|δcO1,2|) yield different mean
values for m ≤ 28, Figure 18 right hand side. The variation of the mean values with m is
observed to become small for m > 28, and the values for the reduced and extended data
bases are found to agree. Furthermore, the obtained value in this range of m does not
seem to depend on the way the analysis is performed, both the statistics on δcO1,2 and
log10(|δcO1,2|) leading to the same value for the mean of δcO1,2 . Finally it is important to
underline that the sign of the error on the coefficient of O1,2 is given by the statistics on
δcO1,2 and is found to be positive.
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Figure 19: For the operator O1,2, effect of the number of m-tuples on the standard devi-
ation, blue open circle, labelled ext Nstat large, hence large data bases, and for reduced
data bases, Nstat small, black head-down triangles labelled red. Left hand side: standard
deviation σlog.δcO1,2 of log10(|δcO1,2|) and comparison to |

〈
log10(|δcO1,2|)

〉
|, dashed black

line towards the top of the Figure. Right hand side: standard deviation σδcO1,2 of δcO1,2

and comparison to |
〈
δcO1,2

〉
| dashed black line.

The dependence of the standard deviation on m provides a better insight into the
changes governed by increasing m, Figure 19. For log10(|δcO1,2|), Figure 19 left hand side,
one finds that |

〈
log10(|δcO1,2 |)

〉
| > σlog.δcO1,2 for all values of m and that σlog.δcO1,2 decays

exponentially with m. Here σlog.δcO1,2 is chosen positive for convenience. Regarding the
standard deviation of δcO1,2 , Figure 19 right hand side, one can also observe an exponen-
tial decay of σδcO1,2 for m ≥ 22, which coincides with the point where |

〈
δcO1,2

〉
| ≥ σδcO1,2.

Let us now complete this investigation by considering the statistical fluctuations gov-
erned by the number of samples that are used, in particular for the scheme with reduced
data sets red, Figure 20. On Figure 20 left hand side the mean value of log10(|δcO1,2|) is
plotted versus m of the m-tuples used in the least square method. The dashed region
corresponds to the high probability region of the distribution of log10(|δcO1,2|) between the
mean plus the standard deviation and the mean minus the standard deviation. One can
note the exponential narrowing of this region towards the mean value. The mean value,
blue line with closed circles, is computed with the extended data base while the region of
high probability is determined with the reduced data scheme which allows one having data
for m ≥ 214. The same data is plotted on Figure Figure 20 right hand side with a zoom
for m ≥ 28 and around the asymptotic value of the mean |

〈
log10(|δcO1,2 |)

〉
| ≈ −3.739,

dashed blue line. The shaded region within
〈
log10(|δcO1,2|)

〉
+ σlog.δcO1,2, closed head-up

triangles and
〈
log10(|δcO1,2|)

〉
− σlog.δcO1,2, closed head-down triangles is determined with

the reduced data base which provides data for m ≥ 214. Five different randomly chosen
m-tuples are also plotted using different open markers.

One finds therefore that regarding the operator O1,2 Eq.( 26c), increasing the number

32



Figure 20: For the operator O1,2, effect of the number of m-tuples on the region of highest
likelihood of log10(|δcO1,2(m)|), hence between

〈
log10(|δcO1,2 |)

〉
+σlog.δcO1,2, closed head-up

triangles, and
〈
log10(|δcO1,2|)

〉
− σlog.δcO1,2, closed head-down triangle. The mean value〈

log10(|δcO1,2 |)
〉
is plotted with blue closed circle, σlog.δcO1,2 is the standard deviation

chosen positive here. Left hand side: data for the full range of m, 21 ≤ m ≤ Nmax. Right
hand side, zoom for m ≥ 28 with data from five different random choices of the m-tuples,
open symbols.

of m-tuples used to determine the error δcO1,2 of the coefficient cO1,2 , namely the weight
of O1,2 in the evolution equation Eq.( 24), one finds that δcO1,2 converges towards a well
defined value. The standard deviation of the statistics decreases exponentially with m.
The asymptotic value is δcO1,2 = 1.824 10−4. It means that the output data for the chosen
simulation has the best agreement with the evolution equation when the weight of the
operator O1,2 is 1+1.824 10−4 hence a relative error of δcO1,2 = 1.824 10−4 with respect to
the input parameterB, leading to a relative error of the Chirikov parameter of 1

2
1.824 10−4.

4.3.3 PoPe verification of the damping operator O3

For the operator O3, we first analyse the standard deviation of the relative error δcO3

on the weight of operator O3, Figure 21. Regarding log10(|δcO3|), the standard devia-
tion σlog.δcO3 exhibits a quite different behaviour from that reported for σlog.δcO1,2, Figure
19 left hand side. Indeed the standard deviation is observed to be nearly constant for
σlog.δcO3 and m ≤ 215 while it exhibits an exponential decrease over the whole range of
values of m when considering the variable log10(|δcO1,2|). For m > 215, one can observe
an exponential decrease of σlog.δcO3, Figure 19 left hand side. For the standard variable
δcO3 , one finds that σδcO3 decreases over the whole range of values of m and exhibits a
constant rate exponential decrease for 22 ≤ m ≤ 217. However, the standard deviation
then exceeds the mean for m < 213. When analysing the mean value of log10(|δcO3 |),
Figure 22 left hand side, open blue circles for the extended statistics, and black open
triangles for the reduced statistics, one can observe first an exponential decrease as m
is increased, together with a variation of more than one order of magnitude of δcO3 for
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Figure 21: Effect of the number ofm-tuples on the standard deviation σ with the extended
statistics, ext blue open circles, and reduced statistics, red black triangles for the operator
O3. Left hand side: Statistics on log10(|δcO3|), standard deviation σlog.δcO3 versus m.
The transition from near constant standard deviation to roughly an exponential decrease
occurs for m ≈ 215. Right hand side: Statistics on δcO3 , standard deviation σδcO3 versus
m. The asymptotic value of the mean ⟨δcO3⟩ is plotted with a dashed black line. The
standard deviation becomes smaller than the mean value, σδcO3/ ⟨δcO3⟩ ≤ 1, for m ≥ 213

.

Figure 22: For the operator O3, effect of the number of m-tuples on the mean value of
the coefficient using the extended statistics, ext blue open circles, and reduced statistics
red black triangles. Left hand side: Mean value ⟨log10(|δcO3|)⟩ and region with highest
probability between ⟨log10(|δcO3|)⟩+σlog.δcO3 closed head-up triangles, and ⟨log10(|δcO3|)⟩−
σlog.δcO3, closed head-down triangle. Right hand side: Mean value ⟨δcO3⟩ and region with
highest probability between ⟨δcO3⟩ + σδcO3 closed head-up triangles, and ⟨δcO3⟩ − σδcO3,
closed head-down triangle.
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Figure 23: Criterion on the required precision in determining δcO1,2 to avoid that its
fluctuations σδcO1,2 govern the error of δcO3 . This effect is more important when the
typical magnitude operator O1,2 is larger than that of operator O3, ||O3||/||O1,2|| ≈ 0.0104
in the present simulation.

21 ≤ m ≤ 212. The mean value ⟨log10(|δcO3|)⟩ is then roughly constant and equal to its
asymptotic value: ⟨log10(|δcO3|)⟩ = −3.837. The latter range of values corresponds to
that with decreasing standard deviation. Prior to this transition, the standard deviation
is more or less constant, see Figure 22 left hand side. The lines ⟨log10(|δcO3|)⟩+ σlog.δcO3,
black line head-up closed triangles, and ⟨log10(|δcO3|)⟩ − σlog.δcO3, black line head-down
closed triangles, are then parallel to the variation of the mean which indicates similarity
in the distribution function of the error, Figure 22 left hand side. If one now considers
the statistics of δcO3 , Figure 22 right hand side, one finds a first regime for m ≤ 24 with
large variation of ⟨δcO3⟩. The values then seem to settle close to the asymptotic value
⟨δcO3⟩ ≈ 1.455 10−4. However, when analysing the region with highest probability, hence
between ⟨δcO3⟩ + σδcO3 black line closed head-up triangles, and ⟨δcO3⟩ − σδcO3 black line
closed head-down triangles, one finds that ⟨δcO3⟩−σδcO3 only becomes positive form ≥ 213.

One finds that recovering converged values for the effective weight of operator O3 is
more demanding than for operator O1,2. Suitable precision for the operator O3 is only
reached when very precise values are obtained for operator O1,2.

4.3.4 Error contamination of the low amplitude operator

The error δcO3 on the weight of the damping operator O3 is typically ⟨δcO3⟩ ≈ 1.455 10−4.
It is found to be quite comparable to that on δcO1,2 ,

〈
δcO1,2

〉
≈ 1.824 10−4. These errors

have the same sign and comparable magnitude, which is consistent with the fact that the
error is stemming from the numerical time stepping scheme. There is a marked difference
between the coefficient δcO1,2 that stands close to the asymptotic value for all values of m,
and the coefficient δcO3 which is found to require large values of m to exhibit reasonable
convergence. This difference in behaviour can be linked to the order of magnitude of
the two operators ||O1,2|| and ||O3|| and their effective weight in the evolution equation.
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One finds that ||O1,2|| ≈ (2π)2B while ||O3|| ≈ νJ ≈ (2π)ν, therefore ||O3||/||O1,2||| ≈
ν/(2πB). We now consider a change in the error of magnitude σδcO1,2, hence characteristic
of the error on the weight δcO1,2 of operator O1,2, such that this fluctuation of the error
becomes projected on operator O3 rather than operator O1,2. The contamination of δcO3

would then be of order σδcO1,2||O1,2||/||O3||. For such a contamination to be reasonable,
one requires that σδcO1,2 to be small enough that:

⟨δcO3⟩ ≫ σδcO1,2
||O1,2||
||O3||

(33a)

Taking into account that ⟨δcO3⟩ ≈
〈
δcO1,2

〉
one can then recast this constraint so that it

only depends on the properties of δcO1,2 .

||O3||
||O1,2||

≈ ν

2πB
≫ σδcO1,2〈

δcO1,2

〉 (33b)

On Figure 23 the ratio σδcO1,2/
〈
δcO1,2

〉
is plotted versus m and shown to decrease expo-

nentially as m is increased. Given ν/(2πB) ≈ 0.0104 one can then determine in threshold
in m such that the criterion Eq.( 33b) is marginally fulfilled, see shaded domain on Figure
23. Very high precision means square procedure with m ≥ 215 is therefore appears to be
required to avoid that the error in determining the coefficient of the operator with largest
magnitude overwhelms the uncertainty in determining the coefficient of the operator with
smallest amplitude.

