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Abstract  15 

Extracellular vesicles encompassing nanovesicles derived from the endosome system and generated by 16 

plasmatic membrane shedding, become of increasing interest in view of their ability to sustain a cell-to-17 

cell communication and with the possibility to be used as surrogate biomarkers of healthy and unhealthy 18 

trajectories. Over the last decades, nutritional strategies have been developed to preserve health and 19 

their impact on circulating EVs is arousing a growing interest. Data available from published studies are 20 

now sufficient for a first integration in order to better understand the role of EVs in the relation between 21 

diet and health. Thus, this review focuses on human intervention studies investigating the impact of diet 22 

or its components on circulating EVs. Due to analytical bias, only large EVs have been assessed so far. The 23 

analysis highlights that poor-quality diets with elevated fat and sugar content increase levels of circulating 24 

large EVs that can be partly counteracted by healthy food or some food micronutrients and bioactive 25 

compounds. However, knowledge on the content and the biological functions of these diet-induced EVs 26 

are still missing. It is of crucial importance to address these aspects in new research in order to state on 27 

EVs as mediators of the effects of diet on health. 28 

 29 

Keywords 30 

Extracellular vesicles, microparticles, exosomes, diet, dietary constituents, human intervention studies, 31 
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 33 

Introduction 34 

Dietary pattern is an important driver of non-communicable diseases (NCDs) such as obesity, 35 

diabetes and metabolic syndrome leading to cardiovascular diseases (CVD). In western societies, 36 

individuals are routinely exposed to postprandial lipaemia, hypertriglyceridaemia and hyperglycaemia 37 

that have been shown to be risk factors for CVD 1, 2 including coronary artery diseases (CAD) 3, 4, and that 38 

contribute to the development of atherosclerosis 5, 6. These metabolic changes induce particularly the 39 

activation of circulating immune cells and endothelial cells, one feature of which is the increased release 40 
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of circulating extracellular vesicles (EVs) 7, 8. EVs, including small EVs (previously called exosomes ; S-EVs) 41 

and large EVs (known as microparticles; L-EVs), are shed membrane particles of less than 1µm in diameter 42 

that emerged as candidate meaningful biomarker for the diagnosis and the prognosis of cardiometabolic 43 

disorders 9-14. S-EVs are vesicles of endo-lysosomal origin that are released as a consequence of the fusion 44 

of the multivesicular endosome (namely MVB) with the plasma membrane, whereas L-EVs are generated 45 

by budding and fission of the plasma membrane 8. Both EV subtypes convey proteins, nucleic acids and 46 

lipids with the possibility to be used as markers and conferring to EVs the ability to sustain a cell-to-cell 47 

communication. As an example, circulating endothelial L-EVs and their increased level in plasma assessed 48 

at fasting state are both emerging biomarkers and active effectors of endothelial dysfunction in CVD 15-17. 49 

Similarly, Crewe et al. 18 demonstrated that S-EVs are produced locally by endothelial cells in the adipose 50 

tissue in fasting mice, but not after feeding. In addition to demonstrate that EVs are regulated by 51 

fasting/refeeding, the authors suggest that EVs participate the tissue response to metabolic changes in 52 

the systemic nutrient state.  53 

Since the 2000s, the relationship between diet and circulating EVs has been the subject of 54 

numerous studies. Dietary interventions in animal models have demonstrated that chronic high-energy 55 

diet (e.g. high fat or high carbohydrate diet) results in an increased level of circulating S-19 and L-EVs 20-22. 56 

Inversely, plant-based diets are highly protective for health 23. This is partly attributed to EV-associated 57 

plant bioactive compounds, especially polyphenols with a body of evidence in preventing cardiometabolic 58 

diseases especially through the reduction of vascular dysfunctions associated with ageing and unbalanced 59 

nutrition 24-26. In addition to improve endothelial function, diet supplemented with polyphenols from red 60 

wine has been shown to lower the level of endothelial EVs circulating at fasting state in a rodent model of 61 

hypertension 27. 62 

Interestingly, food such as fruits and vegetables and cow milk-based products 28, 29 are dietary 63 

sources of exogeneous EVs (mainly S-EVs) namely EV-like nanoparticles. As other EVs, they convey 64 

proteins, lipids and nucleic acids in a phospholipid bilayer, but they can also encompass nutrients and/or 65 

plant bioactive compounds such as polyphenols 30, 31. These S-EVs have been demonstrated to be 66 



4 
 

absorbed, detected in host tissues few hours after their intake. The biological effects of EV-like 67 

nanoparticles on the physiology of the consumer is a matter of concern. 68 

The close relationship between diet and health, and the growing development of EV-based 69 

biomarkers in medicine make necessary to consider the modulation of EVs by the diet, both at fasting and 70 

postprandial states in humans. The present review focuses on human interventions investigating the 71 

impact of a single meal and of a chronic intake on circulating EVs. It also introduces how dietary 72 

compounds act to trigger physiological pathways controlling the biogenesis and/or the release of 73 

endogenous EVs. Finally, this review provides reports on the biological functions of diet-associated EVs 74 

and raises the need for further investigations in this domain, especially in order to provide an accurate 75 

phenotyping of diet-induced EVs. 76 

 77 

1. Why human nutritional intervention studies focused on L-EVs? 78 

Since the 2000s, 29 interventional studies have investigated the impact of diet and their constituents 79 

on circulating EVs in Humans. In these nutritional intervention studies, EVs were analysed on platelet-80 

poor or platelet-free plasma (PPP or PFP) obtained by centrifugation of blood samples up to 17,000 g. This 81 

centrifugation pellets platelets but not the L-EVs and S-EVs that need longer centrifugation at 20,000 g or 82 

100,000 g to be pelleted respectively 32. In these PPP/PFP, EVs were detected by flow cytometry based on 83 

different combinations of constitutive and/or inducible surface markers (Table 1) after immunostaining. 84 

This strategy of analysis limits the detection and the quantification to specific EV subtypes. First, the 85 

conventional flow cytometers used in these studies (LSRII, FACSAria, FACScan, Canto, FC500, FACSCalibur) 86 

are not sensitive enough to do detect scattered light or emitted fluorescence from particles smaller than 87 

300 nm in diameter, and therefore do not allow the direct detection of S-EVs 33, 34. In addition, plasma 88 

lipids (e.g. chylomicrons) due to their size may interfere with the detection of EVs by flow cytometry 35. To 89 

avoid this limit, a fluorescent staining mainly based on the detection of phosphatidylserine specifically 90 

expressed at the surface of L-EVs was used. Therefore, this explains why these nutritional intervention 91 

studies only report on the effect on L-EVs. 92 
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Above methodological aspects, the interest in L-EVs may be explained by a greater susceptibility of L-93 

EVs to changes in response to a stimulus than S-EVs 36, 37. Moreover, the content in proteins of L-EVs was 94 

reported as closer to those of the donor cell than the proteome of S-EVs 36, 38, thus strengthening the 95 

interest for the L- EVs in human intervention studies. However, it is worth noting that the secretion, the 96 

content and the bioactivity of S-EVs have been reported in in vitro studies as modulated by nutritional 97 

factors such as hyperglycaemia 39-41 or polyphenol supplementations 42-44. 98 

Among the subpopulations of EVs present in plasma, endothelial L-EVs whose proportion is estimated 99 

to less than 5% are the most investigated ahead of platelet- and erythrocyte-derived L-EVs which account 100 

for 70%-95% and 8-16% of the total plasma L-EVs, respectively 45-49. This large interest in endothelial L-EVs 101 

can be explained by the widely documented contribution of endothelial dysfunction in the development 102 

and the complications of cardiometabolic diseases 50. Whatever the subtype of EVs investigated, human 103 

intervention studies were controlled by ethical considerations that limit the number and volume of blood 104 

sampling and therefore that constrain studies to few timepoints after a nutritional intervention. By 105 

consequence, knowledge on the pharmacokinetic of EVs during the postprandial period is still incomplete. 106 

Cross-over and/or a placebo control designs have been used to ascertain the impact of dietary intakes on 107 

circulating L-EVs. They allowed to demonstrate first the variation of the circulating L-EVs during the 108 

postprandial period induced by an acute diet intake (Table 2) and secondarily the effect of chronic intakes 109 

on the basal circulating L-EVs at fasting (Table 3). 110 

  111 
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Cell source of 

large EVs 
(namely 

microparticles) 

Cluster of 
differentiation 

staining 
Protein Symbol Full name 

Endothelial MPs  CD31+ PECAM1 platelet and endothelial cell adhesion molecule 1 

  CD41- ITGA2B integrin subunit alpha 2b 

  CD42a- GP9 glycoprotein IX platelet 

  CD42b- GpIb glycoprotein Ib platelet 

  CD45-  PTPRC protein tyrosine phosphatase receptor type C 

  CD62b-  SELP selectin P 

  CD62e+ SELE selectin E 

  CD105+ ENG endoglin 

  CD106 VCAM1 vascular cell adhesion molecule 1 

  CD144+ CDH5 cadherin 5 

  CD146+  MCAM melanoma cell adhesion molecule 

Platelet MPs CD41+ ITGA2B integrin subunit alpha 2b 

  CD42b+  GpIb glycoprotein Ib platelet 

  CD61+  ITGB3 integrin subunit beta 3 

  CD62b+ SELP selectin P 

  Fibrogen+ FGB fibrinogen beta chain 

  TF(CD142)+ F3 coagulation factor III, tissue facto 

Leukocyte MPs CD4+  CD4 CD4 molecule 

  CD8 CD8A CD8a molecule 

  CD11a+  ITGAL integrin subunit alpha L  

  CD11b+  ITGAM integrin subunit alpha M 

  CD41- ITGA2B integrin subunit alpha 2b 

  CD45+ PTPRC protein tyrosine phosphatase receptor type C 

Table 1: Cell surface markers used for the identification of EV subpopulations by flow cytometry. 112 

