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Segmentation of Skin Lesions in 2-D and 3-D

Ultrasound Images Using a Spatially Coherent

Generalized Rayleigh Mixture Model
Marcelo Pereyra*, Nicolas Dobigeon, Hadj Batatia, and Jean-Yves Tourneret

Abstract—This paper addresses the problem of jointly es-

timating the statistical distribution and segmenting lesions in

multiple-tissue high-frequency skin ultrasound images. The

distribution of multiple-tissue images is modeled as a spatially

coherent Þnite mixture of heavy-tailed Rayleigh distributions.

Spatial coherence inherent to biological tissues is modeled by

enforcing local dependence between the mixture components.

An original Bayesian algorithm combined with a Markov chain

Monte Carlo method is then proposed to jointly estimate the

mixture parameters and a label-vector associating each voxel to

a tissue. More precisely, a hybrid Metropolis-within-Gibbs sam-

pler is used to draw samples that are asymptotically distributed

according to the posterior distribution of the Bayesian model. The
Bayesian estimators of the model parameters are then computed

from the generated samples. Simulation results are conducted

on synthetic data to illustrate the performance of the proposed
estimation strategy. The method is then successfully applied to the

segmentation of in vivo skin tumors in high-frequency 2-D and

3-D ultrasound images.

Index Terms—Bayesian estimation, Gibbs sampler, heavy-tailed
Rayleigh distribution, mixture model, Potts–Markov Þeld.

I. INTRODUCTION

U LTRASOUND imaging is a longstanding medical

imaging modality with important applications in di-

agnosis, preventive examinations, therapy and image-guided

surgery. In dermatologic oncology, diagnosis relies mainly on

surface indicators such as color, shape, and texture whereas

the two more reliable measures are the depth of the lesion and

the number of skin layers that have been invaded. Currently,

these can only be evaluated after excision. Recent advances in

high-frequency transducers and 3-D probes have opened new

opportunities to perform noninvasive diagnostics using ultra-

sound images. However, changing dermatological practices

requires developing robust segmentation algorithms. Despite

the extensive literature on the subject, accurate segmentation

*M. Pereyra is with the University of Toulouse, IRIT/INP-ENSEEIHT, 31071
Toulouse Cedex 7, France (e-mail: marcelo.pereyra@enseeiht.fr).

N. Dobigeon, H. Batatia, and J.-Y. Tourneret are with the Univer-
sity of Toulouse, IRIT/INP-ENSEEIHT, 31071 Toulouse Cedex 7,
France (e-mail: nicolas.dobigeon@enseeiht.fr; hadj.batatia@enseeiht.fr;
jean-yves.tourneret@enseeiht.fr).

of ultrasound images is still a challenging task and a focus

of considerable research efforts. Current segmentation tech-

niques are extremely application-speciÞc, developed mainly for

echocardiography followed by transrectal prostate examination

(TRUS), kidney, breast cancer and (intra) vascular diseases

(IVUS) [3]. A survey of the state-of-the-art methods up to 2006

is presented in [3].

Segmentation in echocardiography, TRUS and IVUS is

mainly concerned with the detection and tracking of organ

boundaries. Lesion delimitation is signiÞcantly different and

more challenging. On one hand, unlike organs, lesions ex-

hibit soft or “fuzzy” edges that are difÞcult to capture with

boundary detection techniques. On the other, their echogenic

and statistical characteristics are visibly different from those

of their surrounding tissues. This fact has motivated the devel-

opment of region-based segmentation techniques as opposed

to boundary-based methods, which are still an active research

subject in other medical ultrasound domains [4]–[6]. Similarly,

lesions do not have anatomically predeÞned shapes as is the

case for organs and are unlikely to beneÞt in the near future

from recent works on anatomical or learned statistical shape

priors [7]–[9]. This might change with the improvement of

geometric tumor growth models derived from computational

biology [10]. Early lesion segmentation methods have focused

mainly on thresholding [11], [12] and were superseded by

texture-based techniques. Madabhushi et al. derived an active

contour based on texture and boundary features [13]. Huang

et al. proposed a texture segmentation technique based on a

neural network and a watershed algorithm [14]. In addition,

Gaussian mixture models coupled with Markov random Þelds

were proposed to segment lesions based on their region sta-

tistics [15], [16]. Moreover, since the important work of Dias

et al. [17], Rayleigh mixtures have become a powerful model

for region-based ultrasound image segmentation. The use of

Rayleigh instead of Gaussian distributions is strongly justiÞed

by the physics of the image formation process that generates

B-mode ultrasound images [18]. Based on the assumption that

each biological tissue has its proper Rayleigh statistics, tissue

segmentation is achieved by separating the mixture compo-

nents. This is achieved by Þnding the maximum-likelihood

(ML) or maximum-a-posteriori (MAP) estimators of the lesion

contours. The optimization problem stemming from the ML

and MAP estimators was solved in [17] using an interactive

dynamic programming algorithm that jointly estimated the

MAP contour and the mixture parameters. The authors per-

formed several experiments on real echocardiography images

and showed that the proposed method accurately segments

heart walls.