Simulations with disparate magnitude of operators, therefore disparate magnitude of
physical effects, are not only demanding in terms of numerical resolution, they also require
enhanced precision with PoPe to properly evaluate the error and avoid contamination of
the error estimated for the low amplitude operator by the large amplitude operator. As
for the numerical implementation, a small error on the PoPe projection for the large
amplitude operator drives a big error on low amplitude operator.

4.4 Distribution function of the error, PoPe verification

As discussed in Section 4.2, the error determined with the output of the simulations of
the strange attractor exhibits a Poisson like distribution with maximum probability for
a given error, some form of cut-off towards larger errors and an exponential fall-off to-
wards the smaller errors, Figure 15 left hand side. A characteristic error is thus obtained
together with rare and randomly occurring events which exhibit a smaller error. The
behaviour in the vicinity the maximum probability of the error distribution and towards
the upper limit of the error, with possibly the cut-off feature, a finer structure is appar-
ent. When using a least square method with fewer points than the maximum, a statistical
analysis of the projection of the error on the existing operators can be performed, yielding
a distribution function characterised in particular by the mean and standard deviation
discussed in the previous Section 4.3.

We first consider the distribution for the random variables log10(|δcO1,2 |) and log10(|δcO3|)
with low dimension least square calculation, typically using 2 and 3 different points
in phase space, Figure 24. For m = 2, the probability of having co-linear vectors is
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Figure 24: Histograms of the error coefficients log10(|δcO1,2|) in blue, and log10(|δcO3 |),
in black, the maximum value is indicated by the dotted vertical lines, the 100% error
line, log10(|δc|) = 0, by a dashed black line. Left hand side, statistics with m = 2. For
log10(|δcO3|), the vertical dash-dot lines indicate the standard deviation with respect to the
mean. The histograms are close to symmetric and Poisson features with an exponential
decay extend towards both small and large errors. Right hand side, same analysis for
m = 3, the histograms are not symmetric and the exponential decay mainly holds towards
the small errors.

small but not negligible and values with large errors, typically log10(|δcO1,2|) ≥ 0 and
log10(|δcO3|) ≥ 0 are found, Figure 24 left hand side. For the coefficient δcO3 , black
histogram, the distribution is rather symmetric with respect to its mean ⟨log10(|δcO3|)⟩,
indicated by the black doted vertical line, with exponential fall-off in both directions.
The mean plus or minus the standard deviation is indicated by the vertical dash-dot
black lines. The histogram of δcO1,2 , blue line, appears in first analysis to be shifted to-
wards the smaller errors, typically by a factor 0.07, which is not too different from the
magnitude ratio between O3 and O1,2. Towards the maximum, one can observe that the
occurrence of large errors, log10(|δcO1,2|) >

〈
log10(|δcO1,2|)

〉
is smaller than that of small

errors log10(|δcO1,2|) <
〈
log10(|δcO1,2|)

〉
. This leads to a slight asymmetry between the left

(broad) and right (narrow) hand sides with respect to the maximum.
With a 3 point least square procedure, Figure 24 right hand side, the probability of having
3 co-linear points out of 3 is significantly reduced compared to having 2 co-linear points
out of 2. The generation of large errors in the calculation is strongly reduced. The his-
tograms for m = 3 Figure 24 right hand side, are characterised by a loss of symmetry, the
regions on the right hand side of the mean ⟨log10(|δc|)⟩, hence towards the large errors,
being depleted. Conversely, little change of the histograms is observed towards the small
errors.

The statistics of δc rather than log10(|δc|), besides allowing one to determine the sign
of δc is more sensitive to the large errors. We compare the change in the distribution func-
tions when m is increased from m = 7 to m = 214 using the normalised variation, namely
the distance to the mean divided by the standard deviation (δc − ⟨δc⟩)/σδc, Figure 25.
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Figure 25: Histograms for m = 214 thick blue line, Gaussian fit dashed blue line, and
for m = 7, black line, Gaussian fit dotted black line, versus the normalised variation
(c− ⟨c⟩)/σc. Left hand side for c = δcO1,2 . Right hand side for c = δcO3 .

This allows one comparing the distribution function even when changes in the standard
deviation or in the mean value are important. For both δcO1,2 , Figure 25 left hand side,
and δcO3 , Figure 25 right hand side, the histogram for m = 214, thick blue line, is well
approximated by a Gaussian distribution function, blue dashed lines. For these very large
samples the standard deviation is small and the randomness in the choice of the m-tuples
only yields weak variation with comparable probability. The limit, when m = Nmax is a
delta function yielding a single value, the asymptotic value. For the smaller values of m,
the exponential variation that governs the distribution of the error logE = log10(|E|), de-
scribed in Section 4.4, is indicated by a black dashed line and a Gaussian fit with a black
dotted line on Figure 25 right hand side. For δcO1,2 the distribution is skewed towards
the values that are larger than the mean value, while for δcO3 heavy tails are observed for
both positive and negative deviations from the mean.

The statistics on log10(|δcO1,2|) for m = 214, Figure 26 left hand side blue line his-
togram, yield the same Gaussian feature, blue dashed line, as that for δcO1,2 . Compared
to the m = 214 analysis, Figure 26 left hand side, the m = 7 analysis, black line histogram,
exhibits a heavy tail towards the small errors, Figure 26 left and right hand side. This
heavy tail, blue line histogram on Figure 26 right hand side, can be understood as the
sum of an exponential dependence for log10(|δcO1,2|) ≤

〈
log10(|δcO1,2|)

〉
, dashed black line,

and a Gaussian distribution in the vicinity of the mean
〈
log10(|δcO1,2|)

〉
, dotted black line.

The Gaussian fit adapted to the shape in the vicinity of the maximum of the histogram
appears to be shifted towards the errors larger that the mean. Furthermore, the his-
togram in this region appears to decrease faster than the Gaussian, which is reminiscent
of the cut-off behaviour discussed in the limit of the large errors. When increasing m, one
can observe that the amplitude of the exponential contribution decreases, and is found
negligible for m = 214, while the Gaussian contribution is roughly unchanged and shifted
to the left and close to symmetric.

For the statistics on log10(|δcO3|) , Figure 27, one finds a different behaviour. For
most of the values of m, the distribution are essentially exponential like towards the small
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Figure 26: Left hand side: Histograms for m = 214 thick blue line, Gaussian fit dashed
blue line, and for m = 7, black line, versus the normalised variation (c − ⟨c⟩)/σc for
c = log10(|δcO1,2|). Right hand side: Histogram for m = 7 versus for (c − ⟨c⟩)/σc for
c = log10(|δcO1,2|) as on left hand side, with exponential fit towards the small errors and
Gaussian fit for the errors comparable to the mean value.

Figure 27: Left hand side: Histograms for m = 214 thick blue line, Gaussian fit dashed
blue line, and for m = 7, black line, versus the normalised variation (c − ⟨c⟩)/σc for c =
log10(|δcO3|). Right hand side: Histogram form = 7 versus (c−⟨c⟩)/σc for c = log10(|δcO3|)
as on left hand side with exponential fit towards the small errors and Gaussian fit for the
errors comparable to the mean value.
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errors. Only at the largest values of m, here m = 214 can one split the distribution into
a sum of exponential and Gauss distribution functions.

The projection of the error on the operators of the system to be solved exhibit a de-
parture from 1, the target value for perfect accuracy. Two random variables are used
to analyse this effect, first δc the departure from 1 of coefficient c, a direct measure of
the error, second log10(|δc|). The distribution of the error of δc is close to Gaussian,
nearly symmetric with respect to the mean value. At low number of points in the least
square method, outliers with large error generate heavy tails. As the number of points
is increased the distribution is closer to a Gaussian. The width of the Gaussian narrows
and the heavy tails shrink as the occurrence of outliers is reduced. Ultimately, when all
available points are used a δ distribution is obtained.
Apart from the sign of the error and the characteristic value of the error, this distribution
is also useful to analyse the outliers that are generated when the operators are transiently
co-linear and the error exhibits a finite amplitude. Cases where the co-linear events are
frequent indicate that the chosen operators exhibit a too strong correlation, which is a
an important information, and that a more appropriate choice of the operators should be
considered.
The distribution of the random variable log10(|δc|) provides a different information. In
the problems with relatively few points for the least square projection, one can observe a
distribution combining an exponential behaviour towards the error with small magnitude
and a Gaussian feature towards the large magnitude. As one increases the number of
points in the least square projection the Gaussian feature tends to become dominant,
thus retrieving the behaviour observed for the distribution of δc. One thus finds that the
error is characterised by a typical value with a randomly distributed departure from the
mean value leading to a Gaussian distribution feature.