  113 
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Table 2: Clinical trials investigating the impact of acute dietary intakes on EVs during the postprandial period.  114 

Publication Study design Country Participants Intervention Investigated EVs Main results 

Bulut et al. 
J Cardiovasc 
Pharmacol 
2013 
51

 

Randomized 
Cross-over 

EU 
(Germany) 

Healthy men (n= 10) 
Age= 44.2 ± 9.6 
BMI= 24.4 ± 2.5 

A single meal of French fries and hot 
pork sausage with sauce (1,200 kcal: 50 
% from Fat; 30 % CHO; 20 % Proteins) 
± 200 mL water or 200 mL coca cola or 
100 mL red wine/10 0mL water, or 36 
mL liquor (38 vol %)/164 mL water 

AnnexinV
+
 L-EVs: 

 CD31
+
/CD42b

-
 endothelial L-EVs 

 CD31
+
/CD42b

+ 
platelet L-EVs 

From platelet-poor plasma  
By flow cytometry (FACScalibur, BD) 

  postprandial (water; 1h: +15 
%, 2 h: +30 %) 
AnnexinV

+
/CD31

+
/CD42b

-/+
 L-EVs  

 Red Wine consumption:  meal-
induced AnnexinV

+
/CD31

+
/CD42b

-

/+
 L-EVs compared to water (-83 

%) 

 Coca:  meal-induced 
AnnexinV

+
/CD31

+
/CD42b

-/+
 L-EVs 

compared to water (+109 %) 
Eichner et al. 
Nutrients 
2019 
52

 

 NA (US) Obese prediabetic (PD, n= 17) 
and NGT (n= 8) volunteers 
Male:Female= 4:13 (PD), 1:7 
(NGT) 
Age= 53.5 ± 4.1 (PD), 50.1 ± 
5.1 (NGT) 
BMI= 32.1 ± 1.6 (PD), 33.2 ± 
1.4 (NGT) 

Oral Glucose Tolerance Test (a 75 g 
glucose intake that induced a 136 mg/dl 
glycaemia at peak, i.-e. 2 h) 

Annexin V
+
 EVs:  

 CD31
+
/CD41

+/- 
platelet EVs  

 CD45
+
/CD41

-
, CD45

+
 leukocyte 

EVs 
 CD105

+
, CD31

+
/CD41

- 

Endothelial EVs 
from Platelet-free plasma (17,000 g)  
by Flow cytometry (ImageStream 
MKII Amnis) 

  total EVs 

  CD31
+
/CD41

+
 PEVs 

  CD31
+
 EVs 

 Ø CD45
+
 LEVs 

Ferreira et al. 
Circulation 
2004 
53

 

Cross-over NA (US) Healthy volunteers (n= 18) 
Male:Female= 10:8 
Age= 26 ± 3.8 
BMI= 23 ± 2.3 

I= High-fat meal (HF; 900 cal: 19 % from 
fat) 
C= Low-fat meal (LF; 900 cal: 0 % cal 
from fat) 

 CD31
+
/CD42b

-
 endothelial L-EVs 

 CD31
+
/CD45

+
 leukocyte L-EVs 

From platelet-poor plasma (1,000 g) 
By flow cytometry (Coulter EPICS XL, 
Beckman) 

 C= Ø effect of single Low-fat meal 
on postprandial E L-EV levels  

 I=  postprandial (1 h: +39 %, 3 
h: +70 %) CD31

+
/CD42b

-
 

Endothelial L-EVs 

Harrison et al. 
Eur J Appl 
Physiol 2009 
54

 

Randomized 
Controlled 

EU (Ireland) Healthy active men (n= 8)  
Age= 26.9 ± 4.1 
BMI= 26.0 ± 3.6 

Oral fat tolerance test meal (1,450 kcal 
per 2 m² body surface: 60 % from fat, 34 
% from CHO) preceded by a rested time 
or a prolonged exercise (EXC) 

CD31
+
/CD42b

-
 endothelial L-EVs 

from Platelet-poor plasma (1,000 g)  
by Flow cytometry (FACSCalibur, BD) 

 Test meal induces  
CD31

+
/CD42b

-
 endothelial L-EVs 

from 2h to 6h after intake (+160 
%) 

 Ø of prior EXC on diet-induced 
EVs 

Jenkins et al.  
J Physiol 2011 
55

 

Cross-over NA (US) Healthy active men (n= 10) 
Age= 27 ± 0.9 
BMI= 24.6 ± 0.7 

A single high-fat meal portioned to 386 
g/m² body surface area (386 g= 1,362 
kcal, 84 % from fat) ± prior endurance 
exercise  

 CD31
+
/CD42b

-
 endothelial L-EVs  

 CD62E
+
 endothelial L-EVs  

From platelet-poor plasma (1,500 g) 
By flow cytometry (LSRII, BD) 

 Ø effect of single high-fat meal on 
postprandial (4 h) endothelial L-
EVs  

 Prior endurance exercice  
CD31

+
/CD42b

-
 and CD62E

+
 

endothelial L-EVs (-50 %) 
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Publication Study design Country Participants Intervention Investigated EVs Main results 

 

Table 2 (To be continued) 115 

Publication Study design Country Participants Intervention Investigated EVs Main results 

Michelsen et 
al. 
Thrombosis 
Res 2009  
56

 

Controlled 
 

EU 
(Norway) 

Carotid atherosclerosis 
patients (n= 40, CAP) and 
matched healthy volunteers 
(n= 20, H) 
Male:Female= 19:21 (CAP) 
12:8(H) 
Age= 65.4-72.8 (CAP), 66.6-
70.1(H) 
BMI= 26.4-28.8 (CAP), 24.8-
28.4(H) 

Standardized tolerance fat test 
consisting in sour cream porridge 
providing 70 % of calories from fat (66 
% saturated, 32 % monosaturated, 2 % 
PUFAs) 

CD41
+
/CD61

+
 platelet L-EVs 

From platelet-free plasma (11,000 g) 
By flow cytometry (Canto, BD) 
 

 postprandial (4 h) total 
CD41

+
/CD61

+
 L-EVs (+49 %) 

 

Phang et al. 
JNB 2012 
57

 

Controlled 
Single 
blinded 

South 
Pacific 
(Australia) 

Healthy volunteers (n= 30) 
Male:Female= 15:15 
Age= 43.7 ± 1.5 
BMI= 26.1 ± 0.6 

A single dose of sunola oil (C), 1 g EPA 
(EPA:DHA= 5:1) or 1 g of DHA 
(EPA:DHA= 1:5) 

AnnexinV
+
/CD41a

+
 platelet L-EVs 

From platelet-free plasma (3,000 g) 
by flow cytometry (Canto, BD) 
 

 At baseline, Ø effect gender on 
the number of platelet L-EVs 

 24h after a single dose of 
supplementation: Ø effect on 
AnnexinV

+
/CD41a

+ 
MP levels 

 Only EPA supplementation  
thrombin generation mediated by 
platelet L-EVs (-20 %) 
 

Spectre et al. 
Platelets 2019 
58

 

 
 

 

 

 

 

EU 
(Sweden) 

T2DM (n= 9) and T1DM (n= 
11) patients  
Male:female= 8:1 (T2DM), 
5:4(T1DM) 
Age= 55 (40-72, T1DM), 68 
(60-76, T2DM) 
BMI= 23.5 (T1DM), 30 
(T2DM) 

A standardized meal (620 kcal: 30 % fat, 
54 % CHO, 16 % protein) 

Annexin V
+
 L-EVs: 

 CD41
+
 ± CD62P

+
 ± CD142

+
 

platelet L-EVs  
 CD144

+
 or CD62e

+
 endothelial L-

EVs 
 CD14

+ 
monocyte L-EVs  

 CD142(TF)
+
 L-EVs 

from Platelet-free plasma (13,000 g)  
by Flow cytometry (Gallios, BD) 

  annexin V
+
 L-EVs in T2DM and 

T1DM patients at 90min after 
meal (+40 %)  

  thrombin generation by 
postprandial L-EVs compared to 
pre-meal L-EVs   
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Publication Study design Country Participants Intervention Investigated EVs Main results 

Strohacker et 
al.  
Appl Physiol 
Nutr Metabo 
2012 
59

 

Randomized 
Controlled 

NA (US) Healthy volunteers (n=8) 
Male:Female= 4:4 
Age= 21 ± 3 
BMI= 23.1 ± 3.92 

Standardized test meal (1,070 kcal: 58 % 
from fat, 30 % CHO, 9 % proteins) ± 
prior endurance exercise or rest 

CD31
+
/CD42b

- 
endothelial L-EVs 

From platelet-poor plasma (1,500 g) 
By flow cytometry (EasyCyte 6HT-2L, 
EMD Millipore) 

 Test meal:  postprandial (1h: 
+50 %) CD31

+
/CD42b

- 
endothelial 

L-EVs  

 Prior exercise blocks the 

postprandial  of CD31
+
/CD42b

- 

endothelial L-EVs  
 

 116 

Table 2 (To be continued) 117 

Publication Study design Country Participants Intervention Investigated EVs Main results 

Sustar et al.  
Lipids in 
Health & 
Disease 2011 
46

 

Cross-over EU 
(Slovenia) 

Healthy volunteers (n=21)  
Male:Female= 11:10 
Age= 31 ± 10 (M), 29 ± 13 (F) 
BMI=not reported 

2 days of food rich in cholesterol, fat 
and carbohydrates. On day 2, a 
breakfast consisting of two eggs, bread 
and a dairy product (7 a.m.) and small 
meal consisting of a dairy product (10 
a.m.) 

