
HAL Id: hal-03531013
https://hal.science/hal-03531013

Submitted on 18 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homogeneous swarm of high-Reynolds-number bubbles
rising within a thin gap. Part 1: Bubble dynamics

Emmanuella Bouche, Véronique Roig, Frédéric Risso, Anne-Marie Billet

To cite this version:
Emmanuella Bouche, Véronique Roig, Frédéric Risso, Anne-Marie Billet. Homogeneous swarm of
high-Reynolds-number bubbles rising within a thin gap. Part 1: Bubble dynamics. Journal of Fluid
Mechanics, 2012, 704, pp.211-231. �10.1017/jfm.2012.233�. �hal-03531013�

https://hal.science/hal-03531013
https://hal.archives-ouvertes.fr


Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 6827

To link to this document : DOI:10.1017/jfm.2012.233

URL : http://dx.doi.org/10.1017/jfm.2012.233

To cite this version : Bouche, Emmanuella and Roig, Véronique and

Risso, Frédéric and Billet, Anne-Marie Homogeneous swarm of high-
Reynolds-number bubbles rising within a thin gap. Part 1: Bubble dynamics.

(2012) Journal of Fluid Mechanics, 704 . pp. 211-231. ISSN 0022-1120 

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr



Homogeneous swarm of
high-Reynolds-number bubbles rising within

a thin gap. Part 1: Bubble dynamics.

EMMANUELLA BOUCHE1,3
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The spatial distribution, the velocity statistics and the dispersion of the gas phase have
been investigated experimentally in a homogeneous swarm of bubbles confined within a
thin gap. In the considered flow regime, the bubbles rise on oscillatory paths while keeping
a constant shape. They are followed by unstable wakes which are strongly attenuated due
to wall friction. According to the direction that is considered, the physical mechanisms
are totally different. In the vertical direction, the entrainment by the wakes controls the
bubble agitation, causing the velocity variance and the dispersion coefficient to increase
almost linearly with the gas volume fraction. In the horizontal direction, path oscillations
are the major cause of bubble agitation, leading to a constant velocity variance. The
horizontal dispersion, which is lower than that in the vertical direction, is again observed
to increase almost linearly with the gas volume fraction. It is however not directly due
to regular path oscillations, which are unable to generate a net deviation over a whole
period, but results from bubble interactions which cause a loss of the bubble velocity
time correlation.

Key Words: Include here the same key words that you chose from the list supplied on
Manucript Central when you submitted the paper.

1. Introduction

A lot of chemical, biological or environmental applications involve bubble column tech-
nology for heat and mass exchangers or reactor devices. Bubbles are used to maximize
interfacial area and enhance mixing. Their displacements induce liquid agitation that
in turn influences the bubble distribution and velocity. A general understanding of this
two-way coupling is fundamental. It is however particularly difficult to achieve since the



dynamics of bubbly flows depends on many parameters: characteristics of the flow in
the absence of the bubbles, flow regimes of individual bubbles, presence of surfactants,
confinement due to walls or inserts... Comprehensive investigations of well-defined ele-
mentary situations still appear to be necessary.

The present work focuses on a swarm of bubbles rising in a Hele-Shaw cell. The width
of the gap is lower than the characteristic size of the bubbles, which are consequently
strongly flattened. A thin liquid film is present between each side of a bubble and the
corresponding wall. As in an unconfined bubble swarm, bubbles are thus free to move,
even if their motions are restricted to the plane of the cell (Roig et al. 2011). This geom-
etry is potentially of great interest for applications since, for a given size, the interfacial
area of a bubble that is confined between two plates is enhanced compared to that of
an unconfined bubble: it thus allows to obtain simultaneously a high-Reynolds-number
flow with a good mixing efficiency and a large interfacial area favorable to transfers
between phases (Roudet 2008). This configuration is also attractive for the general un-
derstanding of bubbly flows since it makes possible to study the agitation generated
by large-Reynolds-number rising bubbles with unstable wakes while turbulence produc-
tion is prevented by the strong confinement. Comparisons with unconfined situations are
thus expected to be meaningful. Moreover, interface detection is considerably facilitated
compared to classic three-dimensional cases because bubbles cannot hide each others:
a complete and accurate description of bubble interfaces can therefore be obtained by
means of a single camera facing the cell.