4.5 Scaling law of the error on the weight of the operators

In this Section we consider the actual PoPe procedure to verify the code runs, namely
we compute the coefficients δcO1,2 and δcO3 as well as the residue, using the maximum
number of points Nmax for the PoPe projection. When varying the time stepping of the
integration scheme, as well as the order of the Runge Kutta scheme itself, one can check
that the error measured by δcO1,2 and δcO3 exhibits the expected scaling law. The results
are summarised on Figure 28 and present the same trends as that previously reported for
the error. The coefficient δcO1,2 Figure 28 left hand side is found to follow the appropriate
scaling law indicated by the dashed lines for N ≥ 25 = 32, respectively N−4 and N−2 for
the RK4 and RK2 time stepping schemes. One finds that δcO1,2 is smaller than 1 for all
the values of N that have been investigated. In terms of the chosen control parameters,
an error δcO1,2 leads in fact to a relative error on the Chirikov parameter of 1

2
δcO1,2 . If one

now considers that a more appropriate criterion is a 10% relative error on the Chirikov
parameter, one finds that for case a, σchir = 7, ν = 0.2, the RK2 run with N = 25 is
marginal while the RK4 run with N = 23 and the RK2 runs with N = 23 and N = 24

exceed the 10% error on the Chirikov parameter. One also recovers here that the error
is case dependent since the RK4 error on δcO1,2 for case b, σchir = 2.3, ν = 0.8 is smaller
by more than one order of magnitude than that for case a at identical time stepping
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Figure 28: Dependence of the PoPe projection of the error for RK4 and RK2 integration
schemes, RK4 with blue circles and RK2 with black head-down triangles, on the number
of steps per unit time N . Left hand side for δcO1,2 . Right hand side for δcO3 . The dashed
lines indicate the scaling laws of the error proportional to N−4 for RK4 and to N−2 for
RK2.

scheme. As can be expected from the prior analysis, the projection on the operator O3

with absolute error δcO3 , which is therefore an effective error made on the viscosity ν,
exhibits larger values and consequently requires higher performance numerical schemes
to achieve a comparable accuracy, Figure 28, right hand side. Using the same criterion
of a maximum relative error of 10%, the RK4 runs with N < 24 and the RK2 runs with
N < 25 exceed the 10% threshold and the RK2 case with N < 26 is marginal. Regarding
the scaling law of the error δcO3 with time stepping, one finds the expected trend for case
b, σchir = 2.3, ν = 0.8, hence that δcO3 scales like N

−4, but significant departure from the
expected scaling law is found for case a, control parameters σchir = 7, ν = 0.2, Figure 29.
When analysing the sign of δcO3 , Figure 29, one finds that the distortion with respect

to the expected scaling laws stems from a change of sign of the absolute error for both
RK4 and RK2 schemes in the resolution interval 28 < N < 29, Figure 30. The sign of
the error with the RK4 and RK2 schemes is found opposite and remains opposite when
the sign changes occur Figure 30. When examining the sign of δcO1,2 one finds that it
does not depend on N for N ≥ 24. For case a, σchir = 7, ν = 0.2, the error δcO1,2 is
negative with the RK4 scheme and positive with the RK2 scheme. Conversely for case b
σchir = 2.3, ν = 0.8, both errors δcO1,2 and δcO3 are negative for the whole range of values
of N that have been investigated. If one now assumes that the two coefficients δcO1,2 and
δcO3 should primarily be determined by the effective error made on the time derivatives,
one would expect δcO1,2 and δcO3 to have the same sign. Such an accuracy constraint for
case a would then require a high precision time stepping with N ≥ 29 for both the RK4
and RK2 schemes.

The PoPe procedure allows one considering various projections. Up to this point we
have considered the absolute error δcO1,2 for the projection on the operator O1 + O2,
which can be understood as driving an effective absolute error on the Chirikov control
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Figure 29: Sign and scaling law of the PoPe projection of the error δcO3 for given integra-
tion scheme, RK4 closed blue triangles, and RK2 open black triangles, versus the number
of steps per unit time N for case a, σchir = 7, ν = 0.2. Head-up triangles positive absolute
error, head-down triangles negative absolute error.

Figure 30: Dependence of the scaling law of the PoPe projection of the error for given
integration scheme, RK4 with blue circles and RK2 with black head-down triangles, in
terms of the number of steps per unit time N . Left hand side for δcO1,3 . Right hand side
for δcO2 . The dashed line are the scaling of the error N−4 for RK4 and N−2 for RK2.
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Figure 31: PoPe projection of the error for RK2, coefficients: δcO1,3 head-down open
triangles, δcO2 head-up open triangles, and δcO1 head-down closed triangles.

parameter, while the projection on O3, yielding δcO3 would be the effective absolute error
on the control parameter ν. However one can also consider the absolute error δcO1,3 for
the projection on the operator O1 +O3 and absolute error δcO2 for the projection on the
operator O2. In that case the two reference operators O1 + O3 and O2 have the same
magnitude; δcO1,3 and δcO2 should exhibit a comparable behaviour. The same analysis is
made as for the previous projection, Figure 30. One finds that the two coefficients δcO1,3

Figure 30 left and side, and δcO2 Figure 30 right and side, exhibit the same behaviour and
appropriate scaling with N . A slight departure from the expected scaling law is observed
for the RK2 integration scheme at lowest values of N , N ≤ 25. The latter feature is more
readily seen on Figure 31 where δcO1,3, δcO2 and δcO1,2 determined by the projection of
the error made with the RK2 scheme are plotted together. One finds that for N ≥ 25 the
values of these three coefficients are comparable and exhibit the expected order 2 scaling
N−2. Differences are only observed for N < 25, which also corresponds to absolute errors
exceeding 10%. Finally, for all values of N , N > 23, the signs of the coefficients δcO1,3

and δcO2 are identical.

At this stage, one finds that the results of the PoPe analysis allow one to discard
four simulations out of the six that have been identified as being misleading. These four
simulations are in fact those that already exhibit large errors using the other verification
procedures. Conversely, the two remaining simulations, both with RK2 time stepping
with N = 26 or N = 27, pose a problem since, regardless of the verification method,
no sharp criterion has been found that would discard them. It is therefore important to
step back and revisit why in first place they have been listed as faulty. As a matter of
fact, there is no measure to indicate that the simulation with RK2 and N = 26 is not
correct. Indeed, both the phase space portrait of the strange attractor and the largest
Lyapunov exponent agree with the highest resolution simulation. The issue is the next
simulation in the series with higher resolution N = 27. Indeed, this simulation exhibits
a fixed point after a chaotic transient and consequently yields a Lyapunov exponent that
clearly departs from the expected range of values, see Figure 9 left hand side.
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Figure 32: Control parameter space in the vicinity of (νref = 0.2, σchir,ref = 7) with ±1%
variation and 11 points in each direction. Each simulation is characterised by the largest
Lyapunov exponent Λ+. Left hand side: Phase portrait for N = 26 steps per unit time
and RK2 time stepping. Right hand side: Phase portrait for N = 27 steps per unit time
and RK2 time stepping.

Since the PoPe projection that yields the coefficient δcO1,2 δcO3 determines in fact the
ensemble of control parameters that yield equivalent results, one must analyse within
this uncertainty on the control parameters if all the simulations yield comparable results
and behaviour. The sensitivity of the target solution to small variations of the control
parameters is an issue. In the particular example of the strange attractor, there is a known
possibility of a transition from chaotic attractor to fixed point with small variations of
the control parameters. The PoPe verification method provides a means to address this
issue. Indeed, one computes the projection of the error on the operators that govern the
evolution of the problem at hand. This yields therefore the effective control parameters
of the particular simulation. Furthermore, the residue, which is the part of the error
transverse to the operators that govern the evolution, can be regarded as a noise that is
added to the dynamics by the numerical scheme. For the strange attractor, both the shift
of the actual control parameters and the properties of the noise, identified as the residue,
can play a role on the occurrence of fixed point solutions as well as the duration of the
chaotic transients prior to the convergence to the fixed points.

4.6 Sensitivity to small changes of the control parameters

In order to investigate the possible sensitivity of the trajectories to small changes of the
control parameter, we first map the parameter space with 1 − 0.01 ≤ ν/νref ≤ 1 + 0.01
and 1 − 0.01 ≤ σchir/σchir,ref ≤ 1 + 0.01 for case a, therefore σchir,ref = 7 and νref = 0.02.
We use 11 values in each direction and for each pair of values of the control parameters
we run the same simulations in terms of initial condition and duration. Each point of the
phase portrait (ν, σchir) is characterised by the largest Lyapunov exponent Λ+, Figures
32 and 33. The reference values of the parameters are highlighted by the vertical and
horizontal dashed lines. The values Λ+ ≈ 1 appear in yellow for the chosen colour scale
while those for the fixed points appear in dark blue for Λ+ ≤ 0. The occurrence of long
transients before converging towards the fixed points yields intermediate value typically
with Λ+ ≤ 0.5. The phase portrait is generated using the RK2 time stepping scheme for
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N = 26 Figure 32 left hand side, N = 27 Figure 32 right hand side, and N = 28 Figure
33 left hand side, and using the RK4 scheme with N = 27 Figure 33 right hand side. For
the case with N = 26 steps per unit time, Figure 32 left hand side, the phase portrait
exhibits two phases, a chaotic phase Λ+ ≈ 1 for σchir ≤ 7.007, and fixed point Λ+ ≲ 0.5
for σchir > 7.007. This phase transition is observed for all computed values of ν but for
ν ≈ 0.02012 where the chaotic region Λ+ ≈ 1 extends up to 7.021. To be rigorous in
this description of the phase portrait, one must understand by chaotic, the trajectories
that exhibit chaotic transients that are longer than the chosen duration of the simulation.
Indeed, one cannot exclude that at later times the trajectory might converge towards a
fixed point. Conversely, in the region with fixed point, the calculation of the Lyapunov
exponent includes the chaotic transients. This measure can converge towards negative
values indicative of fixed points as wall as small positive Lyapunov exponent. These can
correspond either to a low dimensionality attractor or to a long transient before a fixed
point with asymptotic value Λ+ < 0.
The phase portrait for N = 26 is characterised by a phase transition, from chaotic to fixed
point, in the vicinity of the reference values of the control parameters. The latter is found
to belong to the chaotic region of the phase portrait. The relative distance along σchir of
the reference simulation to the fixed-point / chaotic-attractor in of order 10−3. However,
this is an upper bound estimate constrained by the chosen meshing along σchir. This
maximum value would correspond to an error on δO1,2 ≈ 5 10−2. The latter is comparable
to the PoPe estimated error made on δO1,2 for N = 25, and therefore larger that that made
for N = 26, typically of order 10−2. It appears possible that the resolution with N = 26