CD31
+
 and CD42b

-
 endothelial L-EVs 

CD31
+
 and CD42b

+
 platelet L-EVs 

CD235
+ 

erythrocyte L-EVs  
From plasma L-EVs (17,570 g pellet) 
By flow cytometry (Altra, Beckman) 
 

 postprandial total L-EVs (2 h: +52 
%) 

 Ø postprandial redistribution of L-
EVs with respect to origin 

 

Sutherland et 
al. Metabol 
Clin Exp 2010 
60

 

Randomized 
Cross-over 
Single 
blinded 

South 
Pacific (New 
Zealand) 

Healthy volunteers (n= 22) 
Male:Female= 13:9 
Age= 40 ± 13 
BMI= 25.3 ± 3.7 

n-6 PUFAs-rich meals containing unheat 
sunflower oil (USO) or heated SO (HSO) 
(510 Kcal: 72 % from Fat (mainly 
PUFAs), 25 % CHO, 2 % Proteins);  
C= saturated fat-rich meal containing 
cream (CR) (527 Kcal: 70 % from Fat 
(mainly SAFAs and MUFAs), 27 % CHO, 4 
% Proteins) 
 

CD144
+ 

CD62b
-
 endothelial L-EVs  

From platelet-poor plasma (6,000 g) 
by flow cytometry (FACSCalibur, BD) 

 postprandial (3 h: +20 %) CD144
+
 

endothelial L-EVs after sunflower oil 
enriched meals but not after CR 
meal 

Tamburrelli et 
al. 
Thrombosis & 
Haemostasis 
2012 
61

 

 EU (Italia) Subjects at different degree 
of CV risk (n= 61) 
Male:Female= 40:21 
Age= 48.6 ± 13.1 
BMI= 26.7 ± 3.94 

A standardized fatty meal (675 kcal: 69 
% from fat, 15 % CHO, 15 % proteins) 

CD42b
+ 

L-EVs  
By flow cytometry (EPICS LX Flow, 
Beckman) 

postprandial (2 h: +150 %) CD42b
+ 

L-EVs in men, not in women 
 

Tushuizen et 
al.  
Diabetes Care 
2007  
47

 

Not reported EU (The 
Netherlands
) 

Caucasian men with T2DM 
(n= 15, T2DM) or healthy (n= 
12, H; aged-matched) 
Age= 55 ± 2 (T2DM) 
BMI=not reported 

Three consecutive isocaloric meals 
(breakfast, lunch and dinner; 900 kcal: 
50 % from fat, 33 % CHO, 15 % protein) 

AnnexinV
+
 CD144

+
 endothelial L-EVs 

From plasma  
By flow cytometry (FACScan, BD) 

 At baseline,  CD144+ 
endothelial L-EVs in T2DM (+130 
%) 

 4h after the last meal,  CD144+ 
endothelial L-EVs in T2DM 
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Publication Study design Country Participants Intervention Investigated EVs Main results 

compared to healthy volunteers 
(+260 %) 

 
Tushuizen et 
al. 
J Thrombosis 
and 
Haemostasis 
2006 
48

 

Randomized 
Cross-over 

EU (The 
Netherlands
) 

Healthy men (n= 17) 
Age= 25.4 ± 3 
BMI= 23.6 ± 1.8 

I= Two consecutive standardized meals 
(900 kcal: 56 % from fat, 25 % CHO, 13 
% protein) as breakfast and 4h later as 
lunch  
C= fasting 

 CD61 for platelet L-EVs 
 CD62E, CD106 and CD144 for 

endothelial L-EVs 
 CD4, CD8 and CD14 for 

leukocyte L-EVs 
From plasma  
By flow cytometry (FACScan, BD) 
 

I=  total L-EVs compared to C 
(+100 % over the 8 h of the study) 
I=  FMD 

Table 2 (To be continued) 118 

 119 

 120 

 121 

Abbreviations 122 

C: control diet, I: nutritional intervention, BMI: Body Mass Index, CV risk: Cardiovascular risk, T1/2DM: Type 1/2 Diabetes Mellitus, NA: North America, EU: 123 

Europe, US: United States, CHO: carbohydrate, PUFAs: Poly Unsaturated Fatty Acid, EPA: EicosaPentaenoic Acid, DHA: DocosaHexaenoic Acid, NGT: Normo 124 

Glucose Tolerance 125 

Publication Study design Country Participants Intervention Investigated EVs Main results 

Tushuizen et 
al. 
Thrombosis 
Res 2012 
62

 

Randomized 
Cross-over 

EU (The 
Netherlands
) 

Healthy men (n= 12)  
Age= 26.0 ± 0.9 
BMI= 23.9 ± 0.4 

I=Two consecutive standardized meals 
(900 kcal: 56 % from fat, 25 % CHO, 13 
% protein) as breakfast and 4h later as 
lunch  
C= fasting 

AnnexinV
+
 associated with 

 CD61 for Platelet L-EVs 
 CD62E, CD106 and CD144 for 

endothelial L-EVs 
 CD4, CD8 and CD14 for 

leukocyte L-EVs 
from plasma L-EVs (17,590 g pellet) 
By flow cytometry (FACScan, BD) 

 Over the postprandial period,  
erythrocyte-derived L-EVs (+220 
%) 

After meals,  
phosphatidylcholine but not of 
phosphatidylserine in L-EVs 
compared to fasting 
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2. The postprandial variation of circulating L-EVs 126 

The response of L-EVs to the acute intake of different test meals (providing high dose of glucose, of 127 

saturated fat or enriched in polyunsaturated fatty acids) has been investigated during the postprandial 128 

period (Table 2)46-48, 51-62. The studies reported on the level of L-EVs assessed mainly 2-3 hours after the 129 

intake of the test meal in comparison to fasting conditions or to the consumption of a control meal. In 130 

healthy young volunteers, the consumption of a meal supplying 19-70 % energy from fat (mainly 131 

saturated fat) increased significantly the level of circulating L-EVs at 2 hours postprandially from 20 to 160 132 

% 48, 51, 53, 54, 59, 60, 62. Several subtypes of circulating L-EVs increased in response to fat intake: the 133 

endothelial L-EVs identified as CD31+-CD42b- (+50-160 %) 53, 54, 59, annexin V+-CD31+-CD42b- (+30%) 51, 134 

CD144+ (+ 20 %) 60 and CD144+-CD62b- (+ 100-130 %) 47, 48 EVs, and the platelet-derived L-EVs 135 

characterized as annexin V+-CD31+-CD42b+ 51 and CD41+-CD61+ 56 EVs. Studies from Tushuizen et al. 62, 136 

Sustar et al. 46 and Spectre et al. 58 also showed that all annexin V+ L-EVs increased postprandially after a 137 

high fat meal. One study did not observe a variation of L-EV levels after a high fat meal while they used 138 

CD31-CD42b-CD62 markers to identify the endothelial L-EVs 55. An acute increase of L-EV levels during the 139 

postprandial period was also observed in diabetic patients 58, in individuals with cardiovascular risk 61 and 140 

in atherosclerotic patients 56, all of them presenting already a higher fasting level of L-EVs when compared 141 

to healthy volunteers. It is noteworthy that the postprandial increase of L-EV levels had similar magnitude 142 

in individuals at CVD risk than in healthy volunteers 56. Furthermore, based on the studies from Table 2, 143 

no correlation was found between the percentage of dietary fat and the magnitude of L-EV variation. 144 

Other nutrients provided by food such as carbohydrates (CHO) or proteins may affect the postprandial 145 

level of L-EVs. To our knowledge, no study has so far investigated the impact of protein intake on the 146 

postprandial EVs. Regarding CHO, in vitro studies showed that a high concentration of glucose increased 147 

the secretion of L-EVs from endothelial cells 41, 63, leucocytes 64, 65, trophoblasts 40 or mesangial cells 66. In 148 

obese volunteers, Eichner et al. 52 reported that an oral glucose tolerance test, providing 75 g of glucose 149 

and resulting in a 136 mg/dL glycaemia at 2 hours, reduced the level of circulating L-EVs characterized in 150 

PFP. In addition, the postprandial level of CD31+-CD42b- endothelial L-EVs increased from 30 to 160 %, 2 151 
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hours after the intake of a test meal providing 50-60 % of fat and 30-34 % of CHO (mainly simple sugars) 152 

51, 54. Moreover, the study performed by Ferreira et al. 53 has demonstrated that a fat-free meal was not 153 

associated to an increased level of postprandial L-EVs compared to an isocaloric meal providing 19 % fat. 154 

