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Simulation Verification with PoPe

We present the theoretical background of the PoPe and iPoPe verification scheme. The verification that is performed uses the output of actual simulations of production runs. With a small computing overhead it is possible to check that the problem that is solved numerically is consistent with the equations that are to be addressed. In fact, one shows that the numerical error determined by both procedures can be split into a part proportional to the existing operators of the equations, thus modifying their control parameters, completed by a residual error orthogonal to these operators. The accuracy of the numerical solution can be tested on the error as well as on the modification of the control parameters. To illustrate the method, the evolution equation of a simple mechanical system with two conjugate degrees of freedom is used as simulation test bed. Importantly, although dissipative, the trajectory equations evolve towards a chaotic attractor, a strange attractor, characterised by a positive Lyapunov exponent and therefore sensitivity to initial conditions. It is shown that the chaotic state cannot be verified with the standard Method of Manufactured Solution. We present different facets of the PoPe verification method applied to this test case. We show that the evaluation of the accuracy is case dependent for two reasons. First, the error that is generated depends on the values of the control parameter and not only on the numerical scheme. Second, the target accuracy will depend on the problem one wants to address. In a case characterised by bifurcations between different states, the accuracy is determined by the level of detail of the bifurcation phenomena one wants to achieve. A unique verification index is proposed to characterise the accuracy, and consequently the verification, of any given simulation in the production runs. This PoPe index then gives a level of confidence of each simulation. A PoPe index of zero characterises a situation with 100% error level. One finds that although the accuracy is poor the robust features of the solution can still be recovered. The maximum PoPe index is determined by machine precision, typically in the range of 12 to 14. As an illustration this PoPe index is used to choose between a high order integration scheme and a reduced order integration scheme that is less precise but requires less operations. For the chosen example the PoPe index indicates that the high order scheme leads to a reduction of computer resources up to a factor 4 at given accuracy.

Introduction

As numerical simulations grow in importance in the research activity, as codes become more and more complex and as the resources dedicated to these simulations become increasingly important it is most obvious that appropriate verification of the numerical tools are mandatory. This issue has always been addressed but is becoming more and more difficult as the numerical tools and the problems that are addressed become more complex. When available analytical solutions of the problem at hand have been used. However, with growing complexity of the problem at hand, numerically built solution are currently being used. The best known method with numerically built solution is the so-called Method of Manufactured Solutions (usually referred to as MMS) [START_REF] Roache | Code Verification by the Method of Manufactured Solutions[END_REF][START_REF] Oberkampf | Verification and validation in computational fluid dynamics[END_REF]. It is regarded as state of the art method to address complex code verification and is now used for fusion plasma simulation tools [START_REF] Riva | Verification methodology for plasma simulations and application to a scrape-off layer turbulence code[END_REF][START_REF] Tamain | The TOKAM3X code for edge turbulence fluid simulations of tokamak plasmas in versatile magnetic geometries[END_REF]. The MMS and a similar alternative verification scheme are recalled in Section 3.2 and 3.3 respectively. The MMS method, however elegant, suffers from two main drawbacks. First the MMS requires that one modifies the code to enforce that a chosen function is the effective solution. Second, one cannot assess that the chosen function is representative of all the simulations to be performed. These issues are discussed in Section 3. More importantly, one is led to assume that the solution chosen for the verification is stable. This particular case is not generic of non-linear systems. The proposed alternative verification scheme, that is less dependent of a particular target solution is called here Method of Reverse Solution (MRS). This method requires less modifications of the code but still depends on the particular time slots retained in the verification procedure. The most appropriate verification procedure should be available for each production run of the simulation effort, providing the possibility to give a figure of merit of the exactness and accuracy of any particular simulation. The PoPe method, standing for Projection on Proper elements, has been developed to achieve this task as well as investigating the performance of reduced models [START_REF] Cartier-Michaud | Vérification de Codes et Réduction de Modèles : Application au Transport dans les Plasmas Turbulents[END_REF][START_REF] Cartier-Michaud | Projection on Proper elements for code control: Verification, numerical convergence, and reduced models. application to plasma turbulence simulations[END_REF]. Since, it has been used to analyse the exactness and accuracy of existing simulations [START_REF] Cartier-Michaud | A posteriori error estimate in fluid simulations of turbulent edge plasmas for magnetic fusion in tokamak using the data mining ipope method[END_REF]. Although the PoPe and iPoPe methods are based on data analysis, they follow a defined mathematical procedure which differs from big data analysis based on artificial intelligence routines [START_REF] Both | Deepmod: Deep learning for model discovery in noisy data[END_REF]. In this paper we present the PoPe method using a simple simulation problem as illustration and test bed. The PoPe method is presented in Section 2 together with a simplified alternative that we have named iPoPe for independent Projection on Proper elements. The key idea is to build numerically an ensemble of operators using the simulation output and project one particular operator, usually the time derivative, on this ensemble. The simulation chosen to illustrate this method is presented in Section 3.1. We have chosen a simple mechanical system, namely a compass driven by an alternating magnetic field and subject to viscous damping. The trajectory in the 2D phase space is chaotic and, for non vanishing damping, exhibits an attractor, called strange attractor, with fractal dimension ranging between 1 and 2 depending on the values of the control parameters. Chaos being generic in non-linear systems, verification methods must be able to handle such dynamics. The standard MMS and the alternative MRS verification procedures are tested for the chosen strange attractor in Section 3. The PoPe and iPoPe verification schemes applied to the case of the strange attractor are presented and evaluated in Section 4. Finally a Section dedicated to discussion and conclusion closes the paper.

PoPe and iPoPe verification 2.1 PoPe analysis

The aim of the PoPe verification scheme is to analyse the exactness of a particular simulation using the output data of that particular simulation. The standard simulation overhead when using this method is to save more data than one would normally consider for a production run. Most of the work is then postponed to the post-processing stage. The weight of this additional output can also be optimised as will be discussed in the following. The alternative, with verification on the fly, leads to a larger overhead but with the benefit of immediate verification and accuracy estimate of the simulation.

The problem solved numerically can most of the time be written in the following mathematical generic form:

O (m) t - K k=1 O (m) k = 0 (1) 
where O

(m) k are the various operators that are added to yield O (m)

t . The superscript (m) refers to the mathematical equation, while in the following the superscript (n) will refer to the mathematical approximation to be solved numerically and (s) for the actual simulation realisation. In this form, the control parameters that specify the weight of the different physical processes involved in Eq.( 1) are included in the definition of the operators. The reference weight of each operator in Eq.( 1) is unity. A form with an explicit dependence on the control parameters does not change the PoPe analysis. The weights of some of the operators are then the values of the control parameters as in [START_REF] Cartier-Michaud | Projection on Proper elements for code control: Verification, numerical convergence, and reduced models. application to plasma turbulence simulations[END_REF]. This is only a matter of presentation.

The problems solved numerically often take the form of an evolution, the operator O t then stands for a time derivative, hence the label t, governed by several effects characterised by the right hand side operators O k . We present PoPe in this rather standard framework but the procedure holds to any problem of the form Eq. [START_REF] Benettin | Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1[END_REF]. It is important to underline that the PoPe method is very versatile and the choice and definition of the operators is not constrained. In a standard way one follows the way these operators are generated by the underlying physics, hence the choice of the time derivative for the operator O t . But this is by no means mandatory. For instance, for a system converging towards steady state with vanishing time derivative, one will want to avoid singularities and then use another operator instead of the time derivative to define O t . Implementing the PoPe method, mostly in the post-processing stage, will clearly benefit from any insight into the processes that govern the simulation at hand. In order to perform numerical simulations, Eq.( 1) is transformed by discretising the operators.

O (n) t - K k=1 O (n) k = 0 (2a)
This step introduces a first set of approximations and consequently of errors, that can be a priori determined. The two equations Eq.( 1) and Eq.( 2a) cannot hold together, although one can enforce that the two equations exhibit the same symmetries and thus the same conservation laws. When addressing the problem numerically, Eq.( 2a) is to be solved so that Eq.( 1) is only solved approximatively. One can then rewrite this equation as:

O (m) t - K k=1 O (m) k = O (n) t - K k=1 O (n) k + E (n) (2b) 
The system addressed numerically Eq.( 2a) departs from the target mathematical system Eq. [START_REF] Benettin | Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1[END_REF]. The numerical simulation itself further contributes to the error build-up via the rounding errors, as well as possible errors in the implementation. The effective equation of a given simulation is then:

O (s) t - K k=1 O (s) k = 0 (3a)
Compared to the previous forms of the equations, Eq.( 1) and Eq.( 2a), numerical noise governs the departure of the operators O k . An error is therefore generated at this step and the form of Eq.( 3a) to be addressed is therefore:

O (n) t - K k=1 O (n) k = O (s) t - K k=1 O (s) k + E (s) (3b) 
We find therefore that the equation that is consistent with the output data departs from that considered initially due to errors with a known, potentially complicated error, E (n) , and an error E (s) , which is simulation dependent and not controlled, therefore unknown. The initial mathematical problem Eq.( 1) has therefore been changed in the simulation process.

O (m) t - K k=1 O (m) k = E (n) + E (s) (4) 
We now consider a data driven approach and assume that the simulation has been performed so that the operators can be reconstructed using the output data. One then has the relationship:

O (r) t - K k=1 O (r) k = E (r) (5) 
where the superscript (r) now identifies the reconstructed operators. In the latter equation the operators O (r) t

and O

(r) k are computed using the output data so that E (r) can also be computed and is therefore known for the specific simulation and according to the specific data saving process. Given Eq.( 5), one can also write this equation as: (r) (6a)

O (m) t - K k=1 O (m) k = E (r) + δE
δE (r) = δO (r) t - K k=1 δO (r) k (6b) δO (r) t = O (m) t -O (r) t (6c) δO (r) k = O (m) k -O (r) k (6d)
This system is not closed because the error δE (r) Eq.( 6b) is not determined and depends on the departure between the reconstructed operators O (r) and the target mathematical operators O (m) as defined in Eq.( 6c) and Eq.( 6d). However, the possible closure δE (r) = 0 can be considered whenever ||E (r) +δE (r) || ≈ ||E (r) ||. This can be made possible when the reconstruction procedure is chosen to significantly more accurate than the discretisation procedure implemented to perform the simulation so that:

||δO (r) t || ≪ ||O (m) t -O (n) t || (7a) ||δO (r) k || ≪ ||O (m) k -O (n) k || (7b) 
and therefore ||δE (r) || ≪ E (n) . We shall assume this relation to be fulfilled in the following, and, in the examples of this paper, we will give numerically based evidence that the reconstruction scheme is consistent with this approximation. In the specific case where some parts of the discretisation scheme have been devised with highest accuracy, so that the reconstruction scheme can only achieve the same precision, one is led to assume O (m) ≈ O (r) for those parts of the discretisation scheme compared to the remaining ones, which are therefore assumed to generate all the error.

Since E (r) is determined by the output data, it is known for a series of points in phase space, at times t i and at phase space locations X i . The label i labels one point in the extended phase space combining time t and location X. It is to be underlined that the only constraint on the data, and therefore on the number of data-points i and their organisation in time and phase space, is to make possible a reconstruction procedure for the operators with better precision than the chosen discretisation procedure used for the simulations. In this framework Eq.( 6a) is only defined for these selected data-points i, therefore:

O (m) t,i - K k=1 O (m) k,i = E (r) i (8)
In the following the superscripts (m) and (r) are dropped to simplify the notation. The first step of the PoPe procedure is to build the error E i for an ensemble of data points that are representative of the simulation that has been performed. This data verifies Eq. [START_REF] Ghendrih | Turbulence faible dans un système mécanique peut dissipatif : étude du processus de transition et caractérisation des états chaotiques[END_REF]. In a second stage, the error E is projected on the operators driving the evolution of the system so that one can write:

E i = K k=1 δc k O k,i + R i (9a) 
The coefficients δc k stemming from the projection do not depend on the data-point and only depend on the operator O k . Part of the error E i is orthogonal to the set of operators O k , which defines the residue R i . Given Eq.( 9a), one can rewrite Eq. [START_REF] Ghendrih | Turbulence faible dans un système mécanique peut dissipatif : étude du processus de transition et caractérisation des états chaotiques[END_REF] as

O t,i - K k=1 c k + δc k O k,i = R i (9b)
When choosing c k to be the control parameter associated to the operator O k , then δc k is the absolute error made on that control parameter for the selected operator and chosen simulation. When one considers c k = 1, as done in this paper, then δc k is the relative error made on that control parameter. Irrespective of this choice one can write Eq.( 9b) as:

E i - K k=1 δc k O k,i = R i (10) 
This linear equation depends on the K unknowns δc k so that K data points are a priori sufficient to determine them when setting R i = 0, which then defines the orthogonality. One can then readily expect that for each set of K data points a different realisation of the K coefficient δc k is computed. Three ways to address the possible statistics can be chosen. First, one can define the ensemble of coefficients δc k for each available K-tuple of data-points and perform statistics on these realisations. Second, one can introduce the statistics directly in the calculation of the coefficients, for instance by computing the coefficients with a least square method using m-tuples of data-points with m ≥ K. If N max is the number of available data points, choosing m = N max then yields a unique value for each coefficient δc k , k ∈ [1, K]. Third, when setting K ≤ m < N max , a mean square method can be used to define the projection and statistics can be performed on the results. It is to be noted that choosing a least square method with m = K, leads to a calculation that is quite similar to that proposed in the first item of this list. One can then recast the three possibilities that have just been described in terms of a specific choices of the m-tuples of data-points used in least square calculations.

Coefficients δc k are computed using the least square calculation for each available K-tuple of data-points, and statistics are performed given these realisations, case with m = K.

Coefficients δc k are computed using the least square calculation with m-tuple of data-points, with m > K. When K < m < N max , statistics on the coefficients δc k can be performed.

The coefficients δc k are computed using the least square calculation using all available data, hence with the N max -tuple of data-points, m = N max . A single value is generated for each coefficient.