is sufficient to assess that the reference point is at a distance larger than the numerical
error from the phase transition chaotic-attractor / fixed point.
We now consider the phase portrait with higher resolution, N = 27 steps per unit time,
figure 32 right hand side. This phase portrait appears to be more complex. One still
recognises the chaotic phase for σchir ≤ 6.993 and the fixed point region for σchir ≥ 7.035,
but the intermediate region exhibits two stripes, one with fixed points for σchir ≈ 7. and
above a chaotic stripe for σchir ≈ 7.028. The width of these stripes appears to vary slightly
with ν. It is to be noted that the meshing of the phase portrait is a bit coarse with re-
spect to these variations since the width of these stripes in some parts is equal to one.
However, very clearly for this values of the resolution, the reference control parameters
lies in the stripes of fixed points. Further increasing the resolution to N = 28, Figure 33
left hand side, one finds new changes in the phase portrait with typically a chaotic region
for σchir ≤ 7.035 and fixed points for σchir ≥ 7.035, see figure 33 left hand side. For the
smallest values of ν and σchir ≈ 7, one finds a region of fixed point within the chaotic re-
gion of the phase portrait. The description of the phase portrait with RK4 time stepping
and resolution N = 27 points per unit time, Figure 33 right hand side is quite similar to
that obtained with RK2 time stepping an N = 28. Because of the chosen meshing of the
phase portrait, it is to be underlined that horizontal stripes of changed properties with
a width smaller than δσchir = 0.017 can escape detection. The description given to the
phase portrait has to be understood with this uncertainty. The similarity between the
two phase portraits of Figure 33 does not mean that the integration scheme has enough
accuracy that the phase portrait are identical, but that within the precision used to de-
scribed the phase portrait, the two sets of simulations exhibit comparable properties up
to the resolution of their mesh, phase portrait structures finer than the mesh step being
unresolved. This aspect of the problem is illustrated on Figure 34. On Figure 34 left
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Figure 33: Control parameter space in the vicinity of (νref = 0.2, σchir,ref = 7) with ±1%
variation and 11 points in each direction. Each simulation is characterised by the largest
Lyapunov exponent Λ+. Left hand side: Phase portrait for N = 28 steps per unit time
and RK2 time stepping. Right hand side: Phase portrait for N = 27 steps per unit time
and RK4 time stepping.

Figure 34: Control parameter space in the vicinity of (νref = 0.2, σchir,ref = 7) with ±1%
variation and 11 points in each direction. Each simulation is characterised by the largest
Lyapunov exponent Λ+. Left hand side: Phase portrait for N = 27 steps per unit time
and RK2 time stepping and different initial conditions. Right hand side: Zoom of the
phase portrait for N = 27 steps per unit time and RK2 time stepping.
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hand side, the phase portrait is very similar to that of Figure 32 right hand side, namely
the case with N = 27 and RK2 time stepping. We have used different initial conditions
for this set of simulations. The phase portrait properties appear to be near identical,
although the transients towards the fixed points are different, leading to changes in the
values of the Lyapunov exponent in the range of values 0 ≤ Λ+ ≤ 0.5. The fixed point
stripe in the vicinity of σchir = 7(1 ± 0.001) exhibits the same change in width with ν
as indicated previously, with an apparent width of δσchir ≈ 2 × 7 × 0.002 for ν ≲ 0.199.
However, with finer meshing of the phase portrait but reduced range of values for the
Chirikov parameter σchir, and unchanged meshing for the viscosity ν, Figure 34 right
hand side, one finds that this stripe is now split into two stripes: a fixed point stripe for
σchir ≲ 7. and a chaotic stripe for σchir ≲ 7.010, prior to a new region of fixed points that
is apparent at largest values of σchir and smallest values of ν.

This analysis of the phase portrait therefore indicates that the chosen control parame-
ter lies in a region where phase transitions occur between fixed-point and chaotic regions.
The structure of the phase portrait is complex and exhibits inter-layered chaotic and
fixed point stripes, depending on the Chirikov parameter σchir, with comparatively small
dependence on ν. The width and location of these stripes, as well as the numerical un-
certainty of the effective control parameters of the simulations thus contribute to making
impractical the evaluation of the correctness of the simulation on the basis on the largest
Lyapunov exponent. For a coarse description of the phase portrait, both RK2 simulations
with N = 26 and N = 27 can be considered to be sufficiently accurate despite the fact
that they have different local values of the Lyapunov exponent. This holds because the
phase portrait structure are observed to be comparable although the precise location of
the change of phase from fixed-point to chaotic-attractor is resolution dependent for a
given mesh of the phase portrait. Should one require finer agreement on the structure
of the phase portrait, one must step to higher accuracy of the numerical scheme, how-
ever knowing that the overall sensitivity of the phase portrait structure will exclude any
definitive conclusion.
In this particular set of a simulation performed with control parameters that lye in a

region which exhibits a strong sensitivity of the results on the precise value of the control
parameter, an alternative to evaluate the accuracy is to set the precision that one targets
in the description of the phase portrait. For the chosen examples the relative precision
with respect to both control parameters is typically ±10−3. Consistently, one should then
require that the error on the control parameters evaluated by PoPe, δcO1,2 and δcO3 , be
smaller than 2. 10−3 and 10−3 respectively, Figure 35. The difference stems from the
square root dependence of the Chirikov parameter on the control parameter B, here akin
to cO1,2 . When plotting the PoPe error δc versus the precision N , one finds that the
accuracy increases with the N but only drops below the chosen phase portrait precision
with respect to both control parameters when N ≥ 28, Figure 35. The criterion of a
required phase portrait precision thus leads one to discarding the two simulations N = 26

and N = 27.
The present analysis therefore indicates that the accuracy and verification of the code is
case dependent, not only in terms of the chosen parameters but also in terms of the physics.
Each simulation must be evaluated according to the physics that is to be addressed. For a
rather loose description of the properties, hence retaining the two simulations RK2 N = 26

and N = 27, the Method of Return Solution presented in Section 3.3, performed for each
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Figure 35: Variation of the relative error determined by PoPe, δcO1,2 for σ
2
chir, closed blue

squares, and δcO3 for ν, open black circles. The dashed, respectively dotted line indicates
the maximum error for δcO3 , respectively δcO1,2 so that the error is smaller than the mesh
size of the phase portrait of Figures 32 and 33.

simulation, and the PoPe projection of the error yield comparable criteria. However, the
former has higher computing cost and requires running a different version of the code. A
finer description of the properties requires enhanced numerical precision, discarding these
RK2 N = 26 and N = 27 simulations.

Investigating the simulation accuracy and the criterion that allows identifying a sim-
ulation as correct thus leads us to investigating the sensitivity on the control parameters.
Indeed, the PoPe projection determines the ensemble of control parameters that yield
equivalent simulation output given the numerical errors. In most cases this small uncer-
tainty has little effect on the behaviour of the system. However, as observed with the
present example, the phase portrait of the system can be quite sensitive to the values of
the control parameters. We have observed bifurcations between fixed-points and chaotic-
attractor for changes of the control parameter that are comparable to the effective error
on the control parameters as determined by PoPe. The PoPe analysis then leads us to re-
fine the precision to adjust the simulation result to the accuracy one chooses as target for
the phase portrait description. In this discussion another issue is of importance, namely
the role of the residue, the part of the error that is orthogonal to the operators found
in the equations. The latter can be seen as a particular noise when following chaotic
trajectories or transients. A complete description of the effective system corresponding to
the simulation output is both an effective error on the control parameters and an effective
noise added to the system and accounting for the residue.

4.7 iPoPe error analysis

The first step in the PoPe analysis is to determine the error E, namely the difference
between a reconstructed operator from the simulation output and the value obtained
with the reference equation and the elementary reconstructed operator contributing to
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Figure 36: Left hand side: Histograms of the error E, blue line, and residue R, black
line. Right hand side: Histograms of logE = log10(|E|), blue line, and R = log10(|R|),
black line. The vertical dashed-dot lines for the latter indicate the most probable values.
Simulation with RK2 scheme time step 1/N , N = 29.

that equation, see Section 4.4. The error is projected on the latter operators yielding the
corrections δc to the weight of these operators. The residue R is then defined as the part
of the error orthogonal to all the elementary operators, see Eq.( 14b). As an example of
this procedure we consider the simulation of case a with control parameters σchir = 7,
ν = 0.2 and RK2 time stepping with 29 steps per unit time. The probability distribution
function (pdf) of the error and of the residue is shown on Figure 36 left hand side. These
two distribution function exhibit similar shapes, they are close to symmetric, peaked in
the vicinity of zero, and exhibit a cut-off, with no data for |E| ≳ 0.247 and |R| ≳ 0.185.
One can thus observe that these cut-off values are consistent with the expectation that the
residue |R|, the remnant error transverse to the implemented operators as obtained with
PoPe, is smaller than the error |E|. This property holds for most of the values of |E| and
|R| since one finds that the number of counts for |E| is larger than that for |R| except in
the vicinity of zero. The distribution function for R is also found to be narrower than that
of E. This feature is recovered when considering the distribution function of log10(|E|)
and log10(|R|), Figure 36 right hand side. As discussed previously one can observe that the
histograms exhibit exponential like features with the same cut-off behaviour for both E
and R. One also finds that the most probable value is shifted towards the smaller values of
log10(|R|), log10(|R|) ≈ −2.72 for the most probable value hence |R| ≈ 1.9 10−3, compared
to log10(|E|), log10(|E|) ≈ −2.72 for the most probable value hence |E| ≈ 5.4 10−3. The
reduction factor is therefore typically of ≈ 2.8. One thus finds that part of the error is
projected on the existing operators of the driving equation, and that the remnant error,
the residue R, has been reduced when compared to the original error E.