With the development of deformable models, Brusseau et al.

proposed a statistical parametric active contour (AC) [19]. A

parametric AC is a regularized curve deÞned by a set of points

in the image domain that can be moved to maximize the seg-

mentation posterior [20]. In the work of Brusseau et al., the

two-mixture components were separated using a statistical re-

gion AC which iteratively estimated the Rayleigh parameter

of each component and evolved to optimize the segmentation.

Also, given that convergence to a global optimum is not guar-

anteed, the authors proposed an ad-hoc automatic initialization

technique. This method was further improved by Cardinal et al.

[21] who substituted the parametric AC by an edge-based level

set (LS) derived from the original work of Osher and Sethian

[22]. A second modiÞcation was the introduction of an expecta-

tion-maximization (EM) algorithm to estimate the mixture pa-

rameters during initialization, thus removing the need to esti-

mating them iteratively. The authors reported that the Rayleigh

mixture LS method outperforms classical gradient-based LS at

intravascular image segmentation. In addition, Saroul et al. re-

cently applied the Rayleigh mixture model to prostate segmen-

tation in transrectal ultrasound images [23]. In this case, the LS

was replaced by a deformable model based on a super ellipse

whose evolution was computed using a variational algorithm.

The authors showed that the regularization introduced by this

deformable model could compensate partial occlusion.

Rayleigh-mixture models were extended to tissues with gen-

eralized Rayleigh statistics by Destrempes et al. [24], who pro-

posed a carotid artery segmentation method based on a Nak-

agami mixture and a deformable model. As in [21], the estima-

tion of the mixture parameters was achieved using an EM algo-

rithm under the assumption that observations are independent.

The evolution of the deformable model was computed using

exploration/selection, a stochastic optimization algorithm that

converges to the global optimum. However, since the mixture

parameters are estimated with an EM algorithm, overall global

convergence is not guaranteed. One other important contribu-

tion is the Rayleigh region-based LS method presented in [25],

that adapted the fundamental work of Chan and Vese [26] on

ACs without edges to ultrasound images with Rayleigh statis-

tics. These region-based LS should be very appropriate for ul-

trasound images of lesions as they are able to segment objects

with smooth edges under poor signal-to-noise ratio conditions.

This work was recently generalized to all the distributions from

the exponential family (i.e., Gamma, Rayleigh, Poisson, etc.) in

[27]. However, these methods have not yet been applied to le-

sion segmentation in ultrasound images.

This paper addresses the problem of jointly estimating the

statistical distribution and segmenting lesions in multiple-tissue

2-D and 3-D high-frequency skin ultrasound images. To our

knowledge this is the Þrst ultrasound image segmentation

method speciÞc to skin lesions. We propose to model mul-

tiple-tissue images using a heavy-tailed Rayleigh mixture, a

model that has been inspired by the single-tissue model studied

in [28]. The proposed mixture model is equipped with a Markov

random Þeld (MRF) that takes into account the spatial correla-

tion inherent to biological tissues. Note that Potts Markov Þelds

are particularly well suited for label-based segmentation as

explained in [29] and further studied in [30]–[33]. Potts Markov

models enhance segmentation because of their ability to capture

the spatial correlation that exists between neighbor class labels

[30]. This correlation arises naturally from the spatial organi-

zation of biological tissues and is particularly important in skin

because of its layered structure. Finally, while the Potts prior is

an effective means to introduce spatial correlation between the

class labels, it is interesting to mention that other more complex

models could have been used instead. In particular, Marroquin

et al. [34] have shown that better segmentation results may be

obtained by using a two-layer hidden Þeld, where hidden labels

are assumed to be independent and correlation is introduced at

a deeper layer by a vectorial Markov Þeld. Similarly, Woolrich

et al. [35] have proposed to approximate the Potts Þeld by

modeling mixture weights with a Gauss–Markov random Þeld.

However, these alternative models are not well adapted for 3-D

images because they require signiÞcantly more computation

complexity and memory resources than the Potts model. These

overheads result from the fact that they introduce

and hidden variables, respectively, against only for the

Potts model ( being the number of voxels and the number

of classes). In addition, the segmentation problem is solved

using a stochastic optimization algorithm with guaranteed

global convergence, removing the need for an initial contour

or supervised training. The paper is organized as follows. The

statistical model used for an ultrasound image voxel is intro-

duced in Section II. Section III introduces the Bayesian model

used for the segmentation of ultrasound images. An hybrid

Gibbs sampler generating samples asymptotically distributed

according to the posterior distribution of this Bayesian model is

described in Section IV. Experiments on synthetic and real data

are presented in Section V. Conclusions are Þnally reported in

Section VI.

