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a b s t r a c t

Recent advances in detectors and computer science have enabled the acquisition and the processing of

multidimensional datasets, in particular in the field of spectral imaging. Benefiting from these new

developments, Earth scientists try to recover the reflectance spectra of macroscopic materials (e.g., water,

grass, mineral typesy) present in an observed scene and to estimate their respective proportions in each

mixed pixel of the acquired image. This task is usually referred to as spectral mixture analysis or spectral

unmixing (SU). SU aims at decomposing the measured pixel spectrum into a collection of constituent

spectra, called endmembers, and a set of corresponding fractions (abundances) that indicate the proportion

of each endmember present in the pixel. Similarly, when processing spectrum-images, microscopists

usually try to map elemental, physical and chemical state information of a given material. This paper

reports how a SU algorithm dedicated to remote sensing hyperspectral images can be successfully applied

to analyze spectrum-image resulting from electron energy-loss spectroscopy (EELS). SU generally over-

comes standard limitations inherent to other multivariate statistical analysis methods, such as principal

component analysis (PCA) or independent component analysis (ICA), that have been previously used to

analyze EELS maps. Indeed, ICA and PCA may perform poorly for linear spectral mixture analysis due to the

strong dependence between the abundances of the different materials. One example is presented here to

demonstrate the potential of this technique for EELS analysis.

1. Introduction

Over the two last decades, scanning transmission electron

microscopy (STEM) has benefit from important advances in elec-

tron-based instrumentation and technology. These recent advances

have enabled the development of electron energy-loss spectroscopy

(EELS). EELS provide spectrum-images, that have been widely used

in various applications, including material science and chemical

analysis [1,2]. The multidimensional data coming from EELS analysis

exploit inherent spatial information to build elemental maps. An

elemental map is useful per se, however it does not exploit

additional crucial information present in the acquired spectrum

image. As EELS signal is sensitive to chemical changes and atom

environment, building a map of the different materials would be

more much more relevant. Therefore, there is a real need for

efficient techniques to process EELS spectrum-images, able to

identify and quantify the spectral components that represent the

different compounds present in the imaged sample.

Attempts to extract information from EELS spectra were

conducted in 1999 mainly based on multivariate data analysis

techniques, specifically principal component analysis (PCA) [3].

A PCA-based method was written for DigitalMicrograph and

commercialized by Ishizuka in 2001 [4] and is now rather widely

used for data filtering and dimensional reduction [5]. However,

such analysis faces the difficulty of extracting physically mean-

ingful spectra from the computed eigenvalues.

Conversely, independent component analysis (ICA) aims at

identifying statistically independent components from multivari-

ate data. In 2005, Bonnet and Nuzillard [6] applied the ICA-based

SOBI algorithm to process spectrum image data set. The authors

noticed that, since EELS spectra are not composed of separated

peaks, the independence hypothesis is not fulfilled. To overcome

this issue, successive derivatives of EELS-spectra are analyzed.

From this analysis, it seems that first derivatives produce more

interpretable results than second derivatives. Unfortunately, this

finding was empirical and no theoretical argument was found to

justify this point. De La Peña proposed in [7] to use a kernelized

version of ICA. This approach allows C, SnO2 and TiO2 signals to be

successfully separated while analyzing a spinodally decomposed

solid solution. Satisfactory quantitative analysis was obtained but

no fine structure analysis was performed. The authors noticed

that difficulties could be encountered because of multiple scatter-

ing and energy instabilities introducing non linearity.

Recently a matrix factorization technique has been proposed

to map plasmon modes on silver nanorods [8]. The analysis,

relying on the software AXSIA developed by Keenan [9] consists in

looking for a rotation matrix to be applied on orthogonal factors

to maximize the intrinsic ‘‘simplicity’’ of the decomposition.
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Specifically, the optimal solution is defined by the sparsity of the

spatial distribution of each individual material.

In a significantly different area – namely remote sensing and

geoscience – reflectance spectroscopy is widely used to charac-

terize and discriminate materials on the Earth surface for various

applications [10]. Usually mounted on aircrafts, balloons or

satellites, spectral sensors collect electromagnetic radiations from

the Earth surface. Most of the recorded signals are reflectance

spectroscopic signals measured in the infra-red/visible range.

