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Abstract

Climate impacts are not always easily discerned in wild populations as our ability

to detect climate change signals in populations is challenged by stochastic noise associ-

ated with climate natural variability; biotic and abiotic processes variability in ecosystem;

and observation error in demographic processes. In addition, population responses to

climate variability and change can be contrasted and differ among life histories, affect-

ing the detection of anthropogenic forced change across species. To detect the impact

of climate change on populations, climate-driven signals in population should be distin-

guished from stochastic noise. The time of emergence (ToE) identifies when the signal of

anthropogenic climate change can be quantitatively distinguished from natural climate

variability. This concept has been applied extensively in the climate sciences, but has

not yet formally been explored in the context of population dynamics. Here, we out-

line a new direction for detecting climate-driven signals in population by characterizing

whether climate changes are potentially beyond the year-specific stochastic variations of

populations. Specifically, we present a theoretical assessment of the time of emergence of

climate-driven signals in population dynamics (ToEpop) to detect climate signals in pop-

ulations. We identify the dependence of ToEpop on the magnitude of climate trends and

variability and explore the demographic controls on ToEpop. We demonstrate that dif-

ferent life histories (fast species vs. slow species), demographic processes (survival, re-

production) and functional relationships between climate and demographic rates, yield

population dynamics that filter trends and variability in climate differently. We illustrate

empirically how to detect the point in time when anthropogenic signals in populations

emerge from stochastic noise for a species threatened by climate change: the emperor

penguin. Finally, we propose six testable hypotheses and a road map for future research.
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1 Introduction

Climate change is expected to have significant effects on biological populations [Ma-

son et al., 2019]. Many studies have assessed the influence of particular climate variables

on demographic rates (e.g. survival) and population sizes [e.g. see review Gaillard et al.,

2013; Jenouvrier, 2013]. However, while the primacy of climate influence is commonly ac-

cepted, specific detection and attribution of population trends to anthropogenic changes

in climate is complicated by substantial stochastic noise related to observation error (i.e.,

errors due to measurement imprecision) and process error in biological processes (i.e.,

unexplained variation in true abundance driven by unobserved biotic such as species in-

teractions or abiotic processes such as habitat degradation, explotation ressources...) and

climate variability [Che-Castaldo et al., 2017; Parmesan et al., 2013].

Climate variability is an important characteristic of climate change and a driver of

population dynamics [Boyce et al., 2006; Vázquez et al., 2015], that may occlude the pop-

ulation response to the underlying climate change signal. Climate variability is a noise

from unforced variability generated internally within the climate system (e.g. weather) or

associated with external forces to the climate system (e.g. volcanoes, Mann et al. [2021]),

referred as natural variability. Natural variability in the climate system occurs over a

broad range of temporal and spatial scales, with spectral properties in the seasonal, inter-

annual to decadal bands. It arises from different sources, including variations that are (1)

driven by a periodic external forcing, like the diurnal or the seasonal cycle of insolation,

(2) due to the non-linear interplay of feedbacks within the climate system, such as cou-

pled mode of variability (e.g. El Niño-Southern Oscillation, North Atlantic Oscillation,

Pacific Decadal Oscillation), and (3) associated with random fluctuations in the exter-

nal or internal climate system [Ghil, 2002]. In addition, climate change is characterized

by an anthropogenic climate change signal. This secular trend is the deterministic re-

sponse of the climate system to an external forcing driven by anthropogenic emissions of
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greenhouse gases and changes in land use. Hence, the detection of anthropogenic forced

change is a signal to noise problem.

To detect and attribute the threats to a species posed by climate, climate-driven sig-

nals in population should be distinguished from stochastic noise. The concept of time

of emergence (ToE) exactly does that: it identifies when the signal of anthropogenic cli-

mate change can be formally distinguished from noise associated with natural variability.

In climate science, the ToE has been studied extensively [Hawkins et al., 2020; Hawkins

& Sutton, 2012]. It is used to detect climatic changes and to describe whether climate

changes are potentially beyond the known natural environmental variability of ecosys-

tems [Giorgi & Bi, 2009; Mahlstein et al., 2013].

Although, this concept of ToE has yet to be formally applied to ecological time se-

ries, some studies have quantified when novel climate conditions relevant for ecological

processes will emerge from natural variability. For example, Beaumont et al. [2011] have

characterized the standard deviation (SD) of surface air temperature for a baseline pe-

riod (1961-1990) and then evaluated the number of months that the temperature exceeds

2 SDs by 2070 for various ecoregions of exceptional biodiversity. They found that more

than 83% of terrestrial and freshwater ecoregions will be exposed to temperature exceed-

ing 2 SDs by 2070.

The ToE explicitly characterizes the point in time when anthropogenic climate change

can be formally distinguished from noise associated with natural variability. Hence, it

informs on how fast changes exceed natural variability and can help prioritize decisions

about when, where and for which conservation and management actions may be neces-

sary. It is a relative measure as it depends on the threshold at which climate change is

said to emerge based on assumptions about management’s ability. Some studies have

characterized explicitly the ToE of ecosystem drivers in marine ecosystems [Henson et al.,

2017; Schlunegger et al., 2020]. For example, Henson et al. [2017] found that climate change

signals of pH and SST emerge rapidly while climate change trends in interior oxygen con-
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tent and primary productivity emerge later. In terrestrial ecosystems, Rojas et al. [2019]

focused on the timing when the precipitation changes will emerge outside the range of

natural variability during the 21th century relevant for agricultural activities. They found

early timing of emergence in precipitation trends for the production regions of four major

crops (wheat, soybean, rice, and maize) even under a low-emission scenario. Sorte et al.

[2019] characterized the seasonal and spatial variations in the emergence of novel climates

characterized by precipitation, minimum and maximum temperature, along the migra-

tion routes of 77 passerine bird species. They found that earlier ToE occur for migrants

that winter within the tropics. However, none of these studies have applied directly the

concept of ToE to time series of population dynamics.

Here, we apply the concept of ToE to characterize climate-driven signals in popula-

tion dynamics. We present a new perspective on detecting climate-related impacts in

populations by characterizing the ToE in population growth rate (herefater, ToEpop), the

point in time when climate-driven signals in population dynamics can be quantitatively

distinguished from noise associated with year-specific stochastic variations in population

growth rates (Fig. 1). While in climate science the noise is associated with climate nat-

ural variability, applying this approach to population dynamics does not exclude other

sources of noise (e.g. observation and process errors).

For species threatened by climate change, ToEpop can represent the time at which the

population will decline to a level below its historical variability. This point in time po-

tentially corresponds to the time at which the species will be exposed to high extinction

risk, to the time at which individuals will migrate massively to track ecological niches,

or to the time at which individuals may have to adapt to new conditions through evo-

lutionary adaptations. The earlier the ToEpop occurs, the faster novel conditions emerge

out of the natural range of variability, the faster the population will reach a non-historical

level, with less time for the organisms to adapt or migrate. The ToEpop is one illustrative

metric that acknowledges the dual role of natural variability and an anthropogenic cli-
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mate change signal, also useful for populations increasing under climate change [Román-

Palacios & Wiens, 2020; Stephens et al., 2016]. Importantly, ToE allows meaningful com-

parative studies of when the signal of anthropogenic climate change emerges from nat-

ural variability across ecosystem drivers [Henson et al., 2017], species [Sorte et al., 2019],

ecosystems [Beaumont et al., 2011] and for future socio-economic processes relevant for

climate mitigation [Schlunegger et al., 2020].

From a conceptual viewpoint, ToEpop occurs earlier when the slope of the population

climate-driven trend is larger and when the population variability is smaller (Fig. 1). Both

the population climate-driven trend and variability depend on the species’ life history

and the functional relationships between climate and the demographic rates (Barraquand

& Yoccoz [2013], section 2). After briefly reviewing the time of emergence in climate

(section 3), we characterize and compare the time of emergence of climate-driven signals

in population dynamics in a theoretical context to address five questions (section 4):

• How does ToEpop in populations relate to ToE in climate?

• How does ToEpop vary across life histories (e.g. slow- fast species)?

• How does ToEpop vary across demographic processes (e.g. survival, reproduction)?

• How does ToEpop vary among different functional relationship between climate and

demographic rates?

• Do some species, demographic processes or functional relationship magnify the sig-

nal of anthropogenic climate change?

We find that different life histories (e.g., long vs. short-lived species) and demographic

processes by which climate affects the population (i.e., through survival, reproduction)

provide different “scale-dependent” filters so that some life histories magnify signal-to-

noise ratios while other demographic dynamics prolong ToEpop. Furthermore, to illustrate

our theoretical results, we quantify the ToEpop of an iconic species endangered by climate
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change: the emperor penguin (Aptenodytes forsteri) [Jenouvrier et al., 2021] (section 5).