II. PROBLEM STATEMENT

This section describes the mixture model used for ultrasound

image voxels. Let denote an observation, or voxel,

in an envelope (B-mode) ultrasound image

without logarithmic compression. We assume that is deÞned

by means of the widely accepted point scattering model [36]

(1)

where is the total number of punctual scatterers,

denotes the analytic extension of the interrogating pulse ,

is the cross-section of the th scatterer, is

the time of arrival of the th backscattered wave and is the

sampling time associated with . Recent works on scattering

in biological tissues have established that , as deÞned above,

converges in distribution towards an -Rayleigh distribution as

increases [28]

(2)

where denotes convergence in distribution, the parame-

ters and are the characteristic index and

spread associated with the th voxel.

This paper considers the case where the ultrasound image is

made up by multiple biological tissues with high scatter density

(i.e., ), each with its own echogenicity and therefore its

proper speckle statistics. In view of this spatial conÞguration,



we propose to model by an -Rayleigh stationary process with

piecewise constant parameters. More precisely, we assume that

there is a set of stationary classes such that

(3)

where and are the parameters associated with the class

(i.e., the th biological tissue). As a consequence, it is possible

to express the distribution of by means of the following mix-

ture of -Rayleigh distributions

(4)

where is the number of classes and represents the relative

weight (or proportion) of the th class with . Lastly,

to take into account the spatial coherence inherent to biological

tissues we will consider that the class of a given voxel depends

on those of its neighbors.

It should be noted that the proposed -Rayleigh mixture

model is closely related to two other mixture models. On the

one hand it generalizes the Rayleigh mixture model, which has

been extensively applied to ultrasound image modeling. On the

other, it can be shown that before being transformed by acquisi-

tion and demodulation, radio-frequency ultrasound signals are

distributed according to a symmetric -stable distribution [28].

Hence, the proposed -Rayleigh mixture model can be inter-

preted as a transformation of the symmetric -stable mixture

model studied in [37]. In addition, it is interesting to mention

that the -Rayleigh distribution has been used successfully for

SAR images in [38] and [39]. The methods proposed in [38]

and [39] have been recently applied to characterize tissues in

annotated ultrasound images [28]. This paper extends those

methods by including in the estimation problem the identiÞca-

tion of regions in the image with similar -Rayleigh parameters

(each region being associated with a different tissue). This is

achieved by proposing a novel Bayesian estimation algorithm

based on the -Rayleigh mixture model (4) coupled with an

MRF prior that captures the spatial coherence inherent to bio-

logical tissues. Finally, akin to [19], [21], [24], [25], note that

the model (4) uses a simpliÞed image representation based on

regions and does not describe the boundaries between tissues

explicitly.

The following section addresses the problem of estimating

the parameters of the spatially coherent -Rayleigh mixture

model introduced in (4) and performing the segmentation of ul-

trasound images.

III. BAYESIAN MODEL

A label vector is introduced to map ob-

servations to classes (i.e., if and only

if ). This label vector will allow each image obser-

vation to be characterized and different kinds of tissues to be

discriminated. Note that the weights are directly related to

the labels through the probabilities for

. Consequently, the unknown parameter vector for the

mixture (4) can be deÞned as where with

and . This section

Fig. 1. Four-pixel (left) and eight-pixel (right) neighborhood structures. The
pixel considered appears as a void red circle whereas its neighbors are depicted
in full black and blue.

studies a Bayesian model associated with . This model re-

quires deÞning the likelihood and the priors for the unknown

parameters.

A. Likelihood

Assuming that the observations are independent and using

the mixture model (4), the likelihood of the proposed Bayesian

model can be written as

(5)

where denotes the subset of indexes

that verify and

(6)

is the probability density function (pdf) of an -Rayleigh dis-

tribution with parameters and and is the zeroth-order

Bessel function of the Þrst kind.

B. Parameter Priors

1) Labels: It is natural to consider that there is some cor-

relation between the probabilities of a given voxel

and those of its neighbors. Since the seminal work of Geman

[40], MRFs have become very popular to model neighbor cor-

relation in images. MRFs assume that the distribution of a pixel

conditionally to all other pixels of the image equals the distribu-

tion of this pixel conditionally to its neighbors. Consequently,

it is important to properly deÞne the neighborhood structure.

The neighborhood relation between two pixels (or voxels)

and has to be symmetric: if is a neighbor of then is

also a neighbor of . There are several neighborhood structures

that have been used in the literature. In the bidimensional case,

neighborhoods deÞned by the four or eight nearest voxels rep-

resented in Fig. 1 are the most commonly used. Similarly, in

the tridimensional case the most frequently used neighborhoods

are deÞned by the six or fourteen nearest voxels represented in

Fig. 2. In the rest of this paper four-pixel neighborhoods will be

considered for 2-D images and six-voxel neighborhoods for 3-D

images. Therefore, the associated set of neighbors, or cliques,

can only have vertical, horizontal and depth conÞgurations (see

[40] and [41] for more details).