The collection of these signals over an observed scene provides

a multi-band image formed as a 3-dimensional data cube. Each

pixel of the atmospheric-corrected image is characterized by a

vector of reflectance measurements. Specifically, hyperspectral

images are composed of pixels with several hundreds of narrow

and contiguous spectral bands.

Faced with this amount of data, the geophysicist community has

developed analysis methods to extract physical information from

these images. One of the main objectives of these methods is to

identify spectral properties corresponding to distinct materials in a

given scene and thus to get classification maps of the image pixels.

However, because of the intrinsically limited spatial resolution of

the hyperspectral sensors, several materials (e.g., water, grass,

mineral typesy) usually contribute to the spectrum measured at

a given single pixel. The resulting spectral measurement is a

combination of the individual spectra that are characteristic of the

macroscopic materials. Consequently, techniques to estimate the

constituent substance spectra and their respective proportions from

mixed pixels are needed. Spectral unmixing is the procedure that

aims at (i) decomposing the measured pixel spectrum into a

collection of constituent spectra, or endmembers, and (ii) estimating

the corresponding fractions, or abundances, that indicate the propor-

tion of each endmember present in the pixel [11].

What is usually known as )spectrum image* in the microscopist

community corresponds very precisely to a )hyperspectral image* for

the geoscience-related applications. The analogy between these two

fields of research is undeniable. However, at the present time

microscopists are less advanced in their ability of conducting efficient

multivariate analysis of their data. In this work we describe how a

recent spectral unmixing algorithm developed by Dobigeon et al. [12]

for analyzing hyperspectral images can be successfully applied to

spectrum images resulting from EELS maps.

2. Methods and experimental setup

2.1. Spectral mixture analysis

This paragraph formulates the so-called spectral unmixing or

spectral mixture analysis. Let Y denote the L by N observed data

matrix that gathers the whole set of N measured pixel spectra. Each

column of the Y is a vector of size L which corresponds to the

reflectances measured in the L spectral bands. The spectral mixture

analysis (SMA) conducted on the spectrum image consists of decom-

posing this matrix Y into a product matrix SA. In this decomposition

scheme, each column of the L by R matrix S is the spectral signature

of a constituent (endmember). Conversely, each column of A is a set

of R coefficients corresponding to the relative proportions of the

signatures in the pixels. Thus, like any factorization matrix method,

SMA estimates the two latent variables S and A leading to the

product SA that best approximates the observed matrix Y. Since this

decomposition is non-unique, the problem of estimating S and A

from Y is ill-conditioned. To reduce the set of admissible solutions,

additional constraints on S and A are considered. First, as any non-

negative matrix factorization (NMF) approach, the elements of S and

A are assumed to be positive. Moreover, since the coefficients in each

column of A represent proportions, it is natural to consider an

additional sum-to-one constraint on these columns. This constrained

matrix factorization problem has been widely addressed in the

geoscience and remote sensing literature since SMA is a crucial step

in analyzing multi-band images, e.g., hyperspectral data. Note that,

from a geometrical point of view, SMA consists of identifying the

vertices of a lower dimensional simplex formed by the observed data

(Fig. 1). Indeed, under the positivity and additivity constraints

introduced previously, the observed spectral vectors form a simplex

whose vertices correspond to the endmembers to be identified. Rþ1

pure endmembers spectra form the vertices of an R-simplex. Thus, as

examples, a 2-simplex is a triangle (Fig. 1), a 3-simplex a tetrahedr-

ony Several algorithms of the geoscience and remote sensing

literature have proposed to exploit this geometrical formulation to

solve the spectral unmixing problem. Vertex Component Analysis

(VCA) is one of the most popular geometric algorithm [13]. It consists

of iteratively (i) projecting the data onto the direction orthogonal to

the subspace spanned by the endmembers previously identified (ii)

assigning the extreme projection as a new endmember.

Geometrical algorithms have the great advantage of being

computationally efficient. However, most of them, such as VCA,

rely on the hard hypothesis of ‘‘pure pixels’’, i.e., they assume that

the endmembers are present among the observed pixels. Unfor-

tunately, this assumption can be rarely ensured and alternative

strategies must be considered.

In this work, SMA is conducted with the Bayesian Linear

Unmixing (BLU) method proposed by Dobigeon et al. [12].