Altogether, these data suggest that the percentage of CHO in the meal is not a determinant in the 155 

postprandial variation of L-EVs contrary to the fat content. 156 

Diet may also provide some micronutrients (n-3 PUFAs) or microconstituents (polyphenols) that seem 157 

able to counteract the increase of postprandial EVs. The consumption of red wine, providing high amount 158 

of polyphenols, alleviated by 83 % the high-fat diet (HFD)-induced L-EVs 51. Phang et al. 57 reported that 24 159 

hours after an acute intake of 1 g of n-3 PUFAs, the level of plasma annexin V+-CD41a+ EVs was unchanged 160 

compared to a control meal. However, the intake of n-3 PUFAs reduced the capacity of these platelet-161 

derived L-EVs to induce thrombin formation. Spectre et al. 58 reported that the postprandial annexin V+ L-162 

EVs induced a higher thrombin generation that pre-meal annexin V+ L-EVs. Studies aiming at deciphering 163 

the biological function of postprandial EVs are scarce. Their functional activities could be predicted in 164 

silico by an enrichment-based bioinformatics analysis of the proteome and transcriptome of EVs, however 165 

the use of this approach is limited by the lack of data on protein content and nucleic acid content of the 166 

postprandial EVs. 167 

To conclude, in so far as a meal provides saturated fats, its acute consumption is associated to a 168 

rapid rise of plasma L-EVs. In the absence of detailed pharmacokinetic data all over the postprandial 169 

phase, the transient character of the postprandial phase cannot be asserted to the EV rise. However, one 170 

can speculate that postprandial EVs temporary rise up as the clearance of endothelial- and platelet-171 

derived L-EVs in the human circulation has been demonstrated to vary from 1 to 6 hours 67, 68. Lastly, 172 

some dietary constituents such as dietary polyphenols and n-3 PUFAs modulate positively the biology of 173 

EVs during the postprandial phase, that is, either by preventing the increase of EV levels or attenuating 174 

their bioactivity. 175 
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Table 3: Human intervention studies reporting the effects of (sub)chronic dietary intake on circulating EVs. C: control diet; I: nutritional intervention. 176 

Publication  Study design Country  Participants Dietary intervention Duration 
(weeks) 

Investigated EVs Main results 

Del Turco et al. 
Haematologica 
2008 
45

 

Randomized 
Controlled 
 

EU 
(Denmarks) 

Post-myocardial infraction 
patients (n= 21, I ; n= 21, 
C) 
Male:Female= 18:3 
Age= 65 ± 5 (I), 62 ± 8 (C) 
BMI= not reported 

I= 5.2g total n-3 FA (4.3 g 
EPA+DHA) 
C= Olive Oil 

12 All AnnexinV
+
 / TF

+
 L-EVs  

 CD61
+
 platelet L-EVs  

 CD14
+
 monocyte L-EVs  

 CD62E
+
 endothelial L-EVs 

from 17,500 g pelleted plasma L-EVs 

I= CD61
+
 L-EVs,  CD14

+
 L-EVs, Ø 

CD62e
+
 endothelial L-EVs, Ø TF

+ 
L-

EVs 
I=  thrombin generation by L-EVs   
C=Ø L-EVs  
At baseline,  total L-EVs in patients 
compared to healthy matched 
volunteers (n= 10) 

Durrer et al. 
Nutrients 2019 
69

 

Randomized 
Short-term 
Controller 
Cross-over  
 

EU (UK) Healthy men (n= 9) 
Age= 21 ± 3 
BMI= 23.2 ± 2 

o A 7-day intervention on 
low-carbohydrate/high-fat 
diet (2417 ± 267 kcal: 71 % 
fat, 11 % CHO, 18 % 
protein) after 2 weeks of 
typical diet (2584 ± 456 
kcal: 37 % fat, 46 % CHO, 
17 % protein)  

o 75 g oral glucose tolerance 
test (oGTT) performed 
before and after 
nutritional interventional 

1  CD31
+
/CD42b

-
 endothelial L-EVs  

 CD62E
+
 endothelial L-EVs  

From platelet-poor plasma (1,500 g) 
By flow cytometry (LSRII, BD) 

At fasting, no difference in L-EVs 
levels from LCHFD group compared 
to typical diet group  
 post oGTT CD31

+
/CD42b

- 
and 

CD62E
+
 endothelial L-EVs (1 h) in 

LCHFD group 
LCHFD:  FMD 

Eitan et al. 
Aging Cell 2017  
70

 

Randomized 
Controlled 

NA (US) Prostate cancer patients 
(n= 38)  
Age= 59.26 ± 7.5 
BMI= 30.45 ± 5.8 

I= protein restriction diet 
(2856 ± 198 kcal: 31 % fat, 59 
% CHO, 8 % protein) 
C= regular diet (2367 ± 444 
Kcal: 37 % fat, 45 % CHO, 17 
% protein) 

 

4 L1CAM immunoprecipitated EVs 
from Precipitated total plasma EVs  
by NTA 

I: Ø EV size distribution, Ø total EV 
concentration  
I:  Leptin Receptor

+ 
/L1CAM

+
 

neuronal EVs,  pSer312 
IRS1

+
/L1CAM

+
 neuronal EVs 

Francois et al. 
Am J Physiol 
Heart Circ 
Physiol 2018 
71

 

Randomized 
Cross-over 
Controlled 

NA 
(Canada) 

T2DM volunteers (n= 16) 
Male:Female= 8:8 
Age= 64 ± 8 
BMI= 34.0± 8 

2 isocoloric meals (500 kcal) 
o Low-fat control diet (CON: 

20 % fat, 55 % CHO, 25 % 
protein) 

o low-carbohydrate high-fat 
diet (LC: 65 % Fat, 10 % 
CHO, 25 % protein) 

o LC with 15-min post-meal 
walks (LC-EX) 

4 days  CD62E
+
 endothelial L-EVs 

 CD62P
+
 platelet L-EVs 

From platelet-free plasma (13,000 g) 
By flow cytometry (FACSAria III, BD) 

LC :  CD62E
+ 

endothelial L-EVs (- 50 
%) ; Ø CD62P

+
 L-EVs 

LC-EX : Ø CD62E
+ 

endothelial L-EVs ; 
 CD62P

+
 L-EVs (- 44 %) 

CON :  CD62E
+ 

endothelial L-EVs (+ 
56 %) ; Ø CD62P

+
 L-EVs 

 

 177 
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Table 3 (To be continued) 178 

Publication  Study design Country  Participants Dietary intervention Duration 
(weeks) 

Investigated EVs Main results 

Gröne et al. 
JAFC 2019 
72

 

Randomized 
Double-
blinded  
Controlled 

EU 
(Germany) 

Healthy men (n= 39) 
Age= 26 ± 3 (Young 
Group, n= 20), 60 ± 8 
(Elderly Group, n= 19) 
BMI= 24.1 ± 2.3 (Young 
Group), 26.5 ± 3.2 (Elderly 
Group) 

I= cocoa flavanol drink (CF, 
providing 450 mg of total 
flavanol, twice daily) 
C= nutrients-matched CF free 
drink 

2 CD62e
+
 endothelial L-EVs  

CD144
+
 endothelial L-EVs  

CD31
+
/CD41

-
 endothelial L-EVs  

from Platelet-free plasma (10,000 g) 
by Flow cytometry (VERSE, BD) 

I:CD31
+
/CD41

-
 endothelial L-EVs 

(Y: -52 %; E: -57 %), CD144
+ 

endothelial L-EVs (Y: -23 %; E: -21 
%), CD62e

+
 endothelial L-EVs (Y: -

35 %; E: -24 %) in Young and Elderly 
C: CD31

+
/CD41

-
 endothelial L-EVs 

(+52 %), CD144
+
 endothelial L-EVs 

(+35 %), CD62e
+
 endothelial L-EVs 

(+57 %) in elderly vs young 
 

Horn et al.  
BJN 2014 
73

 
 

Randomized 
Double-
blinded  
Cross-over 

EU 
(Germany) 

CAD patients (n= 16) 
Male:Female= 13:3  
Age= 64 ± 3 
BMI= 28.8 ± 1.8 

I= high-cocoa flavanol drink 
(providing 375 mg of total 
flavanol) 
C= Low coca-flavanol drink (9 
mg) 

4 CD41
+
 platelet-derived L-EVs  

CD144
+
 endothelial L-EVs  

CD31
+
/CD41

-
 endothelial L-EVs  

from Platelet-free plasma (10,000 g) 
by Flow cytometry (Canto II, BD) 

I: CD144
+
 endothelial L-EVs (-22 

%), CD31+/CD41
-
 endothelial L-

EVs (-39 %), Ø CD41
+
 PL-EVs in CAD 

patients 
C:  CD144

+ 
(+ 490 %) and 

CD31
+
/CD41

- 
(+ 30 %) endothelial L-

EVs in CAD patients vs age-matched 
healthy volunteers  
 

Marin et al. 
AJCN 2011 
74

 

Randomised 
Cross-over 

EU (Spain) Healthy elderly volunteers 
(n= 20) 
Male:female=10:10 
Age= 67.1 ± 4.52 
BMI= 31.9 ± 5.50 

