
HAL Id: hal-03531017
https://hal.science/hal-03531017

Submitted on 18 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Industrial water management by multiobjective
optimization: from individual to collective solution

through eco-industrial parks.
Marianne Boix, Ludovic Montastruc, Luc Pibouleau, Catherine

Azzaro-Pantel, Serge Domenech

To cite this version:
Marianne Boix, Ludovic Montastruc, Luc Pibouleau, Catherine Azzaro-Pantel, Serge Domenech.
Industrial water management by multiobjective optimization: from individual to collective so-
lution through eco-industrial parks.. Journal of Cleaner Production, 2012, 22 (1), pp.85-97.
�10.1016/j.jclepro.2011.09.011�. �hal-03531017�

https://hal.science/hal-03531017
https://hal.archives-ouvertes.fr


Any correspondence concerning this service should be sent to the repository administrator: 

staff-oatao@inp-toulouse.fr 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 To link to this article: DOI:10.1016/j.jclepro.2011.09.011 

   http://dx.doi.org/10.1016/j.jclepro.2011.09.011 

  

 

 

 

 

 

 

 

 

  

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 6537 

To cite this version:  

Boix, Marianne and Montastruc, Ludovic and Pibouleau, Luc and Azzaro-

Pantel, Catherine and Domenech, Serge Industrial water management by 

multiobjective optimization: from individual to collective solution through eco-

industrial parks. (2012) Journal of Cleaner Production, vol. 22 (n° 1). pp. 85-97. 

ISSN 0959-6526 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

 

http://dx.doi.org/10.1016/j.jclepro.2011.09.011
http://oatao.univ-toulouse.fr/


Industrial water management by multiobjective optimization: from individual
to collective solution through eco-industrial parks

Marianne Boix, Ludovic Montastruc, Luc Pibouleau*, Catherine Azzaro-Pantel, Serge Domenech

Laboratoire de Génie Chimique (LGC), Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique de Toulouse (INPT), Université de Toulouse, 4,

Allée Emile Monso, BP 84234, 31432 Toulouse, France

Keywords:

Water network

Multiobjective optimization

MILP

Eco-industrial park

a b s t r a c t

Industrial water networks are designed in the first part by a multiobjective optimization strategy, where

fresh water, regenerated water flow rates as well as the number of network connections (integer vari-

ables) are minimized. The problem is formulated as a Mixed-Integer Linear Programming problem (MILP)

and solved by the ε-constraint method. The linearization of the problem is based on the necessary

conditions of optimality defined by Savelski and Bagajewicz (2000). The approach is validated on

a published example involving only one contaminant. In the second part the MILP strategy is imple-

mented for designing an Eco-Industrial Park (EIP) involving three companies. Three scenarios are

considered: EIP without regeneration unit, EIP where each company owns its regeneration unit and EIP

where the three companies share regeneration unit(s). Three possible regeneration units can be chosen,

and the MILP is solved under two kinds of conditions: limited or unlimited number of connections, same

or different gains for each company. All these cases are compared according to the global equivalent cost

expressed in fresh water and taking also into account the network complexity through the number of

connections. The best EIP solution for the three companies can be determined.

1. Introduction

During the last decades, many developed countries have

increased their investment in environmental research and devel-

opment due to an increasing depletion of natural resources such as

fresh water for instance (UNESCO, 2009). With the increasing

interest for global environment preservation, the unlimited

resources paradigm became little by little obsolete. In 2008, the

global needs in fresh water were estimated to be 4000 km3

(UNESCO, 2009), where 20% were used by industry and have

been globally increased by a factor of four during the last 50 years

(Oecd, 2008). The environmental impact induced by the process

industry is linked both to the high volumes involved and to the

diversity of toxic products generated along the processing chain.

Consequently, a real need to define optimizedwater networks so as

to reduce the impact of contaminants on the environment, has

recently emerged.

Although the world concern of sustainable development gave

birth to a lot of works during the last decades, the concept of

Industry linked to Ecology is quite much older. Indeed, since the

beginning of the twentieth century, scientists are worried about

designing clean industries. Several studies stated the recycling of

by-products of an industry by another one (Simmonds, 1862;

Conover, 1918). These studies did not introduce any official term

on what they dealt for. “Industrial Ecology” really appeared

(Hoffman, 1971) in the 1970’s and Japanese and Belgian studies

went deeper in this topic (Watanabe, 1972; Gussow and Meyers,

1970). However, Frosch and Gallapoulos (1989) popularized this

term twenty years ago from the idea that we should use the

analogy of natural systems as an aid in understanding how to

design sustainable industrial systems. As they indicate the ideal

ecosystem, in which the use of energy and materials is optimized,

wastes and pollution are minimized and there is an economically

viable role for every product of a manufacturing process, will not be

attained soon. It was true in 1989, and it is always true today.

Industrial Ecology has been defined by Allenby (2006) as “a

systems-based, multidisciplinary discourse that seeks to under-

stand emergent behaviour of complex integrated human/natural

systems”. In most of the researches in Industrial Ecology the

common guideline is that natural systems do not have waste in
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them, so our systems should be modeled from natural ones if we

want them to be sustainable.

Without falling into the trap of abstruse ecological discourses,

many difficult societal and/or industrial problems appear under the

generic term of Industrial Ecology. Building a sustainable industry

is slightly linked to the term Industrial Symbiosis. According to

Chertow (2000), an industrial symbiosis engages “separate indus-

tries in a collective approach to competitive advantage involving

physical exchange of materials, energy, water and by-products”. A

primordial feature of an industrial symbiosis is the collaboration

offered by the geographic proximity of the several companies. Most

widespread manifestations of an industrial symbiosis are Eco-

Industrial Parks. The term “eco-industrial park” is the subject of

many debates due to its definition, difficult to formulate rigorously.