PoPe projection defined with the least square method

Let us define the separation d i as:

d i = E i - K k=1 δc k O k,i (11a) 
and then the distance d m :

d 2 m = m i=1 1 2 d 2 i (11b)
The least square method then generates K-coupled linear equations defined by ∂d 2 /∂δc k = 0, namely by setting that d 2 m is an extremum with respect to the variations of each δc k . These coefficients are an optimum result for the particular choice of the m-tuple. The extremum equation obtained with respect to δc k is then:

K k ′ =1 δc k ′ m i=1 O k,i O k ′ ,i = m i=1 E i O k,i (12) 
When defining the scalar product ⟨F |G⟩ of the m-dimension vectors F and G by:

⟨F |G⟩ = m i=1 F i G i ( 13 
)
the extremum constraint takes the form of a projection:

K k ′ =1 δc k ′ ⟨O k |O k ′ ⟩ = ⟨O k |E⟩ (14a) 
this result being completed by the orthogonality of the residue:

⟨O k |R⟩ = O k E - K k ′ =1 δc k ′ O k ′ = 0 (14b)
The least square method therefore defines a particular projection for a code output data. Other projections can be defined. For instance, one can specify a weight for each m-tuple allowing to enforce in the result a class of m-tuples. For example, in the case of K = 2 one can define the weight as

⟨O 1 |O 1 ⟩ ⟨O 2 |O 2 ⟩ -⟨O 1 |O 2 ⟩ 2 than ought to reduce the impact of co-linearity.
The PoPe method combines the idea of generating a phase diagram using a time series of a single variable [START_REF] Malraison | Dimension of strange attractors : an experimental determination for the chaotic regime of two convective systems[END_REF], here O k,i where k labels a particular vector and i the index in the time series for a chosen time delay. The vector (O k,i ), i ∈ [i 1 , i 1 + m] is then assumed to define a position at time i 1 in a phase space of dimension m. However, compared to the standard case with a single time series, we consider the case with several signals generating different time series labelled here by k ≤ K. Each operator is then identified to a function acting in a space of dimension m and requires a priori an infinite dimension bases of function to represent it. We also introduce another difference in building the vectors (O k,i ), 1 ≤ i ≤ m by choosing of the same set of indices i for all operators but each set being chosen randomly. However, given the constraint Eq.( 1), we assume that the trajectories are mostly embedded in the function-space of dimension K generated by the K operators. A presumed small contribution exists and is transverse to that plane, the residue R. Once a scalar product is defined, for instance that generated by the least square method, projections can be computed and one can follow a particular simulation in the phase space generated according to this procedure, see Figure 1. To simplify the situation, we sketch the problem in 2D, thus for two signals O 1 and O 2 generating the time series. Two cases are then observed. When the two operators are independent, 1 left hand side, the error E is projected in the plane (O 1 , O 2 ), the coefficients δc O1 and δc O2 are well defined and their dispersion accounts for the numerical errors. However, when the two operators are nearly co-linear, Figure 1 right hand side, large variations of δc O1 and δc O2 can occur. Increasing the dimension m of the phase space tends to reduce the co-linearity, unless the operators O 1 and O 2 are ill chosen and actually co-linear (which would be however a useful information regarding the system). Note that in Figure 1, the numerical fluctuations are only indicated by their projection in the plane (O 1 , O 2 ), the shaded grey regions, and that, for convenience of the representation, the operators are not shown to fluctuate. In practise, these fluctuations can govern transitions between left and right hand side relevant geometry. Minimising the impact of the latter situations of co-linearity by increasing the dimension m of the embedding space is performed at the cost of reducing the description of the statistics of the fluctuations, eventually narrowing the grey window to a single value.

iPoPe analysis

In order to solve Eq.( 14a), one has to inverse a K × K matrix to obtain the coefficients δc k , 1 ≤ k ≤ K. In this process all coefficients appear on the same footing. However, when the operators of the system do not have the same magnitude, a small error on the calculation of a large amplitude operator can have a large impact on an operator with comparatively smaller amplitude. There is a possibility of propagating the error from a particular operator on the coefficients of other operators. Furthermore, inverting a large matrix as required for the standard PoPe method can be cumbersome. However, when the matrix is diagonal elements each coefficient is computed independently. We generalise this property to define the iPoPe method, for independent Projection on Proper elements. This method addresses the projection operator after operator in a staged approach and is identical to the PoPe solution when the matrix is diagonal. Let us choose k as the first element of the projection, then one determines the iPoPe coefficient as:

δc k ⟨O k |O k ⟩ = ⟨O k |E⟩ (15a)
this result being completed by the calculation of the specific residue R k orthogonal to O k :

R k = E -δc k O k (15b)
Computing δc k is then absolutely straightforward:

δc k = ⟨O k |E⟩ / ⟨O k |O k ⟩.
The coefficient δc k that is obtained maximises the importance of the operator O k in generating the error since one computes δc k as if all the error was stemming from that operator. In a second stage, one can compute the coefficient δc k ′ and a new residue as follows:

δc k ′ ⟨O k ′ |O k ′ ⟩ = ⟨O k ′ |R k ⟩ (16a)
this result being completed by the calculation of the specific residue R k orthogonal to O k :

R k,k ′ = R k -δc k ′ O k ′ (16b)
Step by step one can iterate the procedure until all coefficients are determined, and the ultimate residue is computed. The simplicity of iPoPe is balanced by the number K! of different ways it can be applied. The actual number of different values of the coefficients is not quite as big since computing a coefficient at a given stage does not depend on the various combinations retained at the following stages.

N iP oP e = K K k=1 (K -1)! (K -k)! (17) 
A systematic use of iPoPe considering all these combinations is prohibitive whenever K is large. The method is thus of interest when a bias is introduced that defines an order in which the coefficients are determined. One can also consider a mix of iPoPe and PoPe in the procedure, giving a particular weight to a class of operators with iPoPe and treating the remnant on equal footing with PoPe. Finally, one can use the first step of iPoPe for each 1 ≤ k ≤ K, maximising the error measured by δc k for each operator. These possibilities underline the versatility of PoPe in analysing any simulation output. Also, as a by-product of the method, one can investigate ⟨O k |O k ⟩ the actual weight of the operator in the balance as well as its change in time or space. All these features of the PoPe or iPoPe methods provide an in depth analysis of the chosen simulation, both a tool to investigate the physics and that to identify possible shortfalls of the chosen numerical scheme.

3 Standard verification of strange attractor simulations

The strange attractor model

The model we consider to present the PoPe verification method is the simple model of a particle submitted to two electrostatic waves with different pulsation and identical wave vector and amplitude. Alternatively it can be understood as the model for a compass in a two component magnetic field, one fixed and the other rotating, both components having the same amplitude. The phase space motion is thus two dimensional (2D) with one dimension standing for the position x, either the position of the particle or the angle of the compass, and one for the momentum J, that of the particle of the angular momentum of the compass. The normalised evolution equations for dx/dt and dJ/dt are :

dx dt = J (18a) dJ dt = -2π B sin 2πx + sin 2π(x -t) -ν J (18b) 
The parameter B, the normalised electric potential of the electrostatic waves or the amplitude of two components of the magnetic fields, is directly connected to the Chirikov overlap parameter [START_REF] Boris | A universal instability of many-dimensional oscillator systems[END_REF] σ chir since the characteristic island width δ i is δ i = 2 √ B and the chosen distance between the resonances is ∆ = 1 so that

σ chir = 2δ i /∆ = 4 √ B.
A fluid viscosity damping term -νJ governs the contraction of the phase space volume to zero. For convenience we introduce the Hamiltonian H 0 of the non dissipative evolution so that:

H 0 = 1 2 J 2 -B cos 2πx + cos 2π(x -t) (19a) dx dt = ∂H 0 ∂J ; dJ dt = - ∂H 0 ∂x -ν J (19b)
The trajectory of the system is presented in a standard fashion, in the so-called Poincaré sections, a stroboscope effect at time interval 1, which is the period of the driving force, figure [START_REF] Both | Deepmod: Deep learning for model discovery in noisy data[END_REF]. Two cases will be considered in this work: The simulation of the strange attractor is chosen because it combines simplicity of the numerical integration and sensitivity to initial conditions. The latter makes verification slightly more challenging since any error, including numerical errors, governs an exponential separation between trajectories. The chosen numerical time stepping schemes are order 2 and order 4 Runge Kutta (RK2 and RK4 respectively). The sensitivity to initial conditions is governed by the Lyapunov exponent defined as the average along the trajectory defining the strange attractor of the largest eigen vector of the tangential map [START_REF] Benettin | Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1[END_REF]. The latter is readily determined:

dδx dt = ∂ 2 J H 0 (x t , J t ) δJ (20a) dδJ dt = -∂ 2 x H 0 (x t , J t ) δx -ν δJ (20b)
where x t , J t is a phase space position belonging to the trajectory. The eigen values associated to the tangential map are therefore:

λ (±) t = - ν 2 ± ∆ 1/2 t (21a) ∆ t = ν 2 2 -∂ 2 J H 0 (x t , J t )∂ 2 x H 0 (x t , J t ) (21b) 
One can readily check that the phase space contraction of the strange attractor is governed by the viscosity ν since its volume shrinks exponentially in time according to exp( λ

(+) t + λ (-) t t) = exp(-νt).
The global property of the strange attractor is captured by the largest Lyapunov exponent Λ assuming Λ > 0. The latter measures the sensitivity to initial conditions and is determined numerically [START_REF] Benettin | Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1[END_REF]. The eigen values are sometimes referred to as the local Lyapunov exponents which underlines the connection between the actual Lyapunov exponents and the series of eigen values on a chaotic trajectory.

Standard Method of Manufactured Solution for the strange attractor

Let us consider the characteristic problem:

dX dt = F (X) (22a) 
The standard Method of Manufactured Solution consists of selection a particular function X 0 , time independent for simplicity, and modifying the initial equation Eq.( 22a) so that X 0 is a steady state solution, typically: . For a complex system, the operator F implemented in the code is used to determine F (X 0 ) so that Eq.( 22b) yields exactly dX 0 /dt = 0 both theoretically and numerically. One can then perform the numerical test that X 0 is indeed a steady state solution, usually by ensuring that the slightly perturbed solution X 0 + δX converges back to X 0 . Such a procedure is elegant but has two drawbacks: first it assumes that the system of interest is such that the fixed point X = X 0 of Eq.( 22b) is stable, second one must modify the code to solve both Eq.( 22a) of interest and Eq.( 22b) for the test. Third, one furthermore assumes that the chosen solution X 0 is representative of the solutions of interest. Given the evolution equation Eq.( 22b) one can readily see that the eigen values are unchanged when stepping from the strange attractor evolution equation to the MMS evolution system. When the real part of the largest eigen value of the fixed point is positive, the fixed point is unstable. Furthermore, due to the explicit time dependence of the potential even a fixed point at initial time will exhibit a positive real part of the largest eigen value after an evolution time shorter that 0.5. One can thus expect that in most cases, disturbing the initial condition away from the fixed point X 0 in Eq.( 22b) will not drive a relaxation trajectory back to the fixed point. Using the form derived in Appendix A, one can investigate numerically these features. The modified evolution equation for the Method of Manufactured Solution does yield trajectories of particular interest. Cases that have been tested start from a chosen fixed point -0.5 ≤ x ≤ 0.5 and J 0 = 0 since it is shown in Appendix A that all possible values of J 0 can be investigated using a change of variable and J 0 = 0. An initial distance from the fixed point is chosen d 0 = 10 -8 . The evolution appears to lead to large values of J, either negative or positive and consequently rapid rotation of the phase x, Figure 3 left hand side. As expected and discussed above, in all cases that have been investigated, the trajectories depart from the fixed point as exemplified by the growth of the distance d from the fixed point, Figure 3 right hand side. This standard use of the Method of Manufactured Solution is therefore not fit Figure 4: Verification with the Method of Return Solution, sketch of the method. -initial condition (ic) belonging to the trajectory of the system t ic , x ic , J ic , -trajectory stepped forward for ∆t = 1 4 , reaches distance d x from the initial condition, -then, trajectory stepped backward for ∆t, distance from initial condition d r .

dX dt = F (X) -F (X 0 ) (22b)
for the chosen problem that exhibits chaotic trajectories. Since the latter situation is generic, and of particular relevance for complex systems, those which require in particular numerical simulation support, one is led to conclude that this method is of restricted relevance for verification purposes.

Alternative Method of Manufactured Solution for the strange attractor

As discussed in the previous Section, the limitation of the Method of Manufactured Solution as implemented lies in the assumption that the generated fixed point is stable. The verification stage allows one to check that the numerical response exhibits this mathematical property and to determine with what precision the fixed point is recovered. Rather, than enforcing an arbitrary fixed point, an alternative Method of Manufactured Solution is based on a return to the initial condition: hence after N steps forward in time, the subsequent N steps are performed with the opposite time step [START_REF] Ghendrih | Turbulence faible dans un système mécanique peut dissipatif : étude du processus de transition et caractérisation des états chaotiques[END_REF]. Mathematically the system must therefore reverse to its initial position. However, the numerical errors, partly amplified by the effect of the divergence of neighbouring trajectories, will distort the trajectory and a distance d r is generated between the initial and final positions in phase space, see Figure 4. This distance is averaged over the points belonging to the strange attractor to yield a measure of the accuracy. The idea is therefore similar to the standard Method of Manufactured Solution except that the chosen reference solution is the . initial condition via the backward steps in time. We have called this verification scheme the Method of Return Solution, or MRS. Of course the chaotic nature of the trajectory plays a role in the distance d r that is observed since any error is exponentially amplified. However, d r will be an increasing function of the effective numerical error and it provides consequently a useful measure in the verification procedure, in particular to determine the order of the numerical scheme.

For the strange attractor both the second and fourth order Runge Kutta schemes are used varying the number of time steps per period from N = 2 3 = 8 to N = 2 12 = 4096. As shown in Appendix B, one expects the error determined by MRS to scale like the order of the time stepping scheme plus one1 , hence a decrease of the error like N -3 for the order 2 Runge Kutta scheme, labelled RK2, respectively N -5 for the fourth order Runge Kutta scheme, labelled RK4.

We first consider case a, with large Chirikov parameter, σ chir = 7 and ν = 0.2, see Figure 2 left hand side, and comparing the RK4 and RK2 schemes. For a series of points belonging to the attractor, the evolution is stepped forward during a fourth of a period, ∆t = 0.25, the distance from the initial condition d x is then recorded, then the time stepping is reversed, and the trajectory therefore heads back towards the initial condition. The distance d r between the initial and return points in phase space is then computed. For a large time step with N = 2 3 steps per period, δt = 0.125, one can compare the distribution of distances d x and d r , Figure 5 left hand side. These distances are plotted versus the position x of the initial condition, black dots for d x and blue dots for d r . At this low resolution one finds that d r is large typically ≈ 0.1d x with d x ≈ 2.. The maximum distance reached after a fourth of a period is comparable to the "size" of the strange attractor, typically up to 5, Figure 2 left hand side. One can analyse the distribution of these distances, Figure 5, right hand side. The histograms of d r , blue curve, and d x , black curve indicates that the distribution of d x is quite broad. Conversely, the measurement of the error d r is characterised by a narrower histogram peaked on the smallest distance d r = 0. The histograms of log 10 d x and log 10 d r yield more insight into the error. These histograms for different resolutions are compared on Figure 6 left hand side. The resolution is characterised by the number of steps N per unit time, the period of the potential, hence defining the time step δt = 1/N . On Figure 6 left hand side are compared the simulations for N = 2 3 , N = 2 4 , N = 2 5 and N = 2 6 , the black curves that overlay correspond to the histogram of d x while the various histograms in blue are those of d r . The latter shift towards smaller distances as N is increased, while the former are typically unchanged. The histograms drawn with thick lines correspond to the resolution N = 2 3 . One can remark that the shift towards the smaller values of the histograms of log 10 (d r ) appears to be at a constant value for each increase of N by a factor 2. One thus finds that the distance d x does not exhibit qualitative changes as the resolution is improved, while the measure of the MRS error exhibits a decrease with the resolution. The similarity between these various histograms of d r is more clearly shown on Figure 6 right hand side, where the resolution N = 2 5 , lower scale, is compared to N = 2 7 resolution upper scale. Note that the scales are identical but for a shift of log 10 (10 -3 ) from the lower to the upper scale. The shaded region corresponds to the number of counts smaller than 10. One can remark that the distribution of the distance d r appears to be nearly unchanged when N is varied. This distribution is broad and skewed: for N = 2 7 , one finds ⟨d r ⟩ ≈ -7.875 and a standard deviation δd r ≈ 0.66 with skewness ≈ -0.66. For each value of the resolution N , theses statistics are performed with 320064 different initial conditions chosen on the strange attractors computed with the different resolutions. The similarity of the distribution of the error for these different resolutions underlines the fact that the error governed by the time integration scheme is of the form f (x ic , J ic , t ic )δ 5 t . Provided the change of phase space position x ic , J ic at time t ic is statistically identical for each resolution, then the realisation of the function f will be identical, hence with the same shape of its distribution function, while the dependence on δ 5 t will govern a shift of the form -N log 10 (2).