The iPoPe procedure is applied to the error analysis of the strange attractor now con-
sidering the three independent operators O1 = −(2π)B sin(2πx), O2 = −(2π)B sin(2π(x−
t)) and O3 = −νJ , see Eq.( 18b). The coefficients δcO1 , δcO2 and δcO3 are then determined
by 5 different ways using iPoPe, depending on the order followed in this staged approach.
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Figure 37: Determination of the coefficients δcO1 , left hand side, and δcO2 , right hand
side with both PoPe, black open head-up triangles, and iPoPe. The five different ways of
computing the coefficients are labelled according to the order used for the iPoPe staged
projection procedure. Each iPoPe result is characterised by the triplet indicating which
coefficient is determined first, second and third: (1, 2, 3) blue plus + marker, (2, 3, 1) blue
cross × marker, (1, 3, 2) black closed circle, (3, 1, 2) black open square, (2, 1, 3) black open
circle, (3, 2, 1) black open head down triangle. The dash-dot line indicates the order 2
scaling of the error and the dotted line indicates the relative error equal to 1. Data of
simulations of case a with RK2 time stepping.

For example, when computing δcO1 , one finds the various results:

δc
(1,2,3)
O1

=
⟨E|O1⟩
⟨O1|O1⟩

= δc
(1,3,2)
O1

δc
(2,1,3)
O1

=

〈
R2

∣∣O1

〉
⟨O1|O1⟩

; δc
(3,1,2)
O1

=

〈
R3

∣∣O1

〉
⟨O1|O1⟩

δc
(2,3,1)
O1

=
⟨R2,3|O1⟩
⟨O1|O1⟩

; δc
(3,2,1)
O1

=
⟨R3,2|O1⟩
⟨O1|O1⟩

Here the 3 label superscript of the coefficients indicates the order of the iPoPe projection
starting from the label on the left. In the first step, for instance starting with the pro-
jection on O1, the value of the error δc

(1,2,3)
O1

= δc
(1,3,2)
O1

because this initial step does not
depend on the subsequent projection. These expressions depend on the staged values of
the residues, which are defined by:

R2 = E − δc
(2,1,3)
O2

O2 ; R2,3 = E − δc
(2,3,1)
O2

O2 − δc
(2,3,1)
O3

O3

R3 = E − δc
(3,1,2)
O3

O3 ; R3,2 = E − δc
(3,2,1)
O3

O3 − δc
(3,2,1)
O2

O2

The 5 different series of values of the iPoPe coefficients δcOi
obtained with the present

simulations can be investigated and compared to the PoPe result.
We consider here simulations of case a with the RK2 time stepping scheme and use the
scaling law of the error with number of steps per unit time N to compare the different
iPoPe series of results. For both coefficients δcO1 , Figure 37 left hand side and δcO2 ,

50



Figure 38: Left hand side: Determination of the coefficients δcO3 with both PoPe, black
open head-up triangles, and iPoPe: (1, 2, 3) blue plus + marker, (2, 3, 1) blue cross ×
marker, (1, 3, 2) black closed circle, (3, 1, 2) black open square, (2, 1, 3) black open circle,
(3, 2, 1) black open head down triangle. The dotted line indicates the relative error equal
to 1. Right hand side: Values of the symmetric matrix A/ ⟨RHS|RHS⟩, see Table 1,
open symbols diagonal elements, closed symbols off-diagonal elements, RK2 simulation
of case a with N = 29. The dotted line indicates the value of the sum of all the matrix
elements, equal to one for the normalisation by ⟨RHS|RHS⟩.

Figure 37 right hand side, the iPoPe set of values and the PoPe value are comparable.
For N ≥ 25 one also finds that δcO1 ≈ δcO2 . Conversely, differences are observed for the
coefficient δcO3 , Figure 38 left hand side. One can notice that three out of the five possible
iPoPe series are similar to the PoPe result; those corresponding to the sequences (1, 2, 3),
(2, 1, 3) and (2, 3, 1). The sequences (3, 1, 2) and (1, 3, 2) are comparable to the other
iPoPe and PoPe results for N ≤ 27 = 128. As shown previously, the drop of the PoPe
result for N = 28 is governed by a change of sign of δcO3 that occurs for 2

8 < N < 29. The
sequences (1, 2, 3), (2, 1, 3) and (2, 3, 1) exhibit the sign change for 27 < N < 29, while
the sequences (3, 1, 2) and (1, 3, 2) are characterised by a sign change between N = 29

and N = 210. For the coefficient δcO3 , with RK2 time stepping, one finds that the iPoPe
depends of the order in which the staged projections are performed. Furthermore, the
scaling law of the error when changing the time step is less precisely observed compared
to the result for the other two coefficients. The analysis of the error on Figure 15 also
indicates that the error is large, of order 10−1, for N < 26. It becomes comparable to that
of the other coefficients for N ≥ 29.

The time trace of the various operators LHS, O1, O2, O3 and R normalised by the
mean value of RHS plus its standard deviation, are plotted on Figure 39. One finds that
O1 O2 and LHS have comparable magnitude, typically two orders of magnitude larger
than that of O3 and four orders of magnitude larger that the residue R. The small relative
magnitude of O3 compared to that of the other operators is an issue for the numerical
resolution. In the present example, this operator controls the shrinking of the phase space
towards the strange attractor. This a major part of the physics that must be properly
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Figure 39: Time trace over 2 periods of the time dependent forcing of the Left Hand Side
(LHS) of the evolution equation plain black line and of the three operators that contribute
to the right hand side of Eq.( 24), O1 open blue head-up triangles, O2 open blue squares,
O3 open blue circles and the residue R, closed black head-down triangle, RK2 simulation
of case a, time step 1/N , N = 29. All operators are normalised by the mean plus standard
deviation of RHS.

addressed. One finds that the dynamics determined by Eq.( 24) are twofold: when the
time t is equal to zero modulus 1, the operators O1 and O2 add to each other and the
phase space contraction has a small effect, conversely, when t = 0.5 modulus 1 the two
operator O1 and O2 cancel out and only O3 determines the evolution. One finds therefore
that during the integration several steps must take place in the time window when O3 is
the leading operator of typical half width 3 10−3. The time step for N equal to 27, 28, 29

is typically 8 10−3, 4 10−3, 2 10−3. This indicates that N ≥ 8 is the minimum value to
have several integration steps in the time window when dissipation is the main mechanism
at play. The iPoPe calculation being equivalent to the PoPe method when the matrix
A with elements Ak,k′ = ⟨Ok|Ok′⟩ is diagonal, the comparison of the 5 different series of
values of the iPoPe coefficients δcOi

with that computed directly with PoPe depends on
the relative values of the diagonal and off-diagonal elements of the symmetric matrix A.
The calculation of the last coefficient with iPoPe, the third one with the present example,
is the same as with PoPe. Therefore, if the two first coefficients in the present series are
accurately determined the calculation of the third will also be accurate even if the non-
diagonal elements A3,1 and A3,2 are comparable to the diagonal element A3,3. In the chosen
example of RK2 simulations of case a, the matrix elements can be computed, see table 1.
In this table the elements are normalised by ⟨RHS|RHS⟩ where RHS = O1 + O2 + O3.
The sum of all matrix elements is equal to 1 by definition.
As found in table 1 and shown on Figure 39, the leading terms are the diagonal elements
for the two first rows A1,1 ≈ A2,2 ≫ A1,2 ≫ A2,3 ≫ A1,3. One could therefore expect the
observed agreement between iPoPe and PoPe results for the coefficients δc1 and δc2, Figure
37. The calculation of δc3 leads to different results because the magnitude of operator O3

is small A3,3 ≪ A11 ≈ A2,2 and because its cross product with O2 is comparable to its
magnitudeA3,3 ≈ A2,3, see table 1 and Figure 39. This coupling governs the contamination
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Table 1: Elements of matrix A normalised by ⟨RHS|RHS⟩ where RHS is the Right
Hand Side of Eq.( 24) equal to the second time derivative of x, RK2 simulation of case a
with N = 29.

4.73 10−1 2.60 10−2 8.97 10−9

2.60 10−2 4.75 10−1 3.86 10−4

8.97 10−9 3.86 10−4 3.86 10−4

of the error coefficient δc3 by any change in the calculation of δc2. Conversely, changes
in the value of δc3 has little effect on δc2. This would explain the increased precision
observed for the coefficient c3 with iPoPe, smallest value of δc3 see Figure 38 left hand
side, when the calculation of δc2 is done after that of δc3.