However, a definition commonly adopted is “an industrial system

of planned materials and energy exchanges that seeks to minimize

energy and raw materials use, minimize waste, and build sustain-

able economic, ecological and social relationships” (PCSD, 1996;

Alexander et al., 2000). This definition was later reported by Côté

and Cohen-Rosenthal (1998). Obviously, a basic condition for an

EIP to be economically viable is to demonstrate that the sum of

benefits achieved byworking as collective is higher thanworking as

a stand-alone facility.

There is some amount of uncertainty in this type of optimization

model. For instance, the mass loads of contaminants for water-

using processes or any other parameter that may changes during

the operation process. Although some studies (Sahinidis, 2004;

Karuppiah and Grossmann, 2008) have incorporated these uncer-

tainties to design industrial water networks, the objectives of this

study.

The first part of this paper aims at defining a general method-

ology by taking into account only the single contaminant case for

the Design of Water Networks (DWN). The generic problem is

formulated under a MILP formwith integer variables related to the

connections into the network. The biobjective optimization of the

fresh water flow rate at the network entrance and the water flow

rate at regeneration unit inlets, parameterized by the number of

connections, is carried out according to a lexicographic procedure.

The approach, validated on a published example involving ten

processes and one regeneration unit, is extended in the second part

to eco-industrial parks (EIP). The last part deals with several EIP

configurations in order to evaluate the feasibility of each solution.

2. Previous works

Historically, the design of water network (DWN) was carried out

not for EIP purposes, but for a stand-alone company by means of

graphical methodologies (Dunn and Wenzel, 2001; Jacob et al.,

2002; Linnhoff and Vredeveld, 1984; Manan et al., 2006; Wan

Alwi, 2008), mathematical programming (Bagajewicz and

Savelski, 2001; Feng et al., 2008; Huang et al., 1999) and

synthesis of mass exchange networks (El-Halwagi, 1997; Hallale

and Fraser, 2000; Shafiei et al., 2004). Designing water networks

refers to allocate the streams of the networks between several units

while respecting constraints and satisfying objectives. Water allo-

cation problems (WAP) werewidely studied during the last decades

due to the growing interest for sustainable development in

industries (de Faria and de Souza, 2009; Kumaraprasad and

Muthukumar, 2009; Klemes et al., 2010; Poplewski et al., 2010).

Linear formulations implemented for maximizing water regener-

ation and reuse into industrial processes has been first developed in

a lot of previous works (Bagajewicz and Savelski, 2001; El-Halwagi,

1997; El-Halwagi et al., 2004; Wang and Smith, 1994). These

techniques are limited to single contaminant networks (Gomes

et al., 2007), which are the main subject of the present study

Another strategy has already been adopted regarding the resolu-

tion ofWAP, it consists in multiobjective optimization using genetic

algorithm (Lavric et al., 2005). Nonlinear strategies based on the

relaxation of the bilinear terms involved in the balance equations

are presented in the works of Quesada and Grossmann (1995)

and Galan and Grossmann (1998). Even if significant advances

have been performed in the field on nonlinear mixed-integer

Nomenclature

wj
1 fresh water flow rate going to the process j (T/h)

wpj/k
i partial flow rate of the component i between two

processes j and k (T/h)

wprj/m
i partial flow rate of the component i from the process j

to the regeneration unit m (T/h)

wdji discharged partial mass flow of the component i from

the process j (T/h)

wrm/n
i partial mass flow of the component i between two

regeneration units m and n (T/h)

wrpm/j
i partial mass flow of the component i from the

regeneration unit m to the process j (T/h)

wrdmi discharged partial mass flow of the component i from

the regeneration unit m (T/h)

Mj
i amount of contaminant i generated by the process j

(g/h)

Cmaxinj maximal concentration at the input of the process j (g/T)

Cmaxoutj maximal concentration at the output of the process j

(g/T)

ENC equivalent number of connections

F1 fresh water flow rate at the network entrance (T/h)

F2 water flow rate at inlets of regeneration units (T/h)

Fw waste water flow rate (T/h)

F3 number of connections into the network

GEC global equivalent cost in fresh water (T/h)

R contribution of the regenerated water flow rate in GEC

(T/h)

W contribution of the waste water flow rate in GEC (T/h)

Abbreviations

DWN Design of Water Network

WAP Water Allocation Problem

GAMS Generalized Algebraic Modelling System

EIP Eco-Industrial Park

MILP Mixed-Integer Linear Programming

MINLP Mixed-Integer NonLinear Programming

NLP NonLinear Programming

LP Linear Programming

Greek letters

a cost factor for regenerated water

b cost factor for waste water

Subscripts

i component, with i ¼ 1 for fresh water and i > 1 for

contaminants

Superscript

o outlet

j, k processes

m, n regeneration units



programming, the search for a solution of a linear problem is

always easier than in the nonlinear case. This concerns both the

global optimality of the solution found, and the ease to initialize the

search. Furthermore, MILP methods may support important

numbers of variables and high combinatorial aspects. These issues

are important when dealing with EIPs. In most of previous works,

DWN was carried out only for monocontaminant networks, but in

a recent paper Boix et al. (2011) deal with multicontaminant

problems. In that case, the MILP problem becomes a MINLP one;

that is the reason why this study is restricted to the mono-

contaminant case.