One can then analyse the dependence of the error on the resolution N that determines the time step δt = 2 -N , Figure 7 left hand side. For the reference case a, σ chir = 7, ν = 0.2, one checks that the error ⟨d r ⟩ scales like N -5 for the order four Runge Kutta scheme, blue open circles, and N -3 for the order two Runge Kutta scheme, black upside down triangles. The scaling appears to hold over the whole range of values of N , but for a small departure at N ≈ 2 3 . For completeness, the results for case b, σ chir = 2.3, ν = 0.8, are also plotted. These simulations are performed with the fourth order Runge Kutta time stepping. One recovers the appropriate slope associated to the order of the scheme, and, as can be expected, one can observe that the error levels-off when the error becomes comparable to machine precision. However, one finds that the error exhibits a quite different magnitude when comparing case a andb. This agrees with the fact that the sensitivity to initial conditions is characterised by a different Lyapunov exponent, which is larger in case a than in case b. This governs a larger exponential growth of the error in case a compared to case b. In the present examples the difference in the MRS error is close to three orders of magnitude. The test for one regime of parameters does not allow one predicting the precision for another. Consequently, the accuracy test, combining verification and analysis of the effective precision, should be made for each particular regime addressed in the simulation effort. When considering the phase portrait of the attractors, the eye inspection indicates that the accuracy issue is more demanding than simply assessing the precision of the numerical scheme. This is particularly noticeable with low resolution simulations, Figure 8. With N = 2 3 steps per unit time, the achieved phase portrait with both RK4, Figure 8 left hand side, and RK2, Figure 8 right hand side, depart significantly from that displayed on Figure 2 left hand sides obtained with the same control parameters but with N = 2 9 and RK4. Based on this eye inspection, these low resolution results appear to be inaccurate and consequently misleading. Therefore, knowing the error and checking its scaling when changing the resolution is a verification of the numerical scheme but does not provide a clear measure of the accuracy. The way to proceed to a correct accuracy assessment appears to be unanswered but for the naive statement "the smaller the error, the better". This quest for minimum error is naive because: (i) it relies implicitly on infinite resources, (ii) it does not discuss the actual need in terms of precision, (iii) it cannot guaranty exactness for chaotic systems since the sensitivity to initial conditions implies that any error, however small, will be amplified to macro-scales. The alternative to the naive statement is to focus on numerical measurements that are relevant in terms of physics. Regarding the strange attractor, the largest Lyapunov exponent can be regarded as such a measurement, Figure 9, left hand side. One can observe that the results obtained with the RK4 scheme are characterised by a nearly constant value of the Lyapunov exponent with not distinct trend when increasing the precision. For the simulation conditions σ chir = 7, hence B ≈ 3.0625, and ν = 0.2, the only significant change with RK4 is that between the simulation with N = 2 3 , with Λ + ≈ 0.95 and the other simulations with larger values of N where Λ + ≈ 1.0 is observed. However, when considering the results obtained with the RK2 integration scheme, one finds a large variation until N ≥ 2 8 . The negative values of the Lyapunov exponent are confirmed by phase portraits with fixed points with transients trajectories spiralling in towards them. Based on the largest Lyapunov exponent one can argue that one must consider N ≥ 2 8 for the RK2 integration scheme, while N ≥ 2 4 would suffice with the RK4 integration scheme. However, the examination of the Lyapunov exponent for the latter does not provide a clear measure to discriminate the accuracy. Still, considering these two critical number of steps, and since the cost of the RK4 scheme compared to RK2 is typically a factor 2 in the number of operations to be done, one finds a net gain of a factor 8 in computing resources by implementing the RK4 scheme rather than RK2 for this problem.

An alternative measure to evaluate the results is to determine the exponent that characterises the shrinking of the phase space volume, therefore for a given precision

N : Λ + + Λ -= -ν N .
The benefit is that one expects the exponents ν N to converge towards ν when N is increased. The relative error |ν -ν N |/ν thus appears to be a more precise measure to evaluate the exactness of the numerical scheme. However, determining numerically the exponent ν N adds a cost in computing resources of about 50% and yields an output that is known a priori but for the error in computing it. Another caveat is that this error can also be specific of the calculation of ν N and consequently not relevant to assess the correctness of the evaluation of the Lyapunov exponent. For the three cases that have been analysed, one finds that the relative error |ν -ν N |/ν decreases as expected when N is increased, but this gain in accuracy appears to level-off at a value of the order of 10 -5 for case a σ chir = 7, ν = 0.2 and 10 -7 for the case b σ chir = 2.3, ν = 0.8. The accuracy of this measure is again dependent on the problem of interest. The fact that the relative error appears to level-off also provides a possible rule to determine the reference precision as the effective lower bound as well as the optimum value of N where the role over occurs. For the RK4 scheme one finds typically N ≈ 2 7 , while for the RK2 scheme N ≳ 2 9 seems appropriate. This criterion to evaluate the exactness still indicates that using the RK4 scheme compared to RK2 yields a net gain of a factor 2 in computing resources. The analysis of the relative error on the calculation of ν indicates that the lowest resolution yields an error exceeding unity, which is clearly too big. Comparing the relative error to the calculation of the Lyapunov exponent, one can determine the empirical rule that the relative error on the calculation of ν should be smaller that 10 -3 . The full analysis with the Method of Return Solution provides a verification of the numerical scheme and also yields case dependent rules to assess the exactness of the simulation. However, such an analysis must be performed and results checked for each class of simulations of interest.

PoPe verification for the strange attractor 4.1 Manufactured Solution testing of the PoPe operators

Before addressing the PoPe verification of the strange attractor simulations we first verify the Runge Kutta schemes, RK4 and RK2 with a standard method, akin to the Method of Manufactured Solutions. Let us consider a problem with known solution so that one can measure the error. We thus consider the equation

dJ dt = -sin 2 * πt (23) 
with known solution J(t) = cos(t) for initial conditions J = -1 at t = -π. One can then compute the error E RKi (N ) = max(|J RKi (N, t) -J M (t)|) t where J RKi is the value of J computed with the Runge Kutta scheme of order i, and J M the known analytical solution. We retain here the largest error taken over one period of the solution. Changing the number of steps per period according to N = 2 n with 3 ≤ n ≤ 25, hence the step 1/N , allows one checking the implementation of the Runge Kutta schemes, Figure [START_REF] Oberkampf | Verification and validation in computational fluid dynamics[END_REF]. On can thus observe that the error behaves with the appropriate order until the number of steps is so large that the numerical noise, typically proportional to the number of steps N becomes larger than the error governed by the numerical scheme. One can thus state that this check is a verification of the Runge Kutta schemes used to determine numerically the trajectories that generate the strange attractors. However, as discussed in Section 3.2, this verification gives no information regarding the accuracy: (i) because the chosen solution has different characteristic properties compared to the problem to be addressed, (ii) because a criterion must be defined to be able to discuss the accuracy.

PoPe error analysis for the strange attractor

The PoPe verification is based on data mining using the output of production runs. From the saved data it is possible to reconstruct the values of the different operators that drive the problem at hand. For the strange attractor, the series of values of x i , J i and t i , where the index i identifies the number in a time series, hence x i = x(t i ) and J i = J(t i ) are used for the verification. Provided the time series are saved with the same time step has that used by the numerical scheme, one can proceed to verification. Rather than using Eq.( 18), which is actually implemented in the code, we consider the equivalent second order equation:

d 2 x dt 2 = -2π B sin 2πx + sin 2π(x -t) -ν dx dt (24) 
One can note that in the verification procedure chosen here an equivalent but different mathematical setting of the problem is addressed. Computing the various operators of Eq.( 24) using the output data is straightforward for the right hand side. For the time derivative operators, one has to rebuild the time derivatives using alternative schemes. We have used here finite difference up to order 8. Similarly to the Runge Kutta integration these derivatives are checked independently by comparing the derivative of sin(t) to cos(t), Figure [START_REF] Riva | Verification methodology for plasma simulations and application to a scrape-off layer turbulence code[END_REF]. The measured errors E fd are observed to compare well with the expected orders of the finite difference schemes until precisions reaches the machine noise. The number of operations is then too large, no precision can be gained due to the numerical scheme, but the impact of the numerical noise, increasing with the number of steps, overwhelms the accuracy of the schemes. This governs an increases of the error with slope 1.

For each point i, position x i at time t i , of the trajectories, one can then compute the error E i as:

E (r) ok,i = d 2 x dt 2 (r) ok,i -RHS (r) ok,i (25a) RHS (r) ok,i = -2π B sin 2πx i + sin 2π(x i -t i ) -ν J i (25b)
where d 2 x/dt 2 (r) ok,i is the reconstructed (superscript (r)) second derivative of x with respect to t, computed with finite difference schemes at order k, indicated by the subscript ok. To simplify the notations, the superscript (r) will be dropped in the following. The error E i then depends on that of the reconstruction scheme, but for the issues of interest it mostly depends on the error made to generate the trajectory, typically governed by the time step of the Runge-Kutta integration scheme and the order of the latter scheme. To illustrate this procedure we consider case b with control parameters σ chir = 2.3, ν = 0.8, Figure 11: Error E fd obtained by comparing the derivative of sin(t) to cos(t) obtained with finite difference, order 2 blue open circles and order 4 black open squares, order 6 blue full circles and order 8, full black squares. The theoretical decay rates are also indicated by the dash dot and dashed lines. The dashed black line with positive slope N 1 fits the loss of accuracy when N is too large. integration scheme RK4 and number of steps per unit time N = 2 3 . The second derivative of x, reconstructed with the finite difference scheme of order 6, is plotted versus the right hand side RHS (r) ok,i of Eq.( 24), Figure 12 left hand side. As expected for a computation with good accuracy, the points lie close to the diagonal. However, one can notice for this case with a low resolution integration that a thickness is noticeable. Stepping to the error, hence the distance to the diagonal, Figure 12 right hand side, one finds that the error reaches 0.1 and exhibits a structure somewhat reminiscent of that of the strange attractor organised in self similar sheets, together with some form of symmetry regarding the amplitude and the sign. Some properties of the error are better seen when considering its logarithm, Figure 13 left hand side. One can notice that most of the data of log 10 (|E o6 |) appears to lie in the range -2 ± 1, but excursions can be seen towards small errors while there seems to be a clear upper bound. The structure in the error is still visible, which underlines the fact that the error is not homogeneous. This is all the more visible that the number of points used here is large: it corresponds to the finite time integration of N t = 10 4 unit times multiplied by the number of time steps per unit time N = 2 8 . Increasing N governs an increase of the statistics, highlighting some details of the results. The histogram of the logarithm of the error contracts the heavy tail effect towards the large errors while expanding the region of small error. It is too be noted that the exponential reduction of the bin size towards the smallest errors drives an exponential reduction of the number of counts. An exponential fall-off of the number of counts towards the small values of log 10 (|E o6 |) is then indicative of a near constant distribution of |E o6 |. The histogram of the error, Figure 13 right hand side, illustrates these characteristic features. Towards the large errors the histogram indicates that the interpretation in terms of a maximum error appears to hold as highlighted by the sharp transition from close to maximum probability to near zero probability for a small increase of the error. In the vicinity of the maximum of the histogram, a Gaussian like feature could describe the data. This suggests a Log-normal feature of the distribution for the error. Localised peaks in this region, more readily noticeable for a plot of the histogram in linear scale, could be reminiscent of the observed inhomogeneity of the error. Finally, towards the smallest errors, the histogram exhibits an exponential decay, hence the signature of a near constant distribution when the error tends towards zero. On the figure, the dashed region is that with reduced statistics, namely a number of counts smaller that 10 and therefore a typical statistical error of the order of 1/ √ 10.

The analysis of the error is made either by setting E as random variable or considering logE = log 10 (|E|). The former is more sensitive to the large values and is sign dependent while the latter is sensitive to the small errors, ignoring their sign. However, as recalled above, the interpretation in terms of probability distributions is less straightforward for the latter given the changing bin size, which must be properly taken into account. For standard situations with small amplitude error, |E| < 1, the random variable logE is negative. When computing the standard deviation δlogE, one can decide for either signs. Usually it is defined as the square root of the variance, hence positive, but when comparing its value to the mean value ⟨logE⟩, negative in a standard case with small errors, the convenient choice is the negative sign. When considering the range of values ⟨logE⟩ ± δlogE the sign of δlogE is not an issue.

Of interest in the error analysis are particular dependences of the error, for instance variations in the phase space. Such an analysis can be performed by splitting the data according to a range of values of J = dx/dt. For each subset of the data one can determine the average ⟨logE⟩ and standard deviation δlogE. The normalised error function can then be defined as (logE -⟨logE⟩)/δlogE with the same meaning for each chosen range of values of J. This procedure provides a way to investigate the inhomogeneity of the error, Figure 14 left hand side. The data used to build this histogram is that of case a with control parameters σ chir = 7, ν = 0.2, with the RK4 time integration scheme and stepping with 2 10 points per unit time and finally with an order 6 finite difference reconstruction scheme. One finds that the histogram exhibits a dependence on J combining a change in occurrences, these decreasing for larger |J| as well as a structure with double peaking for smaller |J|. The latter can be indicative of further structure in the error, such as a dependence on x and on time, here understood as the phase shift in the time dependent potential. A full separation of such a 3D investigation of the error would help determining the origin of the error and means to improve the numerical scheme. However, for the simple problem at hand, brute force precision increase is possible and the need for such a detailed numerical analysis is not required. The same analysis of the dependence on J is done for the mean ⟨logE⟩, standard deviation δlogE and maximum and minimum value, Figure 14 right hand side. The mean and maximum of logE exhibit a comparable dependence on J with the larger values for the larger |J|. The standard deviation is also found to vary but the change is small. The largest variation is observed for the minimum value, which is the most sensitive to poor sampling. However, a trend to smaller error at small |J| can also be seen regarding the latter. In the following, the dependences on phase space location of the points used in computing the error will not be taken into account. One has to keep in mind however that some aspects features of the result, for instance the cut-off at large error, can be related to an underlying inhomogeneity. As a final remark, one can remark that ⟨logE⟩ + δlogE, is comparable to the maximum value that can be achieved.

In the reconstruction process, we have underlined the need to use a scheme with better or at least equivalent precision to that of the code. This is tested by comparing different orders of the finite difference schemes used to reconstruct the second time derivative of x from the time trace of x provided by the code output. One can then compare the histograms of the error obtained for each reconstruction procedure. As shown on Figure 15 left hand side, the histograms obtained for the order 6 and order 8 reconstruction are identical. The error is therefore checked to be generated by the code and not the reconstruction scheme with finite difference of order 6 and 8. Conversely, for the chosen RK4 simulation of case a, the order 4 and order 2 reconstruction schemes lead to different histograms shifted towards large errors. In these two case the error of the code is less important than that of the reconstruction schemes and verification cannot be achieved. The results of this figure have been obtained with 2 10 points per unit time and are averages over the 20 points describing the J-dependence illustrated on Figure 14 left hand side. Compared to the histogram Figure 13 obtained at low resolution, one can remark the sharp cut-off at highest error, a structure in the vicinity of the maximum and the exponential fall-off towards the smallest errors as expected for a constant distribution with exponential reduction of bin size.

The analysis of the error logE can also be used to recover the order of the integration scheme of the code, Figure 15 right hand side. For case a σ chir = 7, ν = 0.2 the RK4 and RK2 schemes are compared. One finds that the error logE scales with the expected scaling, N -4 for RK4 and N -2 for RK2. Furthermore, as for the error analysis with the Method of Return Solution Figure 7, one finds that the actual value of the error depends on the case that is investigated, as shown by case b σ chir = 2.3, ν = 0.8 and RK4 scheme which exhibits the RK4 scaling N -4 but with a smaller error, typically by two and three orders of magnitude. As observed in the test of the Runge Kutta schemes Figure 10 one can also notice an increase of the error at largest values of N when the error drops to the level of machine precision. The aim of the PoPe analysis is to provide a figure of merit in terms of accuracy of a given production simulation. The average logarithm of the error ⟨logE⟩ plotted on Figure 15 right hand side can be regarded as such a figure of merit. The smaller ⟨logE⟩ the more accurate the simulation. However, a crucial point is then to provide a criterion to assess that a simulation is acceptable, which is an issue since computer resources give access to finite accuracy simulations. One can readily consider that ⟨logE⟩ ≳ 0, hence a mean error exceeding 100%, is a criterion to reject simulations. One then finds that for the control parameter σ chir = 7, ν = 0.2 the RK4 simulation with N = 2 3 and the RK2 simulations with N = 2 3 and N = 2 4 can be considered too inaccurate and rejected on the basis of this criterion. Compared to the set of simulations that yield a wrong Lyapunov exponent, Figure 9, and an inappropriate strange attractor structure in phase space, Figure 8, the present chosen criterion only reject 3 out of 6 simulations identified as being with too poor resolution and generating misleading results. Of course one could tune the threshold value for rejection, but with the likely result that this critical value is case dependent, hence yielding a criterion without universality. There is therefore a need for a more effective criterion. One possibility is to take into account the features of the histogram of the error logE, Figure 16. Given the standard deviation δlogE, which is negative since logE is related to the logarithm of the error, a more appro- priate criterion would be to reject simulations such that ⟨logE⟩ + δlogE ≳ 0. The RK2 simulation with N = 2 5 = 32 is then added to the previous list. For the RK2-simulation with N = 2 6 = 64 one can notice that the maximum value of logE is larger than zero, while ⟨logE⟩ + δlogE ≳ -0.3, hence an error E larger than 50%. Given the sharp cut-off towards the large values of logE, it appears reasonable to extend the rejection criterion to this simulation. Still, one simulation with a wrong Lyapunov exponent, the RK2 run with N = 2 7 , is not excluded by this extended criterion.