Once the neighborhood structure has been established,

the MRF can be deÞned. Let denote the random vari-

able indicating the class of the th image voxel. In the case



Fig. 2. Six-voxel (left) and fourteen-voxel (right) neighborhood structures. The
voxel considered appears as a void red circle whereas its neighbors are depicted
in full black and blue.

of classes, the random variables take their

values in the Þnite set . The whole set of random

variables forms a random Þeld. An MRF is then deÞned

when the conditional distribution of given the other pixels

only depends on its

neighbors , i.e.,

(7)

where contains the neighbors of according to the neigh-

borhood structure considered.

In this study, we will Þrst consider 2-D and 3-D Potts Markov

Þelds as prior distributions for . More precisely, 2-D MRFs

are considered for single-slice (2-D) ultrasound images whereas

3-D MRFs are used for multiple-slice (3-D) images. In light of

the Hammersley–Clifford theorem, the corresponding prior for

can be expressed as follows:

(8)

where is the granularity coefÞcient, is the normalizing

constant or partition function [42] and is the Kronecker

function. The hyperparameter tunes the degree of homo-

geneity of each region in the image. A small value of induces

a noisy image with a large number of regions, contrary to a large

value of that leads to few and large homogeneous regions. In

this work, the granularity coefÞcient will be Þxed a priori.

However, it is interesting to mention that the estimation of

has been receiving a lot of attention in the literature [33],

[43]–[46]. Estimating the granularity coefÞcient using one of

these methods is clearly an interesting problem that will be

investigated in future work. Finally, it is interesting to note that

despite not knowing , drawing labels

from the distribution (8) can be easily achieved by using a

Gibbs sampler [47].

2) -Rayleigh Parameters: The prior for each characteristic

index is a uniform distribution on

(9)

This choice is motivated by the fact that the only information

available a priori about this parameter, is that it can take values

in the interval .

Fig. 3. DAG for the -Rayleigh mixture model (the Þxed nonrandom hyper-
parameters appear in dashed boxes).

The prior for each spread parameter is an inverse gamma

distribution with hyperparameters and

(10)

This choice is motivated by the fact that the inverse gamma dis-

tribution allows either very vague or more speciÞc prior infor-

mation to be incorporated depending on the choice of the hy-

perparameters and ( will be used in our

experiments corresponding to a vague prior distribution).

Assuming a priori independence between the parameters

and , the prior for is

(11)

We will also assume that the -Rayleigh parameters are inde-

pendent from the labels associated with the image voxels. Thus

the joint prior for the unknown parameters can be ex-

pressed as

(12)

where has been deÞned in (8) and in (11).

Fig. 3 presents the proposed Bayesian model as a directed

acyclic graph (DAG) summarizing the relationships between

the different parameters and hyperparameters.

C. Posterior Distribution of

Using Bayes theorem, the posterior distribution of

can be expressed as follows:

(13)

where means “proportional to” and the likelihood

and the joint prior have been deÞned in (5) and (12).

Unfortunately, the posterior distribution (13) is too complex

to derive closed form expressions for the minimummean square

error (MMSE) or MAP estimators of the unknown parameters

, and 1. One can think of using the EM algorithm [48] that

has received much attention for mixture problems (see [21]

and [24] for applications to ultrasound images). However, EM

algorithms have many known shortcomings. For instance, they

1Note that involves the potential of a Potts Markov Þeld and its in-
tractable partition function and that is the product of indeÞ-
nite integrals



suffer from convergence to local maxima or saddle points of

the log-likelihood function and sensitivity to starting values

[49, p. 259]. Note that analyzing the concavity properties of the

logarithm of (5) is not easy because the -Rayleigh distribution

does not belong to the exponential family. An interesting

alternative is to use a Markov Chain Monte Carlo (MCMC)

method generating samples that are asymptotically distributed

according to the target distribution (13) [47]. The generated

samples are then used to approximate the Bayesian estima-

tors. This strategy has been used successfully in many image

processing applications [50]–[54]. One sampling technique

allowing the parameters of ultrasound images to be estimated

is studied in the next section.

IV. HYBRID GIBBS SAMPLER

This section studies a hybrid Metropolis-within-Gibbs sam-

pler for generating samples that are asymptotically distributed

according to (13). The histogram of the generated samples is

guaranteed to converge to the posterior (13) [47, p. 269]. One

of the most popular methods for generating samples distributed

according to a distribution whose pdf or probability masses are

known up to a multiplicative constant is the Gibbs sampler.

The conventional Gibbs sampler draws samples according to the

conditional distributions associated with the distribution of in-

terest [here the posterior (13)]. When a conditional distribution

cannot be sampled easily, one can resort to a Metropolis–Hast-

ings (MH) move, which generates samples according to an ap-

propriate proposal and accept or reject these generated sam-

ples with a given probability. The resulting sampler is referred

to as Metropolis-within-Gibbs sampler (see [47] for more de-

tails about MCMC methods). The sampler investigated in this

section is based on the conditional distributions ,

, and that are described in the next para-

graphs (see also [55, Algor. 1]).