EIP problems for managing industrial water were solved

by mathematical programming either by using NLP (NonLinear

Programming), MILP (Mixed-Integer linear Programming) or

MINLP (Mixed-Integer NonLinear programming) procedures (Aviso

et al., 2010a, 2010b; Chew et al., 2008, 2010a, 2010b; Lovelady and

El-Halwagi, 2009; Kim et al., 2010). What is giving cause for

concern in numerous research works is to deal with conflicting

objectives (Erol and Thöming, 2005). However, new strategies have

been adopted in order to compensate for this problem like a bi-

level fuzzy optimization developed by Aviso et al. (2010a, 2010b).

Furthermore, a lot of research has been devoted to develop some

indicators to evaluate the satisfaction of each participant of the IEP

(Tiejun, 2010; Zhu et al., 2010). Other recent works implement the

game theory for solving the problem (Chew et al., 2009, 2010c) and

various approaches consider that an EIP is comparable to biological

or ecological natural systems (Liwarska-Bizukojc et al., 2009;

Tiejun, 2010). All these studies choose classical objectives: the

fresh water consumption or the satisfaction of participants but Lim

and Park (2008) focused on the necessity of reducing the total

carbon footprint of participant’s water supply systems.

However EIPs have to face two main classes of challenges that

can determine their development. The former is the Technical/

Economic challenge: if the exchanges among the participants are

unfeasible, no EIP can be successful. Indeed a real connectivitymust

exist between the companies within the EIP. The latter related to

the organizational/commercial points can represent the biggest

hurdle. However this second thorny issue will not be tackled in this

paper related to the implementation of an EIP for managing

industrial waters. Chertow identified that certain precursors of

symbiosis can be regeneration or waste water reuse and can lead to

more extensive symbiotic cooperation as well (Chertow, 2007).

Several successful examples of EIPs located all around the world

particularly in North America (Côté and Cohen-Rosenthal, 1998;

Gibbs and Deutz, 2005, 2007; Heeres et al., 2004), Western Europe

(Baas and Boons, 2004; Heeres et al., 2004; Mirata, 2004; Van

Leeuwen et al., 2003), and Australia (Roberts, 2004; Van Beers

et al., 2007; Van Berkel, 2007; Giurco et al., 2010). More recently,

new eco-parks have been implanted in other countries such as

China (Geng and Hengxin, 2009; Liu et al., 2010; Shi et al., 2010),

Fig. 1. Superstructures for a company (a), and an EIP (b).



Brazil (Veiga et al., 2009) or Korea (Oh et al., 2005; Park et al., 2008).

A good review of several successful of EIP had been raised by Tudor

et al. (2007).

As cited by Tibbs (1993) about the creation of industrial

ecosystems “Industrial ecosystems are a logical extension of life-

cycle thinking, moving from assessment to implementation. They

involve "closing loops" by recycling, making maximum use of

recycled materials in new production, optimizing use of materials

and embedded energy, minimizing waste generation, and revalu-

ating "wastes" as raw material for other processes.” The present

work, related to the management of industrial water, comes within

this scope. Furthermore from Baas (2006) and Sakr et al. (2011), this

study is situated at the micro level of the Cleaner Production

Systems.

3. Multiobjective MILP problem

3.1. Problem statement

Given a set of regeneration units and processes, the objective is

to determine a network of connections of water streams among

them so that both the overall fresh water consumption and the

regenerated water flow rate are minimized. Each process has

limited inlet and outlet concentrations and regeneration units are

defined by their outlet concentration. The particular case of an EIP

can be assimilated to a bigger company divided into blocks (each

block is in fact a company). The purpose is to design an optimal

network (for a company or for an EIP) where all the requirements in

terms of contaminant concentrations for each process are

respected.

3.2. Superstructures definition

In the company superstructure, all the possible connections

between processes and regeneration units may exist, except recy-

cling to the same regeneration unit or process. For each water-using

process, input water may be fresh water, used water coming from

other processes and/or recycled water; the output water for such

a process may be sent towards the discharge, or to other processes

and/or to regeneration units. Similarly, for a regeneration unit,

input water may come from processes or from other regeneration

units. Regenerated water may be reused in the processes or sent

towards other regeneration units. (Fig. 1a) In order to define

a generic formulation, the physical or chemical operation (reaction,

separation.) performed in each process j is not taken into account.

However, a process j generates a mass of contaminant due to its

own working. This contamination is expressed in g/h and noted:

Mj
i>1, this value imposed by the process itself, is fixed by the user.

The same superstructure is also adopted for each company

involved in an EIP (Fig. 1b) and the connections between the

different companies will be defined in Section 4 where several

examples are studied.

3.3. Process modelling

In most previous works, the water allocation problem is

generally solved with an MINLP optimization (Feng et al., 2008).

Indeed, the model-based problem contains bilinear terms due to

products in mass balances for contaminants. These bilinearities are

caused by the products of concentrations and flow rates (Sienutycz

and Jezowski, 2009).

In this study, the formulation is based upon the necessary

conditions of optimality developed by Savelski and Bagajewicz

(2000) that relies on the elimination of these bilinearities for

a single contaminant water network. The modeling equations are

the same as used in Boix et al. (2010), involving partial mass flows;

that is to say that contaminants are represented by flow rates (in g/

h) instead of concentrations (in ppm). The partial contaminant flow

rate is linked to the contaminant concentration also involving the

partial water flow rate (in T/h) by this definition (assuming a flow

stream going from process j to process k):

wj/k
i>1

wj/k
1 þwj/k

i>1

¼ Cj/k (1)

The denominator: wj/k
1 þwj/k

i>1 represents the total flow rate of

the stream. This term can be reduced regarding units of flow rates.