Originally developed to address the hyperspectral unmixing of

remote sensing images, BLU relies on a Bayesian formulation of

the estimation problem. This Bayesian framework allows the

positivity and sum-to-one constraints introduced above to be

conveniently included into the observation model.

The proposed BLU method has the great advantage of recovering

the endmember signatures S and their respective proportions A

jointly in a single step. Naturally, this strategy casts SMA as a standard

blind source separation (BSS) problem. Moreover, contrary to geome-

trical based algorithm like VCA, it does not require the assumption of

having pure pixels among the data. Moreover, note that BLU solves

the endmember estimation problem directly on a lower dimensional

space, exploiting the intrinsic geometrical interpretation of SMA

noticed above. By conducting SMA in the subspace spanned by the

identified simplex, the number of freedom associated with the

parameters to be estimated is significantly reduced when compared

to other algorithms dedicated to SMA.

The methodology of BLU can be summarized as follows. First,

appropriate prior distributions p(S) and p(A) are assigned to the

unknown parameters S and A, respectively. These distributions are

chosen to ensure the positivity and sum-to-one constraints imposed

on the unknownmatrices S and A. Then, based on this prior modeling

Fig. 1. Geometrical formulation of spectral mixture analysis (SMA). The scatter-

plot represents the data observed in a 2-D space. The mixed pixels (gray circles)

belong to the simplex (simplest geometric figure that is not degenerate in

n-dimensions), whose vertices are the 3 endmembers. SMA algorithms exploit

different properties of the simplex.



and the well-admitted assumption of a Gaussian likelihood p(Y9S, A),
the joint posterior distribution p(S, A9Y) is computed using the Bayes

paradigm. Unfortunately, this posterior is too complex to easily derive

the closed-form expressions of the standard Bayesian estimators,

such as the maximum a posteriori or posterior mean. Consequently, a

Markov chain Monte Carlo (MCMC) algorithm is designed to generate

samples S(t) and A(t) (t¼1,yNMC) asymptotically distributed accord-

ing to the posterior of interest. Finally, the Bayesian estimators of the

endmember matrix S and the proportion matrix A are then approxi-

mated using these NMC generated samples. Note that a Matlab& code

of the BLU algorithm is freely available online [12].

2.2. Experimental data

In the following sections, SMA of a spectrum-image of nano-

particles is conducted. More precisely, the ability of BLU to

provide interpretable spectral signatures is demonstrated, thus

overcoming the standard limitations inherent to other multi-

variate analysis techniques, such as PCA and ICA.

The analyzed dataset consists of a 64�64 pixel spectrum-

image acquired in 1340 energy channels over a region composed

of several nanocages in a boron-nitride nanotubes (BNNT) sample.

Note that nanocages are supported by a holey carbon film for TEM

analysis. These data have been extensively described and ana-

lyzed in [14] and a high angle dark field image of the region of

interest is depicted in Fig. 2. In this study, ELNES )fingerprints* for

different bonding configurations of boron (B–B, B–O, B–Npn,

B–Nsn) have been extracted from selected area of the sample.

Then reconstructed spectra are computed according to a linear

combination of a power law and four fingerprints thanks to a

multiple least squares fitting procedure. Fig. 3 displays character-

istic spectra with the involved edges (B–K, C–K, N–K and O–K).

3. Results

3.1. Principal component analysis

PCA has demonstrated its ability to extract relevant informa-

tion from multidimensional data. For instance, this method and

its application to EELS data have been described in [3]. Moreover,

this powerful multivariate analysis technique is also able to

provide a minimal representation of the signal of interest,

performing an explicit dimensionality reduction. In particular, in

the specific context of SMA and according to the geometrical

interpretation of spectral unmixing given in the previous section,

the intrinsic dimension of the data is straight related with the

number of endmembers to be recovered. When the mixed pixels

are assumed to be obtained from the constrained linear combina-

tion of R spectral components, only R-1 dimensions are required

to represent the data without loss of any information.

The method commonly advocated to determine the intrinsic

dimensional of the data is to monitor the eigenvalues obtained by

PCA. Only eigenvectors associated with eigenvalues of highest

magnitudes are retained as significant contributions. Several

criteria have been proposed to decide on the number of relevant

eigenvalues. One solution consists in plotting the logarithm

of these eigenvalues previously arranged in decreasing order.