A. Conditional Probability

The label vector can be updated coordinate-by-coordinate

using Gibbs moves. More precisely, the conditional probabili-

ties can be computed using Bayes’ rule

(14)

where (it is recalled that is the number of

classes) and where is the vector whose th element has

been removed. The probability (14) is proportional to

(15)

where has been deÞned in (6) and is

evaluated using the approximations presented in paragraph

Section IV-D. Once all the quantities , , have

been computed, they are normalized to obtain the posterior

probabilities as follows:

(16)

Note that the posterior probabilities of the label vector in (15)

and (16) deÞne an MRF. Finally, samples are generated by

drawing discrete variables in with the respective

probabilities . Because of its large dimension,

sampling according to (16) is the most computationally inten-

sive step of the proposed hybrid Gibbs sampler. Therefore it is

important to chose an efÞcient implementation for this step. In

this work has been sampled using a parallel chromatic Gibbs

sampler [56].

B. Conditional Probability Density Function

The probability can be expressed as follows:

where is deÞned in (5) and .

The generation of samples according to is not easy

to perform.We propose in this paper to sample coordinate-by-

coordinate usingMHmoves. In this work, the proposal distribu-

tion is a truncated normal distribution centered on the previous

value of the chain with variance

(17)

where denotes the proposed value at iteration and

is the previous state of the chain. The hyperparameters are

adjusted to ensure an acceptance ratio close to , as recom-

mended in [57, p. 316]. This adjustment is performed dynam-

ically by a feedback loop that increases or decreases de-

pending on the acceptance ratio over the last 50 iterations.

Note that the proposal (17) results from the so-called random

walk MH algorithm [47, p. 245]. Finally, since the prior for

is uniform, the MH acceptance rate of the proposed move can

be expressed as follows:

(18)

where

and where the likelihoods and

have been computed using the approximations described in

Section IV-D.

C. Conditional Probability Density Function

The conditional pdf can be expressed as follows:



where is deÞned in (5) and .

Again, we propose to sample coordinate-by-coordinate by

using MHmoves. The proposal distribution associated with this

move is a truncated normal distribution centered on the previous

value of the chain with variance

(19)

where denotes the proposed value at iteration , is the

previous state of the chain and is the Gaussian distribution

truncated on . The acceptance ratio for this move is

(20)

where

and where the prior distribution has been de-

Þned in (10). Again, the likelihoods and

have been computed using the approxima-

tions described in Section IV-D.

In the particular case , the likelihood simpliÞes to a

Rayleigh distribution for which the prior is

conjugate. As a result the generation of samples from the pos-

terior reduces to drawing samples from the fol-

lowing inverse gamma distribution

(21)

where we recall that and .

D. Approximation of the Likelihood

Evaluating the likelihood function deÞned in (5) involves the

computation of the following indeÞnite integral

(22)

In the case where observations are represented using 8-bit pre-

cision (i.e., 256-gray levels) the integral can be precomputed for

each level and stored in a look-up-table. The data used in this

work is represented using 32-bit precision and the integral had

to be solved numerically. This computation is time-consuming

and is required for every observation and at every step of the

sampler. An efÞcient way to alleviate this computational com-

plexity is to use the following asymptotic expansions [58], [59]

(23)

as and

(24)

as , where the coefÞcients and are

The decision between using (23) or (24) for a particular value

has been determined by a threshold which has been computed

ofßine. This threshold and the choice of have been studied

empirically by comparing (23) and (24) to a numerical solution

of the true density (5). Appropriate threshold and values have

been selected ofßine for different values of and stored in

a look-up-table that is used by the proposed algorithm. Other

considerations regarding the implementation of (23) and (24)

have been studied in [58].

V. EXPERIMENTAL RESULTS

This section presents experimental results conducted on syn-

thetic and real data to assess the performance of the proposed

-Rayleigh mixture model and the associated Bayesian esti-

mation algorithm. In these experiments the algorithm conver-

gence has been assessed using the “between-within variance cri-

terion,” initially studied by Gelman and Rubin [60] and often

used to monitor convergence [61, p. 33]. This criterion requires

running parallel chains of length with different starting

values and computing the so-called potential scale reduction

factor (PSRF) that compares the between-sequence and within-

sequence variances [60]. A PSRF close to 1 indicates good con-

vergence of the sampler. In our experiments we have observed

PSRF values smaller than 1.01 which conÞrm the good con-

vergence of the sampler (a PSRF bellow 1.2 is recommended

in [62, p. 332]). These values were computed using

parallel chains of length whose Þrst 900-steps were

discarded.