Indeed, wj/k
1 is expressed in T/h whereas wj/k

i>1 unit is g/h

(10!6 T h!1) what supports the relation (2) and leads to the

Equation (3) giving the definition used in this study for a partial

contaminant flow rate.

wj/k
i>1

wj/k
1

¼ Cj/k (2)

wj/k
i>1 ¼ Cj/k "wj/k

1 (3)

As a result of these assumptions, the mass balances for flow

rates are written as follows:

- For a given process j, the inlet water (i ¼ 1) flow rate is equal to

the outlet water flow rate:

wj
1 þ
X

k

wpk/j
1 þ
X

m wrpm/j
1 ¼ wdj1 þ

X

kwpj/k
1

þ
X

mwprj/m
1 (4)

- For a given process j, the inlet contaminant (i> 1) flow rate plus

the contaminant mass load is equal to the outlet contaminant

flow rate:

X

k wpk/j
i>1 þ
X

m wrpm/j
i>1 þMj

i>1

¼ wdji>1 þ
X

k wpj/k
i>1 þ
X

m wprj/m
i>1 (5)

- For a given regeneration unit m, the inlet water flow rate is

equal to the outlet water flow rate:

X

n wrn/m
1 þ

X

j wprj/m
1 ¼ wrdm1 þ

X

j wrpm/j
1

þ
X

n wrm/n
1 (6)

- For a given regeneration unitm, the inlet contaminant flow rate

is equal to the outlet contaminant flow rate:

X

n wrn/m
i>1 þ

X

j wprj/m
i>1 ¼ wrdmi>1 þ

X

j wrpm/j
i>1

þ
X

n wrm/n
i>1 (7)

- The overall freshwater flow rate is equal to the total discharged

water flow rate:

X

mwrdm1 þ
X

j wdj1 ¼
X

j w
j
1 (8)



- The total discharged contaminant flow rate is equal to the sum

of contaminant mass loads of each process j:

X

m wrdmi>1 þ
X

j wdji>1 ¼
X

j M
j
i>1 (9)

Equations (10) and (11) introduce two new notations for the

total inlet and outlet flow rates in a given process j in order to make

the understanding of the next constraints easier:

wj
i þ
X

k wpk/j
i þ
X

m wrpm/j
i ¼ wpj

in;i
(10)

X

k wpj/k
i þ
X

m wprj/m
i þwdji ¼ wpjout;i (11)

Given this set of mass balances equations, constraints on

contaminant concentrations are added to the mathematical

problem. Each process is limited with inlet and outlet contaminant

concentrations following these inequalities (for a process j):

wpj
in;i>1

# Cmaxinj "wpj
in;1

(12)

wpjout;i>1 # Cmaxoutj "wpjout;1 (13)

In the same way, the post-regeneration concentration is fixed

and gives birth to the equality (14).

wrmout;i>1 ¼ Croutm "wrmout;1 (14)

The addition of the constraint (13) is not without repercussions

because it represents mass balances at splitters. Consequently, the

output streams of a given process must have the same pollutant

concentration and this assumption is mathematically conveyed for

the outlet of a process j as:

wpj/k
i>1 ! Cmaxoutj "wpj/k

1 ¼ wprj/m
i>1 ! Cmaxoutj "wprj/m

1

¼ wdji>1 ! Cmaxoutj "wdj1 ð15Þ

And in the same way, for the regeneration unit m:

wrm/n
i>1 ! Croutm "wrm/n

1 ¼ wrpm/j
i>1 ! Croutm "wrpm/j

1 (16)

However, these equalities hide an important condition. Indeed,

if the mass flow of water is null for one stream, this stream does not

exist, what is traduced by the logic condition (17):

if wpj/k
1 ¼ 0 then wpj/k

i>1 ¼ 0 (17)

It changes Equation (15) in Equation (18), if the process j does

not distribute water to another process k, it implies that, for

instance:

0 ¼ wprj/m
i>1 ! Cmaxoutj "wprj/m

1 ¼ wdji>1 ! Cmaxoutj "wdj1

(18)

Thus,

wprj/m
i>1 ¼ Cmaxoutj "wprj/m

1 (19)

The former demonstration changes Equation (19) into the

equality (19), and thus, implies that outlet concentrations are equal

to the maximal value Cmaxoutj for each process of the network. This

condition does not compromise the guarantee of optimality

because written like this, the problem check all the “necessary

optimality conditions” for a single contaminant water allocation

problem (Savelski and Bagajewicz, 2000). These authors give

several theorems among which:

- “Theorem 2: If a solution of the WAP problem is optimal, then the

outlet concentration of a head process is equal to its maximum or

an equivalent solution with the same overall fresh water exists in

which the concentration is at its maximum”.

- “Theorem 3: If a solution of the WAP problem is optimal, then the

outlet concentration of an intermediate process reaches its

maximum or an equivalent solution with the same overall fresh

water exists in which the concentration is at its maximum”.

- “Theorem 4: If the solution of the WAP problem is optimal, then

the outlet concentration of a terminal process is equal to its

maximum or an equivalent solution with the same overall fresh

water consumption exists”

In a water network, since all processes are either head, inter-

mediate or terminal processes, the constraint (18) agrees with the

necessary optimality conditions proved by Savelski and Bagajewicz

(2000). At this stage of the modelling process, the problem is linear

and can be solved with a Linear Programming (LP).