Finally, we propose a set of six testable hypotheses based on the patterns of ToE in climate

(hereafter ToEclimate) and the demographic processes across life histories and propose a

road map for future studies on the ToEpop (section 6).

2 Conceptual model of the time of emergence in climate

and in population

Both the climate-driven trend in population growth rate and its year-specific stochas-

tic variations are related to climate trend and variability (section 2.1, Fig. 1). However, we

still lack a theoretical understanding on how the population trend and variability respond

to climate in a non-stationary environment. In a stochastic stationary environment, how-

ever, we show here that the variance in annual population growth rates var(–) is linearly

related to the climate variance ff2, and depends also on the sensitivity of the population

growth rate to climate @–
@C

(section 2.2).

2.1 Factors influencing the ToEpop

The time of emergence is generally characterized from a time series by comparing (1)

the time varying signal, T (t) estimated as the long term monotonic trend (red trend on

figure 1) and (2) the noise based on the range of natural variability (e.g., the standard devi-

ation) over some historical period (variations of the black time series on figure 1). Figure

2 illustrates the signal threshold method, where the time of emergence is the first year

when the projected future state of a variable crosses a pre-defined emergence threshold

based on the historical variations. For example, the projected future state can be depicted

by the gray envelope of future projections (red lines on Figs. 1, 2) under a specific forcing

scenarios based on a range of emissions of greenhouse gases (GHGs), while the emer-

gence threshold can be determined from the gray envelope of historical projections (black

lines on Figs. 1, 2)).

In impact studies, the emergence threshold (e.g. horizontal lines on Figs. 1, 2) can be
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interpreted as thresholds beyond which management-relevant impacts must occur and

depend on the management sensitivity to changes in climate conditions. Indeed, emer-

gence thresholds are not necessarily set at the extreme 2.5% high or 2.5% low of the range

of historical population variations (∼ 2SD) usually used in risk impact studies but can

be set at any thresholds at which the decline or increase in population is perceived as

unsustainable. For example, high management sensitivity threshold may be desirable for

increasing species, whereby management actions are triggered by the e.g. 75% percentile

of population growth distribution during the baseline period.

Figure 2 shows that the time of emergence in populations vary among species. From

a conceptual viewpoint, this depends on the sensitivity of the population growth rate

to climate: @–
@C

(Fig. 1). This sensitivity can be decomposed into two main components.

First, it depends on the sensitivity of the demographic rates themselves „i (e.g. survival,

reproduction) to climate @„i
@C

(panel 1 in the demographic rates box on Fig. 1). Therefore,

the functional relationships between climate and the demographic rates likely play a key

role in the sensitivity of the population growth rate to climate. Second, @–
@C

depends on

the sensitivity of the population growth rate to demographic rates @–
@„i

(panel 2 in the de-

mographic rates box on Fig. 1). The later is influenced by the species’ life cycle and thus

species’ life history [Saether & Bakke, 2000]. For instance, the demographic buffering hy-

pothesis posits that in long-lived species, adult survival is expected to be buffered against

environmental changes (environmental canalization sensu Gaillard & Yoccoz [2003]) and

reproduction is expected to be more variable with stronger functional relationships with

climate. The opposite patterns are expected in short-lived species (see Hilde et al. [2020]

for a review). Therefore, demographic rates of species with contrasting life histories are

expected to be differently influenced by climate, influencing in turn the sensitivity of the

population growth rate to climate, the variance in annual population growth rates and

the climate-driven change in population.
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2.2 Population variability in a stationary environment

In this section, we build on previous theoretical studies [Engen et al., 2005; Morris et al.,

2008] to show how the variance in annual population growth rates depends on the vari-

ance in climate ff2, and the functional relationship between climate C and demographic

rates, assuming a stationary environment: its mean C and variance ff2 do not vary over

time. For a structured population model of the form nt+1 = Atnt (see section 4) in a

stationary environment characterized by small variations, the environmental variance of

the population growth rate –t (such that Nt+1 = –tNt) can be approximated (first degree

Taylor approximation) by [see Engen et al., 1998, 2005]:

var(–t) =
X
i ;j

@–

@„i „i=„i

@–

@„i „j=„j
Cov(„i ; „j) (1)

with „, the vector of mean demographic parameters including fertility, survival of juve-

niles and adult and maturation rates (Table 1). This variance is important as it influences

the long-term stochastic growth rate of the population:

log –s = lim
T→∞

1

T
log ‖AT−1 · · ·A0n(0)‖: (2)

Let us assume that the environment affects only one demographic rate, „i (the other rates

„j remain constant over time), then Eq 1 simplifies as:

var(–t) =

„
@–

@„i „i=„i

«2

var(„i t): (3)

The demographic rate „i is a function of a climatic variable Ct . „i is also affected by

other unknown variables generating environmental stochasticity ›, such as observation

and process errors. › is a stochastic environmental noise of mean 0, and variance var(›t)

and is considered as an additional variability independent from C. For example, let’s
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assume that „i is an inverse logit function of a linear function of C:

„i t = „i(Ct ; ›t) = g(y = ˛0Ct + ˛1 + ›t); (4)

where ˛0 and ˛1 are the constant regression coefficient of the functional relationship be-

tween climate and the demographic rate (FIG 1); g is the inverse logit link function so that

„i ∈ [0 1]. Applying the second order Taylor expansion, the variance of the demographic

rate „i is:

var(„i t) ≈ (g ′(y))2var(y) =

„
@„i

@CC=C

«2

(˛2
0ff

2 + var(›t)
2) (5)

with ff2 the variance of the climatic variable C and

@„i
@CC=C

= y ′
exp(−y)

(1 + exp(−y))2 = ˛0
exp(−˛0C − ˛)

(1 + exp(−˛0C − ˛1))2
(6)

.

Hence Eq 3 can be simplified as:

var(–t) =

„
@–

@„i „i=„i

«2„
@„i

@CC=C

«2

(˛2
0ff

2 + var(›t)
2): (7)

Applying the derivative chain rule and assuming › = 0, i.e., that the demographic rate

„i is a deterministic function of climate, like in our simulations, we obtain:

var(–t) = ˛2
0ff

2

„
@–

@CC=C

«2

(8)

Hence the year-specific stochastic variation depends on climate internal variability

ff2, the stochastic environmental variability, as well as the sensitivity of the population

growth rate to the demographic rate and the sensitivity of the demographic rate to climate

in a stationary environment that both define the overall the sensitivity of the population

growth rate to climate.
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In a non-stationary environment (Fig. 1), C is changing, and var(–) varies, in gen-

eral, non-linearly with C depending on the sensitivity of the population growth rate to

climate
`
@–
@C

´
(see Supplementary Appendix 1 and Fig. 1), this latter also influencing the

population trend. Hence, it is extremely difficult to posit a priory how ToEpop will vary

with the signal and noise in climate across life histories and demographic processes for

various functional relationship between climate and demographic rates. In section 4 we

use a simulation framework to answer our five questions posed in the introduction, and

discuss six testable hypotheses in section 6.

3 Time of emergence in climate

The concept of ToEclimate has been discussed for several decades in the climate sciences

with studies attempting to detect the carbon dioxide warming signal published more than

80 years ago ([Callendar, 1938; Revelle & Suess, 1957], see review in Hawkins et al. [2020]).

The time of emergence has been characterized in temperature [Mahlstein et al., 2011],

precipitation [Giorgi & Bi, 2009], climate extremes [King et al., 2015], in sea level [Lyu

et al., 2014], in Arctic climate [Landrum & Holland, 2020] and biogeochemical variables

[Henson et al., 2017; Schlunegger et al., 2020].

Different methods have been used to quantify ToEclimate, most of them using climate

model simulations (but see Hawkins et al. [2020] for an application using observation

of temperature). The common methods for estimating ToEclimate are the signal threshold

method (section 2), and the signal-to-noise ratio method with a particular cutoff [Hawkins

& Sutton, 2012] with a variant of this approach being the identification of the signal-

to-noise ratio using a predefined threshold across multiple consecutive years (refereed

as the exceedance threshold) [Mora et al., 2013]. Different criterion have been used to

ensures that the trend exceeds 95% of the values in the noise, such as a ratio 2SD/Trend

[Henson et al., 2017]. Various statistical methods have been developed, from statistical test

to assess for significant differences between time periods [Zappa et al., 2015], estimation
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of the standard error of the regression to estimate the lead-time required for a linear trend

to emerge from natural variability [Mahlstein et al., 2012], development of hierarchical

statistical state-space model [Barnhart et al., 2016] or artificial neural networks [Barnes

et al., 2018].