A. Synthetic Data

To validate the proposed Bayesian method under controlled

ground truth conditions [i.e., known true class labels and

statistical parameters ], the algorithm described in

Section IV was Þrst applied to the synthetic three-component

-Rayleigh mixture displayed in Fig. 4(a). The parameters

associated with the mixture components of the three different

2-D regions are and .

Fig. 4(b) shows the resulting observation vector , which is the

only input provided to the algorithm. Note that the different ob-

servations are clearly spatially correlated. The proposed Gibbs

sampler has been run for this example using a two-dimensional

random Þeld with a four-pixel neighborhood structure and a

granularity coefÞcient . Fig. 5 shows histograms of the

parameters generated by the proposed Gibbs sampler. These

histograms are in good agreement with the actual values of the

different parameters. Moreover, the MMSE estimates and the

corresponding standard deviations for the different parameters

are reported in Table I. These estimates have been computed

from a single Markov chain of 25 000 iterations whose Þrst 100



Fig. 4. (a) True labels, (b) observations, MAP label estimates for (c) ,
(d) , and (e) .

Fig. 5. Histograms of parameters generated using the proposed Gibbs sampler.

iterations (burn-in period) have been removed. The MMSE es-

timates are clearly in good agreement with the actual values of

the -Rayleigh mixture components. Fig. 4(c) shows the class

labels estimated by the MAP rule applied to the last samples of

the Markov chain. The three classes are recovered with a few

misclassiÞcations due to the complexity of the problem.

In order to illustrate the effect of the granularity parameter, we

have considered other values of the parameter . Fig. 4(d) and

(e) show the class labels obtained with and .We

observe that increasing from 1.0 to 1.2 reduces signiÞcantly

the number of isolated misclassiÞcations at the expense of in-

creasing errors at the boundaries between the different classes.

Decreasing from 1 to 0.8 increases the number of misclassiÞ-

cations both at the boundaries and within regions.

TABLE I
PARAMETER ESTIMATION

Fig. 6. Simulated (log-compressed) US images of skin layers with an intra-
dermic lesion and the corresponding estimated labels. Images (a)–(c) depict
three slices of the 30-slice 3-D digital phantom. Images (d)–(f) show the corre-
sponding segmentation results. (a) Phantom (sl. 5/30). (b) Phantom (sl. 10/30).
(c) Phantom (sl. 15/30). (d) MAP (sl. 5/30). (e) MAP (sl. 10/30). (f) MAP
(sl. 15/30).

B. Simulated 3-D Ultrasound Image

The synthetic image studied previously is a toy image that

differs from a real ultrasound image in many aspects. These

aspects include the spatial organization of skin tissue as well as

the different physical phenomena intervening in the formation

of ultrasound images (i.e., noise, limited spatial resolution,

voxel anisotropy, attenuation, etc.). In order to consider a more

realistic scenario, the second set of experiments considers

a simulated 3-D phantom of skin tissue. This 3-D phantom

image has been simulated using a 3-D ultrasound simulator

[63], which has been conÞgured with the parameters of the

dermocup ultrasound system (Atys Medical, France) used in the

in vivo experiments of Section V-C. Three slices of the 30-slice

3-D phantom are shown in Fig. 6(a)–(c). The size of each

slice is 400 300 pixels. These images are displayed using

logarithmic compression. However the proposed algorithm

has been applied to B-mode images in linear scale. The 3-D

skin phantom contains three skin layers (epidermis, papillary

dermis, and reticular dermis), and one ellipsoidal intra-dermic

lesion. Fig. 6(d)–(f) shows the corresponding MAP estimated

labels obtained with the proposed method. We observe that

the skin layers and the lesion are clearly recovered with a few

misclassiÞcations due to the complexity of the problem. The

number of classes for this experiment has been set to

since there are three types of healthy tissue in addition to the

lesion. These results were computed using a 3-D MRF with

and a single Markov chain of 1000 iterations whose

Þrst 900 iterations (burn-in period) have been removed. The



reader is invited to consult the technical report [55] to see

segmentation results obtained with other values of .

C. Application to Real Data

After validating the proposed Gibbs sampler on synthetic

data, this section applies the proposed algorithm to the segmen-

tation of two skin lesions. Experiments were conducted using

3-D high-frequency B-mode ultrasound images of in vivo skin

tissues. These were acquired with a dermocup system (Atys

Medical, France), equipped with a single-element focalized

25 MHz wide-band (40%) probe sampled at 100 MHz with

a mechanic lateral step. The proposed -Rayleigh

mixture model describes the statistics of envelope (B-mode)

ultrasound images without logarithmic compression [28].

Therefore, all experiments have been conducted using this

type of data. However, to simplify their visual interpretation,

results are displayed using logarithmic compression, which is

a standard practice in ultrasound imaging [64]. Note that since

-Rayleigh envelope signals arise from symmetric -stable

radio-frequency signals [28] it would be possible to apply the

proposed method directly to the radio-frequency ultrasound

image by replacing the -Rayleigh mixture model (5) by a

symmetric -stable mixture model [37].