Nevertheless, in order to evaluate the network complexity,

a binary variable is allocated to each flow, what changes the

problem into a MILP form. These variables are added in the

program with the help of a Big-U constraint as (U has to be bigger

than any water flow rate of the plant):

Wpj/k
1 # ypj/k " U (20)

In the particular case of an EIP, these equations are the same for

each company included in the park: in the following example the

EIP involves a company A containing processes from 1e5,

a company B with processes 6e10 and a company C with processes

11e15. The regeneration units are numbered from 1e3, respectively

for the three companies. However, a global EIP may include the

following rules as constraints: between each company, only one

flow needs to be exchanged in one way. This condition is necessary

in order to simplify the final EIP. However, this number can be

changed if it is permitted by the abilities of the park as the

geographic layout. In order to let the reader appreciate this choice,

Section 3.6 evaluates economic impacts of connections. It is

demonstrated that external connections (meaning between

companies) are much expensive than internal ones. For instance;

the company A should have only two connections with the

company B (one from A to B (21) and one from B to A (22)):

X

5

i¼1

X

10

j¼6

ypi/j þ
X

10

j¼6

yrp1/j þ
X

5

i¼1

ypri/2 ¼ 1 (21)

X

5

i¼1

X

10

j¼6

ypj/i þ
X

10

j¼6

yrpj/1 þ
X

5

i¼1

ypr2/i ¼ 1 (22)

3.4. Multiobjective optimization

In order to solve this linear problem, objective functions F1
(fresh water flow rate at the network entrance) and F2 (water flow

rate at inlets of regeneration units) have to be minimized while the

third one F3 (number of connections into the network) is consid-

ered as an equality constraint. One can wonder why a biobjective

optimization (F1, F2) is performed instead of a mono-objective one

by minimizing a cost function. In fact, by implementing a bio-

bjective optimization a Pareto front is obtained instead of a single

solution as in the monobjective case. Let us recall that a Pareto

front is the set of efficient (non-dominated) solutions for a multi-

objective problem; this is an equilibrium curve, where a given

solution cannot be improved without degrading at least another



one. Consequently, it is better to let F1 and F2 as two separate

objectives in order to construct Pareto fronts. Indeed, a cost value

can change in function of the capacities or yet the geographic

situation of the company. In this multiobjective optimization

framework all the treated results are presented first and a tool for

decision aid is then proposed and used. The advantage of this

method is to have universal results that can be treated with several

tools. Furthermore, F3 is deliberately estimated in terms of

connections number because if a cost is attributed, the objective

function cannot stay linear. According to Sieniutycz and Jezowski

(2009), the cost of connections is linked to the associated flow

rate according a power law (23). Thereby, the problem is changed

into a nonlinear form. It is worth noting that the results can be

evaluated in terms of cost in a post-optimization stage.

C ¼ g"
!

W j
1

"m
(23)

Where C is the cost of a connection linked to the flow rateW j
1; m and

g are coefficients depending on the parameters of the network

studied (flow rates, type of liquid circulating.).

The optimization variables are the various flow rates (contin-

uous variables) and the existence of connections (binary variables).

The additional set of constraints is given by the modelling equa-

tions. The problem solutions are displayed in the form of a Pareto

front, so a comparison strategy has to be defined for identifying

“good” solutions among the ones reported on the front.

3.5. Comparison strategy

In what follows, internal connections refer to connections

between processes of the same company and external connections

are related to connections coming from or going towards other

companies. By supposing constant distances between companies, it

is assumed that for each external connection, the cost for each

company is divided by two. For EIPs involving an interceptor for

sharing regeneration units, the connections between a given

company and the interceptor are external connections. Thus, the

equivalent number of connections ENC for a given company, which

reflects the piping and pumping costs and the associated infra-

structure, is given by:

ENC ¼ number or internal connectionsþ 0:5

" number of external connections (24)

Another economic indicator, the Global Equivalent Cost (GEC) in

water flow rate, is defined in this study. This cost is expressed as an

equivalent of water flow rate in T/h. For comparison purposes, we

could use the prices of fresh water, of regenerated water and of

post-treatment in the waste. However, these prices are strongly

linked to the country and even to regions of this state.

GEC ¼ F1 þ RþW (25)

where F1 is defined above, R and W are the contributions of

regenerated and waste waters, with:

R ¼ a" F2 and W ¼ b" Fw (26)

where Fw is the waste water flow rate.

Combining relations (25) and (26) leads to the following

relation:

GEC ¼ F1 þ a" F2 þ b" Fw (27)

In the previous relations, a depends on the type of regeneration

unit (see Table 1) and b ¼ 5.625 according to Bagajewicz and Faria

(2009).

After the multiobjective optimization step, the different solu-

tions are discriminated by performing a Pareto sort on the couples

(GEC, ENC) for each company.

3.6. Economic impact of connections

The economic impact of the number of connections on the

choice of a particular solution is analyzed from the following

example: a company involving five processes, with a regeneration

unit of type I and eight connections. The same flow (23.25 T h!1) is

assumed in each pipe, and the piping cost is computed from Chew

et al. (2008) with a mean length of internal pipes of 50 m, a frac-

tional interest rate of 5%, a period of 5 years and a fresh water cost

of 0.1 V/T (cost of river water). The ratio (piping cost/water cost) is

14%. Even if the network exhibits simplicity of implementation, this

example shows that there is a real economic interest in optimizing

the number of connections. Note that when EIPs are considered, the

part due to external connections which are much longer (there is at

least a factor 10) than the internal ones, significantly increases the

ratio (piping cost/water cost).