Recently, the availability of large ensembles have permitted climatologists to compute

emergence threshold from the distribution of these large ensemble to formally consider

the uncertainty in the forced response due to natural climate variability [Barnhart et al.,

2016]. Large ensembles represents a set of climate simulations to characterize the natural

climate variability by simulating several members subject to the same radiative forcing

scenario but beginning from slightly different initial atmospheric state within a particular

climate model [Kay et al., 2015].

Here, we use signal threshold method (section 2) based on a large ensemble by con-

structing prediction interval of the climate and population projections, and estimate the

time taken by the system to exit the background of natural variability [Barnhart et al.,

2016]. For example, the left part of Figure 2 shows the 95% prediction interval of the cli-

mate in gray. Here, ToEclimate is the time when the projected future conditions under the

influence of climate change, “forced conditions” (red lines), exceeds a pre-defined thresh-

old for emergence from the projected historical unperturbed conditions (gray area, with

the horizontal line illustrating the baseline threshold at which climate change is defined

to emerge).

The emergence thresholds are typically based on the percentile of the distribution of

the historical and forced projections. They define the prediction intervals at which the

signal of climate change emerges from the natural climate variability. We present the re-

sults for one threshold of wide confidence envelope with a 95% prediction interval based

on emergence thresholds defined by the 2.5 or 97.5 percentile values of the distribution,

where impacts are triggered by the extreme historical conditions only. The analysis with a

narrow confidence envelope with emergence thresholds defined by the 20 or 80 percentile
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values of the confidence interval is shown in appendix (Fig S 4). In that case, the system

is likely highly sensitive to climate as severe impacts are thought to occur for lower per-

centile of the climate conditions distribution experienced during the historical run. Our

results are qualitatively the same between these two thresholds.

In our simulations, we construct a large ensemble of climate time series for both the

historical and forced environment for various natural climate variability (ff2) and warm-

ing trends (¸). Specifically, the historical climate time series are obtained by sampling

into a normal distribution – centered on a zero mean and with a specific standard devia-

tion ff – with independent draws each year (i.e. Independent and Identically Distributed

random variables (IID)). The forced climate time series are calculated by adding to this

natural variability a linear trend of slope ¸. In that context, this ToE calculation in an

IID environment is directly related to the signal-to-noise ratio: ToE = 2P
SNratio

with P the

climate value corresponding the threshold of the prediction interval.

In our theoretical study, we explore a range of parameters consistent with the observed

standard deviation of the inter-annual temperature variability (Fig 1 of Hawkins & Sutton

[2012]) and the projected climate warming by 2100 (IPCC), with ffC ∈ [0:2 1:5] and ¸C ∈

[0:01 0:15] (Fig. 2). In our empirical example, we used 40-members from the Community

Earth System Model Large Ensemble (CESM-LE) to characterize the confidence envelope

of sea ice, hence the ToEclimate and ToEpop.

4 Time of emergence in populations

4.1 Population projections

For each of the four species, the population dynamic is projected using a simple two-

stage climate-dependent population matrix model that permits to explore some of the

diversity of life cycles along the slow-fast continuum of life histories [Caswell, 2001; Neu-

bert & Caswell, 2000]. The model distinguishes non-reproducing juveniles and reproduc-

ing adults (see life cycle on Fig. 1). The population is projected from year t to year t+1
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by:

nt+1 = A(„[(Ct)])nt (9)

with nt the population vector made of the abundances of juveniles and adults and A

the population transition matrix including demographic rates „[(Ct)] that are defined by

specific functional relationship with climate C (FigS. 1 S 3). The demographic rates are

the survival of juveniles Sj and adults Sa, the development rate of juveniles into adults ‚

(maturation rate), and the fertility of adults F .

A =

264Sj(1− ‚) F

Sj‚ Sa

375 (10)

This model permits to simulate population dynamics of species with four contrasting

life histories. Species differ in terms of reproductive strategy (semelparous vs. iteroparous),

age at first reproduction (precocial vs. delayed) [Neubert & Caswell, 2000] and lifespan

(short vs. long) and thus range along the slow-fast continuum of life history variation

[Gaillard et al., 2016] from fast species with short generation time, high reproductive out-

put and short lifespan (species 1) to slow species with opposite characteristics (species 4)

(Table 1).

We include the effects of climate acting on only one demographic parameter at a time

„i and assume that the inter-annual variability in population growth rates is induced by

climate only (i.e. › = 0 in eq.7). In each case, the functional relationship between demo-

graphic rates and climate „i(C) is either linear, sigmoid or a bell shaped curve functions

(Fig 1, Fig S 3) and is defined by the equation 4 with › = 0 and ˛1 = „ih the mean de-

mographic parameter in the historical unperturbed environment that leads to a stable

population with C = 0 (Table 1). Specifically, relationships can be linear functions on the

real scale, with

„i(Ct) = ˛0Ct + „ih (11)
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and results are shown only on supplementary figure S 5 for all demographic rates. Rela-

tionships can be sigmoid functions, with

„i(Ct) == g(y = ˛0C2 + „ih) (12)

and g the inverse logit link function. Relationships can be bell shaped curves functions

with quadratic functional relationship between demographic rate and climate:

„i(Ct) == g(y = ˛0C
2
t + „ih) (13)

For most demographic rates, g is the inverse logit link function so that „i ∈ [0 1], but not

for fertilities of species 1 to 3 that vary on the real scale.

To characterize a reasonable range of demographic rates and lifetime outcomes in the

set of projected environmental conditions, ˛0 vary in a specific range that depends on

the functional relationship. For linear functional relationships between climate and de-

mographic parameters (equation 11), the slope varies as: ˛0 ∈ [−0:03 0:03] (Fig. S 5).

For sigmoid functional relationships the slope varies as: ˛0 ∈ [−0:15 0:15] (Fig. 3a). For

bell-shaped functional relationships the slope vary as: ˛0 ∈ [−0:025 − 0:01] (Fig. 3b).

We calculate the time of emergence of population using the threshold methods fol-

lowing the same methodology as for climate (section 3). We assume that the historical

population is stable in an unperturbed stationary environment with C = 0 and variance

ff2; i.e. the stochastic long-run growth rate is null: ln(–s) = 0 (calculated from equation 2)

. ln(–s) depends on variance in annual population growth rates var(–) [Lande et al., 2003;

Tuljapurkar & Orzack, 1980] that is driven by the natural climate variability ff2 (section

2). Climate fluctuations that increase the variance of demographic rates usually decrease

the stochastic long-run growth rate of populations [Engen et al., 2005; Lande et al., 2003;

Tuljapurkar, 1982]. Hence, to set ln(–s) = 0 across environmental historical conditions, the

vector of demographic parameters „ is slightly tuned for each environmental variability
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ff.

4.2 Time of emergence in population depends on climate variability and trend

We found that ToEpop can be predicted by the climate signal-to-noise ratio and occurs

earlier as the signal-to-noise in climate becomes larger (Fig. 3). Indeed, the ToEpop is

linearly and positively correlated to the ToEclimate (Fig. 3) as both the variability and trend

in population are positively related to the natural variability and trend of climate (Fig. 4).

Remarkably, the ToEpop can be earlier or later than the ToEclimate, that depends on the

life history strategies and the demographic processes by which climate affects demo-

graphic rates (Fig. 3). For example, the ToEpop is earlier than ToEclimate for iteroparous

species when climate affects maturation or adult survival rates for long-lived species

(species 3 & 4) or juvenile survival for short-lived species (species 2). Hence, some life

histories may permit an earlier detection of the time at which the signal of anthropogenic

climate change emerges from the noise of natural climate variability

4.3 Time of emergence in population across life histories and demographic processes

The ToEpop can be predicted by life histories and demographic processes (Fig. 3, Fig. 5).

Across life histories, the ToEpop is the largest for species 1 (semelparous short-lived strat-

egy), which have on average the largest population variations (Table 2, Fig. 5). Across

demographic processes, the ToEpop is the largest for the fertility (Table 2). For iteroparous

species, the ToEpop depends on the sensitivity of the population growth rate to the demo-

graphic rate affected by climate and occurs earlier as the sensitivity increases (Fig. 5). As

a consequence, the ToEpop occurs later as species longevity increases when climate affects

fertility and juvenile survival. However, the opposite pattern occurs when climate affects

adult survival and maturation rate: ToEpop occurs earlier for long-lived than short lived

species (Fig. 3, Table 2).
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4.4 Time of emergence in population among different functional relationships be-

tween climate and demographic rates

Surprisingly, the type of functional relationship and its slope have little effect on the

ToEpop (Fig. 3, Fig 6). Despite that the variability of the population in the historical en-

vironment is smaller for bell shape than linear relationships on the logit scale (see eq 9

section 2), both the trend and variability are larger for bell shape relationship in the non-

stationary forced environment (Table 2). Indeed, the variability in the forced environment

increases substantially compared to the variability in the historical environment for bell

shape, while it does not change for linear relationships (Table 2). However, the ratio

trend over variability is very similar between bell shape and linear relationship, and the

patterns of time of emergence are very similar regardless of the shape of the functional

relationship. The slope of those relationships has also little impact of the ToEpop relative to

life histories and demographic processes, probably because it affects both the trend and

variability simultaneously (Fig. 1).