In this work, the number of classes is assumed to be known

a priori. This important parameter is set by the dermatologist

who determines visually the number of tissues within the region

to be processed. For skin tissues the number of classes depends

on the number of layers contained in that region (i.e., epidermis,

papillary (upper) dermis, reticular (lower) dermis, hypodermis)

in addition to the lesion. When the number of classes is over-

estimated, a region is generally divided into two homogeneous

parts. For instance, as shown in [55], the segmentation results

obtained for show an additional class to the core of

the lesion, which may correspond to a necrotic tissue. When the

number of classes is under estimated, the segmentation results

degrade signiÞcantly (see [55] for details).

The Potts granularity coefÞcient has been chosen heuristi-

cally by testing a few values between 0.5 and 1.5. These tests

have suggested that segmentation results best agree with expert

annotations for . Finally, was set to 1 in order to

minimize the risk of over-smoothing the segmentation results,

which was the main concern of dermatologists. The reader is

invited to consult the technical report [55] to see segmentation

results obtained with other values of . Future work will study

the estimation of jointly with the other unknown parameters

of the model, as in [52].

1) JustiÞcation of the -Rayleigh Mixture Model: The

-Rayleigh mixture model used in this work is based on the

assumption that the statistics of single-tissue regions can be

well described by an -Rayleigh distribution. To support this

assumption Fig. 7 compares the histogram obtained from a

B-mode ultrasound image of in vivo forearm dermis with the

corresponding -Rayleigh, Nakagami and Gamma distribution

Þts (additional Þts are provided in [28]). To better illustrate Þt-

ting at the tails, Fig. 7 displays the probability density functions

in logarithmic scale. We observe that the -Rayleigh distri-

bution provides the best Þt and is the only one to accurately

describe the heavy-tail of the histogram.

Fig. 7. Comparison of the B-mode histogram obtained from forearm dermis,
and the corresponding estimations using the Nakagami, Gamma, and
Rayleigh distributions. Plots presented in logarithmic scale to illustrate Þtting
at the tails.

Fig. 8. Log-compressed US images of skin lesion and the corresponding
estimated labels (white represents healthy white, red represents lesion) [1]).
(a) Dermis view with skin lesion . (b) ROI (slice 2).
(c) MRF Labels . (d) Independent Labels .

2) Preliminary 2-D and 3-D Experiments: The two fol-

lowing experiments illustrate the importance of introducing

spatial correlation between the mixture components. Fig. 8(a)

shows a skin lesion outlined by the red rectangle. This region

is displayed with coarse expert annotations (yellow curve) in

Fig. 8(b). It should be noted that annotations approximately lo-

calize the lesion and do not represent an exact ground truth. The

following experiments have been conducted with granularity

coefÞcient and the number of classes since there

are only two types of tissue (i.e., lesion and healthy reticular

dermis) within the region of interest (ROI). The results have

been computed from a single Markov chain of 1000 iterations

whose Þrst 900 iterations (burn-in period) have been removed.

First, the proposed Bayesian algorithm was used to label each

voxel of the ultrasound image as healthy or lesion tissue. The

estimated labels obtained using a bidimensional random Þeld

are displayed in Fig. 8(c). For comparison purposes, Fig. 8(d)

shows the estimation results when labels are considered a priori

independent, as in [1]. Due to the proposed MRF prior for the

labels, the spatial correlations between image voxels are clearly

recovered with the proposed segmentation procedure.



Fig. 9. Log-compressed US images of skin lesion and the corresponding es-
timated labels (white represents health, red represents lesion). Images (d)–(f)
show the results obtained by considering that voxel labels are independent, as
in [1]. Images (g)–(i) show the results obtained with the proposed 3-D Markov
random Þeld (MRF) method. (a) ROI (slice 1). (b) ROI (slice 2). (c) ROI (slice
3). (d) Ind. (slice 1). (e) Ind. (slice 2). (f) Ind. (slice 3). (g) MRF (slice
1). (h) MRF (slice 2). (i) MRF (slice 3).

In a second experiment the algorithm was applied in three

dimensions using a tridimensional random Þeld. Three slices

of the 3-D B-mode image associated with the ROI are shown

in Fig. 9(a)–(c). Fig. 9(d)–(f) shows the results obtained when

labels are considered a priori independent, as in [1]. The la-

bels estimated with the proposed 3-D method are displayed in

Fig. 9(g)–(i) where healthy voxels are represented in white and

lesion voxels in red. The size of the 3-D images is

voxels. Computing class label estimates using 1000 iterations

of the proposed algorithm required 43.5 s (see Section V-C4 for

more details about the computational complexity). We observe

that most of the MAP labels are in very good agreement with

the expert annotations. The improvement obtained when con-

sidering correlations in the third dimension can be assessed by

comparing Fig. 8(c) and Fig. 9(h), which have been computed

from the same data slice. We observe that using a 3-D MRF

reduces signiÞcantly the number of misclassiÞcations and im-

proves the agreement with the expert annotations.