The analysis of the PoPe error performed in this Section already yields useful insight into the accuracy of the simulations that are performed. It is possible to define a criterion based on the magnitude of the error to exclude simulations with too poor accuracy. However, we have found that there is not clear-cut way to assess the exactness of the physics for simulations with reduced precision. The simulations with order 2 Runge Kutta integration for case a σ chir = 7, ν = 0.2 exemplify this issue. While the simulation with N = 2 6 exhibits a correct Lyapunov exponent and phase space portrait, the simulation with N = 2 7 has a wrong Lyapunov exponent and different phase space portrait. Characterising the accuracy with ⟨logE⟩ + δlogE as figure of merit, one finds ⟨logE⟩+δlogE ≈ -0.30 for the former and ⟨logE⟩+δlogE ≈ -0.96 for the latter. At this stage, the magnitude of the PoPe error does not appear to provide a robust and universal criterion that would allow one identifying systematically the simulations that have too poor resolution.

Projection of the error, PoPe verification 4.3.1 Simplified PoPe analysis: 2 operator reduction

Given the computed error, the proposed way to evaluate the accuracy with PoPe is to determine the class of equations that yield a comparable behaviour and that cannot be discriminated. Let us rewrite the system Eq.( 25) in terms of two operators O 1,2 and O 3 .

E ok,i = d 2 x dt 2 (r) ok,i -RHS (r) ok,i (26a) 
RHS (r) ok,i = O (r) 1,2,ok,i + O (r) 3,ok,i + R (r) ok,i (26b) 
O (r) 1,2,ok,i = 2π B sin 2πx i + sin 2π(x i -t i ) (26c) O (r) 3,ok,i = ν J i (26d)
As highlighted by the notation the former operator O 1,2 is in fact the sum of the operators identified as

O 1 = 2π B sin 2πx i and O 2 = π B sin 2π(x i -t i ) .
The reduction to two operators and the possibility of defining the relevant operators to be addressed by the PoPe verification scheme is part of the freedom and versatility of the method. Beyond simplifying the presentation of the results, the choice made in splitting the operators can be seen as governed by the properties of these operators. Indeed, both O 1 and O 2 are computed analytically given x i and t i , while O 3 is reconstructed with a finite difference scheme. The label i is the index of the saved data of a given simulation, ranging typically from 1 to N max . In the present subsection the reference to the order of the reconstruction scheme, order k labelled ok and the superscript (r) are omitted to simplify the notations. We now want to determine the coefficients δc O 1,2 and δc O 3 as well as the residue R defined by:

E i = δc O 1,2 O 1,2,i + δc O 3 O 3,i + R i (27a) E = δc O 1,2 O 1,2 + δc O 3 O 3 + R (27b)
In Eq.( 27a) the two coefficients δc O 1,2 and δc O 3 are defined as independent of the realisation i of the error E i . One can then define the vector E = {E i } as an N max -dimension vector with components E i , similarly for O 1,2 , O 3 and R. Equation (27b) is then the vector form of Eq.( 27a) for each vector component. This equation can be understood as the projection of E on the two vectors O 1,2 and O 3 plus the vector R which stands for the part of E with zero projection on O 1,2 and O 3 . Let us use the notation ⟨E|O⟩ for the projection of E on O, one can then split Eq.( 27b) into:

δc O 1,2 ⟨O 1,2 |O 1,2 ⟩ + δc O 3 ⟨O 3 |O 1,2 ⟩ = ⟨E|O 1,2 ⟩ (28a) δc O 1,2 ⟨O 1,2 |O 3 ⟩ + δc O 3 ⟨O 3 |O 3 ⟩ = ⟨E|O 3 ⟩ (28b)
Provided the projection is actually defined, then the system (28) is a set of two coupled linear equations with unknowns δc O 1,2 and δc O 3 that can readily be solved provided the determinant is different from zero, namely that the two vectors O 1,2 and O 3 are not co-linear.

⟨O 1,2 |O 1,2 ⟩ ⟨O 3 |O 3 ⟩ -⟨O 3 |O 1,2 ⟩ 2 ̸ = 0 (29a)
Given δc O 1,2 and δc O 3 solution of Eq.( 28), the residue is then computed as the part of the error that is not aligned along

O 1,2 or O 3 , R = E -δc O 1,2 O 1,2 -δc O 3 O 3 .
When the system is solved with no error, hence E = 0, one finds δc O 1,2 = δc O 3 = 0 and R = 0. The two coefficients δc O 1,2 , δc O 3 and the residue R therefore characterise the numerical error.

One can first remark that one only needs two linear equations of the form Eq.( 27a) to determine a set of coefficients δc O 1,2 and δc O 3 . Let us consider one of the possible pair (i, j) of points belonging to the strange attractor, one can determine the coefficients δc O 1,2 (i, j) and δc O 3 (i, j) associated to the pair (i, j). Considering several pairs (i, j) then determines an ensemble of values for the pair (δc O 1,2 , δc O 3 ) which can be analysed statistically. This procedure holds insofar that the points i and j are not co-linear, hence:

O 1,2,i O 3,j -O 3,i O 1,2,j ̸ = 0 (29b)
In practise, the issue of co-linearity can occur when the determinant is small, hence when A means to overcome this issue is to define the projection scheme on the basis of the method of least square minimisation. For the present example, one defines the relative position d i as:

(O 1,2,i , O
d i = E i -δc O 1,2 O 1,2,i -δc O 3 O 3,i (30a) 
and one then determines the coefficients δc O 1,2 , δc O 3 as those minimising the distance:

1 2 d 2 = 1 2 i d 2 i = 1 2 i E i -δc O 1,2 O 1,2,i -δc O 3 O 3,i 2 (30b) 
Setting the derivatives of d 2 with respect to δc O 1,2 and δc O 3 to be equal to zero, one obtains:

δc O 1,2 i O 2 1,2,i + δc O 3 i O 1,2,i O 3,i = i O 1,2,i E i (31a) δc O 1,2 i O 1,2,i O 3,i + δc O 3 i O 2 3,i = i O 3,i E i (31b)
If a single point is chosen the two equations Eq.( 31a) and Eq.( 31a) are identical. The summation must therefore be made with at least two points and can be extended up to all available points. The latter limit corresponds to the calculation with the scalar product introduced above in an N max dimension space. For the other situations we define an m-dimension space scalar product of two vectors: The subscript m that is added in these notation stands for the number of points from j 1 to j m that are used in the sum. The scalar product and the solution can also depend on the choice that is made for the m-tuples. The latter freedom of choice will be used in the following to make statistics on the results at given number of points m but different choices of m-tuples. With only two points m = 2 one can show that the problem of co-linearity is identical to that discussed above and one can expect that as m is increased, the weight of the co-linearity generating outliers in the results will be decreasing.

⟨F |G⟩ m = jm i=j 1 F i G i (32) 
We first investigate the impact of the choice of the number of points m that are used in the summation defining the scalar product; equivalently the dimension of the space where the vectors E, O 1,2 , O 3 are defined. As first indicator, we consider δc O 1,2 m,Nstat , hence the average value of the coefficient δc O 1,2 for a random choice of N stat m-tuples chosen within a set of N max = 5 119 993 points of a given strange attractor simulation. Two different procedures have been used to investigate the statistics of the coefficients δc O 1,2 and δc O 3 Figure 17. In a first set of verification tests, the m-tuples are chosen randomly and the number N stat of m-tuples is large, this series is labelled ext. The number of mtuples N stat is set in such a way that m × N stat = N max /4 for m ranging from 2 1 to 2 8 . For these different tests the number of points that are actually involved in the analysis is therefore constant. For 2 8 ≤ m ≤ 2 14 , N stat is maintained constant, N stat = N max /(4×2 8 ), irrespective of the space dimension m, in order to have enough points to determine the distribution functions of the coefficients. This first procedure yields the points of N stat versus m with blue open circles on Figure 17 and labelled ext. A second series of m-tuples is made with reduced statistics, and labelled red. In this procedure only the mean and standard deviation are computed. The connection between the number of points used for the statistics N stat and the dimension m of the vector space is then illustrated by the points with black head-down open triangles on Figure 17. This series is completed by the calculation for m = N max yielding a single value, thus equal to the mean with zero standard deviation.

PoPe verification of the drive operator O 1,2

The statistics are performed both for the random variables δc O 1,2 (m) and log 10 (|δc O 1,2 (m)|). The latter data is less sensitive to outliers with very large values and more sensitive to the very small values of the coefficients. These statistics are applied to the RK2 run with resolution N = 2 9 steps per unit time for case a: σ chir = 7, ν = 0.2. The mean value of δc O 1,2 is first addressed, Figure 18, left hand side with statistics on log 10 (|δc O 1,2 |) and, right hand side statistics on δc O 1,2 . For both cases one readily finds a convergence of the error as m is increased, the value for the limit m = N max being identical for the two statistics since only one value is available. One can also notice that the investigation with the reduced statistics, labelled by black head-down triangles, yields appropriate results for large values of m, the reduced number of points for these statistics being compensated by the large number of data points used for the least square calculation. One can also notice that the variation of the error from m = 4 to m ≈ 2 8 is of the order of 30%. This variation is observed for log 10 (|δc O 1,2 |) , Figure 18 , and the values for the reduced and extended data bases are found to agree. Furthermore, the obtained value in this range of m does not seem to depend on the way the analysis is performed, both the statistics on δc O 1,2 and log 10 (|δc O 1,2 |) leading to the same value for the mean of δc O 1,2 . Finally it is important to underline that the sign of the error on the coefficient of O 1,2 is given by the statistics on δc O 1,2 and is found to be positive. One finds that recovering converged values for the effective weight of operator O 3 is more demanding than for operator O 1,2 . Suitable precision for the operator O 3 is only reached when very precise values are obtained for operator O 1,2 .

Error contamination of the low amplitude operator

The error δc O 3 on the weight of the damping operator O 3 is typically ⟨δc O 3 ⟩ ≈ 1.455 10 -4 . It is found to be quite comparable to that on δc O 1,2 , δc O 1,2 ≈ 1.824 10 -4 . These errors have the same sign and comparable magnitude, which is consistent with the fact that the error is stemming from the numerical time stepping scheme. There is a marked difference between the coefficient δc O 1,2 that stands close to the asymptotic value for all values of m, and the coefficient δc O 3 which is found to require large values of m to exhibit reasonable convergence. This difference in behaviour can be linked to the order of magnitude of the two operators ||O 1,2 || and ||O 3 || and their effective weight in the evolution equation.

One finds that ||O

1,2 || ≈ (2π) 2 B while ||O 3 || ≈ νJ ≈ (2π)ν, therefore ||O 3 ||/||O 1,2 ||| ≈ ν/(2πB).
We now consider a change in the error of magnitude σ δcO1,2 , hence characteristic of the error on the weight δc O 1,2 of operator O 1,2 , such that this fluctuation of the error becomes projected on operator O 3 rather than operator O 1,2 . The contamination of δc O 3 would then be of order σ δcO1,2 ||O 1,2 ||/||O 3 ||. For such a contamination to be reasonable, one requires that σ δcO1,2 to be small enough that:

⟨δc O 3 ⟩ ≫ σ δcO1,2 ||O 1,2 || ||O 3 || (33a) 
Taking into account that ⟨δc O 3 ⟩ ≈ δc O 1,2 one can then recast this constraint so that it only depends on the properties of δc O 1,2 .

||O 3 || ||O 1,2 || ≈ ν 2πB ≫ σ δcO1,2 δc O 1,2 (33b) 
On Figure 23 the ratio σ δcO1,2 / δc O 1,2 is plotted versus m and shown to decrease exponentially as m is increased. Given ν/(2πB) ≈ 0.0104 one can then determine in threshold in m such that the criterion Eq.( 33b) is marginally fulfilled, see shaded domain on Figure 23. Very high precision means square procedure with m ≥ 2 15 is therefore appears to be required to avoid that the error in determining the coefficient of the operator with largest magnitude overwhelms the uncertainty in determining the coefficient of the operator with smallest amplitude.

Simulations with disparate magnitude of operators, therefore disparate magnitude of physical effects, are not only demanding in terms of numerical resolution, they also require enhanced precision with PoPe to properly evaluate the error and avoid contamination of the error estimated for the low amplitude operator by the large amplitude operator. As for the numerical implementation, a small error on the PoPe projection for the large amplitude operator drives a big error on low amplitude operator.

Distribution function of the error, PoPe verification

As discussed in Section 4.2, the error determined with the output of the simulations of the strange attractor exhibits a Poisson like distribution with maximum probability for a given error, some form of cut-off towards larger errors and an exponential fall-off towards the smaller errors, Figure 15 left hand side. A characteristic error is thus obtained together with rare and randomly occurring events which exhibit a smaller error. The behaviour in the vicinity the maximum probability of the error distribution and towards the upper limit of the error, with possibly the cut-off feature, a finer structure is apparent. When using a least square method with fewer points than the maximum, a statistical analysis of the projection of the error on the existing operators can be performed, yielding a distribution function characterised in particular by the mean and standard deviation discussed in the previous Section 4.3.

We first consider the distribution for the random variables log 10 (|δc O 1,2 |) and log 10 (|δc O 3 |) with low dimension least square calculation, typically using 2 and 3 different points in phase space, Figure 24. For m = 2, the probability of having co-linear vectors is The mean plus or minus the standard deviation is indicated by the vertical dash-dot black lines. The histogram of δc O 1,2 , blue line, appears in first analysis to be shifted towards the smaller errors, typically by a factor 0.07, which is not too different from the magnitude ratio between O 3 and O 1,2 . Towards the maximum, one can observe that the occurrence of large errors, log [START_REF] Oberkampf | Verification and validation in computational fluid dynamics[END_REF] 

(|δc O 1,2 |) > log 10 (|δc O 1,2 |) is smaller than that of small errors log 10 (|δc O 1,2 |) < log 10 (|δc O 1,2 |
) . This leads to a slight asymmetry between the left (broad) and right (narrow) hand sides with respect to the maximum. With a 3 point least square procedure, Figure 24 right hand side, the probability of having 3 co-linear points out of 3 is significantly reduced compared to having 2 co-linear points out of 2. The generation of large errors in the calculation is strongly reduced. The histograms for m = 3 Figure 24 right hand side, are characterised by a loss of symmetry, the regions on the right hand side of the mean ⟨log 10 (|δc|)⟩, hence towards the large errors, being depleted. Conversely, little change of the histograms is observed towards the small errors.

The statistics of δc rather than log 10 (|δc|), besides allowing one to determine the sign of δc is more sensitive to the large errors. We compare the change in the distribution functions when m is increased from m = 7 to m = 2 14 using the normalised variation, namely the distance to the mean divided by the standard deviation (δc -⟨δc⟩)/σ δc , Figure 25. The Gaussian fit adapted to the shape in the vicinity of the maximum of the histogram appears to be shifted towards the errors larger that the mean. Furthermore, the histogram in this region appears to decrease faster than the Gaussian, which is reminiscent of the cut-off behaviour discussed in the limit of the large errors. When increasing m, one can observe that the amplitude of the exponential contribution decreases, and is found negligible for m = 2 14 , while the Gaussian contribution is roughly unchanged and shifted to the left and close to symmetric.

For the statistics on log 10 (|δc O 3 |) , Figure 27, one finds a different behaviour. For most of the values of m, the distribution are essentially exponential like towards the small errors. Only at the largest values of m, here m = 2 14 can one split the distribution into a sum of exponential and Gauss distribution functions.