Some studies considered bubbly flows confined in a thin gap (Lin et al. 1996; Spicka
et al. 2001) but they dealt with inhomogeneous bubble distribution and large flow recir-
culations. In this study, we aim at experimentally generating a swarm of high-Reynolds-
number two-dimensional bubbles, with a homogeneous gas volume fraction over the whole
cell and in the absence of significant mean liquid velocity. Our objective is to obtain a
complete description of the gas dynamics in this particular configuration, which means
to determine how bubbles distribute, move and disperse.

Let us summarize what is known concerning these three topics in three-dimensional
swarms of bubbles at Reynolds numbers that are large enough for a significant wake
to develop behind each bubble: Re = V d/ν > 10, where V is the mean bubble rising
velocity, d is the bubble equivalent diameter and ν the kinematic viscosity of the liquid.

The spatial distribution of bubbles, even if we restrict ourselves to the case of a uniform
gas volume fraction, is a complex issue. Hydrodynamic interactions between two spher-
ical fixed bubbles have been studied theoretically and numerically for in-line bubbles
(Yuan & Prosperetti 1994; Harper 1997), side-by-side bubbles (Legendre et al. 2003) and
recently for a bubble pair with any orientation (Hallez & Legendre 2011). The results of
these studies conclude that the side-by-side configuration is the only stable configuration.
Computations, in the potential flow approximation, of a swarm of spherical bubbles that
are free to move (Sangani & Didwania 1993; Smereka 1993; Yurkovetsky & Brady 1996)
indeed show the formation of horizontal clusters, provided the bubble agitation is not
too large. Direct numerical simulations with nearly spherical bubbles (Bunner & Tryg-
vason 2002a; Esmaeeli & Trygvason 2005) also show the existence of horizontal clusters.
Experiments at Re = O(10) (Cartellier & Riviere 2001; Cartellier, Andreotti & Sechet
2009) indicate a deficit in the pair probability distribution function in the rear of the
bubbles. Experiments with almost spherical bubbles at Re = O(100) (Zenit et al. 2001;
Figueroa-Espinoza & Zenit 2005) rising between two walls separated by a distance equal
to a few bubble diameters show the existence of horizontal bubble clusters. However, it
has been shown that the bubble distribution is significantly affected by the bubble de-
formation. Clusters are neither observed in the DNS of Esmaeeli & Trygvason (2005) for



Re=78 and We=3 nor in the experiments by Lance & Bataille (1991), Risso & Ellingsen
(2002), Roig & Larue de Tournemine (2007) and Riboux et al. (2010) for air bubbles in
water with diameters larger than 1.6 mm, which have strong wakes and experience path
oscillations. Note that long-range preferential accumulation of bubbles in the vertical
direction has been observed (Bunner & Trygvason 2003; Martinez Mercado et al. 2010)
but is likely related to the generation of large-scale mean flow patterns that develop when
the homogeneous case is not stable. It is also worth mentioning that strong clusters have
been observed in the wall vicinity in the presence of surfactants (Takagi et al. 2008). For
homogeneous bubble swarms at moderate to large Reynolds numbers, in the absence of
mean flow and without strong surfactant effects, we can conclude that horizontal bubble
clusters are observed provided bubble deformation remains small and strong unstable
wakes do not develop. These clusters are most of the time rather weak and their lifetime
has not been investigated in detail so far; their influence on the general flow dynamics
is thus not clear. When bubble agitation induced by unstable bubble wakes develops,
bubbles positions become almost independent from each others.