3 diets providing 1910 
Kcal/day 
- Mediterranean Diet (Met 
Diet): 38 % fat (24 % MUFAs, 
<10 % SFA), 47 % CHO, 15 % 
protein 
- SFA-rich diet: 38 % fat (12 % 
MUFAs, 22 % SFAs, 4 % 
PUFAs), 47 % CHO, 15 % 
protein  
- Low-fat high-carbohydrate 
diet enriched in n-3 PUFAs 
(CHO-ALA): <30 % fat (<12 % 
SFAs, 12 % MUFAs, 8 % 
PUFAs), 55 % CHO,15 % 
protein 

4 AnnexinV
+
 CD31

+
 endothelial L-EVs  

CD144
+
/CD62E

+
 activated 

endothelial L-EVs 
from Platelet-free plasma (13,000 g)  
by Flow cytometry (FC500, 
Beckman) 

I: Met Diet and CHO-ALA diet  
total (-60 %; -33 %), CD144

+
/CD62e

+
 

(-76 %; -34 %) and annexinV
+
/CD31

+
 

(-70 %; -25 %) endothelial L-EVs vs 
SFA diet 
I: Met Diet  total (-40 %), 
CD144

+
/CD62e

+
 (-63 %) and 

annexinV
+
/CD31

+
 (-60 %) endothelial 

L-EVs vs CHO-ALA diet 
 
 

179 
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Table 3 (To be continued) 180 

Publication  Study design Country  Participants Dietary intervention Duration 
(weeks) 

Investigated EVs Main results 

McFarlin et al. 
JNB 2015 
75

 

Randomized 
Controlled 
Cross-over 

NA (US) Healthy volunteers with 
normal weight (n= 10, N), 
over-weight (n= 7, O) or 
obesity (n=,7, Ob) 
Age= 21 ± 2 (N), 22 ± 3 
(O), 22 ± 3 (Ob) 
BMI= 21.6 ± 1.9 (N), 27.0 
± 1.4 (O), 34.9 ± 3.0 (Ob) 

I= natural cocoa bars 
(supplying 13.6 mg catechin, 
48 mg epicatechin, 640 mg 
total proanthocyanidins) 
C= placebo bars 

4 CD144
+
/CD42a

-
/CD45

-
 endothelial L-

EVs 
from Platelet-free plasma (15,000 g)  
by Flow cytometry (FC500, 
Beckman) 

I: CD144
+
/CD42a

-
/CD45

-
 L-EVs 

concentration in O (-13 %) and Ob (-
31 %). 
C: baseline CD144

+
/CD42a

-
/CD45

-
 

L-EVs concentration with BMI (+21 
% compared to O; +53 % compared 
to N) 
 

Morel et al. 
Int J Obesity 
2011 
76

 

Cross-over EU (France) Obese women (n= 24) 
Age= 39 ± 10 
BMI= 35 ± 4 

I= diet restriction (600 
kcal/day: 15 % Fat, 30 % CHO, 
55 % Protein) for 1 month 
followed by a regular diet 
(1200 kcal/day: 10 % Fat, 60 
% CHO, 30 % protein) for 1 
month and a progressive 
normal intake (1 month) 

12 AnnexinV
+
 L-EVs 

CD11a
+
 leukocyte L-EVs 

CD4
+ 

lymphocyte L-EVs
 

CD31
+
 CD41

-
 endothelial L-EVs 

CD41
+
 platelet L-EVs  

CD235
+
 erythrocyte L-EVs 

from Platelet-free plasma (13,000 g)  
by Flow cytometry (Gallios, BD) 
 

1 month-diet restriction  total 
AnnexinV

+
 L-EVs (including CD41

+
 L-

EVs, CD235
+ 

L-EVs) 
I=  CD4

+
 (-20 %), CD11a

+
 (-28 %) 

and procoagulant-platelet derived L-
EVs (-43 %) 

Murakami et al. 
Thrombosis 
Research 2007 
77

 

Randomized 
Controlled 

Asia (Japan) Obese (n= 49, O) and 
healthy non-obese (N= 
37, N) volunteers  
Male:Female= 21:16 (N), 
24/25 (O) 
Age= 49.2 ± 1.8 (N), 50.6 ± 
1.4 (O) 
BMI= 22.8 ± 0.2 (N), 27.4 
± 0.3 (O) 
 

I= energy restricted diet 
(1200 kcal/day for women; 
1680 kcal/day for men) ± 
aerobic exercise 3 
days/weeks (60 min/session) 

12 CD41
+ 

platelet L-EVs 
From platelet-rich plasma (200 g) 
By flow cytometry (FACScan, BD) 

At baseline:  CD41
+ 

L-EVs in O (+97 
%) 
I: energy restricted diet  CD41

+
 L-

EVs (-30 %) 

Myette-Côté et 
al.  
Physiol 2018 
78

 

Randomized 
Short-term 
Controller 
Cross-over 

EU (UK) T2DM volunteers (n= 11)  
Male:Female= 4:7 
Age= 64 ± 8 
BMI= 34.0 ± 8.0 

o Low-fat low-glycemic index 
diet (GL: 20 % fat, 55 % 
CHO, 25 % protein) 

o Low-carbohydrate high-fat 
diet (LC: 65 % Fat,10 % 
CHO, 25 % protein)  

o LC with 15-min post-meal 
walks (LC-EX) 

4days CD14
+
 monocytes L-EVs 

CD45
+
 leukocyte L-EVs 

From platelet-free plasma (13,000 g) 
By flow cytometry (FACSAria III, BD) 

GL and LC  both plasma CD14
+ 

L-
EVs (-70 %) and CD45

+
 LL-EVs (-63 %; 

16 %; tendancy) 

Abbreviations: oGTT: oral Glucose Tolerance Test, MUFA: Mono Unsaturated Fatty Acid, SFA: saturated fatty acids. 181 

182 
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Table 3 (To be continued) 183 

Publication  Study design Country  Participants Dietary intervention Duration 
(weeks) 

Investigated EVs Main results 

Phang et al. 
Nutr Metabo 
CVD 2016 
79

 

Randomized 
Controlled 
Double-
blinded  
Cross-over 

South 
Pacific 
(Australia) 

Healthy volunteers (n= 
94) 
Male:Female= 43:51 
Age= 39.6 ± 1.7 
BMI= 24.6 ± 3.7 

I= EPA rich oil (500:100 mg 
EPA:DHA) or DHA rich oil 
(100:500 mg EPA:DHA) 
C= sunola oil 

4 AnnexinV
+
/CD41

+
/CD62

+
 platelet L-

EVs 
From platelet-free plasma (3,000 g) 
by flow cytometry (Canto, BD) 
 

At baseline, Ø effect gender on the 
number of endothelial L-EVs 
I= Ø AnnexinV

+
/CD41

+
/CD62

+
 L-EVs  

Wekesa et al. 
Appl. Physiol 
Nutr Metabo 
2016 
80

 

Randomized 
Cross-over 

EU (Ireland) Overweight women (n= 
28) 
Age= 48.4 ± 0.6 
BMI= 28.1 ± 2.7 

I= low-carbohydrate diet 
(1228 Kcal: 48 % fat, 29 % 
CHO, 23 % protein)  
C=normal diet (1626 Kcal: 38 
% fat, 44 % CHO, 18 % 
protein) 

24 CD31
+
/CD41

- 
Endothelial L-EVs  

CD144
+
 or CD146

+
 or CD105

+ 

Endothelial L-EVs (namely 
endothelial L-EVs) 
from Platelet-poor plasma (13,000 
g)  
by Flow cytometry (FC500, 
Beckman) 

I=  CD31
+
/CD41

- 
endothelial L-EVs 

(-30 %), Ø endothelial L-EVs 

Wu et al.  
AJCN 2014 
81

 

Randomized 
Controlled 
Double-
blinded 
Cross-over 

EU (UK) Moderate CVD risk 
volunteers (n= 84) 
Male:Female= 29:55 
Age= 45.8-49.3 
BMI= 25.6-26.6 

I= fish-oil supplementation 
providing 1.5g LC n-3 PUFAs  
C=corn-oil supplementation 

8 CD31
+
/CD42b

-
 endothelial L-EVs 

CD31
+
/CD42b

+
 PL-EVs 

from platelet-poor plasma (1,000 g) 
by flow cytometry (FACSCalibur, BD) 

I=  CD31
+
/CD42b

-
 endothelial L-

EVs (-10 %) 

Zhang et al. 
MNFR 2014 
82

 

Randomized 
Cross-over 

EU (UK) T2DM patients (n= 22) 
Mixed gender 
Age from 40 to 75 years 
BMI= not reported 

o oat-rich habitual diet (131 
g/day, OAT) 

o standard dietary advice 
(SDA) 

o habitual diet (HAB) 
 
Challenge meal (720 Kcal: 33 
% fat, 53 % CHO, 14 % 
protein) 

8 C61
+
 ± Fibrogen

+
 or TF (CD142)

+
 or 

CD62P
+
 platelet L-EVs 

CD45
+
 ± CD14

+
 ± CD11b

+
 leukocyte L-

EVs 
from platelet-poor plasma (2,000 g) 
by flow cytometry (not detailed) 

 OAT:  Fibrogen
+
 (-44 %) and TF

+
 

(-43 %) platelet L-EVs, CD11b
+
 (-

74 %) ML-EVs compared to HAB 

 SDA:  Fibrogen
+
 L-EVs 

compared to HAB (-47 %) 
 