Ideally, smallest values related to noise correspond to the final

linear part of the plot. However, the actual dimensionality of the

data is generally difficult to assessed in practice, since changes

between two adjacent eigenvalues may not be significant. This is

typically the case for real data encountered in hyperspectral

imagery, such as the HYDICE image scene. In [15], the authors

conclude that only a crude estimate of the number of signal

sources can be provided. Indeed the signature of an unique target

may vary significantly from one area to another. Moreover, signal

of weak amplitude might be difficult to separate from noise.

The eigenvalues for the analyzed spectrum-image are plotted in

Fig. 4. As expected, the threshold cannot be clearly defined since there

is no drastic drop in the eigenvalues distribution. The main objective

of the study is to separate B–Npn from B–Nsn while keeping a

minimum number of components for the other signatures. In

practice, the analysis of the considered EELS dataset has been

conducted with a number of spectral signatures R ranging from 6

to 8 for each evaluated analysis method (PCA, ICA and SMA).

PCA has been performed with R¼8 using the open source

Hyperspy toolbox [7], with a weighted version of PCA. The first

eight spectra corresponding to PCA eigenvectors of highest

relevance are displayed in Fig. 5. It clearly appears that these

components do not correspond to any meaningful physical

spectra. Consequently, they do not allow any interpretation,

quantification or comparison with reference spectra. This can be

explained by the fact that PCA searches for orthogonal compo-

nents, which is not a realistic assumption for EELS application.

3.2. Independent component analysis

Whereas PCA searches for orthogonal components, ICA aims

at identifying statistically independent components. Different
Fig. 2. HADF image corresponding to a 64�64 spectrum-image recorded in an

area rich in nanoparticles containing boron (pure boron, boron oxide or h-BN).
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measures of independence have been exploited in the literature,

corresponding to different algorithms. In this work ICA has been

performed using the open source Hyperspy toolbox [7], choosing

the CubICA algorithm. In contrast to other ICA methods, CubICA

can be used without any parameter adjustments. It is thus easy to

use and has been already applied for EELS spectrum-imaging data

analysis. After visual expertise of the results obtained for R¼6,

R¼7 and R¼8 components, we considered that R¼7 provides the

most physically interpretable results. The identified components

and their respective abundance maps are depicted in Figs. 6 and 7,

respectively. The component IC5 is clearly identified as amor-

phous carbon and the map corresponds to the carbon supporting

film. The 3 components IC1, IC4 and IC7 are associated with pure

Boron and the corresponding abundance maps match those

obtained in [14] for this specific compound. The separation of

the signature into 3 different components may be explained by

thickness effects. By analyzing the abundance map associated

with IC2, this component can be identified as B–Npn, but its

features are significantly different from those of the reference

spectrum in [14] and do not correspond to any proper EELS edge.

Similarly IC3 should correspond to B2O3. However, whereas O–K

edge appears properly, no real physical edge for the B–K is

obtained. Finally, unfortunately, component IC6 does not corre-

spond to physically acceptable spectra and its abundance map is

not interpretable. As a consequence, we have to conclude that ICA

has failed to completely unmix the signal sources. In particular,

we do not obtain the signature for B–Npn, B–Nsn. This limitation of

ICA has already been noticed in [16]. Note that considering other

numbers of components does not significantly improve the

results.

We also tried to perform the analysis by restricting the energy

range to a window corresponding to B–K edge, i.e., 188–206 eV,

following the strategy in [14]. However, once again, ICA fails to

unmix properly the components. By choosing the energy range

330–610 eV, which only corresponds to Ca, N and O, satisfying

unmixing results can be obtained with 4 components: background,

BN, B2O3 and pure boron (Figs. 8 and 9). In this case, the differences

between the two orientations of h-BN are too small to be detected on

the N–K edge, providing only one component for h-BN. Consequently,

it seems that ICA performs better with high energy ranges, as it was

the case in [7] with a 430–800 eV energy window. According to [7],
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this could be explained by non-linear effects caused by multiple

scattering and by the variance of the C–K edge which is of the same

order of magnitude as the other signals. In the analyzed example,

since B–K is the edge of interest, the energy levels that contain

this non-linearity cannot be removed from the analysis without

losing crucial and discriminative information initially contained in

the data.