4. Design of water network problem

4.1. Problem formulation

For the example presented below, the number of connections in

the network is defined in the range [11e120] representing the

lowest (respectively the highest) number of possible connections in

the network. This water allocation problem consists in solving the

biobjective problem (F1, F2) under the constraint F3.fixed to a given

value in the previous range. The multiobjective method recalled in

Section 3.4 and based on the ε-constraint two-phase strategy

(Mavrotas, 2009) is implemented. During the first phase, the first

objective (F1) is minimized alone, while the second one (F2) is

introduced as a bounding constraint. The second objective is

minimized in the second step, where the first one can vary in an

interval for which the optimal value obtained in the first phase is

the median. When the solutions obtained in the two phases are

identical, they are inserted in the Pareto front.

This example involving ten processes, one regeneration unit of

type I (see Table 1) and one contaminant, was already proposed by

Bagajewicz and Savelski (2001), the corresponding limiting process

data are shown in Table 2 and the outlet regeneration concentra-

tion is fixed at 5 ppm. The corresponding MILP involves 143 binary

variables related to connections, 332 continuous variables and 351

constraints.

4.2. Theoretical results

The biobjective optimization was performed for different values

of the connection number F3 in the range [11, 120]. The constraint

(18) imposes to minimize the overall fresh water consumption.

Hence, for several ranges of F2, the fresh water consumption is

minimized in order to have one optimal solution for each range of

F2 and for a given value of F3. Starting from F3 ¼ 11, all the possible

values for F3 were tested. When F3 is greater or equal to 19, all the

Table 1

Values of a according to types of regeneration units.

Regeneration type Outlet concentration (ppm) a value

I 50 0.375

II 20 1.75

III 5 3.125



fronts are superimposed on the same straight line. For example, the

Pareto fronts corresponding to F3 ¼ 11, 12, 19 and 120 are reported

in Fig. 2. Feng et al. (2007) show the linearity of the Pareto fronts for

this particular problem. The values obtained for this example are

identical with the ones reported in the literature (Bagajewicz and

Savelski, 2001; Feng et al., 2008; Huang et al., 1999). Thus the

network mathematical formulation and the optimization proce-

dure are validated.

4.3. Choice of the best feasible network

The solutions displayed in Fig. 2 are only theoretical results

because in some cases, connections with quasi-null flow rates may

exist. Obviously this type of solution cannot be considered in

practice. Indeed, it is generally admitted (Bagajewicz and Savelski,

2001) that networks involving flows lower than 2 T h!1 cannot

be used in practice because they force the user using very small

pipes (with a diameter of about 1 inch). These pipes are not

economically profitable regarding their investment cost. From the

theoretical study, “good” solutions on an industrial point of view,

combining moderate GEC, few connections and non null flow rates

in the connections have to be defined. The minimum value of GEC

was studied vs. the connection numbers, and the best solution

(GEC¼ 619 T h!1) is obtained with 17 connections and corresponds

to: F1 ¼ Fw ¼ 10 T h!1 and F2 ¼ 177 T h!1. The flowsheet of the

proposed solution is given in Fig. 3 (connections are numbered in

brackets; connections going to thewaster are not numbered). Other

solutions with higher connection numbers can be also identified,

but are topologically more complicated.

4.4. Discussion

From this example, the following conclusions can be empha-

sized: (i) the solutions provided by the Pareto fronts are only

theoretical results; ii) further investigations based on the global

equivalent cost (GEC) and the connection number have to be per-

formed for identifying the best practical solution; iii) since it does

not requires any initialization phase and can tackle large scale

problems, this MILP approach can be implemented to optimize

EIPs, where the problems are larger in terms of numbers of vari-

ables and constraints.

5. EIPs for managing industrial waters

5.1. Problem formulation

The DWN procedure is now extended to the design of EIPs and

illustrated by the example proposed by Olesen and Polley (1996).

The industrial pool involves three companies, each one including

five processes; the data are displayed in Table 3.

The three companies decide to constitute an EIP for managing

their used waters. Three scenarios are considered: EIP without

regeneration unit, EIP where each company owns its regeneration

unit and EIP where the three companies share regeneration unit(s).

Three possible regeneration units (see Table 1) can be chosen

under two kinds of constraints: limited or unlimited number of

Table 2

Process data for the water allocation problem.

Process Cmaxinj (ppm) Cmaxoutj (ppm) Mj
i (g/h)

1 25 80 2000

2 25 90 2880

3 25 200 4000

4 50 100 3000

5 50 800 30000

6 400 800 5000

7 400 600 2000

8 0 100 1000

9 50 300 20000

10 150 300 6500

Fig. 2. Theoretical solutions for the water allocation problem giving the regenerated water flow rate and the fresh water flow rate for each network.



connections, same or different gains for each company. The

objective is then to identify the best strategy for each company so

as to minimize the global equivalent cost in fresh water and the

number of connections in the network. Compared to some basic

cases, a solution will be retained only if the gain in GEC for each

company is positive, and for two equivalent gains, the solution

with a minimum ENC will be selected. Table 4 explains the several

cases which are explored all along the Section 5. The results are

displayed in Table 5, where only the cases giving a positive gain in

GEC compared to the basic case for the three companies are re-

ported. The rejected solutions are reported in Table 6 and will not

be discussed in the following sub-sections.

5.2. Basic case: companies without EIP and without regeneration

unit (case 1)

This preliminary study (case 1) concerns the individual opti-

mization of the water network for each company without consid-

ering the EIP, according to objectives F1 and F3 (since there is no

regeneration unit, the objective F2 is not taken into account). The

results of this monobjective optimization problem are displayed in

Table 5, and for the sake of illustration, the network flowsheet for

company A with six connections is displayed in Fig. 4.