During the postprandial period after 
challenge meal: 

 Transient  of leukocyte-derived 

L-EVs in all groups  
  of monocyte L-EVs and CD11b

+ 

L-EVs in OAT and SDA;  in HAB  
Weech et al. 
An. J. Clin. Nutr. 
2018 
83

 

Randomized, 
controlled, 
single-blind  

EU (UK) Men and Women with 
moderate CVD risk 
(n=190) 
Male:Female=82:108 
Age=45 ± 1 
BMI= 26.3 ± 0.5 

I=replacement of 8% SFAs 
with MUFAs or n-6 PUFAs 
for 16 weeks 

  CD31
+
CD42b

-
 for endothelial L-

EVs 
 CD31

+
CD42b

+
 for platelets L-EVs 

From platelet-poor plasma  
by flow cytometry (FACSCalibur, BD) 
 

 Replacement by MUFAs:  
endothelial L-EVs (-47.3 %) and 
platelet L-EVs (-36.8 %)° 

 Replacement by n-6 PUFAs:  
endothelial L-EVs (-44.9 %) and 
platelet L-EVs (-39.1 %)° 

 SFA diet:  endothelial L-EVs (+ 
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14.7 %) and platelet L-EVs (+16.7 
%)° 
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3. Chronic dietary interventions modulate plasma L-EVs at fasting  184 

Acute interventions have revealed that dietary intakes can drive the release of L-EVs during the 185 

postprandial period. Outside of this period (e.g., at fasting state), there still have detectable L-EVs in the 186 

circulation and have been of interest as reliable biomarkers for diagnosis and prognosis since a 187 

proportional increased level has been observed in several conditions, including ageing 72, 84, physical 188 

activity 85, metabolic disorders such as obesity 12, 86, type 2 diabetes 12, 13 and metabolic syndrome 87, and 189 

CVD 88. Based on the established relationship between diet and health 23, some research has been done to 190 

decipher the effects of (sub)chronic dietary interventions on plasma remnant EVs in different categories 191 

of population (e.g., healthy, young or normo-weighted persons, at risk, patients) (Table 3)45, 69-83. The 192 

efficiency of these interventions, lasting from 4 days to 24 weeks, has been assessed by comparing the 193 

plasma levels of L-EVs between the beginning (baseline) and the end of the study period or by comparing 194 

levels between study groups, depending on their design. 195 

Two studies reported that diet restriction aiming at reducing the dietary energy intake of 196 

volunteers with a BMI over 25 kg/m² significantly reduced the level of circulating L-EVs. In obese women, 197 

a 600 kcal/day diet restriction for one month followed by two months of regular (1200 kcal/day) and 198 

normal diets results in lowering plasma levels of lymphocyte-derived (CD4+, -20 %), leukocyte-derived 199 

(CD11a+, -28 %) and procoagulant platelet-derived L-EVs (-43 %) 76. In healthy middle-age volunteers, the 200 

increase of resident platelet-derived L-EVs (CD41+) associated to obesity can be attenuated by 30 % after 201 

12 weeks under an energy-restricted diet77. Another randomized controlled trial showed that a low 202 

protein diet (8%) administrated to prostate cancer patients did not affect the level of circulating cancer-203 

derived L-EVs identified using L1CAM markers, but enriched some of the L-EV surface markers (Leptin 204 

Receptor and phospho-Ser-IRSII), supporting the effectiveness of the dietary intervention to affect level of 205 

plasma L-EVs70. 206 

Dietary CHO, including sugars, starches, celluloses and gums serve as major energy sources of 207 

human diet. The physiological effects of dietary CHO are highly dependent on the rate and extent of 208 

digestion and absorption in the small intestine and fermentation in the large intestine by the gut 209 
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microbiota, these latter interactions being known to promote health. Thereby, the modulation of the CHO 210 

fraction could be useful to reach a healthier quality. Wekesa et al. 80 reported that a low-CHO diet 211 

decreases the level of circulating CD31+/CD41- endothelial L-EVs (30 %) in middle-aged over-weight 212 

healthy women. However, low-CHO content is often offset by an increased fat supply to maintain the 213 

energy content of the diet, that is why several studies have investigated the impact of a low CHO-high fat 214 

diet. Durrer et al. 69 did not observe any variation of CD31+/CD42b+ and CD62+ endothelial L-EVs in fasting 215 

plasma of young healthy volunteers after a 7 days- intervention on a low CHO-high fat diet However, 216 

higher levels of plasma L-EVs were observed after a metabolic challenge consisting in an oral glucose 217 

tolerance test only in volunteers that consumed the low CHO-high fat diet. In type 2 diabetes volunteers, 218 

a low CHO-high fat diet reduced the level of plasma CD62+ endothelial L-EVs (-45 %) 71 and leukocyte-219 

derived L-EVs (-63 % of CD45+ L-EVs, -70 % of CD14+ L-EVs) 78. In another study, the consumption for 8 220 

weeks of an oat-rich diet (providing complex CHO, extensively metabolized by the gut microbiota) has led 221 

to a lower level of fasting circulating fibrogen+-, TF+-CD61+ platelet L-EVs (around -40 %) and of 222 

leukocytes-derived L-EVs after a challenge test meal in type 2 diabetes (T2DM) patients 82. Taken 223 

together, these results highlight that dietary CHO content affects the basal level of circulating L-EVs. Most 224 

of the aforementioned studies did not specify the CHO quality used while a relationship between CHO 225 

quality and health have been demonstrated 89, especially regarding CHO with a low glycaemic index and 226 

those poorly absorbable but highly metabolized by the gut microbiota. The nutritional interventions 227 

presented in this review provide low amount in total CHO 69, 71, 80 or high in low glycaemic index CHO 78, 82 228 

and have been associated with a decrease in circulating L-EVs. 229 

An intervention based on a Mediterranean diet, one of those peculiarity is to be rich in n-3 PUFAS 230 

(and in a diversity of plant food bioactives), reduce the level of circulating endothelial L-EVs identified as 231 

annexin V+-CD31+ and CD144+-CD62e+ vesicles in elderly volunteers 74. In the same study, the authors 232 

have also demonstrated that a low-fat – high CHO diet enriched in n-3 PUFAs (8 %) modulated similarly 233 

the level of circulating endothelial L-EVs. In another randomized controlled trial, some subtypes of 234 

circulating L-EVs (namely CD61+ platelet-derived and CD14+ monocyte-derived L-EVs) present in high 235 
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amounts in post-myocardial infraction patients were reduced by a 12 weeks- supplementation with n-3 236 

PUFA 45. Likewise, a fish-oil supplementation providing long chain n-3 PUFAs and saturated fatty acids 237 

replacement by MUFA or n-6 PUFAs reduced the circulating level of CD31+/CD42b- endothelial L-EVs 238 

and/or platelet L-EVs in volunteers with moderate risk of CVD 81, 83. In contrast, in healthy middle-age 239 

volunteers, the 4-weeks diet enrichment in n-3 PUFAs failed to modulate the level of circulating annexin 240 

V+-CD41+-CD62+ platelet L-EVs 79. 241 

Beyond their potential contribution to the observed modulatory effects of a Mediterranean Diet 242 

on circulating L-EVs 74, the efficiency of polyphenols per se to modulate circulating L-EVs has also been 243 

investigated. Cocoa polyphenols have been of interest due to their well-known protective effects 244 

improving CV health 90. Thus, McFarlin et al. 75 reported that a 4-weeks dietary supplementation with 245 

cocoa bars supplying flavanols and proanthocyanins (700 mg/d in total), reduced by 13% the 246 

concentration of endothelial L-EVs (identified as CD144+/CD42a-/CD45-) in over-weight young people. 247 

Similarly, the 52% higher level of CD31+/CD41- endothelial L-EVs observed in healthy elderly men 248 

compared to young men can be reduced by 50% after only 2 weeks of nutritional intervention supplying a 249 

cocoa flavanol rich drink twice a day (450 mg/daily dose) 72. Lastly, the consumption of this cocoa flavanol 250 

rich drink for 4 weeks has been demonstrated to reduce significantly the levels of CD144+ endothelial L-251 

EVs (-22 %), CD31+/CD41- endothelial L-EVs (-39 %) but not of CD41+ L-EVs in CAD patients 73. 252 