4.8 PoPe analysis with spurious operator

In this Section we analyse the effect of assuming the dependence on an operator that
is not present in the equations addressed by the simulations. We only use the order 6
finite difference scheme to rebuilt the time derivative from the stored data an omit the
superscript specifying the order of the reconstruction scheme. The equation that is solved
numerically has been written as:[d2x

dt2

]
= c1O1 + c2O2 + c3O3 + c4O4 +R (36)

For the actual equation to be solved one has c1 = c2 = c3 = 1 since the three operators
govern the evolution, and determine therefore the Right Hand Side (RHS) of Eq.( 36).
The operator O4 is a spurious operator and consequently one has c4 = 0 for the theoretical
equation. Similarly, the residual error R is equal to zero for the theoretical equation. In
practise the equation that governs the evolution determined numerically is Eq.( 36) but
where c1 = 1 + δc1, c2 = 1 + δc2, c3 = 1 + δc3, R ̸= 0 and possibly c4 ̸= 0. The error is
then defined according to Eq.( 26a).

E =
[d2x
dt2

]
−
(
O1 +O2 +O3

)
(37a)

and therefore:

E = δc1O1 + δc2O2 + δc3O3 + c4O4 +R (37b)

where we further assume that the projection of R on O1, O2, O3 and O4 is equal to zero.
One can note that when defining E, the role given to O4 is quite different from that of
the two operators. This can be regarded as a bias in the analysis. To show that this is
not the case lest us define another error function EO3 such that:

EO3 =
[d2x
dt2

]
−
(
O1 +O2

)
(38a)

so that:

EO3 = δc1O1 + δc2O2 + c3O3 + c4O4 +RO3 (38b)
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Figure 40: Histogram for case a simulations with RK2 time stepping and time step 1/29.
Left hand side : Histogram of coefficients c3, black histogram, and c4, blue histogram,
computed with EO3, Eq.( 38a). Right hand side: top scale, blue histogram coefficient
c3 computed with the error EO3, Eq.( 38a), lower scale, black histogram, coefficient δc3
computed with the standard expression of the error Eq.( 37a).

In this last case we allow the residual error RO3 to be slightly different from R. We shall
see that the PoPe analysis readily handles this difference and provides the appropriate
weight for the operator O3 with both definitions of the error. The choice of O4 is quite
arbitrary. For this example we choose:

O4 = 2π B cos
(
2π(x− t)

)
(39)

Regarding O4 defined in Eq.( 39), we analyse the projection of the error on this operator
and how this modifies the values of the other coefficients, in particular δc3.

For the first step of this analysis we use error EO3 Eq.( 38a) to determine c3 and c4,
Figure 40 left hand side. One then finds that the histogram og c3 is centred on the value 1
as it should given the evolution equation while c4 is centred on 0 clearly indicating that the
operator O4 is not present on the right hand side of the evolution equation implemented
for the simulation. One also readily notices that the width of the histogram of c3 is much
larger than that of c4. The zero value of c4 is recovered with better precision than the
1 value of c3. For this calculation and the others of this Section, eight randomly chosen
times of the output are used for the least square calculation of the coefficients, and a
sample of 220 (≈ 106) is used for the statistics. For the same simulation, we also compare
the statistics of c3 using error EO3 Eq.( 38a) and δc3 given by E Eq.( 37a), Figure 40 right
hand side. With this more precise scale, the coefficient c3 blue histogram top scale, is
clearly centred on 1. The Gaussian fit, dashed black line, yields the average 1 + 2.8 10−4

with standard deviation 7.6 10−4. For the coefficient δc3 lower scale, black histogram,
the statistics obtained with different samples, are near identical but shifted to zero, the
average value is 2.8 10−4 about half the standard deviation 7.6 10−4. The theoretical
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Figure 41: Histogram for case a simulations with RK2 compared to RK4 time stepping
and time step 1/29. Left hand side : Histogram of coefficients δc3, black histogram top
scale with RK2 time stepping, blue histogram bottom scale with RK4 time stepping.
Right hand side: Histogram of coefficients c4, black histogram top scale with RK2 time
stepping, blue histogram bottom scale with RK4 time stepping.

relation c3 = 1 + δc3 is perfectly recovered here.
We find therefore that PoPe clearly discriminates the case of operator O3, that contributes
to the RHS of the evolution equation of the simulation, from operator O4 that is not
implemented. Furthermore, the calculation of c3 and δc3 match perfectly showing that
either form of the error yield the same result.

Let us now compare the statistics of δc3 and c4 obtained with simulations with RK2 and
RK4 time stepping and the same time step 1/29. For δc3 one finds rather similar statistics
with the two integration schemes, typically Gaussian centred on 0 with symmetric close
to exponential heavy wings. The most significant difference is a reduction by a factor
≈ 2 104 of the histogram width obtained with RK4 compared to RK2 simulations, Figure
41 left hand side. A similar result is obtained for c4, same shape and same ratio of the
distributions, Figure 41 right hand side. However for these statistics the symmetric, close
to exponential heavy tails feature is more pronounced than the Gaussian feature near the
distribution maximum. One can also notice in Table 2 that the values for c4 are typically
50 times smaller than for δc3 and that the mean values are typically 30 times smaller that
the standard deviation except for c4 with the RK4 scheme where this ratio increases to
nearly 50. The coefficient c4 thus appears to be closer to zero than δc3 with smaller mean
values and reduced standard deviation. As final remark, one finds that the mean value of
both δc3 and c4 changes sign when changing the integration scheme from RK2 to RK4.

The statistics of the coefficient δc1 and log10(|δc1|) are shown on Figure 42 left hand
side for δc1, right hand side for log10(|δc1|). The data for RK2 time stepping, top scale
with black PDF is compared to that of RK4 simulations, bottom scale blue PDF. For the
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Table 2: PoPe coefficients δc3 and c4 of the strange attractor simulation of case a with
RK2 and RK4 integration and N = 29 steps per unit time. First line mean value of the
histograms Figure 41, second line ”std”, the standard deviation for the same data.

δc3 (RK2) c4 (RK2) δc3(RK4) c4 (RK4)
mean 2.0 10−4 −4.7 10−6 −8.1 10−9 1.2 10−10

std 6.0 10−3 1.3 10−4 2.8 10−7 5.8 10−9

Figure 42: PDF to compare data from RK2 simulation, top scale black PDF, and data
from RK4 simulation, bottom scale blue PDF. Left hand side: PDF of δc1. Right hand
side : PDF of log10(|δc1|). All simulations of case a with time step 1/29 and setting c4 = 0
in the PoPe analysis.

latter a distribution departing from a Gaussian is observed for δc1, Figure 42 left hand
side. In this case the negative values seem to exhibit features that are reminiscent of
a Log-normal distribution. This appears to be superimposed to a broader distribution
generating in particular a heavy tail towards the positive values. In this case the Gaussian
fit is rather poor even in the vicinity of the maximum, dashed line on Figure 42 left
hand side. For the simulation with RK2 time stepping a closer to Gaussian symmetry
is found, black PDF, Figure 43 left hand side. The statistics of log10(|δc1|), Figure 43
right hand side, allow one recovering these features. Towards the small errors one finds
the exponential dependence indicating that a near constant value of the PDF towards
vanishing values. In the vicinity of the most probable event log10(|δc1|) exhibits a broader
Gaussian behaviour with the RK4 data, bottom scale blue PDF, than with the RK2 data,
top scale black PDF. For this data, the top and bottom scales are shifted with respect to
one another by 4.3, which corresponds to a decrease of the error by typically 5 10−5. It is
to be noted that these PoPe results are obtained when setting c4 = 0, thus ignoring the
possibility of a dependence on the spurious operator O4.

The statistics of the coefficients δc1 and δc2, Figure 43 left hand side black histogram
for δc1, blue histogram for δc2, are found to be remarkably similar. For the chosen RK4
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Figure 43: Left hand side: Histograms of δc1 and δc2 setting c4 = 0 in the PoPe analysis.
Right hand side : Histogram of the coefficient δc1, blue histogram setting c4 = 0 and
when determining c4 with PoPe, black histogram. All simulations of case a with RK4
and time step 1/29.

time stepping, the departure from a Gaussian feature is observed for both coefficients. As
for the previous results, the spurious operator O4 is ignored in this PoPe analysis. These
statistics indicate that as expected the operators O1 and O2 play a comparable role in the
structure of the error, while a different behaviour is found for O3.
When allowing the spurious operator O4 in the PoPe analysis, one can observe changes in
the heavy tails of the PDFs of all coefficients, Figure 43 right hand side for δc1 and Figure
44 left hand side for δc2 and right hand side for δc3. For all three coefficients one finds
that the bulk of the PDFs are close to constant with (c4 = 0 and blue PDF) or without
(c4 ̸= 0 and black PDF) the spurious operator O4 in the PoPe analysis. Conversely the
heavy tail part of the PDFs are systematically broader for c4 ̸= 0 compared to c4 = 0.

In this Section we have analysed the projection of the data on an operator that is
not found in the equations solved numerically, operator O4 in this example. The PoPe
analysis very clearly identifies that there is no signature of this operator is the data
generated by the simulation, consequently the weight of the operator is found to be close
to zero, clearly different from the other operators with weight close to 1. The distribution
of the error in the vicinity of these values is observed to depend on both the operators
and the order of the time stepping scheme. For the present example, the error is typically
Gaussian for the coefficients c3 and c4 while a Log-normal feature can be identified for
c1 and c2 at high precision with RK4 integration. One also finds that trying to identify
the operator O4 tends to broaden the heavy tail part of the distribution of the error for
all three coefficients c1, c2 and c3, thus yielding a larger error for these coefficients and
not an improved accuracy. All these results that confirm that the operator O4 is not
present in the equation solved numerically while the other three operators are present
as expected with the appropriate weight. This exemplifies the verification by PoPe of
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Figure 44: Compared PDF with and without the spurious operator O4 in the PoPe
analysis, blue PDF c4 = 0, black PDF c4 ̸= 0 determined by PoPe. Left hand side: PDF
of δc2. Right hand side: PDF of δc3. Simulations of case a with RK4 and time step 1/29.

production simulations.