3) Comparison With a State of the Art Method: The pro-

posed algorithm has been compared with the state of the art

method proposed in [25]. This method considers implicitly that

the image is a mixture of two Rayleigh components and sep-

arates them using an LS algorithm. Comparison has been per-

formed with 2-D and 3-D random Þelds. The following experi-

ments were conducted with a granularity coefÞcient and

a number of classes since there are three types of healthy

tissue within the ROI in addition to the lesion. The results have

been computed from a single Markov chain of 1000 iterations

whose Þrst 900 iterations (burn-in period) have been removed.

Fig. 10(a) shows a skin lesion contained in the ROI outlined

by the red rectangle. This region is displayed with coarse ex-

pert annotations in Fig. 10(b). The proposed 2-D Bayesian al-

gorithm was used to label each voxel of the ROI as healthy or

Fig. 10. Log-compressed US images of skin melanoma tumor and the corre-
sponding estimated segmentation contours (green: proposed method, red: [25]).

lesion tissue. Then, from the vector of voxels that were labeled

as lesion we extracted the contour of the largest connected re-

gion. The results displayed in Fig. 10(c) show the regular shape

of the contour obtained by our method (green curve), whereas

the LS method with strong regularization yields a more irreg-

ular contour (red curve).

The proposed algorithm was also applied to a 3-D B-mode

image using a tridimensional random Þeld. The results for

eight slices of the image associated with the ROI depicted in

Fig. 10(a) are shown in Fig. 11(a)–(h). The same color code

is used for the contours as in the 2-D experiment. The regular

shape of the contour obtained by the proposed method is more

visible and the recovered lesion Þts better the area depicted by

the expert. Finally, Fig. 12 shows a 3-D reconstruction of the

lesion’s surface (see [55] for more viewpoints). We observe

that the tumor has a semi-ellipsoidal shape which is cut at the

upper left by the epidermis–dermis junction. The tumor grows

from this junction towards the deeper dermis, which is at the

lower right.

Finally, it should be noted that in the in vivo experiments the

proposed algorithm has been applied to ROI, as opposed to en-

tire 3-D images. This has been motivated by the fact that der-

matological ultrasound imaging is used to examine speciÞc re-

gions that have been previously identiÞed by the dermatologist.

The method presented in this work should be understood in that

clinical context and is not intended to be used in unsupervised

applications.

4) Computational Complexity: Table II provides averaged

execution times for 500 iterations of the proposed algorithm

for several image sizes in 2-D and 3-D and several numbers of

classes. The time required to reach convergence can be calcu-

lated bymultiplying these values by , which corresponds to a

burn-in period of 900 iterations. These tests have been computed

on a workstation equipped with an Intel Core 2 Duo @2.1 GHz



Fig. 11. 3-D segmentation of an eight-slice image. (a) Slice 1. (b) Slice 3.
(c) Slice 5. (d) Slice 7. (e) Slice 9. (f) Slice 11. (g) Slice 13. (h) Slice 15.

Fig. 12. 3-D reconstruction of the melanoma tumor.

processor, 3 MB L2 and 3 GB of RAM memory. The main

loop of the Gibbs sampler has been implemented on MATLAB

R2010b (The MathWorks Inc., Natick, MA, 2010). However,

C-MEX functions have been used to compute the likelihood and

to draw samples of from (15). The average execution times of

the LS method [25] are provided in [55].

TABLE II
COMPUTING TIMES (IN SECONDS) OF 500 ITERATIONS FOR

DIFFERENT IMAGE SIZES AND NUMBER OF CLASSES

VI. CONCLUSION

A spatially coherent Þnite mixture of -Rayleigh distri-

butions was proposed to represent the statistics of envelope

ultrasound images backscattered from multiple tissues. Spatial

correlation was introduced into the model by a Markov random

Þeld that promotes dependence between neighbor pixels. Based

on the proposed model, a Bayesian segmentation method was

derived. Bidimensional and tridimensional implementations

of this segmentation method were presented using a Markov

chain Monte Carlo algorithm that jointly estimates the un-

known parameters of the mixture model and classiÞes voxels

into different tissues. The method was successfully applied to

several high-frequency 3-D ultrasound images. Experimental

results showed that the proposed technique outperforms a state

of the art method in the segmentation of in vivo lesions. A

tridimensional reconstruction of a melanoma tumor suggested

that the resulting segmentations can be used to assess lesion

penetration in dermatologic oncology. Future work includes

the characterization of the performance of the segmentation

algorithm and the study of estimation algorithms for the gran-

ularity coefÞcient deÞning the Markov random Þeld prior. A

comparison with a maximum likelihood estimator followed by

median Þltering is also considered to be an area of interest for

potential future work.
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