5 Time of emergence of emperor penguin population

Emperor penguin is a relevant empirical example to test our theoretical prediction that

long lived species (comparable to species 4) may permit an earlier detection of the time at

which the signal of anthropogenic climate change emerges from the noise of natural cli-

mate variability (Fig. 3, section 4.2). Penguins are threatened by future climate change as

most of their breeding colonies will be endangered by 2100 if greenhouse gases continue

their current course [Jenouvrier et al., 2020, 2014, 2021]. These declines occur through pro-

jected loss of Antarctic sea ice, which affects survival and reproduction. Adult survival

is strongly affected by sea ice during four seasons of the life cycle resulting in complex

non-linear bell shape relationships [Jenouvrier et al., 2012]. Adult survival is maximized

at intermediate levels of sea ice because neither the complete absence of sea ice (low food

resources and/or high predation), nor heavy and persistent sea ice (longer foraging trip),
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provide satisfactory conditions. Thus, in contrast to our theoretical examples, relation-

ships between climate and demographic rates are even more complex for emperor pen-

guin as sea ice affects a multitude of demographic rates during various seasons, with dif-

ferent functional responses among sexes, and other processes contribute to the variability

in population growth rate (i.e. › >> 0 in eq.7, related to sampling variance and process

variance due to unmeasured environment conditions such as local fast ice dynamics or

large-scale atmospheric perturbations, see Trathan et al. [2020] for a review).

5.1 Emissions scenario, climate model and climate outputs

The climate outputs from multiple AOGCMs are publicly available in a standardized

format on the Coupled Model Intercomparison Project (CMIP) website. CMIP5 provides

a framework for coordinated climate change experiments for assessment in the IPCC

Fifth Assessment Report (AR5) in 2014 using four Representative Concentration Path-

ways (RCP) describing future GHG concentration trajectories based on socio-economic

assumptions. Newer emissions forcing scenarios have been developed and used for cli-

mate projections in CMIP6 for the Sixth Assessment Report (AR6) released in August

2021. These “Shared Socioeconomic Pathways” [O’Neill et al., 2016](SSPs) differ in the

time evolution of specific climate forcers, such as GHG and aerosol emissions, but bracket

the same radiative forcing range as the RCP scenarios.

They are several sources of uncertainties in climate projections that affect the time

of emergence, including the structural uncertainty associated with the different climate

models used to make projections, and the scenario uncertainty associated with different

future emission pathways [Deser et al., 2012; Hawkins & Sutton, 2009; Schlunegger et al.,

2020]. However, here we use one climate model and one scenario to obtain the sea ice

outputs from a large ensemble [Kay et al., 2015] for illustrative purposes. In addition,

large ensemble simulations using several scenarios from several climate models were not

available at the time of our penguin analysis.

Specifically, we used RCP 8.5 high emission scenario [Meinshausen et al., 2011], that
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represents a future in which greenhouse gas emissions continue unabated. RCP 8.5 is con-

sidered as a useful scenario for quantifying physical climate risk, especially over near- to

midterm policy-relevant time horizons [Schwalm et al., 2020]. Indeed, the total cumu-

lative CO2 emissions since 2005 projected under RCP8.5 by 2020 are in close agreement

with historical observed total cumulative CO2 emissions [Schwalm et al., 2020]. In addi-

tion, the total cumulative CO2 emissions since 2005 projected under RCP8.5 by 2050 agree

well with energy forecasts under current and stated policies by 2050, with still highly

plausible levels of CO2 emissions by 2100 [Schwalm et al., 2020].

We use sea ice outputs from a large ensemble produced by a General Circulation Mod-

els: the community Earth System Model (CESM), developed by the National Center for

Atmospheric Research (NCAR) allowing us to characterize the natural climate variability

[Kay et al., 2015]. In addition, CESM model resolves very well the Antarctic sea ice condi-

tions that influence the most emperor penguin population growth rates [Jenouvrier et al.,

2020].

5.2 Sea ice and penguin projections

We calculate ToEpop for the 54 known colonies around the coast of Antarctica ([Fretwell

et al., 2012; Fretwell & Trathan, 2009], Fig. S 8) following the approach outlined in section

3 based on projections of population growth rates driven by sea ice changes. Specifically,

to project emperor penguin population growth rate at each colony, we link a climate-

dependent demographic matrix model to sea ice projections (section 5.1). Our sea ice-

dependent demographic model includes demographic rates that depend on the sea ice

conditions during four seasons (non-breeding, laying, incubating and rearing), and ac-

counts for differences in the impact of sea ice conditions on adult survival between sexes.

These relationships and their estimations are described in detail in Jenouvrier et al. [2012].

The model includes sources of stochasticity and uncertainties: (1) parameter uncertainty

describes statistical uncertainty in the estimates of demographic parameters (e.g., sur-

vival, and their responses to sea ice concentration anomalies) and (2) process variance
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(i.e., environmental stochasticity) reflects true “unexplained” temporal variance in demo-

graphic rates that is not accounted for by sea ice, which combined reflect the term var(›)

in eq.7, section 2. As we ignored these context specific uncertainties in our theoretical

simulation, we present the results with two scenario: with or without var(›).

For our historical environment we used sea ice projections from 1920-1950, and for

the forced environment we used sea ice projections from 1950-2100 under climate sce-

nario RCP 8.5 (section 5.1). We assume that the population is stable in the historical,

unperturbed environment and our emergence threshold are based on the 90% prediction

interval. This permit us to characterize when anthropogenic signals in emperor penguin

populations are very likely to emerge from stochastic noise.

5.3 Time of emergence in sea ice and penguin

The ToEclimate in sea ice varies among seasons and colonies (Fig. 7, Fig. S 6) and as

a consequence, the ToEpop varies among colonies. The ToE in sea ice and populations

are earlier for colonies in East Antarctica, than in the Ross, Bellinghausen, Amundsen

and Wedell seas (Fig. S 8). The variability and trend are negatively related (Fig. S 7), so

regions showing a larger signal also exhibit larger variability in climate and population as

sea ice loss are projected into the future. When the environmental stochasticity generated

by other factors than sea ice (var(›)) is ignored, the ToEpop occurs earlier than climate for

most colonies, except the ones located from Enderby Land to Terre Adelie Land in East

Antarctica for which the ToE in sea ice is the earliest. When parameter uncertainty and

process variance are included, the ToEpop occurs later than ToEclimate for almost all colonies,

except the few colonies in the Bellinghausen and Amundsen seas for sea ice during the

rearing season.

6 Discussion

Anthropogenic climate change has triggered impacts on ecosystems world-wide, yet

the formal timing at which these biological impacts can be detected has been insufficiently
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described [Beaumont et al., 2011]. Here we focused on detecting climate-driven signals

in population but this approach can be applied to climate-related impacts in changes in

distribution by accounting for the temporal dynamics in those spatial changes. Hereto-

fore, changes in distribution are often assumed to depend only on the climate signal and

analyses using e.g. species distribution models often ignore climate variability (but see

Zimmermann et al. [2009]).

We found that the time of emergence of climate-driven signals in population dynam-

ics ToEpop depends on (1) the magnitude of climate change and variability and (2) life-

histories and demographic processes by which climate affects the population and we pro-

pose six testable predictions. In the context of detection and attribution of climate change,

we find that some life histories magnify signal-to-noise ratios in climate (ToEclimate), en-

abling observations of populations to yield earlier detection of anthropogenic climate

change than observations of a climate variable itself— while other demographic dynam-

ics prolong the detection of anthropogenic climate change relative to ToEclimate.

In our emperor penguin example, frequency dependent processes occurs because of

sex-biased mortality in responses to sea ice, this latter showing spatiotemporal autocor-

relation, affecting reproduction and survival, resulting in complex co-variations among

demographic rates, and the life cycle is structured in several stages. Our main theoretical

result – some life histories enable an earlier ToEpop than ToEclimate– is well supported by

our example when the noise is driven by climate natural variability and all complexities

arising in natural systems discussed in the following sections are included.