The projection of the error on the operators of the system to be solved exhibit a departure from 1, the target value for perfect accuracy. Two random variables are used to analyse this effect, first δc the departure from 1 of coefficient c, a direct measure of the error, second log 10 (|δc|). The distribution of the error of δc is close to Gaussian, nearly symmetric with respect to the mean value. At low number of points in the least square method, outliers with large error generate heavy tails. As the number of points is increased the distribution is closer to a Gaussian. The width of the Gaussian narrows and the heavy tails shrink as the occurrence of outliers is reduced. Ultimately, when all available points are used a δ distribution is obtained. Apart from the sign of the error and the characteristic value of the error, this distribution is also useful to analyse the outliers that are generated when the operators are transiently co-linear and the error exhibits a finite amplitude. Cases where the co-linear events are frequent indicate that the chosen operators exhibit a too strong correlation, which is a an important information, and that a more appropriate choice of the operators should be considered. The distribution of the random variable log 10 (|δc|) provides a different information. In the problems with relatively few points for the least square projection, one can observe a distribution combining an exponential behaviour towards the error with small magnitude and a Gaussian feature towards the large magnitude. As one increases the number of points in the least square projection the Gaussian feature tends to become dominant, thus retrieving the behaviour observed for the distribution of δc. One thus finds that the error is characterised by a typical value with a randomly distributed departure from the mean value leading to a Gaussian distribution feature.

Scaling law of the error on the weight of the operators

In this Section we consider the actual PoPe procedure to verify the code runs, namely we compute the coefficients δc O 1,2 and δc O 3 as well as the residue, using the maximum number of points N max for the PoPe projection. When varying the time stepping of the integration scheme, as well as the order of the Runge Kutta scheme itself, one can check that the error measured by δc O 1,2 and δc O 3 exhibits the expected scaling law. The results are summarised on Figure 28 and present the same trends as that previously reported for the error. The coefficient δc O 1,2 Figure 28 left hand side is found to follow the appropriate scaling law indicated by the dashed lines for N ≥ 2 5 = 32, respectively N -4 and N -2 for the RK4 and RK2 time stepping schemes. One finds that δc O 1,2 is smaller than 1 for all the values of N that have been investigated. In terms of the chosen control parameters, an error δc O 1,2 leads in fact to a relative error on the Chirikov parameter of 1 2 δc O 1,2 . If one now considers that a more appropriate criterion is a 10% relative error on the Chirikov parameter, one finds that for case a, σ chir = 7, ν = 0.2, the RK2 run with N = 2 5 is marginal while the RK4 run with N = 2 3 and the RK2 runs with N = 2 3 and N = 2 4 exceed the 10% error on the Chirikov parameter. One also recovers here that the error is case dependent since the RK4 error on δc O 1,2 for case b, σ chir = 2.3, ν = 0.8 is smaller by more than one order of magnitude than that for case a at identical time stepping scheme. As can be expected from the prior analysis, the projection on the operator O 3 with absolute error δc O 3 , which is therefore an effective error made on the viscosity ν, exhibits larger values and consequently requires higher performance numerical schemes to achieve a comparable accuracy, Figure 28, right hand side. Using the same criterion of a maximum relative error of 10%, the RK4 runs with N < 2 4 and the RK2 runs with N < 2 5 exceed the 10% threshold and the RK2 case with N < 2 6 is marginal. Regarding the scaling law of the error δc O 3 with time stepping, one finds the expected trend for case b, σ chir = 2.3, ν = 0.8, hence that δc O 3 scales like N -4 , but significant departure from the expected scaling law is found for case a, control parameters σ chir = 7, ν = 0.2, Figure 29. When analysing the sign of δc O 3 , Figure 29, one finds that the distortion with respect to the expected scaling laws stems from a change of sign of the absolute error for both RK4 and RK2 schemes in the resolution interval 2 8 < N < 2 9 , Figure 30. The sign of the error with the RK4 and RK2 schemes is found opposite and remains opposite when the sign changes occur Figure 30. When examining the sign of δc O 1,2 one finds that it does not depend on N for N ≥ 2 4 . For case a, σ chir = 7, ν = 0.2, the error δc O 1,2 is negative with the RK4 scheme and positive with the RK2 scheme. Conversely for case b σ chir = 2.3, ν = 0.8, both errors δc O 1,2 and δc O 3 are negative for the whole range of values of N that have been investigated. If one now assumes that the two coefficients δc O 1,2 and δc O 3 should primarily be determined by the effective error made on the time derivatives, one would expect δc O 1,2 and δc O 3 to have the same sign. Such an accuracy constraint for case a would then require a high precision time stepping with N ≥ 2 9 for both the RK4 and RK2 schemes.

The PoPe procedure allows one considering various projections. Up to this point we have considered the absolute error δc O 1,2 for the projection on the operator O 1 + O 2 , which can be understood as driving an effective absolute error on the Chirikov control 31 where δc O1,3 , δc O2 and δc O 1,2 determined by the projection of the error made with the RK2 scheme are plotted together. One finds that for N ≥ 2 5 the values of these three coefficients are comparable and exhibit the expected order 2 scaling N -2 . Differences are only observed for N < 2 5 , which also corresponds to absolute errors exceeding 10%. Finally, for all values of N , N > 2 3 , the signs of the coefficients δc O1,3 and δc O2 are identical.

At this stage, one finds that the results of the PoPe analysis allow one to discard four simulations out of the six that have been identified as being misleading. These four simulations are in fact those that already exhibit large errors using the other verification procedures. Conversely, the two remaining simulations, both with RK2 time stepping with N = 2 6 or N = 2 7 , pose a problem since, regardless of the verification method, no sharp criterion has been found that would discard them. It is therefore important to step back and revisit why in first place they have been listed as faulty. As a matter of fact, there is no measure to indicate that the simulation with RK2 and N = 2 6 is not correct. Indeed, both the phase space portrait of the strange attractor and the largest Lyapunov exponent agree with the highest resolution simulation. The issue is the next simulation in the series with higher resolution N = 2 7 . Indeed, this simulation exhibits a fixed point after a chaotic transient and consequently yields a Lyapunov exponent that clearly departs from the expected range of values, see Figure 9 left hand side. Since the PoPe projection that yields the coefficient δc O 1,2 δc O 3 determines in fact the ensemble of control parameters that yield equivalent results, one must analyse within this uncertainty on the control parameters if all the simulations yield comparable results and behaviour. The sensitivity of the target solution to small variations of the control parameters is an issue. In the particular example of the strange attractor, there is a known possibility of a transition from chaotic attractor to fixed point with small variations of the control parameters. The PoPe verification method provides a means to address this issue. Indeed, one computes the projection of the error on the operators that govern the evolution of the problem at hand. This yields therefore the effective control parameters of the particular simulation. Furthermore, the residue, which is the part of the error transverse to the operators that govern the evolution, can be regarded as a noise that is added to the dynamics by the numerical scheme. For the strange attractor, both the shift of the actual control parameters and the properties of the noise, identified as the residue, can play a role on the occurrence of fixed point solutions as well as the duration of the chaotic transients prior to the convergence to the fixed points.

Sensitivity to small changes of the control parameters

In order to investigate the possible sensitivity of the trajectories to small changes of the control parameter, we first map the parameter space with 1 -0.01 ≤ ν/ν ref ≤ 1 + 0.01 and 1 -0.01 ≤ σ chir /σ chir,ref ≤ 1 + 0.01 for case a, therefore σ chir,ref = 7 and ν ref = 0.02. We use 11 values in each direction and for each pair of values of the control parameters we run the same simulations in terms of initial condition and duration. Each point of the phase portrait (ν, σ chir ) is characterised by the largest Lyapunov exponent Λ + , Figures 32 and33. The reference values of the parameters are highlighted by the vertical and horizontal dashed lines. The values Λ + ≈ 1 appear in yellow for the chosen colour scale while those for the fixed points appear in dark blue for Λ + ≤ 0. The occurrence of long transients before converging towards the fixed points yields intermediate value typically with Λ + ≤ 0.5. The phase portrait is generated using the RK2 time stepping scheme for 32 left hand side, the phase portrait exhibits two phases, a chaotic phase Λ + ≈ 1 for σ chir ≤ 7.007, and fixed point Λ + ≲ 0.5 for σ chir > 7.007. This phase transition is observed for all computed values of ν but for ν ≈ 0.02012 where the chaotic region Λ + ≈ 1 extends up to 7.021. To be rigorous in this description of the phase portrait, one must understand by chaotic, the trajectories that exhibit chaotic transients that are longer than the chosen duration of the simulation. Indeed, one cannot exclude that at later times the trajectory might converge towards a fixed point. Conversely, in the region with fixed point, the calculation of the Lyapunov exponent includes the chaotic transients. This measure can converge towards negative values indicative of fixed points as wall as small positive Lyapunov exponent. These can correspond either to a low dimensionality attractor or to a long transient before a fixed point with asymptotic value Λ + < 0. The phase portrait for N = 2 6 is characterised by a phase transition, from chaotic to fixed point, in the vicinity of the reference values of the control parameters. The latter is found to belong to the chaotic region of the phase portrait. The relative distance along σ chir of the reference simulation to the fixed-point / chaotic-attractor in of order 10 -3 . However, this is an upper bound estimate constrained by the chosen meshing along σ chir . This maximum value would correspond to an error on δ O 1,2 ≈ 5 10 -2 . The latter is comparable to the PoPe estimated error made on δ O 1,2 for N = 2 5 , and therefore larger that that made for N = 2 6 , typically of order 10 -2 . It appears possible that the resolution with N = 2 6 is sufficient to assess that the reference point is at a distance larger than the numerical error from the phase transition chaotic-attractor / fixed point. We now consider the phase portrait with higher resolution, N = 2 7 steps per unit time, figure 32 right hand side. This phase portrait appears to be more complex. One still recognises the chaotic phase for σ chir ≤ 6.993 and the fixed point region for σ chir ≥ 7.035, but the intermediate region exhibits two stripes, one with fixed points for σ chir ≈ 7. and above a chaotic stripe for σ chir ≈ 7.028. The width of these stripes appears to vary slightly with ν. It is to be noted that the meshing of the phase portrait is a bit coarse with respect to these variations since the width of these stripes in some parts is equal to one. However, very clearly for this values of the resolution, the reference control parameters lies in the stripes of fixed points. Further increasing the resolution to N = 2 8 , Figure 33 left hand side, one finds new changes in the phase portrait with typically a chaotic region for σ chir ≤ 7.035 and fixed points for σ chir ≥ 7.035, see figure 33 left hand side. For the smallest values of ν and σ chir ≈ 7, one finds a region of fixed point within the chaotic region of the phase portrait. The description of the phase portrait with RK4 time stepping and resolution N = 2 7 points per unit time, Figure 33 right hand side is quite similar to that obtained with RK2 time stepping an N = 2 8 . Because of the chosen meshing of the phase portrait, it is to be underlined that horizontal stripes of changed properties with a width smaller than δσ chir = 0.017 can escape detection. The description given to the phase portrait has to be understood with this uncertainty. The similarity between the two phase portraits of Figure 33 does not mean that the integration scheme has enough accuracy that the phase portrait are identical, but that within the precision used to described the phase portrait, the two sets of simulations exhibit comparable properties up to the resolution of their mesh, phase portrait structures finer than the mesh step being unresolved. This aspect of the problem is illustrated on Figure 34. On Figure 34 left hand side, the phase portrait is very similar to that of Figure 32 right hand side, namely the case with N = 2 7 and RK2 time stepping. We have used different initial conditions for this set of simulations. The phase portrait properties appear to be near identical, although the transients towards the fixed points are different, leading to changes in the values of the Lyapunov exponent in the range of values 0 ≤ Λ + ≤ 0.5. The fixed point stripe in the vicinity of σ chir = 7(1 ± 0.001) exhibits the same change in width with ν as indicated previously, with an apparent width of δσ chir ≈ 2 × 7 × 0.002 for ν ≲ 0.199. However, with finer meshing of the phase portrait but reduced range of values for the Chirikov parameter σ chir , and unchanged meshing for the viscosity ν, Figure 34 right hand side, one finds that this stripe is now split into two stripes: a fixed point stripe for σ chir ≲ 7. and a chaotic stripe for σ chir ≲ 7.010, prior to a new region of fixed points that is apparent at largest values of σ chir and smallest values of ν.

This analysis of the phase portrait therefore indicates that the chosen control parameter lies in a region where phase transitions occur between fixed-point and chaotic regions. The structure of the phase portrait is complex and exhibits inter-layered chaotic and fixed point stripes, depending on the Chirikov parameter σ chir , with comparatively small dependence on ν. The width and location of these stripes, as well as the numerical uncertainty of the effective control parameters of the simulations thus contribute to making impractical the evaluation of the correctness of the simulation on the basis on the largest Lyapunov exponent. For a coarse description of the phase portrait, both RK2 simulations with N = 2 6 and N = 2 7 can be considered to be sufficiently accurate despite the fact that they have different local values of the Lyapunov exponent. This holds because the phase portrait structure are observed to be comparable although the precise location of the change of phase from fixed-point to chaotic-attractor is resolution dependent for a given mesh of the phase portrait. Should one require finer agreement on the structure of the phase portrait, one must step to higher accuracy of the numerical scheme, however knowing that the overall sensitivity of the phase portrait structure will exclude any definitive conclusion.

In this particular set of a simulation performed with control parameters that lye in a region which exhibits a strong sensitivity of the results on the precise value of the control parameter, an alternative to evaluate the accuracy is to set the precision that one targets in the description of the phase portrait. For the chosen examples the relative precision with respect to both control parameters is typically ±10 -3 . Consistently, one should then require that the error on the control parameters evaluated by PoPe, δc O 1,2 and δc O 3 , be smaller than 2. 10 -3 and 10 -3 respectively, Figure 35. The difference stems from the square root dependence of the Chirikov parameter on the control parameter B, here akin to c O 1,2 . When plotting the PoPe error δc versus the precision N , one finds that the accuracy increases with the N but only drops below the chosen phase portrait precision with respect to both control parameters when N ≥ 2 8 , Figure 35. The criterion of a required phase portrait precision thus leads one to discarding the two simulations N = 2 6 and N = 2 7 . The present analysis therefore indicates that the accuracy and verification of the code is case dependent, not only in terms of the chosen parameters but also in terms of the physics. Each simulation must be evaluated according to the physics that is to be addressed. For a rather loose description of the properties, hence retaining the two simulations RK2 N = 2 6 and N = 2 7 , the Method of Return Solution presented in Section 3.3, performed for each simulation, and the PoPe projection of the error yield comparable criteria. However, the former has higher computing cost and requires running a different version of the code. A finer description of the properties requires enhanced numerical precision, discarding these RK2 N = 2 6 and N = 2 7 simulations.

Investigating the simulation accuracy and the criterion that allows identifying a simulation as correct thus leads us to investigating the sensitivity on the control parameters. Indeed, the PoPe projection determines the ensemble of control parameters that yield equivalent simulation output given the numerical errors. In most cases this small uncertainty has little effect on the behaviour of the system. However, as observed with the present example, the phase portrait of the system can be quite sensitive to the values of the control parameters. We have observed bifurcations between fixed-points and chaoticattractor for changes of the control parameter that are comparable to the effective error on the control parameters as determined by PoPe. The PoPe analysis then leads us to refine the precision to adjust the simulation result to the accuracy one chooses as target for the phase portrait description. In this discussion another issue is of importance, namely the role of the residue, the part of the error that is orthogonal to the operators found in the equations. The latter can be seen as a particular noise when following chaotic trajectories or transients. A complete description of the effective system corresponding to the simulation output is both an effective error on the control parameters and an effective noise added to the system and accounting for the residue.

iPoPe error analysis

The first step in the PoPe analysis is to determine the error E, namely the difference between a reconstructed operator from the simulation output and the value obtained with the reference equation and the elementary reconstructed operator contributing to One can thus observe that these cut-off values are consistent with the expectation that the residue |R|, the remnant error transverse to the implemented operators as obtained with PoPe, is smaller than the error |E|. This property holds for most of the values of |E| and |R| since one finds that the number of counts for |E| is larger than that for |R| except in the vicinity of zero. The distribution function for R is also found to be narrower than that of E. This feature is recovered when considering the distribution function of log 10 (|E|) and log 10 (|R|), Figure 36 right hand side. As discussed previously one can observe that the histograms exhibit exponential like features with the same cut-off behaviour for both E and R. One also finds that the most probable value is shifted towards the smaller values of log 10 (|R|), log 10 (|R|) ≈ -2.72 for the most probable value hence |R| ≈ 1.9 10 -3 , compared to log 10 (|E|), log 10 (|E|) ≈ -2.72 for the most probable value hence |E| ≈ 5.4 10 -3 . The reduction factor is therefore typically of ≈ 2.8. One thus finds that part of the error is projected on the existing operators of the driving equation, and that the remnant error, the residue R, has been reduced when compared to the original error E.