In conclusion, the analysis of these (sub)chronic intervention studies shows that dietary habits can 253 

affect the level of circulating L-EVs. Interventions aiming at providing a healthier diet, such as at low-254 

glycaemic index or rich in n-3 PUFAs and plant food bioactives (e.g. polyphenols) appear efficient to 255 

reduce the level of circulating endothelial L-EVs and platelet-derived L-EVs in healthy volunteers or in 256 

patients with cardiometabolic disorders. 257 

 258 

4. Dietary modulation of EVs: what potential underlying mechanisms of action? 259 

The release of S-EVs resulting the fusion of the MVB with the plasma membrane and the budding 260 

of L-EVs are mechanisms both highly regulated. They involved a wide range of factors which regulate (i) 261 
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deformability and bending of the membrane inside MVB or at the plasma membrane (i.e. the endosomal 262 

sorting complexes required for transport or ESCRT; the generation of ceramide; the tetraspanins), 263 

membrane lipid composition, intracellular trafficking (e.g. Rab GTPases and the soluble N-ethylmaleimide-264 

sensitive factor activating protein receptors or SNAREs) and (ii) organization of the actomyosin 265 

cytoskeleton (Rho GTPases) 8, 91-96. In the perspective that, as suggested by the present review of available 266 

data, the diet can impact EVs both in fasting and postprandial conditions, it would be interesting to 267 

understand how some macro-/micro-nutrients (glucose, amino acids, triglycerides, and n-3 PUFAs) and 268 

microconstituents (such as polyphenols, as main plant food bioactives) act to trigger physiological 269 

pathways controlling the biogenesis and/or the release of EVs. 270 

The postprandial period is characterized among other metabolic changes by a transient increase 271 

in plasma glucose concentration whose magnitude depends on glucose load and on physiological state. In 272 

vitro studies have demonstrated that a moderate elevation in glucose concentration (from 1g/L (5.5 mM) 273 

to 1.9 g/L (11 mM)) or higher (up to 9g/L (50 mM)) increases the release of L-EVs by endothelial cells 39, 41, 274 

63, monocytes/leukocytes 64, 65 or renal mesangial cells 66. However, Eichner et al. 97 observed that the level 275 

of plasma L-EVs (platelet-derived CD31+-CD41+ EVs, endothelial-derived CD31+-CD41-/CD105+ EVs) is 276 

lowered in obese adults with prediabetes at 2-h following administration of a single 75-g oral glucose load 277 

leading to 1.36 g/L plasma glucose. In contrast, an increased level of basal EVs has been reported in 278 

prediabetic individuals compared to individuals with normal glucose tolerance 98. Consistently, chronic 279 

dietary interventions showed a direct correlation between CHO diet content and the level of plasma L-EVs 280 

71, 78, 80. This suggests that dietary glucose can drive L-EV release. The underlying molecular mechanisms 281 

supporting the action of plasma glucose on L-EV release have not been properly explored. High glucose 282 

can activate several signalling pathways including mitogen-activated protein kinases (MAPK) and Rho-283 

GTPases (as Rho A-ROCK) 99-101 that have been reported to target the production of EVs 102, 103. The rise in 284 

glucose level also coincides with a rapid insulin secretion from pancreatic beta cells that exerts a 285 

hypoglycaemic action. To our knowledge, the effect of insulin on EV biogenesis has never been 286 

investigated. However, it is known that insulin regulates the intracellular vesicle trafficking machinery to 287 
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deliver the glucose transporter (GLUT4) to the cell surface and ensure glucose uptake. The insulin 288 

pathway engages small GTPases of RAB and ARF families (including the ADP-ribosylation factor 6, ARF6), 289 

tethering complexes and the vesicle fusion machinery (including the remodelling of the actin cytoskeleton 290 

and SNARE proteins) 67, 104, 105. Some of these molecular actors are also involved in the biogenesis and the 291 

release of L-EVs 8, 91-96 suggesting that hyperinsulinemia may directly contribute to L-EV release. 292 

The digestion of dietary proteins leads to a plasma increase of essential and branched-chain 293 

amino acids (BCAAs) from 40 to 120 min after protein intake 106-108. The concomitant increase of 294 

aminoacidaemia and plasma EVs sustains a potential role of amino acids in the regulation of S-EV release. 295 

The main cellular amino acid sensors are the amino acid-sensitive kinase complex, mechanistic Target of 296 

Rapamycin Complex 1 (mTORC1) and the General Control Non-depressible Kinase 2 (GCN2) 109-111. Briefly, 297 

under BCAA deficiency, the phosphorylate GCN2 contributes to the inhibition of mTORC1 and by 298 

consequence to the down regulation of protein synthesis. The low amino acids level is compensated by an 299 

enhance activity of autophagy or protein degradation mediated by the proteasome system to recycle 300 

damaged proteins back into BCAAs 112. Evidences have disclosed that a crosstalk between proteolytic 301 

activities (e.-g. autophagy, proteasome and lysosome) and the release of S-EVs, with a balance to a 302 

reduced EV biogenesis under starvation conditions 113, 114. After a meal, the increase of aminoacidaemia 303 

and of insulin will restore the activity of mTORC1 contributing to alleviate the proteolytic activities and 304 

stimulate S-EV release 115, 116. mTORC1 activation can also be driven by the phosphatidic acid of EV layers 305 

that has been detected in EV-like nanoparticles117. Specifically, in endothelial cells, the activation of 306 

mTORC1 contributes through reactive oxygen species (ROS) to impairment of the endothelial function 118, 307 

119, which one feature is the increased release of endothelial L-EVs 7. In addition, the endothelial 308 

dysfunction induced by a high-fat diet during the postprandial period can be attenuated by a dietary 309 

supply in proteins (mainly proteins rich in arginine and cysteine) 120-122. Taken together, these 310 

observations support that dietary proteins can prevent EV release associated to postprandial cell 311 

dysfunctions. However, the lack of scientific evidence sustains the interest to explore the link between 312 

dietary BCAAs and the release of EVs. 313 
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Postprandial lipaemia is characterized by a rise in circulating free fatty acids (FFAs) and 314 

triglyceride-rich proteins (TRPs) that include intestine-derived chylomicrons and their remnants and liver-315 

derived VLDLs 123. The postprandial lipaemia peak occurs at 2 hours after meal intake, kinetic that 316 

depends on dietary factors (e.-g. diet composition, lipid quantity, food structure), intrinsic factors (e.-g. 317 

gender, age, genetic background, health status) and life style factors (e.g. physical activity, smoking) 124, 318 

125. The postprandial FFAs can directly drive the release of S- and L-EVs 126, 127 acting on specific receptors 319 

such as the death receptor 5 (DR5) 127. With TRPs, they can also bind to other receptors such as the toll-320 

like receptor 4 (TLR-4), contributing to induce a transient postprandial low-grade inflammation 128-131. In 321 

this way, postprandial lipaemia contributes to the development of a postprandial endothelial dysfunction 322 

128, 132 associated with an enhanced release of EVs. In addition, metabolic changes associated to the 323 

postprandial period, mainly postprandial glucose and lipids, participate to generate oxidative stress 133-135 324 

that sustains the postprandial development of low-grade inflammation state contributing to the release 325 

of EVs. Dietary n-3 PUFAs, in contrast to palmitic acids, participate lowering level of plasma EVs through a 326 

potent multi-level action that include their anti-inflammatory effect and their ability to modulate the 327 

mTOR pathway 136, 137.  328 

Some dietary microconstituents such as polyphenols peak as metabolites in the plasma during the 329 

postprandial period 138. Dietary polyphenols have been reported to prevent the release of EVs but the 330 

underlying mechanism of action is unknown. Regarding their effects on endothelial-derived L-EVs, one 331 

can speculate that polyphenols act through their capacity at preserving endothelial function 139 and cell 332 

dynamics 140 to modulate the release of L-EVs. In addition, polyphenols have been demonstrated to 333 

counteract glucose-induced inhibition of autophagy in endothelial cells 141 suggesting that they can 334 

restore cellular homeostasis and by consequence L-EV secretion 142. Polyphenols display potent mTOR 335 

modulator through the attenuation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, that can lead 336 

the regulation of L-EV synthesis and release as previously shown 143.  337 

Taken together, these sustain that diet-derived metabolites that circulate during the postprandial 338 

period can constitute modulators of EV secretion as summarized in Figure 1. Nevertheless, further 339 
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investigations are needed to decipher the underlying mechanisms of action. Furthermore, only the 340 

release of EVs has been considered here, while EV content that support EV bioactivity has never been 341 

investigated. Thus, another important question to address in future is how the diet can modulate the 342 

content of EVs, and by consequence their functions. 343 

5. Food-derived EVs: can they affect human health?  344 

EVs from exogenous dietary sources such as milk or vegetables can be also found in bloodstream 345 

and affect homeostasis of the host or improve pathophysiological conditions. This is the particular 346 

interest taking in consideration the ability of EVs to protect some molecules with short half-life from 347 

degradation. For instance, EV-like nanoparticles from grapefruits and milk resist to digestion products of 348 

the host such as gastric enzymes and intestinal pancreatic and bile extract solution. Furthermore, these 349 

nanoparticles do not modify serum levels of interferon gamma (IFN-γ) and the liver enzymes in mice 350 

suggesting the lack of deleterious effects on inflammation 23. 351 

Interestingly, plant-derived EVs can display beneficial effects under pathological conditions due to 352 

the plant bioactive molecules that they carry, as recently reviewed 43, 144, 145. Indeed, it has been shown 353 

that grapefruit-derived nanovesicles can be used as immune modulators in the digestive tract during 354 

colitis in mice. Thus, through the direct action on intestinal macrophages, these vesicles inhibit the 355 

production of IL-1β and TNF-α in these cells and allow the maintaining of intestinal macrophage 356 

homeostasis 23. In the same pathology, broccoli-derived nanoparticles decrease the weight loss, the 357 

infiltration of inflammatory cells in the mucosa and the pro-inflammatory cytokine production 30. 358 