4.9 PoPe simulation index

In this Section we analyse and revisit the results obtained with the PoPe verification
scheme. The first step is determining an error, here the difference between the effective
and expected value of d2x/dt2, Eq.( 24). The effective value is determined using the
simulation output and recomputing this LHS with higher accuracy than achieved during
the simulation. Here an order 6 finite difference scheme yields higher precision than both
the RK2 and RK4 time stepping scheme used in the simulations. The expected value of
d2x/dt2 is recomputed using the same simulation data to determine the right hand side
RHS of the evolution equation Eq.( 24). The difference between LHS and RHS then
defines an error E. The relative value of the error E/RHS is the first indicator of the
verification procedure. For the chosen example of the strange attractor, these values are
obtained for nearly all points of the computed trajectories (the end and initial points are
not computed with the chosen centred finite difference scheme). The projection of the
error on the operators that contribute to the right hand side RHS correlates the error
E to any particular operator. The coefficient δck, the correlation between the error E
and operator Ok, is the absolute error made for the contribution of operator Ok to RHS.
When all coefficients δck of the chosen splitting of the right hand side RHS into a sum of
operators Ok are small one can consider that the code is verified, the simulation output
is consistent with the equations to be solved.
The simulation accuracy is determined by statistics on the error E, the set of the different
coefficients δc, the residue R and the difference δE = E −R.

E = δc1O1 + δc2O2 + δc3O3 +R (40a)

δE = δc1O1 + δc2O2 + δc3O3 (40b)

58



Table 3: The three PoPe coefficients δc1, δc2 and δc3 of the strange attractor simulation
of case a with RK2 integration and N = 29 steps per unit time.

δc1 δc2 δc3
1.827 10−4 1.822 10−4 1.453 10−4

Figure 45: Left hand side: Values of the symmetric matrix A/ ⟨RHS|RHS⟩, see Table 1,
open symbols diagonal elements, closed symbols off-diagonal elements. Right hand side:
E black dots and δE blues quasi-aligned dots plotted versus RHS, data at t = 0 modulus
1. Both figures RK2 simulation of case a with N = 29.

For the simulation of case a with RK2 integration scheme and N = 29 steps per unit time,
the coefficients δc are given in Table 3 and the statistics on E and R are illustrated on
Figure 36. All three coefficients are of order 10−4. These indicate that the relative value
of the control parameters in Eq.( 24) can be changed by δc ≈ 1.8 10−4 without inducing
noticeable changes to the simulation output, unless the phase portrait exhibits bifurcation
like transitions between different regimes for such a specific range of values of the control
parameter, see discussion Section Sensitivity to control parameter small variation. In such
a particular example, the simulation precision must therefore be adapted to the sensitivity
to the the control parameters one wants to address.
For the present cases, having δc1 ≈ δc2 ≈ δc3 leads to δE Eq.( 40b) close to proportional
to RHS = O1 + O2 + O3. When considering the values of the error E compared to that
of the right hand side RHS taken at t = 0 modulus 1, Figure 45 left hand side black
dots, one finds that the error E is typically proportional to RHS, with sum scatter in the
proportionality factor together with a roll-over of the error towards smaller magnitude at
the largest magnitude of RHS. On the same graph, the values of δE are plotted, close to
aligned blue dots. These appear to be proportional to RHS as expected from the values
of δc1, δc2 and δc3 Table 3. In fact the time trace of the ratio δE/RHS indicates that
δE/RHS is close to being constant ≈ 1.8 10−4 but exhibits a pattern which exhibits a
clear departure from a constant line.
One can now consider the residue R, see Figure 46. The data for t = 0 modulus 1 is

clearly the combination of E and δE Figure 45 so that the amplitude of R is slightly
reduced and more importantly that the values of R at the largest values of |RHS| are
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Figure 46: Value of the residue R versus RHS, data at t = 0 modulus 1 of the RK2
simulation of case a with N = 29.

closer to being symmetric with respect to zero that when considering E. These features
can be observed on the histograms Figure 36. The cut-off at the largest values does not
change much as shown by the comparison of the linear distribution of E and R, Figure
36 left hand side, however the distribution of R is narrower than that of E so that one
can notice a shift in the distribution of log10(R) from that of log10(E) indicating a factor
2.8 reduction of the value at maximum occurrence, Figure 36 right hand side. One finds
therefore that about half of the error can be understood in terms of a multiplicative up-
shift of order 2 10−4 of the control parameter while the other half is the residue R. This
residue still exhibits a structure, Figure 46. With the PoPe verification method, it is built
to be orthogonal to O1, O2 and O3, alternatively there is no correlation of R with either
operators O1, O2 and O3. In that respect R can be regarded as a low amplitude noise,
of order 2 10−4, added to the evolution equation Eq.( 24). If one investigates precise
features in a system that exhibits bifurcations between different solutions, this noise-like
contribution as well as the small change in the control parameters must be accounted for.
In most situations, one addresses more robust properties and one can expect that this
small noise-like contribution and the small error on the control parameters will have a
weak effect on the simulation results.

The PoPe analysis that has been performed in this paper can be simplified by defining
a figure of merit for each simulation. We first define δcmax the maximum of all the δc
values obtained with the PoPe analysis; the worse error generates the largest value of
δcmax. We then define the PoPe index as −log10(δcmax). The smallest values of the PoPe
index characterise the worst error, 0 stands for a relative error of 100%, and the upper
bound, a PoPe index of order 14 for an accuracy close to machine precision. To illustrate,
the PoPe index, we have determined its value for two series of simulations of case a, with
RK2 and RK4 integration scheme and number of steps per unit time ranging from N = 23

to N = 212. In order to compare the PoPe index for these two series of simulation we
define Nrhs as the number of calculations of the RHS performed per reference time scale.
For the RK2 scheme one then has Nrhs = 2×N and for the RK4 scheme Nrhs = 4×N .
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Figure 47: Value of the PoPe index versus the number Nrhs of operations to integrate the
equations over one time unit. Data obtained with the RK2 integration scheme closed black
triangles and with the RK4 integration scheme requiring twice the number of operation
per step compared to RK2, closed blue circles. The vertical dash-dot line for 210 operations
during one unit time integration indicates the gain in precision achieved by the order 4
scheme at given computing resources. Conversely the horizontal dashed region with PoPe
index comprised between 3 and 4, indicated the gain in performance when using the high
order scheme at comparable simulation accuracy.

The PoPe index for each of these 20 simulations is plotted on Figure 47. As expected
the PoPe index increases twice faster for the RK4 scheme closed blue circles, than for the
RK2 scheme closed black triangles, as the number of operation Nrhs is increased when N
is scanned. Let us impose the constraint of the number of operation per unit time to be
Nrhs = 210 dash-dot vertical black line, hence N = 29 for the RK2 scheme and N = 28

for the RK4 scheme. One then finds that the PoPe index of the RK2 simulation is ≈ 3.7
while that of the RK4 simulation is significantly higher ≈ 7.0. Conversely, setting as
target that the PoPe index should stand between 3 and 4, shaded horizontal region on
Figure 47, one finds that the RK4 numerical cost is typically Nrhs ≈ 28 for a PoPe index
of 3.7, while the numerical cost with RK2 is Nrhs ≈ 210 for the comparable PoPe index
of 3.7; at prescribed accuracy the increasing the order of the numerical scheme leads for
this example to a factor 4 gain in run time.
Producing such a PoPe index for all simulation provides a figure of merit for each simu-
lation. A PoPe index larger than 1 gives an estimate of the accuracy of the simulation,
while a value close to zero or negative is most likely indicative that the accuracy and
eventually the verification of the simulation could be an issue.