The iPoPe procedure is applied to the error analysis of the strange attractor now considering the three independent operators O 1 = -(2π)B sin(2πx), O 2 = -(2π)B sin(2π(xt)) and O 3 = -νJ, see Eq.( 18b). The coefficients δc O 1 , δc O 2 and δc O 3 are then determined by 5 different ways using iPoPe, depending on the order followed in this staged approach. For example, when computing δc O 1 , one finds the various results:

δc (1,2,3) O 1 = ⟨E|O 1 ⟩ ⟨O 1 |O 1 ⟩ = δc (1,3,2) O 1 δc (2,1,3) O 1 = R 2 O 1 ⟨O 1 |O 1 ⟩ ; δc (3,1,2) O 1 = R 3 O 1 ⟨O 1 |O 1 ⟩ δc (2,3,1) O 1 = ⟨R 2,3 |O 1 ⟩ ⟨O 1 |O 1 ⟩ ; δc (3,2,1) O 1 = ⟨R 3,2 |O 1 ⟩ ⟨O 1 |O 1 ⟩
Here the 3 label superscript of the coefficients indicates the order of the iPoPe projection starting from the label on the left. In the first step, for instance starting with the projection on O 1 , the value of the error δc

(1,2,3) O 1 = δc (1,3,2) O 1
because this initial step does not depend on the subsequent projection. These expressions depend on the staged values of the residues, which are defined by:

R 2 = E -δc (2,1,3) O 2 O 2 ; R 2,3 = E -δc (2,3,1) O 2 O 2 -δc (2,3,1) O 3 O 3 R 3 = E -δc (3,1,2) O 3 O 3 ; R 3,2 = E -δc (3,2,1) O 3 O 3 -δc (3,2,1) O 2 O 2
The 5 different series of values of the iPoPe coefficients δc O i obtained with the present simulations can be investigated and compared to the PoPe result. We consider here simulations of case a with the RK2 time stepping scheme and use the scaling law of the error with number of steps per unit time N to compare the different iPoPe series of results. For both coefficients δc O 1 , Figure 37 and N = 2 10 . For the coefficient δc O 3 , with RK2 time stepping, one finds that the iPoPe depends of the order in which the staged projections are performed. Furthermore, the scaling law of the error when changing the time step is less precisely observed compared to the result for the other two coefficients. The analysis of the error on Figure 15 also indicates that the error is large, of order 10 -1 , for N < 2 6 . It becomes comparable to that of the other coefficients for N ≥ 2 9 .

The time trace of the various operators LHS, O 1 , O 2 , O 3 and R normalised by the mean value of RHS plus its standard deviation, are plotted on Figure 39. One finds that O 1 O 2 and LHS have comparable magnitude, typically two orders of magnitude larger than that of O 3 and four orders of magnitude larger that the residue R. The small relative magnitude of O 3 compared to that of the other operators is an issue for the numerical resolution. In the present example, this operator controls the shrinking of the phase space towards the strange attractor. This a major part of the physics that must be properly addressed. One finds that the dynamics determined by Eq.( 24) are twofold: when the time t is equal to zero modulus 1, the operators O 1 and O 2 add to each other and the phase space contraction has a small effect, conversely, when t = 0.5 modulus 1 the two operator O 1 and O 2 cancel out and only O 3 determines the evolution. One finds therefore that during the integration several steps must take place in the time window when O 3 is the leading operator of typical half width 3 10 -3 . The time step for N equal to 2 7 , 2 8 , 2 9 is typically 8 10 -3 , 4 10 -3 , 2 10 -3 . This indicates that N ≥ 8 is the minimum value to have several integration steps in the time window when dissipation is the main mechanism at play. The iPoPe calculation being equivalent to the PoPe method when the matrix A with elements A k,k ′ = ⟨O k |O k ′ ⟩ is diagonal, the comparison of the 5 different series of values of the iPoPe coefficients δc O i with that computed directly with PoPe depends on the relative values of the diagonal and off-diagonal elements of the symmetric matrix A. The calculation of the last coefficient with iPoPe, the third one with the present example, is the same as with PoPe. Therefore, if the two first coefficients in the present series are accurately determined the calculation of the third will also be accurate even if the nondiagonal elements A 3,1 and A 3,2 are comparable to the diagonal element A 3,3 . In the chosen example of RK2 simulations of case a, the matrix elements can be computed, see table 1. In this table the elements are normalised by ⟨RHS|RHS⟩ where

RHS = O 1 + O 2 + O 3 .
The sum of all matrix elements is equal to 1 by definition. As found in table 1 and shown on Figure 39, the leading terms are the diagonal elements for the two first rows A 1,1 ≈ A 2,2 ≫ A 1,2 ≫ A 2,3 ≫ A 1,3 . One could therefore expect the observed agreement between iPoPe and PoPe results for the coefficients δc 1 and δc 2 , Figure 37. The calculation of δc 3 leads to different results because the magnitude of operator O 3 is small A 3,3 ≪ A 11 ≈ A 2,2 and because its cross product with O 2 is comparable to its magnitude A 3,3 ≈ A 2,3 , see table 1 and Figure 39. This coupling governs the contamination of the error coefficient δc 3 by any change in the calculation of δc 2 . Conversely, changes in the value of δc 3 has little effect on δc 2 . This would explain the increased precision observed for the coefficient c 3 with iPoPe, smallest value of δc 3 see Figure 38 left hand side, when the calculation of δc 2 is done after that of δc 3 .

PoPe analysis with spurious operator

In this Section we analyse the effect of assuming the dependence on an operator that is not present in the equations addressed by the simulations. We only use the order 6 finite difference scheme to rebuilt the time derivative from the stored data an omit the superscript specifying the order of the reconstruction scheme. The equation that is solved numerically has been written as:

d 2 x dt 2 = c 1 O 1 + c 2 O 2 + c 3 O 3 + c 4 O 4 + R (36) 
For the actual equation to be solved one has c 1 = c 2 = c 3 = 1 since the three operators govern the evolution, and determine therefore the Right Hand Side (RHS) of Eq.( 36).

The operator O 4 is a spurious operator and consequently one has c 4 = 0 for the theoretical equation. Similarly, the residual error R is equal to zero for the theoretical equation. In practise the equation that governs the evolution determined numerically is Eq.( 36) but where c 1 = 1 + δc 1 , c 2 = 1 + δc 2 , c 3 = 1 + δc 3 , R ̸ = 0 and possibly c 4 ̸ = 0. The error is then defined according to Eq.( 26a).

E = d 2 x dt 2 -O 1 + O 2 + O 3 (37a) 
and therefore:

E = δc 1 O 1 + δc 2 O2 + δc 3 O 3 + c 4 O 4 + R (37b) 
where we further assume that the projection of R on O 1 , O 2 , O 3 and O 4 is equal to zero. One can note that when defining E, the role given to O 4 is quite different from that of the two operators. This can be regarded as a bias in the analysis. To show that this is not the case lest us define another error function E O3 such that:

E O3 = d 2 x dt 2 -O 1 + O 2 (38a)
so that: In this last case we allow the residual error R O3 to be slightly different from R. We shall see that the PoPe analysis readily handles this difference and provides the appropriate weight for the operator O 3 with both definitions of the error. The choice of O 4 is quite arbitrary. For this example we choose:

E O3 = δc 1 O 1 + δc 2 O 2 + c 3 O 3 + c 4 O 4 + R O3 (38b) 
O 4 = 2π B cos 2π(x -t) (39) 
Regarding O 4 defined in Eq.( 39), we analyse the projection of the error on this operator and how this modifies the values of the other coefficients, in particular δc 3 .

For the first step of this analysis we use error E O3 Eq.( 38a) to determine c 3 and c 4 , Figure 40 left hand side. One then finds that the histogram og c 3 is centred on the value 1 as it should given the evolution equation while c 4 is centred on 0 clearly indicating that the operator O 4 is not present on the right hand side of the evolution equation implemented for the simulation. One also readily notices that the width of the histogram of c 3 is much larger than that of c 4 . The zero value of c 4 is recovered with better precision than the 1 value of c 3 . For this calculation and the others of this Section, eight randomly chosen times of the output are used for the least square calculation of the coefficients, and a sample of 2 20 (≈ 10 6 ) is used for the statistics. For the same simulation, we also compare the statistics of c 3 using error E O3 Eq.( 38a) and δc 3 given by E Eq.( 37a), Figure 40 right hand side. With this more precise scale, the coefficient c 3 blue histogram top scale, is clearly centred on 1. The Gaussian fit, dashed black line, yields the average 1 + 2.8 10 -4 with standard deviation 7.6 10 -4 . For the coefficient δc 3 lower scale, black histogram, the statistics obtained with different samples, are near identical but shifted to zero, the average value is 2.8 10 -4 about half the standard deviation 7.6 10 -4 . The theoretical relation c 3 = 1 + δc 3 is perfectly recovered here. We find therefore that PoPe clearly discriminates the case of operator O 3 , that contributes to the RHS of the evolution equation of the simulation, from operator O 4 that is not implemented. Furthermore, the calculation of c 3 and δc 3 match perfectly showing that either form of the error yield the same result.

Let us now compare the statistics of δc 3 and c 4 obtained with simulations with RK2 and RK4 time stepping and the same time step 1/2 9 . For δc 3 one finds rather similar statistics with the two integration schemes, typically Gaussian centred on 0 with symmetric close to exponential heavy wings. The most significant difference is a reduction by a factor ≈ 2 10 4 of the histogram width obtained with RK4 compared to RK2 simulations, Figure 41 left hand side. A similar result is obtained for c 4 , same shape and same ratio of the distributions, Figure 41 right hand side. However for these statistics the symmetric, close to exponential heavy tails feature is more pronounced than the Gaussian feature near the distribution maximum. One can also notice in Table 2 that the values for c 4 are typically 50 times smaller than for δc 3 and that the mean values are typically 30 times smaller that the standard deviation except for c 4 with the RK4 scheme where this ratio increases to nearly 50. The coefficient c 4 thus appears to be closer to zero than δc 3 with smaller mean values and reduced standard deviation. As final remark, one finds that the mean value of both δc 3 and c 4 changes sign when changing the integration scheme from RK2 to RK4. In this Section we have analysed the projection of the data on an operator that is not found in the equations solved numerically, operator O 4 in this example. The PoPe analysis very clearly identifies that there is no signature of this operator is the data generated by the simulation, consequently the weight of the operator is found to be close to zero, clearly different from the other operators with weight close to 1. The distribution of the error in the vicinity of these values is observed to depend on both the operators and the order of the time stepping scheme. For the present example, the error is typically Gaussian for the coefficients c 3 and c 4 while a Log-normal feature can be identified for c 1 and c 2 at high precision with RK4 integration. One also finds that trying to identify the operator O 4 tends to broaden the heavy tail part of the distribution of the error for all three coefficients c 1 , c 2 and c 3 , thus yielding a larger error for these coefficients and not an improved accuracy. All these results that confirm that the operator O 4 is not present in the equation solved numerically while the other three operators are present as expected with the appropriate weight. This exemplifies the verification by PoPe of 

The statistics of the coefficient δc

PoPe simulation index

In this Section we analyse and revisit the results obtained with the PoPe verification scheme. The first step is determining an error, here the difference between the effective and expected value of d 2 x/dt 2 , Eq.( 24). The effective value is determined using the simulation output and recomputing this LHS with higher accuracy than achieved during the simulation. Here an order 6 finite difference scheme yields higher precision than both the RK2 and RK4 time stepping scheme used in the simulations. The expected value of d 2 x/dt 2 is recomputed using the same simulation data to determine the right hand side RHS of the evolution equation Eq.( 24). The difference between LHS and RHS then defines an error E. The relative value of the error E/RHS is the first indicator of the verification procedure. For the chosen example of the strange attractor, these values are obtained for nearly all points of the computed trajectories (the end and initial points are not computed with the chosen centred finite difference scheme). The projection of the error on the operators that contribute to the right hand side RHS correlates the error E to any particular operator. The coefficient δc k , the correlation between the error E and operator O k , is the absolute error made for the contribution of operator O k to RHS. When all coefficients δc k of the chosen splitting of the right hand side RHS into a sum of operators O k are small one can consider that the code is verified, the simulation output is consistent with the equations to be solved. The simulation accuracy is determined by statistics on the error E, the set of the different coefficients δc, the residue R and the difference δE = E -R. For the simulation of case a with RK2 integration scheme and N = 2 9 steps per unit time, the coefficients δ c are given in Table 3 and the statistics on E and R are illustrated on Figure 36. All three coefficients are of order 10 -4 . These indicate that the relative value of the control parameters in Eq.( 24) can be changed by δc ≈ 1.8 10 -4 without inducing noticeable changes to the simulation output, unless the phase portrait exhibits bifurcation like transitions between different regimes for such a specific range of values of the control parameter, see discussion Section Sensitivity to control parameter small variation. In such a particular example, the simulation precision must therefore be adapted to the sensitivity to the the control parameters one wants to address. For the present cases, having δc 1 ≈ δc 2 ≈ δc 3 leads to δE Eq.( 40b) close to proportional to RHS = O 1 + O 2 + O 3 . When considering the values of the error E compared to that of the right hand side RHS taken at t = 0 modulus 1, Figure 45 left hand side black dots, one finds that the error E is typically proportional to RHS, with sum scatter in the proportionality factor together with a roll-over of the error towards smaller magnitude at the largest magnitude of RHS. On the same graph, the values of δE are plotted, close to aligned blue dots. These appear to be proportional to RHS as expected from the values of δc 1 , δc 2 and δc 3 Table 3. In fact the time trace of the ratio δE/RHS indicates that δE/RHS is close to being constant ≈ 1.8 10 -4 but exhibits a pattern which exhibits a clear departure from a constant line.

E = δc 1 O 1 + δc 2 O 2 + δc 3 O 3 + R (40a) δE = δc 1 O 1 + δc 2 O 2 + δc 3 O 3 (40b)
One can now consider the residue R, see In that respect R can be regarded as a low amplitude noise, of order 2 10 -4 , added to the evolution equation Eq.( 24). If one investigates precise features in a system that exhibits bifurcations between different solutions, this noise-like contribution as well as the small change in the control parameters must be accounted for. In most situations, one addresses more robust properties and one can expect that this small noise-like contribution and the small error on the control parameters will have a weak effect on the simulation results.

The PoPe analysis that has been performed in this paper can be simplified by defining a figure of merit for each simulation. We first define δc max the maximum of all the δc values obtained with the PoPe analysis; the worse error generates the largest value of δc max . We then define the PoPe index as -log 10 (δc max ). The smallest values of the PoPe index characterise the worst error, 0 stands for a relative error of 100%, and the upper bound, a PoPe index of order 14 for an accuracy close to machine precision. To illustrate, the PoPe index, we have determined its value for two series of simulations of case a, with RK2 and RK4 integration scheme and number of steps per unit time ranging from N = 2 3 to N = 2 12 . In order to compare the PoPe index for these two series of simulation we define N rhs as the number of calculations of the RHS performed per reference time scale. For the RK2 scheme one then has N rhs = 2 × N and for the RK4 scheme N rhs = 4 × N .

Figure 47: Value of the PoPe index versus the number N rhs of operations to integrate the equations over one time unit. Data obtained with the RK2 integration scheme closed black triangles and with the RK4 integration scheme requiring twice the number of operation per step compared to RK2, closed blue circles. The vertical dash-dot line for 2 10 operations during one unit time integration indicates the gain in precision achieved by the order 4 scheme at given computing resources. Conversely the horizontal dashed region with PoPe index comprised between 3 and 4, indicated the gain in performance when using the high order scheme at comparable simulation accuracy.