However, when stochastic variations from observation error and other biotic and abi-

otic processes variability other that sea ice natural variability are included, the ToEpop oc-

curs later than ToEclimate for almost all colonies. Notwithstanding, sampling and process

errors can be reduced by increasing monitoring effort and improving our understanding

of how the biological systems respond to biotic and abiotic factors. In addition, aggregat-

ing abundance across space attenuates the random component of the underlying growth
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rates and may permit a better detection of anthropogenic signals in populations [Che-

Castaldo et al., 2017].

Regardless if the stochastic noise associated with other sources than natural variabil-

ity in climate occludes an earlier ToEpop than ToEclimate, the time of emergence identifies

when the signal of anthropogenic climate change in populations can be quantitatively dis-

tinguished from year-specific stochastic variation. Quantifying ToEpop is critically needed

to provide relevant cost/benefit evaluations for climate mitigation and adaptation strate-

gies, as well as accurate assessments of the risks climate change poses to conservation

and management of ecosystems [Hawkins et al., 2020; Hawkins & Sutton, 2012]. Finally,

we propose a road map for future research.

6.1 ToEpop is predicted from ToEclimate

We find that the ToEpop depends almost linearly on the ToEclimate (Fig. 3). Hence, we

suggest the following hypotheses.

[H1] Tropical species may permit an earlier detection of anthropogenic climate change than

temperate species, especially if temperature in summer affects their demographic rates. Many cli-

mate studies have shown that the ToE in temperature is earlier for low latitude regions

than for mid-latitude regions and is of intermediate duration for polar regions [Hawkins

et al., 2020; Hawkins & Sutton, 2012; Mahlstein et al., 2012, 2011]. The emergence of signal

of anthropogenic climate warming occurs the soonest in the summer season at low lati-

tudes [Mahlstein et al., 2011]. The studies of Beaumont et al. [2011] and Sorte et al. [2019]

support this hypothesis: tropical and subtropical ecosystems, and mangroves, face ex-

treme conditions earliest than boreal forests and tundra biomes because the low SD com-

pensate for the relatively small absolute changes [Beaumont et al., 2011]. Passerine bird

species that migrate between temperate breeding grounds in North America and south-

ern tropical wintering grounds experience an earlier ToEclimate than species wintering in

the subtropics [Sorte et al., 2019]. ToEclimate exceeding 2300 occurred only in the northern

latitudes corresponding to the southern non-breeding grounds of some birds [Sorte et al.,
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2019]. Studies on the thermal tolerance of terrestrial ectotherms also support this hypoth-

esis. For example, tropical insects are relatively sensitive to temperature change and are

currently living very close to their optimal temperature, while species at higher latitudes

have broader thermal tolerance and are living in climates that are currently cooler than

their physiological optima [Deutsch et al., 2008].

[H2] In terrestrial systems, species affected by temperature may yield earlier detection of an-

thropogenic climate change than species affected by precipitation. Climate studies have shown

that changes in precipitation are often harder to detect because natural variability in pre-

cipitation is larger than in temperature [Giorgi & Bi, 2009]. For example, the ToEclimate in

precipitation extremes does not occur prior to 2100 in many regions [King et al., 2015].

However, an anthropogenic signal is emerging soon in wintertime heavy precipitation

events over much of Eurasia and North America, so species in these regions may ex-

perience earlier ToEpop. However, this hypothesis depends also on the sensitivity of the

population growth rate to temperature versus precipitation. In a comparative study of

time series of 165 plants populations around the globe, Compagnoni et al. [2021] found

that demographic responses to climate are larger for precipitation than temperature, but

large noise hampers the detection of the impact of precipitation on plant populations.

[H3] In marine systems, species dependent on the upper ocean biological cycling of carbon,

photosynthetic activity, or salinity may yield later detection of anthropogenic climate change than

species affected by sea surface temperature or PH. Several studies found that variables inte-

grating the effect of invading anthropogenic carbon into the global ocean (e.g. pH) and

sea surface temperature emerged most rapidly while variables related to the upper ocean

mixing, associated changes in biological processes (e.g. export of organic matter, pri-

mary productivity) and salinity, only emerge after several decades [Henson et al., 2017;

Schlunegger et al., 2020].
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6.2 ToE in population is predicted from life histories and demographic processes

[H4] ToEpop occurs later in selmeparous species. Semelparous species, such as salmon,

bamboos, and monocarpic herbs, exhibit a “big-bang reproduction” whereby individu-

als die immediately after the first reproduction [e.g. Metcalf et al., 2003]. As a conse-

quence, their population dynamics is often more variable than population of iteroparous

species. Indeed, the various reproductive events of iteroparous species may be spread

out throughout their life as a bet-hedging strategy in unpredictable environments, buffer-

ing the effect of environmental variability on population growth rate [Hilde et al., 2020].

However, there is little theory available to predict how the degree of iteroparity might in-

fluence the demographic response to climate. A comparative study found no correlation

between the degree of iteroparity with population responses to climate in plants [Com-

pagnoni et al., 2021]. Further work should entail a direct comparison of the influence of

the generation time and degree of iteroparity on ToEpop.

[H5] The ToEpop of iteropareous species depends on the sensitivity of the population growth

rate to the demographic parameter affected by climate (Fig. 5). For population dynamics that

are mainly affected by the impact of climate on adult survival during the non-breeding

season (‘tub’ hypothesis, Sæther et al. [2004]), the ToEpop will occurs earlier in long lived

species than short lived species. This might be the case for many migratory species, when

the climate conditions affects survival during the migration, and in the non breeding

quarters [Sorte et al., 2019]. The ‘tap’ hypothesis [Sæther et al., 2004] proposes that en-

vironmental conditions during the breeding season affect population size the following

year because it influences the inflow of new recruits into the population. The ToEpop in

population occurs earlier if climate conditions during the breeding season have carry-

over effect on demographic rates influencing the number of recruits, as observed in many

species [e.g. Szostek & Becker, 2015]. Specifically, this will occur when climate affects

juvenile survival for short lived species and maturation rate for long lived species. Ob-

viously, the underlying processes of the ‘tub- tap’ effects are not mutually exclusive, and
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multiple demographic rates are affected by climate, that will eventually shorten or pro-

long the ToEpop.

[H6] Iteropareous species can act as earlier indicators of the detection of anthropogenic cli-

mate change than climate itself. Earlier ToEpop than ToEclimate occurs when climate affects

the demographic rates that most influence the population growth rate: adult survival

and maturity for long-lived iteroparous species and juvenile survival for short-lived ones

(Fig. 3, Fig. 5). This hypothesis is supported by our empirical example: the popula-

tion growth rate is mostly sensitive to the adult survival [Jenouvrier et al., 2010], which

is affected by sea ice conditions [Jenouvrier et al., 2012]. Here, we found that the ToEpop

occurs earlier than ToEclimate when process variance due to other environmental factors

and demographic parameter uncertainties is ignored (Fig. 7a). In natural system, the

process variance may be large, obscuring an earlier detection of anthropogenic climate

change in populations than in climate variables itself (Fig. 7b, Sæther et al. [2007, 2004]).

However, if the goal is to use earlier indicator species in the detection of anthropogenic

climate change, it is possible to reduce the demographic parameter uncertainties with

higher sampling effort and decrease the process variance by a better understanding of

the factors affecting the demographic processes.

6.3 Road map for the future

We provide the first theoretical study of the ToEpop to understand the proximate mech-

anisms of the impact of climate change and variability and demographic processes using

a simple model. We illustrate how to use a climate explicit population model to quan-

tify ToEpop for emperor penguin, and argue that climate-dependent demographic mod-

els could be developed for several species allowing future comparative analysis. But

many questions remained unanswered about the effect of more complex climate-driven

demographic processes occurring in natural systems such as density-dependence, auto-

correlation in climate, co-variation among demographic rates, population structure, and

multiple climate drivers, to name a few. We propose a road map for future research, and
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acknowledge that we only scratched the surface on these important topics.

6.3.1 Comparative studies of the ToE in population using climate explicit population

models

Characterizing the time of emergence requires long-term time series to define the his-

torical unperturbed state. For many species, the unperturbed state benchmark is not

available as most long-term ecological times series cover only recent decades while pro-

found global changes were already underway. It is challenging to characterize ToE from

observations in natural systems using statistical approaches, even in climate sciences.

Hence, most the climate studies have used climate outputs from atmospheric–oceanic

global circulation models (AOGCMs) to quantify the ToEclimate [Hawkins et al., 2020; Hawkins

& Sutton, 2012]. Similarly, we propose to develop climate explicit population models to

characterize the ToE in population. We have illustrated our approach using a simple

structured population matrix model [Caswell, 2001], but other demographic, trait-based

or eco-evolutionary modeling frameworks can be developed.