5.3. EIP without regeneration unit (cases 2e4)

The three companies which have no regeneration unit consti-

tute an EIP without regeneration unit, but by allowing their used

waters to be treated in the two other companies and receiving used

Fig. 3. Best solution for the water allocation problem (flows are in T/h).

Table 3

Process characteristics for the EIP.

Process Company Contaminant

flow rate (Kg/h)

Maximal inlet

concentration (ppm)

Maximal outlet

concentration

(ppm)

1 A 2 0 100

2 2 50 80

3 5 50 100

4 30 80 800

5 4 400 800

6 B 2 0 100

7 2 50 80

8 5 80 400

9 30 100 800

10 4 400 1000

11 C 2 0 100

12 2 25 50

13 5 25 125

14 30 50 800

15 15 100 150

Table 4

Characteristics of the cases treated.

Superstructure Cases Description of the configuration

Without EIP Case 1 Companies are considered individually and are not included in the EIP

Case 2 Connections are not included as an objective, F3 is free

EIP without regeneration unit Case 3 Connections are restricted to 21, the minimum feasible

Case 4 Connections are restricted to 21 and each company needs to have the same gain

Case 5 Companies are considered individually to choose their own regeneration unit

EIP with individual regeneration units (direct integration scheme) Case 6 Connections are not included as an objective, F3 is free

Case 7 Connections are restricted to 26, the minimum feasible

Case 8 Connections are restricted to 26 and each company needs to have the same gain

Case 9 EIP with regeneration unit of type I

EIP with a shared regeneration unit (indirect integration scheme) Case 10 EIP with regeneration unit of type I and external connections are restricted to 2

Case 11 EIP with an interceptor containing regenerations of type I, II and III

Case 12 Case 11 with connections restricted to 26 and the same gain for each company

Case 13 Case 11 with connections restricted to 31 and the same gain for each company

Summarization of the several cases treated in Section 6.



waters from the two other companies, as shown in Fig. 5 (do not

take into account the dotted lines, nor italic parts). Three cases are

considered: case 2 corresponds to an unlimited number of

connections in the EIP; in case 3 the number of connections is

assumed to be restricted to 21, which is the best solution found in

case 1 (6 for company A, 8 for company B and 7 for company C, see

Table 4); in case 4 the number of connections is also limited to 21

and the same relative gain is assumed for each company.

The results are displayed in Table 5, where the gains are

computed by using case 1 as a basis. Only the case 4 (same relative

gain in GEC for each company, and also the same number of

connections, 21), gives a positive gain (4.3%) for each company. The

new flowsheet for company A in the case 4 is depicted in Fig. 6,

where external connections are numbered in brackets, italic.

5.4. EIP with one regeneration unit per company (direct integration,

cases 5e8)

Each company is now equipped with its own regeneration unit

chosen among the three types abovementioned. In the basic case 5,

the DWN problem is solved for each company without considering

the EIP in order to determine the best regeneration unit chosen

among the three types listed in Table 1. From this multiobjective

optimization study (objectives F1, F2 and F3), the best solution is

obtained when companies A and B choose regeneration unit I, and

company C, regeneration unit II. These solutions are given by the

median points of the Pareto fronts (F1, F2) for the minimal values of

F3, and the results are displayed in Table 5.

Then the three companies constitute an EIP without common

regeneration unit, but by allowing their polluted streams to be

treated either in their own regeneration unit, or in the two other

companies (see Fig. 5, do not take into account the dotted lines).

Three new cases are considered: case 6 with no limitation on

the number of connections, case 7 with the same number of

connections less equal than the best solution of case 5 (26, i.e. 8 for

Table 5

Results for the EIP (only cases with positive gains are reported).

Case F1 T/h Fw T/h F2 T/h GEC T/h Gain %

Case 1

Gain %

Case 5

Int. + Ext.

conn

A case 1 98.3 98.3 xxx 651 xxx xxx 6

A case 4 102.8 92.6 xxx 623 4.3 Xxx 6

A case 5 20 20 166 195 70.0 xxx 8

A case 8 20 15.2 166.6 168 74.2 13.8 7

A case 13 20 19 166 188 71.1 3.6 9

B case 1 54.6 54.6 xxx 362 xxx xxx 8

B case 4 45 53.6 xxx 346 4.3 xxx 6

B case 5 20 20 66.7 157 56.6 xxx 8

B case 8 20 12 128 135 62.4 13.8 9

B case 13 20 19 67 151 76.8 3.6 12

C case 1 190 190 xxx 1259 Xxx xxx 7

C case 4 180 182 xxx 1204 4.3 xxx 9

C case 5 20 20 192 469 62.7 xxx 10

C case 8 20 32.7 114 404 67.9 13.8 10

C case 13 20 22 213 452 30.6 3.6 10

Total case 1 343 343 xxx 2272 xxx xxx 21

Total case 4 328 328 xxx 2173 4.3 xxx 21

Total case 5 60 60 426 821 63.9 xxx 26

Total case 8 60 60 409 708 68.8 13.8 26

Total case 13 60 60 446 791 65.2 3.6 31

Table 6

Rejected solutions.

Rejected solution Gain % vs. Case 1 Gain % vs. Case 5

C case 2 !8.2 xxx

B case 3 !10.5 xxx

C case 3 !2.6 xxx

A case 6 xxx !10.2

B case 6 xxx !61.8

A case 7 xxx !74.9

A case 9 xxx !144.6

B case 10 xxx !233.1

B case 11 xxx !138.2

A case 12 xxx !7.7

B case 12 xxx !7.7

C case 12 xxx !7.7

Fig. 4. Network for company A with six connections (case 1) (flows are in T/h, numbers of pipes are in brackets, dash lines are connections going to the discharge).



companies A and B and 10 for company C, see Table 5), case 8 with

the same relative gain in GEC (compared with case 5) for each

company, and also the number of connections less equal to 26.