The PoPe index for each of these 20 simulations is plotted on Figure 47. As expected the PoPe index increases twice faster for the RK4 scheme closed blue circles, than for the RK2 scheme closed black triangles, as the number of operation N rhs is increased when N is scanned. Let us impose the constraint of the number of operation per unit time to be N rhs = 2 10 dash-dot vertical black line, hence N = 2 9 for the RK2 scheme and N = 2 8 for the RK4 scheme. One then finds that the PoPe index of the RK2 simulation is ≈ 3.7 while that of the RK4 simulation is significantly higher ≈ 7.0. Conversely, setting as target that the PoPe index should stand between 3 and 4, shaded horizontal region on Figure 47, one finds that the RK4 numerical cost is typically N rhs ≈ 2 8 for a PoPe index of 3.7, while the numerical cost with RK2 is N rhs ≈ 2 10 for the comparable PoPe index of 3.7; at prescribed accuracy the increasing the order of the numerical scheme leads for this example to a factor 4 gain in run time. Producing such a PoPe index for all simulation provides a figure of merit for each simulation. A PoPe index larger than 1 gives an estimate of the accuracy of the simulation, while a value close to zero or negative is most likely indicative that the accuracy and eventually the verification of the simulation could be an issue.

Discussion and conclusion

We have presented in this paper the PoPe and iPoPe verification methods. We have shown that these two novel verification schemes also allow one addressing the simulation accuracy. Furthermore, in the coarse of the verification procedure specific features of the numerical scheme used for the simulation are identified as well as some key properties of the physics addressed by the simulation. PoPe and iPoPe are very similar verification methods based on Big Data analysis of the simulation output. The highlight of these methods is that the verification process is applied directly to production simulations and not to modified numerical tools designed for the sake of verification. Furthermore, the verification can and should be applied to all production simulations, either as a posttreatment, as for the examples chosen in this paper, or on the fly during the simulation. Statistics are generated by PoPe and iPoPe. These drive the overhead in terms of computing resources. For a rather standard case with large statistics, the typical overhead has been estimated to be about 10% of the simulation cost [START_REF] Cartier-Michaud | Vérification de Codes et Réduction de Modèles : Application au Transport dans les Plasmas Turbulents[END_REF][START_REF] Cartier-Michaud | Projection on Proper elements for code control: Verification, numerical convergence, and reduced models. application to plasma turbulence simulations[END_REF][START_REF] Cartier-Michaud | A posteriori error estimate in fluid simulations of turbulent edge plasmas for magnetic fusion in tokamak using the data mining ipope method[END_REF], either to save extra data or to perform on the fly calculations. We have not addressed possible optimisation of such verification processes that is most likely case dependent. The backbone of the method is to define numerically various operators that are combined in the equations solved numerically. For a set of K operators, m ≥ K sets of data points can be used to determine the relative weight of these operators in the equations. For m > K a least square method can be used, reducing the statistical scatter of the weight. We show that this least square procedure defines a scalar product and that increasing m reduces the weight of the occurrence of transient co-linearity between the operator. It ensures that the operators tend to become orthogonal. We have found that for K = 2, m = 3 is enough to significantly reduce the effect of co-linearity. We also show that taking all available points is also possible, but does not give insight into the statistics of the error. The PoPe verification and accuracy analysis proceeds in three steps. In a first step the numerical error is determined. The data then gives directly insight into possible verification issues. This would occur in particular when the order of magnitude of the error is too large, or when the scaling law of the error does not match the order chosen for the numerical scheme. Conversely, we also show that when correct, the scaling law of the error (for instance with the time step) gives a first insight into the accuracy of the simulations as determined by PoPe. The second step is the projection of the error on the existing operators of the system at hand. There the PoPe and iPoPe methods depart. The PoPe method requires a matrix inversion, which can be cumbersome when the number of operators is large. It can be replaced by the iPoPe method, with a staged resolution of the linear system and possibly a dependence on the order chosen for this staged resolution. In most cases that have been analysed the difference between the PoPe and iPoPe output is small and either ways lead to comparable verification results. This projection step yields the relative error made on each coefficient of the operators that contribute to the system. One thus finds that an infinite set of control parameters in the vicinity of that determined by the PoPe or iPoPe projection would yield comparable simulation data. Finally, the third step is to determine the residual error, transverse to the operators used in the equations. The actual verification can be split into two different parts. The crucial one is to assess that one is actually solving the equations that are claimed to be solved numerically. However, when this part is completed the question comes on the accuracy of the numerical resolution. This becomes a matter of trade-off between perfect accuracy that requires infinite computing resources and very poor accuracy that can be an issue for the validity of the simulations. When addressing second part, we have found two different cases. The high accuracy simulations that are readily considered to be on the safe side and those belonging to the grey zone when the relative error is larger than 1%, of order of 10% up to 100%. The problem is then to establish criteria that allow one discriminating the safe from the unsafe simulations. We have found that some aspects of the simulation output are quite robust and recovered even when the error is large [START_REF] Cartier-Michaud | Verification of turbulent simulations using PoPe: quantifying model precision and numerical error with data mining of simulation output[END_REF][START_REF] Cartier-Michaud | A posteriori error estimate in fluid simulations of turbulent edge plasmas for magnetic fusion in tokamak using the data mining ipope method[END_REF]. We show here that specific simulations, close to bifurcation points, can be more demanding, moving the safe zone to much higher accuracy. This underlines that the verification procedure is case dependent and each simulation will have different verification properties. Then depending on the sensitivity of the problems that is addressed, the simulation accuracy can be considered to be sufficient, thus on the safe side, or can fall short leading to possibly misleading results. In this work, we present the interesting case of projecting the error on an operator that does not appear in the equation actually solved numerically. This corresponds to three different problems. First, a test of the PoPe method and we show that the verification rightly assigns a weight zero to the spurious operator. Second, the operator ought to have been part of the equations but for some reason is by-passed by the numerical scheme. Then the PoPe verification indicates that the operator has a weight 0 and not 1 as it should. The numerical scheme is not verified. A third issue is to identify the form of the residue. At lowest order, the residue being orthogonal to the operators that govern the numerical simulation, one can consider the residue to be a noise added to the system. However, we have shown that the residue exhibits a structure that can potentially be captured, and therefore identified by an operator. This is the case when numerical errors are assumed to introduce a spurious diffusion so that the effective diffusion in the simulation is the some of the controlled diffusion implemented in the equations and an uncontrolled diffusion governed by the numerical scheme. Identifying approximately the form taken by the residue can be valuable for a better understanding of the problem effectively solved numerically and to determine means to reduce the residual error. Finally, we propose a unique index that would characterise the accuracy of the simulation. It is typically given by the opposite of the base 10 logarithm of the error. A PoPe index equal to zero indicates a 100 % error in the simulation output, and the PoPe index increases as the accuracy is improved to level off at machine precision typically between 12 and 14. Negative values are possible and most likely are a concern for the simulation. The PoPe criterion thus gives a figure of merit that allows one discussing where the simulation stands with respect to the required accuracy and to discuss this point. The PoPe and iPoPe verification methods thus provide a comprehensive verification tool that allows one addressing the verification and accuracy of production runs and consequently of simulations of interest. This big data based analysis provides an in depth analysis of the simulation and numerical scheme. For the latter it will identify which operator governs the numerical error and the effective order of the resolution. This understanding can help solving some numerical issues. The analysis will also indicate which operators are small contributing to the calculation with terms that are small and that can be comparable to the error. The analysis will also be quite sensitive to operators that are close to co-linear, either requiring different definitions of the operators to be handled in the verification process or suggesting alternative ways of addressing the problem numerically. The PoPe method is quite versatile and can be used in many different ways to assess the verification of the simulation and its accuracy. Finally, this method can be used to investigate model reduction, as presented in Ref. [START_REF] Cartier-Michaud | Projection on Proper elements for code control: Verification, numerical convergence, and reduced models. application to plasma turbulence simulations[END_REF] or methods to filter the simulation output to reduce contamination of the solution by the residual error.
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 1 Figure 1: Projection of the error E, on the plane of the operators O 1 and O 2 , yielding the coefficients δc O1 and δc O2 and defining the residue R in the direction orthogonal to this plane. The projection in the plane (O 1 , O 2 ) of the fluctuations of the error are indicated by the grey region. Left hand side: sketch of the projection when O 1 and O 2 are near orthogonal, the variation of the coefficients δc O1 and δc O2 are reduced. Right hand side: sketch of the projection when O 1 and O 2 are nearly co-linear driving a larger uncertainty on δc O1 and δc O2 .
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 2 Figure 2: Poincaré section of the strange attractor generated by Eqs.(18) , case a with σ chir = 7, hence B ≈ 3.0625, and ν = 0.2, left hand side, and case b with σ chir = 2.3, hence B ≈ 0.330625, and ν = 0.8 right hand side. Simulation with order 4 Runge Kutta and 2 9 time steps per unit time.

  case a with control parameters σ chir = 7, hence B ≈ 3.0625, and ν = 0.2, Figure 2 left hand side case b with control parameters σ chir = 2.3, hence B ≈ 0.330625, and ν = 0.8, Figure 2 right hand side
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 3 Figure 3: For case a, σ chir = 7 and ν = 0.2, investigation of the fixed point stability for the standard Method of Manufactured Solution, trajectory with chosen fixed point X = x 0 = -0.17, J = 0 and initial distance from this fixed point d 0 = 10 -8 . Left hand side: trace of x (blue dotted curve) and J (black curve). Right hand side: variation of the distance d from the fixed point, initial value d 0 = 10 -8 with rapid growth to macroscopic values, d ≈ 1 on a time scale of δt ≈ 2..
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 5 Figure 5: Verification with the Method of Return Solution for case a, σ chir = 7 and ν = 0.2. Left hand side: distance between phase space initial conditions and positions after ∆t = 0.25, hence after ∆t/δt times steps, d x black dots, and distance between initial condition and return point d r blue dots versus the position of the initial condition x. Right hand side: same data, histograms of the distances, d x black histogram, d r blue histogram..
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 6 Figure 6: Verification with the Method of Return Solution for case a, σ chir = 7 and ν = 0.2. Left hand side: histograms of log 10 (d) for various resolutions N , N = 2 3 , 2 4 , 2 5 , 2 6 , 2 7 , black histograms of d x black curves, histograms of d r blue curves. Right hand side: similarity of the MRS error histograms of log 10 (d r ) for N = 2 5 lower scale and N = 2 7 upper scale.
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 7 Figure 7: Investigation of the order of the numerical scheme with the Method of Return Solution (MRS). For case a, σ chir = 7 and ν = 0.2, comparison of the Runge Kutta schemes of order two (RK2), up-down open triangles, and four (RK4) open circles. For case b, σ chir = 2.3 and ν = 0.8, precision with the Runge Kutta schemes of order four, closed circles. The expected scaling exponents, N -5 for RK4 and N -3 for RK2, are recovered.
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 8 Figure 8: Strange attractor for case a, σ chir = 7, ν = 0.2 and time stepping with N = 2 3 steps per unit time. Left hand side: fourth order Runge Kutta integration scheme. Right hand side: second order Runge Kutta integration.

Figure 9 :

 9 Figure 9: Accuracy investigation for the cases a, σ chir = 7, ν = 0.2, open symbols, andb, σ chir = 2.3, ν = 0.8 closed symbol with the RK4 and RK2 integration schemes, circles, respectively head down triangles. Left hand side, calculation of the largest Lyapunov exponent Λ + . Right hand side, relative error on the value of ν determined by the calculation of the rate of decrease of the phase space volume.
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 10 Figure 10: Error E RK obtained with the Manufactured Method Solution for the Runga Kutta schemes, order 2 blue open circles and order 4 black open squares. The corresponding slopes for order 2 and order 4 error are indicated by dash dot lines, respectively blue for order 2 and black for order 4. The dashed black line is indicative of the slope N 1 which fits the loss of accuracy when N is too large.
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 12 Figure 12: PoPe error for case a σ chir = 2.3, ν = 0.8, RK4 integration with N = 2 8 points per unit time, reconstruction with finite difference of order 6. Left hand side: Reconstructed second order derivative of x versus the Right Hand Side (RHS) of Eq.( 24). Right hand side: Error E o6 versus the RHS.
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 13 Figure 13: PoPe error for case a, σ chir = 2.3, ν = 0.8, RK4 integration with N = 2 8 points per unit time, reconstruction with finite difference of order 6. Left hand side: Left hand side log 10 (|E o6 |) versus the RHS of Eq.( 24). Right hand side, histogram of this error, the shaded area indicating the region with small statistics and consequent large relative fluctuations. All histograms are build using 5 bins par standard deviation.
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 14 Figure 14: PoPe error for case a, σ chir = 7.0 and ν = 0.2, RK4 integration with N = 2 8 points per unit time, reconstruction with finite difference of order 6. Left hand side: Histograms for different values o J and normalised statistics. Right hand side, variation of the mean ⟨logE o6 ⟩, max and min of logE o6 as well as the characteristic width of the distribution function determined by the standard deviation δlogE o6 , namely ⟨logE o6 ⟩ ± δlogE o6 .
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 15 Figure 15: Left hand side: PoPe error for case a σ chir = 7 and ν = 0.2, RK4 integration with N = 2 8 points per unit time, comparison of the histograms of logE obtained with finite difference scheme of order 2 head down triangles dashed blue curve, and order 4 head up triangles dashed black curve, order 6 black plain line and order 8 blue plain line open blue circles. Right hand side: variation of the mean error ⟨logE⟩ with the number of steps of the integration scheme for the Runge Kutta schemes of order 2, black curve head down open triangles, and order 4, blue curves with circles and for the control parameters of case b, σ chir = 2.3 and ν = 0.8, closed symbols, and case a, σ chir = 7 and ν = 0.2 open symbols.
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 16 Figure 16: Key features of the histogram of the error logE, the mean ⟨logE⟩ blue open circles, the mean value plus the standard deviation ⟨logE⟩ + δlogE, blue open headup triangles, the mean value minus the standard deviation ⟨logE⟩ -δlogE, blue open head-down triangles, and finally minimum and maximum of the distribution of logE, respectively head-down full black triangles, and head-up full black triangles. The dashed horizontal line locates logE ≈ -0.3 hence an error E of 50%. Left hand side: case a, σ chir = 7 and ν = 0.2 RK4 integration scheme. Right hand side: case a, σ chir = 7 and ν = 0.2, RK2 integration scheme.
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 17 Figure 17: N stat , the number of m-tuples used for the statistics. Two procedures are used, a set with N stat large enough to determine histograms, blue line with open circles, and a series with reduced statistics to only determine the mean and standard deviation, black head-down triangles. The latter series is completed by the calculation for m = N max yielding a single value, thus equal to the mean with zero standard deviation.
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 18 Figure 18: For the operator O 1,2 , effect of the number of m-tuples on the statistical results, blue open circle labelled ext for extended data bases with N stat large, black headdown triangles labelled red for reduced data bases, hence N stat small. Left hand side: mean value of log 10 (|δc O 1,2 |). Right hand side: mean value of δc O 1,2 and comparison to exp( log 10 (|δc O 1,2 |) ), closed blue circles.

  left hand side, and for δc O 1,2 , Figure 18 right hand side. Although similar, the statistic on δc O 1,2 and log 10 (|δc O 1,2 |) yield different mean values for m ≤ 2 8 , Figure 18 right hand side. The variation of the mean values with m is observed to become small for m > 2 8
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 19 Figure 19: For the operator O 1,2 , effect of the number of m-tuples on the standard deviation, blue open circle, labelled ext N stat large, hence large data bases, and for reduced data bases, N stat small, black head-down triangles labelled red. Left hand side: standard deviation σ log.δcO1,2 of log 10 (|δc O 1,2 |) and comparison to | log 10 (|δc O 1,2 |) |, dashed black line towards the top of the Figure. Right hand side: standard deviation σ δcO1,2 of δc O 1,2 and comparison to | δc O 1,2 | dashed black line.