Interestingly, broccoli-derived nanoparticles activate AMPK in dendritic cells leading to a dual effect 359 

associated to the prevention of dendritic cell activation and the induction of tolerant dendritic cells. Also, 360 

lemon-derived EVs display anti-tumor properties in several tumor cell lines by arresting cell proliferation 361 

of tumor cells via the induction of TRAIL-mediated cell death 146 and downregulating proteins implicated 362 

in the lipid metabolism pathway 147. Dietary plant-derived EVs had also effects on lipid metabolism as 363 

illustrated by the fact that ginger-derived EVs can protect against the accumulation of lipid droplets 364 

during alcohol-induced liver damage 147 and lemon EVs reduce LDL cholesterol in healthy volunteers 148. 365 
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Milk is another food source of EV-like nanoparticles that could modulate several functions of 366 

human milk-consumers triggering several host tissues 149. In human food, milk and its derived products 367 

can be pasteurized and/or fermented. Milk-derived EVs numbers are not affected by pasteurization 368 

compared to other method of sterilization150, 151. Thus, pasteurized milk is a new source of large and small 369 

EVs for human consumers of western diet allowing the transfer of milk-derived microRNAs. These small 370 

EVs of pasteurized milk convey oncogenic micro RNAs (e.g., microRNA-21 and microRNA-148a) which 371 

both inhibit PTEN (Phosphatase and TENsin homolog) expression and drive mTORC1-mediated 372 

cancerogenesis 152-154. In another study, the authors observed that bovine milk-EVs (orally administrated 373 

at 25 mg/kg) reduce primary tumor growth but accelerate metastasis in breast and pancreatic cancer 374 

mouse models155. The oral administration of milk-derived S-EVs have been also demonstrated to 375 

attenuate the severity of colitis 156 and of arthritis 157. These beneficial effects have been partly associated 376 

to the ability of milk-derived S-EVs to reduce the expression of inflammatory cytokines (e.g. the monocyte 377 

chemo-attractant protein (MCP-1), inteleukin-6 and TNF-) and to up-regulate the expression of anti-378 

inflammatory mediators such as the transforming growth factor beta (TGF-). In addition, milk-derived S-379 

EVs convey miRNAs that can act as epigenetic regulators contributing to the effects of these EVs on 380 

biological functions 158. In addition, milk -derived S-EVs can drive some pathways such as the AMPK-381 

mTORC1 activation152, 159, that can result in the release of EVs from the host recipient cells.. Furthermore, 382 

due to their small size EV-like nanoparticles from foods can probably cross the epithelial barrier including 383 

the blood brain barrier160. This hypothesis is supported by the loss of spatial learning and memory 384 

observed in mice fed a diet with bovine milk depleted in S-EVs for up to 20 weeks compared to mice 385 

consuming a complete diet161 and the detection in brain of fluorescent-labelled milk S-EVs administered 386 

to adult mice through oral gavage 162.  387 

Together, these data underline the strength of EV-like nanoparticles from foods to impact on 388 

biological functions and the interest to consider these EVs as relevant dietary contributors on human 389 

health. 390 

 391 
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6. Diet-induced EVs: friends or foes for human health? 392 

It is widely demonstrated that EVs are important mediators of cell-to-cell communication. EV-393 

mediated intercellular communication begins by the recognition and the capture of circulating EVs by 394 

target cells 92, 163, that is influenced by both EV surface markers and EV size. Information are transmitted 395 

from EVs to cells by acting at the cell membrane, with or without the delivery of their content. The 396 

mechanisms of uptake and cargo delivery into recipient cells are still incompletely understood. But 397 

evidences support that EVs drive phenotypic changes mostly by spreading the phenotypic features of 398 

donor cells to acceptor cells 164. Thus, the pending question that is raised in the present review focuses on 399 

the biological function(s) of diet-induced EVs. Knowledge on this topic is still scarce and is constrained by 400 

the heterogenicity of circulating diet-induced EVs. As previously mentioned, diet modulates EV release 401 

mainly from endothelial cells, leukocytes and platelets. In addition to this board of cell source, it has been 402 

reported that cells release various subpopulations of EVs with distinct size, protein cargo and miRNAs 403 

content 36, 165-168. 404 

Spectre et al. 58, who reported an increased level of annexin V+ L-EV derived from endothelial 405 

cells, platelet and monocytes after a standard meal, have demonstrated that these EVs generate more 406 

thrombin than pre-meal EVs. In contrast, acute and chronic n-3 PUFA supplementation have been shown 407 

to lower plasma annexin V/TF+ L-EV levels and their thrombin generation capacity 45, 57. Endothelial-408 

derived L-EVs carrying TF+ and platelet-derived L-EVs exposing at their surface phosphatidylserine are 409 

known to be procoagulant and to increase the risk of venous thrombo-embolism 169. Circulating L-EVs 410 

released in dyslipidaemia induced by a high-energy diet have been shown to contribute to inflammation 411 

and vascular damage by increasing the endothelial expression of intercellular adhesion molecule 1 (iCAM-412 

1) and the production of reactive oxygen species and by reducing vascular relaxation of aortic rings 21. 413 

These EVs also exert an antiatherogenic action through the reduction of caveolin 1 endothelial. Similarly, 414 

Jansen et al. 170 demonstrated that high glucose-induced L-EVs impair endothelial function as determined 415 

by a lower endothelial-dependent relaxation in EV-treated mice and by an increased adhesion of 416 

monocytes to L-EV-treated human coronary artery endothelial cells partly due to an up-regulation of 417 
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iCAM-1 and vCAM-1 in the treated cells. Similarly, L-EVs released from activated endothelial cells, such as 418 

those released during the transient diet-induced inflammation and endothelial dysfunction, exert a dual 419 

role. Luna et al. 171 reported that endothelial L-EVs induced by inflammation alter the function of 420 

endothelial cell progenitors whereas Mahmoud et al. showed that they reduce oxidative stress and 421 

prevent lipid-induced endothelial damage 172. On another note, it has been observed in the Framingham 422 

Offspring cohort the association of circulating level of endothelial L-EVs (referred as CD31, CD144+ EVs 423 

and known to reflect damaged endothelium) with the presence of cardiometabolic risk factors, 424 

particularly dyslipidaemia 173. 425 

Other EVs subtypes (e.g. from adipose tissues, skeletal muscles), not detected so far in human 426 

plasma in response to a meal intake or a chronic dietary supplementation, participate to attenuate 427 

glucose intolerance and to improve insulin resistance 174-177. Wu et al. 178 demonstrated that S-EVs derived 428 

from liver and enriched in miR-130a contribute to the recovery of insulin resistance induced by an HFD in 429 

mice. A study by Kumar et al. 179 revealed that an HFD affect intestinal epithelial S-EVs that are enriched in 430 

phosphatidylcholine resulting in an inhibition of the insulin response in mice. The authors report the same 431 

alteration in lipid composition in S-EVs from patients with T2DM. Together, these results reveal that S-EVs 432 

are potential contributors to the development of insulin resistance and that diet can be an efficient 433 

strategy to attenuate their impact. 434 

In absence of more investigations on the biological function(s) of diet-induced EVs, available data 435 

support that unbalanced diet could drive through metabolic changes (glycaemia, lipaemia, oxidative 436 

stress and related inflammation) the release of EVs that convey pro-inflammatory, pro-thrombotic and 437 

pro-atherogenic messages, these latter representing in case of chronicity an increased risk for health. 438 

However, this risk could be attenuated by an improved diet supplying protective micronutrients and plant 439 

food bioactives. 440 

 441 

Conclusion  442 
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This review highlights the importance to consider diet as an important regulator both in 443 

postprandial and fasting conditions of EV biology and to develop further investigations to extend 444 

knowledge in this promising but still underexplored research field. 445 

EVs modulated by diet have been identified using the same methods (i.e. surface markers) than for the 446 

detection of fasting EVs in patients with a diagnosis or prognosis purpose. By consequence, diet-447 

associated EVs share similar phenotype characteristics with disease-associated EVs. Apart the “fast” 448 

feature during the postprandial period, the kinetic of release of diet-associated EVs has never been fully 449 

described. Consequently, their persistence in the bloodstream till a fasting state cannot be excluded. If so, 450 

this phenomenon could skew the use of fasting EVs as a reliable health biomarker and this aspect must be 451 

addressed properly. One bias of the methods used to explore human plasma EVs is to exclude S-EVs that 452 

may be modulated by diet and could be use as reliable nutritional biomarker as the L-EVs. Further, EV 453 

content, that is considered as a fingerprint of their cells of origin, has not been reported for diet-454 

associated EVs. One critical question in this regard is how the cargo (e.g. proteins, miRNAs and lipids) of 455 

diet-associated EVs allow to differ them from EV released in health disturbances. In addition, an accurate 456 

characterization of diet-associated EV content will contribute to a better understanding of their biological 457 

functions. In 2021, Mantilla-Escalante et al. 180 report that the long-term consumption of a Mediterranean 458 

diet enriched in extra-virgin olive oil or nuts from participants of the PREDIMED study improves the 459 

number and modulates the miRNA profiles of circulating exosomes. This modulation could help to explain 460 

how such diet lead to beneficial health effects. Based on the biological functions reported for diseases 461 

associated-EVs or in vitro induced EVs sharing similar phenotype features, EVs induced after consumption 462 

of an unbalanced diet are assumed to constitute a risk factor for health, that could potentially be slow 463 

down by supplying diet with plant food bioactives protective for health. Answering these pending 464 

questions will contribute to substantiate the interest of EVs and their content as innovative tools to 465 

explore the relationship between nutrition and health. 466 
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