5 Discussion and conclusion

We have presented in this paper the PoPe and iPoPe verification methods. We have
shown that these two novel verification schemes also allow one addressing the simulation
accuracy. Furthermore, in the coarse of the verification procedure specific features of the
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numerical scheme used for the simulation are identified as well as some key properties
of the physics addressed by the simulation. PoPe and iPoPe are very similar verification
methods based on Big Data analysis of the simulation output. The highlight of these
methods is that the verification process is applied directly to production simulations and
not to modified numerical tools designed for the sake of verification. Furthermore, the
verification can and should be applied to all production simulations, either as a post-
treatment, as for the examples chosen in this paper, or on the fly during the simulation.
Statistics are generated by PoPe and iPoPe. These drive the overhead in terms of com-
puting resources. For a rather standard case with large statistics, the typical overhead
has been estimated to be about 10% of the simulation cost [5, 4, 3], either to save extra
data or to perform on the fly calculations. We have not addressed possible optimisation
of such verification processes that is most likely case dependent.
The backbone of the method is to define numerically various operators that are combined
in the equations solved numerically. For a set of K operators, m ≥ K sets of data points
can be used to determine the relative weight of these operators in the equations. For
m > K a least square method can be used, reducing the statistical scatter of the weight.
We show that this least square procedure defines a scalar product and that increasing m
reduces the weight of the occurrence of transient co-linearity between the operator. It
ensures that the operators tend to become orthogonal. We have found that for K = 2,
m = 3 is enough to significantly reduce the effect of co-linearity. We also show that taking
all available points is also possible, but does not give insight into the statistics of the error.
The PoPe verification and accuracy analysis proceeds in three steps. In a first step the
numerical error is determined. The data then gives directly insight into possible verifi-
cation issues. This would occur in particular when the order of magnitude of the error
is too large, or when the scaling law of the error does not match the order chosen for
the numerical scheme. Conversely, we also show that when correct, the scaling law of
the error (for instance with the time step) gives a first insight into the accuracy of the
simulations as determined by PoPe. The second step is the projection of the error on the
existing operators of the system at hand. There the PoPe and iPoPe methods depart. The
PoPe method requires a matrix inversion, which can be cumbersome when the number of
operators is large. It can be replaced by the iPoPe method, with a staged resolution of
the linear system and possibly a dependence on the order chosen for this staged resolu-
tion. In most cases that have been analysed the difference between the PoPe and iPoPe
output is small and either ways lead to comparable verification results. This projection
step yields the relative error made on each coefficient of the operators that contribute
to the system. One thus finds that an infinite set of control parameters in the vicinity
of that determined by the PoPe or iPoPe projection would yield comparable simulation
data. Finally, the third step is to determine the residual error, transverse to the operators
used in the equations.
The actual verification can be split into two different parts. The crucial one is to assess
that one is actually solving the equations that are claimed to be solved numerically. How-
ever, when this part is completed the question comes on the accuracy of the numerical
resolution. This becomes a matter of trade-off between perfect accuracy that requires
infinite computing resources and very poor accuracy that can be an issue for the validity
of the simulations. When addressing second part, we have found two different cases. The
high accuracy simulations that are readily considered to be on the safe side and those
belonging to the grey zone when the relative error is larger than 1%, of order of 10% up
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to 100%. The problem is then to establish criteria that allow one discriminating the safe
from the unsafe simulations. We have found that some aspects of the simulation output
are quite robust and recovered even when the error is large [6, 3]. We show here that
specific simulations, close to bifurcation points, can be more demanding, moving the safe
zone to much higher accuracy. This underlines that the verification procedure is case
dependent and each simulation will have different verification properties. Then depend-
ing on the sensitivity of the problems that is addressed, the simulation accuracy can be
considered to be sufficient, thus on the safe side, or can fall short leading to possibly
misleading results.
In this work, we present the interesting case of projecting the error on an operator that
does not appear in the equation actually solved numerically. This corresponds to three
different problems. First, a test of the PoPe method and we show that the verification
rightly assigns a weight zero to the spurious operator. Second, the operator ought to have
been part of the equations but for some reason is by-passed by the numerical scheme.
Then the PoPe verification indicates that the operator has a weight 0 and not 1 as it
should. The numerical scheme is not verified. A third issue is to identify the form of the
residue. At lowest order, the residue being orthogonal to the operators that govern the
numerical simulation, one can consider the residue to be a noise added to the system.
However, we have shown that the residue exhibits a structure that can potentially be cap-
tured, and therefore identified by an operator. This is the case when numerical errors are
assumed to introduce a spurious diffusion so that the effective diffusion in the simulation
is the some of the controlled diffusion implemented in the equations and an uncontrolled
diffusion governed by the numerical scheme. Identifying approximately the form taken by
the residue can be valuable for a better understanding of the problem effectively solved
numerically and to determine means to reduce the residual error.
Finally, we propose a unique index that would characterise the accuracy of the simulation.
It is typically given by the opposite of the base 10 logarithm of the error. A PoPe index
equal to zero indicates a 100 % error in the simulation output, and the PoPe index in-
creases as the accuracy is improved to level off at machine precision typically between 12
and 14. Negative values are possible and most likely are a concern for the simulation. The
PoPe criterion thus gives a figure of merit that allows one discussing where the simulation
stands with respect to the required accuracy and to discuss this point.
The PoPe and iPoPe verification methods thus provide a comprehensive verification tool
that allows one addressing the verification and accuracy of production runs and conse-
quently of simulations of interest. This big data based analysis provides an in depth
analysis of the simulation and numerical scheme. For the latter it will identify which
operator governs the numerical error and the effective order of the resolution. This un-
derstanding can help solving some numerical issues. The analysis will also indicate which
operators are small contributing to the calculation with terms that are small and that
can be comparable to the error. The analysis will also be quite sensitive to operators that
are close to co-linear, either requiring different definitions of the operators to be handled
in the verification process or suggesting alternative ways of addressing the problem nu-
merically. The PoPe method is quite versatile and can be used in many different ways to
assess the verification of the simulation and its accuracy. Finally, this method can be used
to investigate model reduction, as presented in Ref.[4] or methods to filter the simulation
output to reduce contamination of the solution by the residual error.
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A Strange attractor MMS evolution equations

The Method of Manufactured Solution leads to a modification of the right hand side of
the evolution equations to generate known fixed points (x0, J0):

dx

dt
= J − J0 (41a)

dJ

dt
= −2π B

(
sin

(
2πx

)
+ sin

(
2π(x− t)

))
− ν J

+ 2π B
(
sin

(
2πx0

)
+ sin

(
2π(x0 − t)

))
+ ν J0 (41b)

Given sin(A) − sin(B) = 2 cos(a) sin(b) where a = (A + B)/2 and b = (A − B)/2, one
then obtains:

dx

dt
= 2Z (42a)

dJ

dt
= −4π B sin

(
2π

(
X − x0

))[
sin

(
2πX

)
+ sin

(
2π

(
X − t

))]
− ν 2Z (42b)

where Z = (J − J0)/2 and X = (x+ x0)/2 + 1/4 and therefore:

dX

dt
= Z (43a)

dZ

dt
= −2π B sin

(
2π

(
X − x0 − 1

4

))[
sin

(
2πX

)
+ sin

(
2π

(
X − t

))]
− ν Z (43b)

One can readily see that (X = x0 +
1
4
, Z = 0), and therefore (x = x0, J = J0), is the

chosen fixed point. The system used for the MMS is therefore close but not identical to
that generating the strange attractor since one has to multiply the potential amplitude
B by the space dependent function sin(2π(X − x0 − 1

4
)).

B Scaling of MRS error

B.1 Forward and backward transforms

Let us consider a time integration with initial condition x0, stored with a time step h
generating a trajectory (x0, x1, x2, . . . , xn−1, xn) at t = 0, t = h, t = 2 h . . . t = (n− 1) h,
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t = n h. We define an approximate trajectory (y0, y1, y2, . . . , yn−1, yn) generated by a
time integration scheme of order 2α and note F the time derivative of x generating the
trajectory and G the function of x to recover the exact trajectory.

xk = xk−1 + h F (xk−1) + h2α+1G(xk−1) (44a)

yk = yk−1 + h F (yk−1) (44b)

Reversing time to step back towards the initial condition we generate the backward tra-
jectories (x̃n, x̃n−1, . . . , x̃2, . . . , x̃1, x̃0) and (ỹn, ỹn−1, . . . , ỹ2, . . . , ỹ1, ỹ0) with transform:

x̃k−1 = x̃k − h F (x̃k)− h2α+1 G(x̃k) (45a)

ỹk−1 = ỹk − h G(ỹk) (45b)

We can now proceed to defining the n step return transforms made of n step forwards
followed by n steps backwards.

B.2 Distance between initial and return point

We are interested in the distance between the upward and downward computed trajecto-
ries typically dk = ỹy − yk. We want to relate dk to dk+1 to determine a series. We split
the contribution to dk into two terms, introducing the distance to the exact trajectory,
and reversible, trajectory xk = x̃k.

dk = ỹk − yk = ỹk − x̃k + xk − yk (46a)

ỹk − x̃k = ỹk+1 − x̃k+1 − h
(
F (ỹk+1)− F (x̃k+1)

)
+ h2α+1G(x̃k+1) (46b)

yk+1 − xk+1 = yk − xk + h
(
F (yk)− F (xk)

)
− h2α+1G(xk) (46c)

One then expands the difference F (ỹk+1)− F (x̃k+1) so that:

F (ỹk+1)− F (x̃k+1) =
(
ỹk+1 − x̃k+1

)
F ′(x̃k+1) (47a)

Similarly, one can expand F (yk)− F (xk):

F (yk)− F (xk) =
(
yk − xk

)
F ′(xk) (47b)

One can then rewrite Eq.( 46b) and Eq.( 46c).

ỹk − x̃k =
(
ỹk+1 − x̃k+1

)(
1− hF ′(x̃k+1)

)
+ h2α+1G(x̃k+1) (48a)

yk+1 − xk+1 =
(
yk − xk

)(
1 + hF ′(xk)

)
− h2α+1G(xk) (48b)

One then obtains the two contributions to the distance dk.

ỹk − x̃k =
(
ỹk+1 − x̃k+1

)(
1− hF ′(x̃k+1)

)
+ h2α+1G(x̃k+1) (49a)(

xk − yk
)(
1 + hF ′(xk)

)
= xk+1 − yk+1 − h2α+1G(xk) (49b)

At this stage, the assumption h|F ′(xk)| ≪ 1 considerably simplifies the calculation, so
that:

ỹk − x̃k = ỹk+1 − x̃k+1 + h2α+1G(x̃k+1) (50a)

xk − yk = xk+1 − yk+1 − h2α+1G(xk) (50b)
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We then obtain the recurrence relationship between the distances dk and dk+1.

dk = dk+1 + bk,k+1 (51a)

bk,k+1 = h2α+1
(
G(x̃k+1)−G(xk)

)
(51b)

Without the previous assumption the recurrence would also be geometrical, making the
final result a bit more complicated.

d0 = dn +
n−1∑
k=0

bk,k+1 (52)

For a return after n steps one enforces dn = 0 removing the contribution of the purely
geometrical recurrence. In the general case this leaves various contributions from the
coefficients bk,k+1, which are all proportional to h2α+1, hence of the order determined by
the integration scheme. One can then note that:

bk,k+1 = h2α+1
(
G(xk+1)−G(xk)

)
(53a)

n−1∑
k=0

bk,k+1 = h2α+1
(
G(xn)−G(x0)

)
(53b)

Two cases are then found if n is not too large, one can expand G(xn) so that:

d0 =
n−1∑
k=0

bk,k+1 ≈ h2α+1
(
xn − x0

)
G′(x0) ≈ h2α+2

( n−1∑
k=0

F (xk)
)
G′(x0) (54)

In this case the distance d0 scales like h2α+2. In the other case, when n is too large, one
obtains a scaling h2α+1.
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