Figure 20 : 3 For the operator O 3 ,

 2033 Figure 20: For the operator O 1,2 , effect of the number of m-tuples on the region of highest likelihood of log 10 (|δc O 1,2 (m)|), hence between log 10 (|δc O 1,2 |) + σ log.δcO1,2 , closed head-up triangles, and log 10 (|δc O 1,2 |) -σ log.δcO1,2 , closed head-down triangle. The mean value log 10 (|δc O 1,2 |) is plotted with blue closed circle, σ log.δcO1,2 is the standard deviation chosen positive here. Left hand side: data for the full range of m, 2 1 ≤ m ≤ N max . Right hand side, zoom for m ≥ 2 8 with data from five different random choices of the m-tuples, open symbols.
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 22 Figure 22: For the operator O 3 , effect of the number of m-tuples on the mean value of the coefficient using the extended statistics, ext blue open circles, and reduced statistics red black triangles. Left hand side: Mean value ⟨log 10 (|δc O 3 |)⟩ and region with highest probability between ⟨log 10 (|δc O 3 |)⟩+σ log.δcO3 closed head-up triangles, and ⟨log 10 (|δc O 3 |)⟩σ log.δcO3 , closed head-down triangle. Right hand side: Mean value ⟨δc O 3 ⟩ and region with highest probability between ⟨δc O 3 ⟩ + σ δcO3 closed head-up triangles, and ⟨δc O 3 ⟩ -σ δcO3 , closed head-down triangle.
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 23 Figure 23: Criterion on the required precision in determining δc O 1,2 to avoid that its fluctuations σ δcO1,2 govern the error of δc O 3 . This effect is more important when the typical magnitude operator O 1,2 is larger than that of operator O 3 , ||O 3 ||/||O 1,2 || ≈ 0.0104 in the present simulation.
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 24 Figure 24: Histograms of the error coefficients log 10 (|δc O 1,2 |) in blue, and log 10 (|δc O 3 |), in black, the maximum value is indicated by the dotted vertical lines, the 100% error line, log 10 (|δc|) = 0, by a dashed black line. Left hand side, statistics with m = 2. For log 10 (|δc O 3 |), the vertical dash-dot lines indicate the standard deviation with respect to the mean. The histograms are close to symmetric and Poisson features with an exponential decay extend towards both small and large errors. Right hand side, same analysis for m = 3, the histograms are not symmetric and the exponential decay mainly holds towards the small errors.
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 25 Figure 25: Histograms for m = 2 14 thick blue line, Gaussian fit dashed blue line, and for m = 7, black line, Gaussian fit dotted black line, versus the normalised variation (c -⟨c⟩)/σ c . Left hand side for c = δc O 1,2 . Right hand side for c = δc O 3 .
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 26 Figure 26: Left hand side: Histograms for m = 2 14 thick blue line, Gaussian fit dashed blue line, and for m = 7, black line, versus the normalised variation (c -⟨c⟩)/σ c for c = log 10 (|δc O 1,2 |). Right hand side: Histogram for m = 7 versus for (c -⟨c⟩)/σ c for c = log 10 (|δc O 1,2 |) as on left hand side, with exponential fit towards the small errors and Gaussian fit for the errors comparable to the mean value.

Figure 27 :

 27 Figure 27: Left hand side: Histograms for m = 2 14 thick blue line, Gaussian fit dashed blue line, and for m = 7, black line, versus the normalised variation (c -⟨c⟩)/σ c for c = log 10 (|δc O 3 |). Right hand side: Histogram for m = 7 versus (c-⟨c⟩)/σ c for c = log 10 (|δc O 3 |) as on left hand side with exponential fit towards the small errors and Gaussian fit for the errors comparable to the mean value.

Figure 28 :

 28 Figure 28: Dependence of the PoPe projection of the error for RK4 and RK2 integration schemes, RK4 with blue circles and RK2 with black head-down triangles, on the number of steps per unit time N . Left hand side for δc O 1,2 . Right hand side for δc O 3 . The dashed lines indicate the scaling laws of the error proportional to N -4 for RK4 and to N -2 for RK2.

Figure 29 :

 29 Figure 29: Sign and scaling law of the PoPe projection of the error δc O 3 for given integration scheme, RK4 closed blue triangles, and RK2 open black triangles, versus the number of steps per unit time N for case a, σ chir = 7, ν = 0.2. Head-up triangles positive absolute error, head-down triangles negative absolute error.

Figure 30 :

 30 Figure 30: Dependence of the scaling law of the PoPe projection of the error for given integration scheme, RK4 with blue circles and RK2 with black head-down triangles, in terms of the number of steps per unit time N . Left hand side for δc O 1,3 . Right hand side for δc O 2 . The dashed line are the scaling of the error N -4 for RK4 and N -2 for RK2.

Figure 31 :

 31 Figure 31: PoPe projection of the error for RK2, coefficients: δc O1,3 head-down open triangles, δc O2 head-up open triangles, and δc O1 head-down closed triangles.

Figure 32 :

 32 Figure 32: Control parameter space in the vicinity of (ν ref = 0.2, σ chir,ref = 7) with ±1% variation and 11 points in each direction. Each simulation is characterised by the largest Lyapunov exponent Λ + . Left hand side: Phase portrait for N = 2 6 steps per unit time and RK2 time stepping. Right hand side: Phase portrait for N = 2 7 steps per unit time and RK2 time stepping.

N = 2 6

 2 Figure 32 left hand side, N = 2 7 Figure 32 right hand side, and N = 2 8 Figure 33 left hand side, and using the RK4 scheme with N = 2 7 Figure 33 right hand side. For the case with N = 2 6 steps per unit time, Figure

Figure 33 :

 33 Figure 33: Control parameter space in the vicinity of (ν ref = 0.2, σ chir,ref = 7) with ±1% variation and 11 points in each direction. Each simulation is characterised by the largest Lyapunov exponent Λ + . Left hand side: Phase portrait for N = 2 8 steps per unit time and RK2 time stepping. Right hand side: Phase portrait for N = 2 7 steps per unit time and RK4 time stepping.

Figure 34 :

 34 Figure 34: Control parameter space in the vicinity of (ν ref = 0.2, σ chir,ref = 7) with ±1% variation and 11 points in each direction. Each simulation is characterised by the largest Lyapunov exponent Λ + . Left hand side: Phase portrait for N = 2 7 steps per unit time and RK2 time stepping and different initial conditions. Right hand side: Zoom of the phase portrait for N = 2 7 steps per unit time and RK2 time stepping.

Figure 35 :

 35 Figure 35: Variation of the relative error determined by PoPe, δc O 1,2 for σ 2 chir , closed blue squares, and δc O 3 for ν, open black circles. The dashed, respectively dotted line indicates the maximum error for δc O 3 , respectively δc O 1,2 so that the error is smaller than the mesh size of the phase portrait of Figures 32 and 33.

Figure 36 :

 36 Figure 36: Left hand side: Histograms of the error E, blue line, and residue R, black line. Right hand side: Histograms of logE = log 10 (|E|), blue line, and R = log 10 (|R|), black line. The vertical dashed-dot lines for the latter indicate the most probable values. Simulation with RK2 scheme time step 1/N , N = 2 9 .

Figure 37 :

 37 Figure 37: Determination of the coefficients δc O 1 , left hand side, and δc O 2 , right hand side with both PoPe, black open head-up triangles, and iPoPe. The five different ways of computing the coefficients are labelled according to the order used for the iPoPe staged projection procedure. Each iPoPe result is characterised by the triplet indicating which coefficient is determined first, second and third: (1, 2, 3) blue plus + marker, (2, 3, 1) blue cross × marker, (1, 3, 2) black closed circle, (3, 1, 2) black open square, (2, 1, 3) black open circle, (3, 2, 1) black open head down triangle. The dash-dot line indicates the order 2 scaling of the error and the dotted line indicates the relative error equal to 1. Data of simulations of case a with RK2 time stepping.

  Figure 38: Left hand side: Determination of the coefficients δc O 3 with both PoPe, black open head-up triangles, and iPoPe: (1, 2, 3) blue plus + marker, (2, 3, 1) blue cross × marker, (1, 3, 2) black closed circle, (3, 1, 2) black open square, (2, 1, 3) black open circle, (3, 2, 1) black open head down triangle. The dotted line indicates the relative error equal to 1. Right hand side: Values of the symmetric matrix A/ ⟨RHS|RHS⟩, see Table1, open symbols diagonal elements, closed symbols off-diagonal elements, RK2 simulation of case a with N = 2 9 . The dotted line indicates the value of the sum of all the matrix elements, equal to one for the normalisation by ⟨RHS|RHS⟩.

Figure 37

 37 Figure 37 right hand side, the iPoPe set of values and the PoPe value are comparable. For N ≥ 2 5 one also finds that δc O 1 ≈ δc O 2 . Conversely, differences are observed for the coefficient δc O 3 , Figure 38 left hand side. One can notice that three out of the five possible iPoPe series are similar to the PoPe result; those corresponding to the sequences (1, 2, 3), (2, 1, 3) and (2, 3, 1). The sequences (3, 1, 2) and (1, 3, 2) are comparable to the other iPoPe and PoPe results for N ≤ 2 7 = 128. As shown previously, the drop of the PoPe result for N = 2 8 is governed by a change of sign of δc O 3 that occurs for 2 8 < N < 2 9 . The sequences (1, 2, 3), (2, 1, 3) and (2, 3, 1) exhibit the sign change for 2 7 < N < 2 9 , while the sequences (3, 1, 2) and (1, 3, 2) are characterised by a sign change between N = 2 9and N = 210 . For the coefficient δc O 3 , with RK2 time stepping, one finds that the iPoPe depends of the order in which the staged projections are performed. Furthermore, the scaling law of the error when changing the time step is less precisely observed compared to the result for the other two coefficients. The analysis of the error on Figure15also indicates that the error is large, of order 10 -1 , for N < 26 . It becomes comparable to that of the other coefficients for N ≥ 2 9 .

Figure 39 :

 39 Figure 39: Time trace over 2 periods of the time dependent forcing of the Left Hand Side (LHS) of the evolution equation plain black line and of the three operators that contribute to the right hand side of Eq.( 24), O 1 open blue head-up triangles, O 2 open blue squares, O 3 open blue circles and the residue R, closed black head-down triangle, RK2 simulation of case a, time step 1/N , N = 2 9 . All operators are normalised by the mean plus standard deviation of RHS.

Figure 40 :

 40 Figure 40: Histogram for case a simulations with RK2 time stepping and time step 1/2 9 . Left hand side : Histogram of coefficients c 3 , black histogram, and c 4 , blue histogram, computed with E O3 , Eq.( 38a). Right hand side: top scale, blue histogram coefficient c 3 computed with the error E O3 , Eq.( 38a), lower scale, black histogram, coefficient δc 3 computed with the standard expression of the error Eq.( 37a).

Figure 41 :

 41 Figure 41: Histogram for case a simulations with RK2 compared to RK4 time stepping and time step 1/2 9 . Left hand side : Histogram of coefficients δc 3 , black histogram top scale with RK2 time stepping, blue histogram bottom scale with RK4 time stepping. Right hand side: Histogram of coefficients c 4 , black histogram top scale with RK2 time stepping, blue histogram bottom scale with RK4 time stepping.

  1 and log 10 (|δc 1 |) are shown on Figure 42 left hand side for δc 1 , right hand side for log 10 (|δc 1 |). The data for RK2 time stepping, top scale with black PDF is compared to that of RK4 simulations, bottom scale blue PDF. For the Table 2: PoPe coefficients δc 3 and c 4 of the strange attractor simulation of case a with RK2 and RK4 integration and N = 2 9 steps per unit time. First line mean value of the histograms Figure 41, second line "std", the standard deviation for the same data. δc 3 (RK2) c 4 (RK2) δc 3 (RK4) c 4 (RK4) mean 2.0 10 -4 -4.7 10 -6 -8.1 10 -9 1.2 10 -

Figure 42 :

 42 Figure 42: PDF to compare data from RK2 simulation, top scale black PDF, and data from RK4 simulation, bottom scale blue PDF. Left hand side: PDF of δc 1 . Right hand side : PDF of log 10 (|δc 1 |). All simulations of case a with time step 1/2 9 and setting c 4 = 0 in the PoPe analysis.

Figure 44 :

 44 Figure 44: Compared PDF with and without the spurious operator O 4 in the PoPe analysis, blue PDF c 4 = 0, black PDF c 4 ̸ = 0 determined by PoPe. Left hand side: PDF of δc 2 . Right hand side: PDF of δc 3 . Simulations of case a with RK4 and time step 1/2 9 .

Figure 45 :

 45 Figure 45: Left hand side: Values of the symmetric matrix A/ ⟨RHS|RHS⟩, see Table 1, open symbols diagonal elements, closed symbols off-diagonal elements. Right hand side: E black dots and δE blues quasi-aligned dots plotted versus RHS, data at t = 0 modulus 1. Both figures RK2 simulation of case a with N = 2 9 .

  Figure 46: Value of the residue R versus RHS, data at t = 0 modulus 1 of the RK2 simulation of case a with N = 2 9 .

  

  

  

  3,i ) is close to being co-linear to (O 1,2,j , O 3,j ) but the error (E i , Ej) is not aligned on these vectors. Since this property is governed by the error, some randomness in this difficulty can be expected. The generation of spurious values for (δc O 1,2 , δc O 3 ) is therefore expected as a consequence of co-linearity but all the cases characterised by a small determinant will not lead to large values of (δc O 1,2 , δc O 3 ) that are obviously not correct.

Table 1 :

 1 Elements of matrix A normalised by ⟨RHS|RHS⟩ where RHS is the Right Hand Side of Eq.( 24) equal to the second time derivative of x, RK2 simulation of case a with N = 2 9 . 4.73 10 -1 2.60 10 -2 8.97 10 -9 2.60 10 -2 4.75 10 -1 3.86 10 -4 8.97 10 -9 3.86 10 -4 3.86 10 -4

Table 3 :

 3 The three PoPe coefficients δc 1 , δc 2 and δc 3 of the strange attractor simulation of case a with RK2 integration and N = 2 9 steps per unit time. δc 1 δc 2 δc 3 1.827 10 -4 1.822 10 -4 1.453 10 -4

This result holds when the distance d r is small enough to allow the expansion performed in Appendix B, otherwise the scaling is determined by the time stepping as reported in Ref.[START_REF] Ghendrih | Turbulence faible dans un système mécanique peut dissipatif : étude du processus de transition et caractérisation des états chaotiques[END_REF].
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A Strange attractor MMS evolution equations

The Method of Manufactured Solution leads to a modification of the right hand side of the evolution equations to generate known fixed points (x 0 , J 0 ): 

where Z = (J -J 0 )/2 and X = (x + x 0 )/2 + 1/4 and therefore:

One can readily see that (X = x 0 + 1 4 , Z = 0), and therefore (x = x 0 , J = J 0 ), is the chosen fixed point. The system used for the MMS is therefore close but not identical to that generating the strange attractor since one has to multiply the potential amplitude B by the space dependent function sin(2π(X -x 0 -1 4 )).

B Scaling of MRS error B.1 Forward and backward transforms

Let us consider a time integration with initial condition x 0 , stored with a time step h generating a trajectory (x 0 , x 1 , x 2 , . . . ,

We define an approximate trajectory (y 0 , y 1 , y 2 , . . . , y n-1 , y n ) generated by a time integration scheme of order 2α and note F the time derivative of x generating the trajectory and G the function of x to recover the exact trajectory.

Reversing time to step back towards the initial condition we generate the backward trajectories ( x n , x n-1 , . . . , x 2 , . . . , x 1 , x 0 ) and ( y n , y n-1 , . . . , y 2 , . . . , y 1 , y 0 ) with transform:

We can now proceed to defining the n step return transforms made of n step forwards followed by n steps backwards.

B.2 Distance between initial and return point

We are interested in the distance between the upward and downward computed trajectories typically d k = y y -y k . We want to relate d k to d k+1 to determine a series. We split the contribution to d k into two terms, introducing the distance to the exact trajectory, and reversible, trajectory

One then expands the difference F ( y k+1 ) -F ( x k+1 ) so that:

Similarly, one can expand F (y k ) -F (x k ):

One can then rewrite Eq.( 46b) and Eq.( 46c).

One then obtains the two contributions to the distance d k .

At this stage, the assumption h|F ′ (x k )| ≪ 1 considerably simplifies the calculation, so that:

We then obtain the recurrence relationship between the distances d k and d k+1 .

Without the previous assumption the recurrence would also be geometrical, making the final result a bit more complicated.

For a return after n steps one enforces d n = 0 removing the contribution of the purely geometrical recurrence. In the general case this leaves various contributions from the coefficients b k,k+1 , which are all proportional to h 2α+1 , hence of the order determined by the integration scheme. One can then note that:

Two cases are then found if n is not too large, one can expand G(x n ) so that:

In this case the distance d 0 scales like h 2α+2 . In the other case, when n is too large, one obtains a scaling h 2α+1 .