We argue that the ToEpop can be quantified for many species already [Doak & Morris,

2010; Saether et al., 2019; Treurnicht et al., 2016] allowing comparative studies to address

our specific hypotheses on the variations of ToEpop across regions, ecosystems drivers,

and species life histories. In recent decades, there in an increase in the number of studies

measuring the effect of climate accounting for multiple seasonal and carry-over effects

of climate on the complete life cycle of a species [Cordes et al., 2020; Doak & Morris,

2010; Iles & Jenouvrier, 2019; Jenouvrier, 2013; Ozgul et al., 2010]. Although fewer stud-

ies have developed climate-dependent population model, the information is available in

the literature to integrate the statistical relationships between climate and demographic

rates into population models. The last step requires an interdisciplinary approach to use

climate-dependent population models with projections of historical and future climate

from AOGCMs [Iles & Jenouvrier, 2019; Jenouvrier, 2013]. AOGCMs project (often non-

linear) changes in climate over time, and critically, provide quantitative estimates of nat-
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ural climate variability [Kay et al., 2015]. We hope that ecologists will take advantage of

the free availability of climate outputs in both the pre-industrial, historical and future en-

vironment supervised by the Coupled Model Intercomparison Project (section 5.1). The

most recently completed phase of the project (CMIP6) includes more climate models and

output variables than previous phases, and importantly, includes several large ensemble

runs of the same AOGCMs and experiment to account for natural variability in climate

models [Deser et al., 2020].

Finally, the key to quantify the ToEpop is to characterize the population variability in

the historical stationary environment. This requires careful consideration of the demo-

graphic stochasticity, especially for small populations, environmental stochasticity not

driven by climate, density-dependence and interactions with other species, which can be

incorporated in demographic models [Lande et al., 2003].

6.3.2 Density-dependence

Our population model does not include density dependence. The impact on the ToEpop

will depend on the strength and type of the density dependence (negative density depen-

dence: exact compensation, over-compensation, under-compensation, positive density

dependence), the specific demographic rate that is affected by density dependence, the

interaction between climate and density dependence and the life history of the species.

For example, populations with undercompensating growth tend to respond slowly to

environmental changes [Gamelon et al., 2017; Hansen et al., 2019], that may prolongs the

ToEpop. For population declining in response to climate change the results should be quali-

tatively similar, except if Allee effects occur (a positive relationship between demographic

rates and population), thereby accelerating extinction rate at low density [Courchamp

et al., 2008, 1999]. Allee effect will increase the magnitude of the decline of the popula-

tion trend and ToEpop will probably occurs earlier [Lande, 1998], but that will depend if

an increase variance compensate for this larger signal. For population increasing in re-

sponse to climate change, the patterns found without density dependence are more likely
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to change, that will depend on the emergence thresholds and carrying capacity of the

population. For example, for invasive species, the emergence thresholds may be defined

well below the carrying capacity of the population, hence the results would be qualita-

tively the same as without density dependence. However, if the emergence thresholds

are defined above the carrying capacity, the signal of anthropogenic climate change in

population cannot be formally distinguished from population variability.

6.3.3 Temporal autocorrelation in climate and demographic rates

Our simulated environment does not include autocorrelation in the climate time se-

ries, while most environmental variables exhibit a red noise that may increase the prob-

ability of extinction of populations [Mustin et al., 2013; Rescan et al., 2020]. Environmen-

tal variables in reddened environments imply consecutive periods of favourable or un-

favourable conditions (positive autocorrelation), and a lower probability of at least one

extremely poor year compared with white noise for a given time period, which may both

decrease or increase population extinction risk [Schwager et al., 2006]. The response of

species to coloured environmental variations depends on the time-scale considered, the

strength of environmental fluctuations, the particular life-history traits that are affected

by environmental change and the species life cycle defining the sensitivity of popula-

tion dynamics to these fluctuations [Engen et al., 2013]. For example, a study from 454

plant and animal populations found that fast life histories show highest sensitivities to

temporal autocorrelation in demographic rates across reproductive strategies, while slow

life histories are less sensitive to temporal autocorrelation, but their sensitivities increase

for species with a large degree of iteroparity [Paniw et al., 2017]. An important question

is then how the sensitivities to temporal autocorrelation in demographic rates is related

to the ToEpop, and can be addressed by incorporating such autocorrelation in our current

framework. Since the patterns of the sensitivities of the population growth rate to both in-

terannual variability and temporal autocorrelation in demographic rates are similar [Iles

et al., 2019; Paniw et al., 2017], and the influence of autocorrelations on the population
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variability driven by environmental noise is small [Engen et al., 2013], we do not expect

that including temporal autocorrelation will change our six hypothesis.

6.3.4 Correlation among demographic rates

Correlations among demographic rates can occur when climate affects rates simulta-

neously, and were ignored in our simulations. Positive covariation and autocorrelation

in demographic rates tend to increase the variability in demographic rates, decreasing

the stochastic growth rate and increasing the variability in population growth rates [En-

gen et al., 2013; Tuljapurkar et al., 2009]. On the opposite, negative covariation and auto-

correlation tends to decrease the variability in demographic rates, such as the survival-

fecundity-trade-offs that reduces the variance in the population growth rate [Colchero

et al., 2019; Sæther & Engen, 2015]. Correlations of opposite signs among the various de-

mographic rates may cancel out the effect of each other, and the resulting effect on the

population growth rate maybe small. In addition, the life-history strategy and density

dependence affect the population responses to covariation and autocorrelation in demo-

graphic rates [Colchero et al., 2019; Iles et al., 2019] making challenging to predict how

the trend and variability in population, hence the ToEpop, will be affected by covariation

among demographic rates. Demographic rate correlations had the largest effect on the

population growth rate for life histories with short to medium generation time [Iles et al.,

2019], that may amplify or dampen the detection of anthropogenic climate change.

6.3.5 Population structure

Our population model includes the simplest age-structure by aggregating age-classes

into two stages: juvenile and adult. Although this simple life cycle is useful to explore a

wide range of life histories (Table 1), it leads to a reduced variance in annual population

growth rates in an unperturbed environment [Colchero et al., 2019]. In our definition,

the ToEpop is based on the comparison of the variability between the unperturbed and

perturbed environment. Hence, the resulting ToEpop should not be highly sensible to the

structure of the population, except if such structure buffers or amplifies the population
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variability response to population structure in a non-stationary environment. Further

work focusing on how age, stage and trait structure affect the dynamics of populations

and potentially dampen or amplify the climate-driven variability in population (e.g. co-

hort resonance, Bjørnstad et al. [2004]), will provide fundamental insights to theoretical

and applied research of the detection of anthropogenic climate change. For example,

Bjørnstad et al. [2004] showed that spectral frequencies of the catches of cod in the Sk-

agerrak were not the dominant frequencies of key environmental drivers, rather there

was a spectral shift with a frequency peak at cod generational time scales, the so-called

cohort resonance. Population dynamics may also potentially retain a memory of prior

forcing, especially when climate events occurring in one season or stage of the life cy-

cle affect individual performance in a subsequent season or stage (e.g. carry-over effects

of climate; effect of climate at young age classes that may delay age at first recruitment

[Hollowed & Sundby, 2014; Lindström & Kokko, 2002; Ranta et al., 2005]).

6.3.6 Multiple climate drivers

Our modeling framework includes only a single environmental time series. The cu-

mulative integrations of white-noise atmospheric forcing in ecosystems drivers can gen-

erate population responses that are characterized by strong transitions and prolonged

apparent state changes in marine ecosystems that will affect the ToEpop [Di Lorenzo &

Ohman, 2013]. In addition, integrating multiple drivers to characterize the ToEpop is im-

portant as different climate variables affect organisms at various seasons and stages of

their life cycle, sometimes in opposite ways [Jenouvrier, 2013; Jenouvrier et al., 2018]. In a

butterfly species, warmer temperatures have a positive effect on the survival of eggs, pre-

diapause larvae and pupae but a negative effect on the survival of overwintering larvae

[Radchuk et al., 2013]. Climatic conditions experienced at different stages cause complex

patterns of environmental covariance among demographic rates even across generations,

which may either buffer or amplify the signal of anthropogenic climate change, empha-

sizing the importance of considering the complete life history of individuals when pre-
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dicting and detecting the effect of climatic change on population dynamics [Herfindal

et al., 2015; Iles et al., 2019; Jenouvrier, 2013].