The results are displayed in Table 5, where the gains in GEC are

computed by using case 1, then case 5 as a basis. Case 5 being the

basis of comparison, only case 8 provides positive a positive gain for

each company (same gain of 13.8%, number of connections equal to

26); it is the best solution for the EIP. The new flowsheet for

company A in this solution is depicted in Fig. 7. Compared with case

1, regeneration units (cases 5 and 8) provide very interesting gains

(63.9 and 68.8%). The economic interest of regeneration units is

evident. It may be interpreted that Table 5 exhibits inconsistent

results betweenwaste and regenerated flows for cases B8, (increase

(decrease) inwaste and increase (decrease) in regeneration). This is

yet not the case since included into an EIP a company may reject or

regenerate waters coming from other companies.

5.5. EIP with a common regeneration unit (indirect integration,

cases 9e13)

The three companies have nowan interceptor containing shared

regeneration unit(s) and connections between them (see Fig. 5, do

not take into account the italic parts). Five cases are evaluated. Case

9 corresponds to an unlimited number of connections and a shared

Fig. 5. Representation of an EIP for the three companies (from Chew et al., 2008)

(straight lines: direct integration, dash lines: indirect integration).

Fig. 6. Network for company A (case 4) (flows are in T/h, numbers of pipes are in brackets, external connections are in italic).

Fig. 7. Network for company A (case 8) (flows are in T/h, numbers of pipes are in brackets, external connections are in italic).



regeneration unit of type I. In case 10, the number of external

connections between companies is limited at two pipes and

a shared regeneration unit of type I is used. Case 11 concerns an EIP

involving an interceptor containing the three types of regeneration

units, each company can choose two units among the three possible

ones, and unlimited number of connections. Case 12 is deduced

from case 11 by restricting the total number of connections to 26

(as in cases 7 and 8) and assuming the same gain for each company

(compared with case 5), and finally in case 13, the same gain for

each company is also imposed but the total number of connections

is arbitrarily increased to 31.

Comparedwith case 5, only case 13 gives a positive gain for each

company (3.6%), but compared with the best solution, case 8, found

in the previous example the gain for each company is negative

(!11.7%). In conclusion, the EIP involving an interceptor is not

economically profitable.

5.6. Discussion

This study shows first that regeneration units yield very

significant gains, and second that these gains can be increased

again by a direct integration into an EIP. Finally the a priori most

attractive EIP with an indirect integration (interceptor sharing

regeneration units) does not succeed in improving the previous

solution. The best EIP (case 8) is shown in Fig. 8 (the connections to

the waste are not reported), and the flowsheet of company A in this

EIP is depicted in Fig. 7.

6. Computational aspects

For all the cases, the problem dimensions are displayed in

Table 7. When passing from a DWN problem (case 1) to EIP prob-

lems, the dimensions strongly increase. However due to the linear

formulation this increase has not much influence either on the

problem resolution, or on the CPU time (the computations were

carried on an Intel Duo Core 2.53 GHz, RAM 3.45 Go). The MILP

problem is solved with the solver CPLEX 11.2.1 of the GAMS

package.

7. Conclusions

In the first part of the paper, a methodology taking into account

only the single contaminant case is implemented. A MILP formu-

lation is used to solve the problem. Biobjective optimization of the

fresh water flow rate at the network entrance and the water flow

rate at regeneration unit inlets, parameterized by the number of

connections in the network, is carried out. A strategy based on the

global equivalent cost (GEC) and equivalent number of connections

(ENC) allows identifying the best practical solution combining

moderate GEC, few connections and non null flow rates in the

connections, among the theoretical ones displayed on Pareto fronts.

This MILP approach is then implemented to optimize an EIP

involving three companies. From several analyzed scenarios, it can

be deduced that the best solution is an EIP with direct integration:

each company owns its regeneration unit, same gain for each

company and restricted number of connections. Comparedwith the

case of companies without EIP and without regeneration unit, the

gain in GEC is 68.8%, and compared with the case of companies

without EIP, but with their own regeneration unit, the supple-

mentary gain in GEC for each company is 13.8%. This study shows

first that regeneration units yield very significant gains, and second

that these gains can be increased again by a direct integration into

an EIP. Finally, the a priori most attractive EIP with an indirect

integration (interceptor sharing regeneration units) does not

succeed in improving the previous solution. Using different criteria

(GEC, connections number, non null flow rates in the connections),

a best practical solution is defined for each case. Moreover, after

optimisation, the gain for each case is calculated and each company

in the EIP can decide to connect to the EIP or not. Of course, the

Fig. 8. EIP solution (case 8, flows are in T/h).

Table 7

Problem dimensions and CPU times.

Problem Continuous

variables

Integer

variables

Constraints CPU

time (s)

Case 1 173 47 214 0.063

Case 2e4 836 255 900 0.109

Case 5e8 1164 357 1312 0.140

Case 9e13 1164 357 1319 0.250



calculated gain is different in each case, so it is easier to choose the

type of connections. Due to the MILP problem, it is possible to add

some technical constraints without any size limitations.

Few studies were realized on the technical constitution of an EIP,

and even less in the framework of multiobjective optimization,

while the problem is by nature a multiobjective one, combining

economical and ecological objectives. Furthermore, in a recent

study Sakr et al. (2011) identify seven success and limiting factor for

EIPs development. The present study comes within the second one

“Added economic value”, and fills partially the existing gap in the

literature.
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