3.3. Spectral mixture analysis with VCA and BLU

SMA of the EELS spectrum-imaging data is conducted by using

the BLU algorithm presented in paragraph 2.1. We found that

R¼8 give the most satisfying results. The BLU algorithm has been

initialized with endmembers provided by the VCA algorithm

introduced in Section 2.1. Unmixing results provided by VCA are

also reported to be compared with endmembers identified by

BLU. VCA and BLU calculations were performed in the Matlabs

(Release 2010b) environment.

Results obtained with VCA are presented in Figs. 10 and 11.

It clearly appears that (i) all spectra correspond to realistic

EELS spectra with characteristic edges on a decreasing back-

ground, and (ii) the related maps correctly separate different

areas on the sample, which was not the case for maps obtained

with ICA. The comparison of maps and endmembers with results

obtained in [14] allows some target signature to be easily

identified:

ÿ According to the C map of [14], component VCA1 corresponds

to the C supporting film.

ÿ VCA2 and VCA6 both correspond to pure B in [14]. This is

similar to the case of AVIRIS hyperspectral data where the

)playa* signature is separated into two distinct regions [15].

It is likely that the splitting of the pure-B component does not

correspond to 2 physically distinct signals.

ÿ VCA3 is related to holes in the sample, thus there is no

characteristic signal. This component is nevertheless necessary

to account for the absence of signal in these pixels.

ÿ VCA4 corresponds to B–Nsn but the map is slightly different

from the one obtained in [14].

ÿ VCA5 can be associated with B2O3 since fine structure in the

corresponding abundance map the presence of O are in good

agreement with results obtained in [14] for boron oxide.

ÿ Component VCA7 corresponds to B–Npn, with a observable

N–K edge.

The endmember spectra estimated by the proposed BLU

algorithm are depicted in Fig. 12 and the abundance maps in

Fig. 13. For some components, results are quite similar to those

obtained with VCA.

ÿ VCA7 and BLU7 correspond to B–Npn with an identifiable

N–K edge.

ÿ VCA4 and BLU4 correspond to B–Nsn.

ÿ VCA1 and BLU1 correspond to the C supporting film.

ÿ Pure B is separated into two components, BLU2 and BLU6

(VCA2 and VCA6, respectively).

However some endmembers unmixed by BLU are significantly

different.

ÿ Whereas B–O signature was divided into 2 distinct compo-

nents with VCA (VCA5 and VCA8), BLU is able to identify only

one spectral signature with a strong O signal (BLU5).

ÿ Vacuum signal is classified into 2 components (BLU3 and

BLU8).

This later feature is quite difficult to be interpreted. When

applied with only 7 components, the BLU algorithm does not

separate the components corresponding to B–Npn and B–Nsn

although the vacuum signature is still decomposed into two
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distinct signatures. Some authors report that some minor com-

ponents can be masked by the spectral variability of major

components [10,15,17]. It can be thus necessary to consider a

number of components greater that the number of targets to be

identified.

Restricting the analysis to an energy window corresponding to

B–K edge does not improve significantly the results. Furthermore,

when considering only a restrictive part of the spectra, relevant

information composed of the different edges can be lost. For

instance, endmember BLU5 with a strong O–K edge is associated

with a B–K edge whose fine structure undoubtedly corresponds to

B2O3. Endmember BLU4 corresponding to a high pn/sn ratio for

the B–K edge includes a N–K edge with the same feature (Fig. 14).

The maps obtained with BLU seem to be in good agreement with

those presented in [14], in particular with a higher intensity of

component BLU4 corresponding to particle 2 (particles are located

in Fig. 2). The small particle 3 is also better defined with BLU7 than

with VCA7. This better agreement of the maps with the one found in

[14] illustrate the accuracy of the BLUmethod when conducting SMA.

4. Discussion

PCA is one of the most commonly used technique to identify

significant patterns from multivariate data. As the EELS signatures to

be recovered are not orthogonal, components recovered by PCA do

not have any physical meaning. As a consequence, it is quite

legitimate to conclude that PCA fails to perform interesting spectral

unmixing. Nevertheless, since the most relevant components identi-

fied by PCA can be used to reconstruct the spectrum-image, PCA can

be advocated as a powerful filtering technique, e.g., to denoise the

measured signal. Traditional chemical mapping can then be per-

formed on the filtered spectrum-image with a significant increase of

the signal-to-noise ratio. However, to go further in the data analysis, it

is necessary to resort to more advanced analysis methods.