7 Conclusion

In the current global biodiversity crisis, the development of tools to detect, quantify,

and compare the signal of anthropogenic climate change is essential to understand, antic-

ipate and adapt to climate change. Here, we provide a new perspective on how climate-

induced changes in populations can be detected by quantifying the Time of Emergence in

populations. We hope that ecologists will embrace the relevance of this concept in their

attempt to understand population responses to climate change in non-stationary environ-

ments and provide a robust assessment of future climate risk to inform management and

policy decisions.
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Figure

Figure 1: Conceptual diagram of the time of emergence (ToE) in climate (ToEclimate) and

in populations (ToEpop). ToE identifies the point in time when the signal of anthropogenic

climate change (red time series) emerges from the noise associated with natural variability

(black time series). ToEpop depends on the response of population growth rate to climate

that is defined by: (1) the impact of climate on demographic rates (e.g. survival) with

different functional forms that influence the sensitivity of demographic rates to climate;

(2) the impact of demographic rates on the population growth rate resulting from non-

linear demographic processes occurring throughout the species life cycle (described in

section Population projections).

Figure 2:Illustrative figure of the time of emergence in climate (ToEclimate on left panel)

and in populations (ToEpop on right panels) of four species along the gradient of life his-

tories, from fast species (species 1) to slow species (species 4). The figure shows one time

series simulated during the historical environment (black line) and forced environment

(red line). The emergence thresholds are based on a 95% prediction interval of 1000 sim-

ulations (grey area). The natural variability in climate is ff = 0:5. The forced perturbation

occurs at years 80 years resulting in a positive trend in climate. Climate affects negatively

maturation rate (slope of the linear relationship on logit scale: ˛ = −0:125). Y-axis is

different for each species.

Figure 3: Relationship between ToEclimate (x-axis) and ToEpop (y-axis) for four life his-

tory strategies (from fast (species 1) to slow (species 4)), whereby climate affects only one

demographic parameter at a time (colored dots: blue is fertility, red is juvenile survival,

orange is adult survival and purple is maturation rate). Black lines represent the time

when ToEpop = ToEclimate.

Figure 4: a) The variability in annual population growth rates depends on the natural

variability of climate ff, in both in the historical and perturbed environment (example for
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˛ = 0:125 ¸ = 0:05). (b) The trend of population growth rate at the time of emergence

in population depends on the trend of climate ¸ (example for ˛ = 0:125 and ff = 0:5 ).

Colors refer to the climate-dependent demographic rate: blue is fertility, red is juvenile

survival, orange is adult survival and purple is maturation rate. The dots on (a) stand for

the forced environment while square are the historical environment. Panels show four

different life history strategies, from fast (species 1) to slow (species 4).

Figure 5: ToEpop as function of the sensitivity of the population growth rate to the

demographic rate affected by climate. The ToEpop is the median across various natural

variability and trend of climate and various slope in the functional relationship between

climate and the demographic rate (Table 1). The sensitivity of the population growth rate

to the demographic rate is calculated for the averaged population matrix in the historical

environment. Symbols refer to species.

Figure 6: ToEpop as function of the absolute slope of the functional relationship be-

tween climate and demographic rate ˛0. Example for a climate trend of ¸ = 0:05 and

climate variability of ff = 0:5 . Colors refer to demographic pathway by which climate af-

fects demographic rates: blue is fertility, red is juvenile survival, orange is adult survival

and purple is maturation rate. The dots stand for ˛0 > 0, while square shows ˛0 < 0.

Panels show four life history strategies.

Figure 7: Difference between the time of emergence in sea ice and ToEpop of emperor

penguin (ToEclimate − ToEpop) for the 54 known colonies (x-axis) and four seasons (color).

The calculation of ToEpop accounts for var(›) generated by parameter uncertainty and pro-

cess variance (i.e., environmental stochasticity) (a) or not (b).
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Figure 1: Conceptual diagram of the time of emergence (ToE) in climate (ToEclimate) and in popu-
lations (ToEpop). ToE identifies the point in time when the signal of anthropogenic climate change
(red time series) emerges from the noise associated with natural variability (black time series).
ToEpop depends on the response of population growth rate to climate that is defined by: (1) the
impact of climate on demographic rates (e.g. survival) with different functional forms that influ-
ence the sensitivity of demographic rates to climate; (2) the impact of demographic rates on the
population growth rate resulting from non-linear demographic processes occurring throughout
the species life cycle (described in section Population projections).
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Figure 2: Illustrative figure of the time of emergence in climate (ToEclimate on left panel) and in
populations (ToEpop on right panels) of four species along the gradient of life histories, from fast
species (species 1) to slow species (species 4). The figure shows one time series simulated during
the historical environment (black line) and forced environment (red line). The emergence thresh-
olds are based on a 95% prediction interval of 1000 simulations (grey area). The natural variability
in climate is ff = 0:5. The forced perturbation occurs at years 80 years resulting in a positive trend
in climate. Climate affects negatively maturation rate (slope of the linear relationship on logit
scale: ˛ = −0:125). Y-axis is different for each species.
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[Linear and sigmoid „(C)]

[Bell curves „(C)]

Figure 3: Relationship between ToEclimate (x-axis) and ToEpop (y-axis) for four life history strategies
(from fast (species 1) to slow (species 4)), whereby climate affects only one demographic parameter
at a time (colored dots: blue is fertility, red is juvenile survival, orange is adult survival and purple
is maturation rate). Black lines represent the time when ToEpop = ToEclimate.
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[Variance in annual population growth rates]

[Trend at the ToEpop]

Figure 4: (a) The variability in annual population growth rates depends on the natural variability
of climate ff, in both in the historical and perturbed environment (example for ˛ = 0:125 ¸ =
0:05). (b) The trend of population growth rate at the time of emergence in population depends
on the trend of climate ¸ (example for ˛ = 0:125 and ff = 0:5 ). Colors refer to the climate-
dependent demographic rate: blue is fertility, red is juvenile survival, orange is adult survival and
purple is maturation rate. The dots on (a) stand for the forced environment while square are the
historical environment. Panels show four different life history strategies, from fast (species 1) to
slow (species 4).
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Figure 5: ToEpop as function of the sensitivity of the population growth rate to the demographic
rate affected by climate. The ToEpop is the median across various natural variability and trend
of climate and various slope in the functional relationship between climate and the demographic
rate (Table 1). The sensitivity of the population growth rate to the demographic rate is calculated
for the averaged population matrix in the historical environment. Symbols refer to species.
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Figure 6: ToEpop as function of the absolute slope of the functional relationship between climate
and demographic rate ˛0. Example for a climate trend of ¸ = 0:05 and climate variability of
ff = 0:5 . Colors refer to demographic pathway by which climate affects demographic rates: blue
is fertility, red is juvenile survival, orange is adult survival and purple is maturation rate. The dots
stand for ˛0 > 0, while square shows ˛0 < 0. Panels show four life history strategies.
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Figure 7: Difference between the time of emergence in sea ice and ToEpop of emperor penguin
(ToEclimate − ToEpop) for the 54 known colonies (x-axis) and four seasons (color). The calculation
of ToEpop accounts for var(›) generated by parameter uncertainty and process variance (i.e., envi-
ronmental stochasticity) (a) or not (b).
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Table

Table 1: Demographic rates and outcomes for the four life history strategies (species in columns).
The deterministic population growth rate is one for all species. The generation time (in years) is
the mean age of parents (eq 14 of Bienvenu & Legendre [2015]), from the fundamental matrix life
the following demographic outputs are calculated: the mean life expectancy at birth and the mean
remaining life at adulthood (eq 20 of [Roth & Caswell, 2018]); the probability to return to the adult
state (from eq 47 of [Roth & Caswell, 2018] using state A on Fig. 2). Ex stands for extreme.

species 1 species 2 species 3 species 4
Life history strategies

Reproductive strategy Semelparous Iteroparous Iteroparous Iteroparous
Developmental strategy Precocious Precocious Delayed Ex-Delayed

Survival strategy Short-lived Short-lived Long-lived Ex-Long-lived
Vital rates

Annual fertility rate 5.06 3.00 1.00 0.50
Juvenile survival prob. 0.20 0.30 0.40 0.60

Adult survival prob. 0.03 0.39 0.83 0.93
Maturation rate 0.95 0.60 0.30 0.11

Life history outcomes

Generation time 2.04 2.77 7.40 16.30
Life expectancy at birth 1.21 1.47 2.39 4.17

Remaining life at adulthood 1.03 1.63 6.02 14.29
Probability to return to adult state 0.03 0.39 0.83 0.93
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Table 2: Time of emergence, trend and variability of population growth rate, with its sensitivity to
climate across all simulations for four life history strategies (species in row) and four demographic
pathways by which climate affects demography rates (columns). Median of the time of emergence
of population is denoted ToEpop. At the time of emergence in the population: the median of the
trend is TToEpop , the median of the variability in the forced environment is varToEpop and their
ratio is TToEpop=varToEpop at ToEpop; and the median of the sensitivity of the population growth
rate to climate is @–

@CC=CCToEpop

. Historical variability is denoted var(–t).