In [14] bonding maps have been obtained by fitting reference

spectra manually extracted from regions of pure compounds.

Nevertheless, this supervised method requires a careful inspec-

tion of both the elemental maps and the fine structure to correctly

select the reference spectra. Advantages of fully unsupervised

analysis such as SMA are to rely as little as possible on these

subjective choices operated by an expert. In addition, in certain

practical circumstances, these choices can be not straightforward.

For instance, the pure boron map of [14] actually corresponds to

2 distinct components identified when conducting SMA (BLU2

and BLU6). Consequently, in this typical case, it would be difficult

to decide which component should be chosen as a reference for

the least square fitting method employed in [14].

In various application fields, ICA has been considered as an

efficient tool to extract sources from mixed signals. Plenty of

ICA-based methods have been proposed in the literature,

and numerous toolboxes are even freely available. These matrix

factorization techniques rely on the independence of the

signatures to be recovered. However, independence is rather a

stringent condition in the targeted application focused in this

paper. Indeed, EELS spectrum-images seldom fulfill this critical

requirement. Consequently, even if ICA has provided interesting

results in some specific cases [7,18], components extracted

by this methodology have been demonstrated to be difficulty

interpretable.
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Fig. 9. Maps of the spectral components extracted by CubICA for a limited energy range (the spectral signatures are depicted in Fig. 8).



Contrary to PCA and ICA, SMA does not require any orthogonality

or independence assumptions on the components. Conversely, by

explicitly constraining the signatures to be non-negative and the

abundances to be related to proportions (i.e., with sum-to-one and

positivity constraints), SMA allows the interpretability of the identi-

fied patterns to be guaranteed. The statistical BLU algorithm,

designed to perform SMA, was able to extract endmembers close

to the reference spectra manually extracted in [14]. Contrary to VCA

VCA1 VCA2 VCA3 VCA4

VCA5 VCA6 VCA7 VCA8

Fig. 11. Maps of the spectral components extracted by VCA (the spectral signatures are depicted in Fig. 10).
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Fig. 10. Spectral components extracted by VCA. These endmembers can be identified as real spectral, since they are chosen among the observed pixels. The corresponding

maps are depicted in Fig. 11.



which is a geometrical unmixing method, BLU does not require the

presence of pure pixels in the analyzed spectrum-image, i.e., pixels

composed of a unique endmember. Consequently, BLU has

demonstrated undeniable abilities to extract relevant components

from EELS spectrum image, and to provide an accurate mapping of

these components over the sample.
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Fig. 13. Maps of the spectral components estimated by BLU (the spectral signatures are depicted in Fig. 12).
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Fig. 12. Spectral components estimated by BLU. The recovered endmembers properly correspond to EELS spectra. Contrary to VCA, these signatures are not initially

present in the measures EELS spectrum-image. Indeed, BLU does not require the assumption of the presence of pure pixels in the analyzed image. The corresponding maps

are depicted in Fig. 13.



5. Conclusions

This work demonstrated the interest of using spectral unmixing,

initially devoted to remote sensing images, to perform fine

structure analysis of EELS spectrum-images. Several unmixing

methods, namely VCA and BLU, were presented as alternative

analysis methods to PCA, ICA or least square fitting. According to

the conducted study, VCA algorithm was noteworthy for its low

computational complexity and could be used on line for a first

check of the data during the STEM experiments. At a higher

computational price, BLU provided a finer and more relevant

mapping of the spectral components. In particular, obtained

results were all the more promising as the studied sample was

rather complicated, with the presence of vacuum, amorphous

carbon support, contamination unexpected elements as Ca.

Spectral mixture analysis, and more specifically the BLU algo-

rithm, represents a significant step in the evolution of the multi-

variate analysis methods able to extract relevant information from

EELS data. More generally, SMA brings an efficient solution to the

crucial issue that consists of processing an increasing amount of

collected data—in 1998 the data set consisted of only 64 spectra [3],

whereas spectrum images of 128�128 pixels are now frequently

acquired. One of the main advantages of spectral unmixing meth-

odology is its ability of providing more detailed and more inter-

pretable information about the fine structure of the edges. This work

significantly widens the range of analysis methodologies available

for the EELS community.
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