LINEAR BELL SHAPE

F Sj Sa ‚ F Sj Sa ‚
ToEpop

species 1 133 134 125 140 133 126 125 146
species 2 102 64 70 87 106 68 73 86
species 3 116 73 56 63 107 75 60 65
species 4 123 99 54 54 120 105 58 58

TToEpop=varToEpop
species 1 0.04 0.04 0.04 0.04 0.06 0.04 0.02 0.06
species 2 0.05 0.11 0.09 0.07 0.06 0.11 0.09 0.07
species 3 0.03 0.08 0.15 0.11 0.01 0.08 0.14 0.12
species 4 0.03 0.05 0.16 0.16 0.03 0.03 0.15 0.16
TToEpop

species 1 0.0010 0.0032 0.0002 0.0003 0.0041 0.0067 0.0001 0.0085
species 2 0.0010 0.0021 0.0010 0.0008 0.0027 0.0021 0.0011 0.0018
species 3 0.0008 0.0008 0.0008 0.0006 0.0007 0.0010 0.0007 0.0005
species 4 0.0002 0.0004 0.0004 0.0003 0.0005 0.0004 0.0003 0.0002
varToEpop
species 1 0.024 0.088 0.003 0.005 0.092 0.216 0.005 0.149
species 2 0.019 0.019 0.011 0.013 0.047 0.021 0.014 0.027
species 3 0.024 0.010 0.005 0.005 0.054 0.013 0.005 0.005
species 4 0.006 0.008 0.002 0.002 0.023 0.020 0.002 0.002

@–
@CC=CCToEpop

species 1 0.010 0.019 0.003 0.004 0.0018 0.0060 0.0002 0.0005
species 2 0.012 0.024 0.011 0.009 0.0022 0.0048 0.0023 0.0021
species 3 0.014 0.009 0.010 0.007 0.0025 0.0019 0.0021 0.0013
species 4 0.001 0.003 0.005 0.004 0.0005 0.0009 0.0011 0.0008
var(–t)

species 1 0.025 0.108 0.003 0.006 0.005 0.022 0.001 0.002
species 2 0.019 0.019 0.011 0.014 0.003 0.004 0.002 0.003
species 3 0.031 0.010 0.006 0.005 0.007 0.002 0.001 0.001
species 4 0.008 0.009 0.003 0.002 0.002 0.002 0.001 0.000
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Supplementary

Supporting Information S1: population variability in a stationary environment

Equation 13 shows that the variance in annual population growth rates var(–t) is linearly

related to the climate variance ff2 in a stochastic stationary environment with small vari-

ations around a climate mean C.

Figure S 1 shows the variance in annual population growth rates var(–t) as function of

a mean climate C for different life histories when climate affects the population through

different demographic rates „i . The functional relationships between climate and the de-

mographic rate are linear on the real scale for fertilities (except species 4) or on the logit

scale for other demographic rates. Let’s assume that C represents temperature, and the

population is stable for C = 0.

The stationarity variability of the population growth rate varies as function of the

mean climate in complex non-linear ways that depend on @–
@C

and the sign of the slope

of the functional relationships between climate and demographic rates ˛0 that affects @–
@C

.

The smallest @–
@C

, hence population growth rate variability, occurs for species 4 with an ex-

treme long-lived history and the climate-dependent demographic rate of maturation rate

regardless of the mean environmental conditions and functional relationships. Short-

lived species (species 1 and 2) and the climate-dependent demographic rate of juvenile

survival shows the largest @–
@C

, except for extreme positive mean climate. However, vari-

ous patterns are observed between these extremes, which depend on the functional rela-

tionship between climate and demographic rates, the demographic rate by which climate

affects population and the life histories of the species.

For example, for linear functional relationships between the fertility and climate (species

1-3), equation 13 becomes:

var(–) = ˛2
0ff

2

„
@–

@„i „i=„i

«2„@„i „i=„i
@CC=C

«2

= ˛4
0ff

2

„
@–

@„i „i=„i

«2

(14)
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If ˛0 > 0,
“
@–
@„i

”2
increases as C increases, and the variance in annual population growth

rates is larger for warmer climate than colder climate. If ˛0 < 0,
“
@–
@„i

”2
decreases as C

increases, and the variance in annual population growth rates is larger for colder climate

than warmer climate.

For non-linear sigmoid functions, it is more complex, and depends on the specific

shape of the
“
@–
@„i

”2
and the sign of ˛0, specifically at which environment C the maximum“

@–
@„i

”2
occurs. For example, for adult survival, the population growth rate variability

is larger for warmer climate than for colder climate for long lived species when ˛0 < 0

(species 3 and 4). However, the opposite pattern occurs for short lived species (species

1 and 2): the population growth rate variability is smaller for warmer climate than for

colder climate (Fig. S 1). These patterns are opposite when ˛0 > 0.

For bell shape functional relationships, the variance of the population growth rate is

smaller for comparable range of demographic rates (Table 2). Indeed, to obtain a realistic

range of demographic rates when „i t = g(y ∗ = ˛∗0C
2
t + ˛1 + ›t) than when „i t = g(y =

˛0C
2
t + ˛1 + ›t) (Fig. S 3), the slope of the function y ∗ must be smaller: ˛∗0 < ˛0. Hence

var(–) is smaller despite similar magnitude for
“
@–
@„i

”2
for both function y and y ∗ (Fig. S

2).
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[˛0 = −0:1]

[˛0 = 0:1]

Figure S 1: Variability in annual population growth rates calculated from equation 8 across life
histories. Panels show the variance in annual population growth rates var(–t) as function of the
climate mean C when climate affects population through different demographic rates: fertility,
survival or maturation. Line color indicates different species along a gradient of fast-slow life
histories, from fast (species 1) to slow (species 4). (a) ˛0 = −0:1 and (b) ˛0 = 0:1. ff = 0:2.
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Supporting Information S2: additional figures

Figure S 2: Sensitivity of the population growth rate to climate for four life histories (panel in
line: fast (species 1) to slow (species 4)) and demographic rates (panel in column: fertility, juve-
nile survival, adult survival and maturation rate) and different functional relationships between
climate and demographic rates. Blue lines stands for linear on logit scale with ˛0 = [−0:1=0:1],
orange line shows bell shape on logit scale with ˛0 = −0:01, and green lines are linear on real scale
˛0 = [−0:1=0:1],
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Figure S 3: Example of functional relationships that are linear or sigmoid with a slope ˛0 = 0:1,
˛0 = −0:1 for linear sigmoid functional relationship or ˛0 = 0:01 for bell shape relationships for
each species (row panels) and each demographic rate (column panels).
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Figure S 4: Relationship between the time of emergence in climate (x-axis) and population (y-axis)
for four life history strategies (panels), whereby climate affects only one demographic parameter
at a time (colored dots: blue is fertility, red is juvenile survival, orange is adult survival and purple
is maturation rate). The black line represent the time when the time of emergence in climate
and population are equal. The functional relationships are linear or sigmoid. The emergence
thresholds are defined by the 20th or 80th percentile values of the confidence interval. In that case,
the system is likely highly sensitive to climate as severe impacts are thought to occur for lower
percentile of the climate distribution experienced during the historical run.
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Figure S 5: Relationship between the time of emergence in climate (x-axis) and population (y-axis)
for four life history strategies (panels), whereby climate affects only one demographic parameter
at a time (colored dots: blue is fertility, red is juvenile survival, orange is adult survival and purple
is maturation rate). The black line represent the time when the time of emergence in climate
and population are equal. The functional relationships are linear on the real scale with ˛0 =
[−0:03 − 0:02 − 0:01 0:01 0:02 0:03].
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Figure S 6: Time of emergence in sea ice (black line) and in the population growth rate of emperor
penguin (grey lines) for the 54 known colonies (x-axis) and season (panels). The calculation of ToE
accounts for var(›) generated by parameter uncertainty and process variance (i.e., environmental
stochasticity) (dotted line) or not (plain line).
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Figure S 7: Variability and trend at the time of emergence for sea ice (left panel) and for the
population growth rate of emperor penguin (right panel) for the 54 known colonies (marker) and
season (colors).
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Figure S 8: Map of Emperor penguin colonies.

63