The bubble velocity is influenced by hydrodynamic interactions and evolves therefore
with the gas volume fraction α. Most numerical (Bunner & Trygvason 2002a; Bunner &
Trygvason 2003) and experimental (Zenit et al. 2001; Garnier et al. 2002; Roig & Larue
de Tournemine 2007; Riboux et al. 2010) investigations of bubble swarms observed a
decrease of the mean bubble velocity as α is increased. This phenomenon is generally at-
tributed to the counter-flow generated within the interstitial space between the bubbles
and their wakes, but the precise mechanism is however not understood yet. However,
velocity fluctuations of a bubble is not only caused by the presence of the other bub-
bles. Due to wake instability, an isolated bubble rising at high Reynolds number is often
observed to experience path oscillations (Ern et al. 2012). For air bubbles in water of
d=2.5 mm, Risso & Ellingsen (2002) showed that the probability density function (PDF)
of bubble velocities in a dilute bubble swarm (α=0.5%) is the same as that obtained by
considering single rising bubbles with random phases and positions, which is strongly
non Gaussian. At larger gas volume fractions, bubbles velocities are generally measured
(Zenit et al. 2001; Garnier et al. 2002; Martinez Mercado et al. 2007; Riboux et al. 2010)
by means of dual-probes that do not allow to make a clear distinction between the two
components of the bubble velocity, the bubble rotation and the bubble deformation. How-
ever, it has been shown by Riboux et al. (2010) that wake instability of isolated bubbles
can control and keep constant the energy of the bubble agitation up to a volume fraction
of at least 12%. The precise evolutions of the corresponding PDF and of the relative
weight of the vertical and horizontal components have not yet been fully characterized
either from experiments or from numerical simulations. It is however clear that the bub-
ble agitation strongly depends on the relative role played by self-induced oscillations and
bubble-induced hydrodynamic disturbances, as well as by the interactions between these
two phenomena.

The dispersion of the bubbles in a homogeneous swarm is an almost unexplored issue.
As far as we know, it has never been addressed experimentally and has only been con-
sidered in two numerical studies (Bunner & Trygvason 2002b; Esmaeeli & Trygvason
2005), which found dispersion coefficients that increased with α and differed according
to the considered directions. As for the bubble velocity, bubble dispersion may involve a
contribution of self-induced oscillations and bubble-induced agitation.

In the present work, these three fundamental issues will be addressed from the exper-
imental investigation of air bubbles rising within a thin gap filled with water. The case
of the single two-dimensional rising bubble was investigated in a previous work (Roig et

al. 2011), which described the various flow regimes that occurred when the bubble diam-



eter was increased from 2 to 30 mm. Here we have chosen to consider two-dimensional
bubbles of about 4 mm (Re ≈ 500) because their dynamics is close to that observed for
three-dimensional bubbles of about 2 mm: sinusoidal path oscillations, almost constant
elliptical shape, and similar liquid-velocity disturbances induced in the vicinity of a bub-
ble (potential flow upstream and unstable wake behind). The evolution of the wake with
the distance downstream of the two-dimensional bubble is however strongly attenuated.
Although the wake of an unconfined isolated bubble of 2.5 mm extends up to more than
50 diameters (Ellingsen & Risso 2001), that of a confined bubble decays exponentially
with a lengthscale approximately equal to 3-4 diameters. A great care has been taken to
generate a swarm of such two-dimensional bubbles as homogeneous and monodisperse as
possible by optimizing the bubble injection and preventing the coalescence.

The paper is organized as follows. Section 2 describes the experimental set-up, the
operating conditions and the measurement methods. Section 3 is devoted to the spatial
distribution of the bubbles, section 4 to the bubble velocity statistics and section 5 to
the bubble dispersion.

2. Experimental set-up and instrumentation

The experimental set-up consists of a Hele-Shaw cell made of two vertical glass plates
of size 800×400 mm2, separated by a gap of width w= 1 mm (Fig. 1a,b). The cell is filled
with distilled water to which 0.05 mol·L−1 of magnesium sulphate (MgSO4) has been
added. This small amount of electrolyte prevents coalescence from occurring without
modifying significantly either the density, the viscosity or the surface tension of water
(Tsao & Koch 1994).

The liquid is initially at rest and air bubbles are injected into the gap through a set of
16 capillary tubes of 0.6 mm inner diameter and 0.8 mm outer diameter. The capillary
tubes are equally distributed all over the bottom of the cell to ensure a uniform gas
volume fraction and avoid large-scale recirculations, so that the average liquid velocity,
〈U〉, is negligible everywhere in the cell. The tubes are connected to an air reservoir that
is large enough to allow a stationary gas flow-rate. The gas volume fraction α can be
varied from 1% to 14% by adjusting the flow-rate supplied to the reservoir.

The two-dimensional equivalent diameter of the bubbles, d, is defined as the diame-
ter of the disk that has the same area, A, as the projection of the bubble onto the cell
plane: d =

√
4A/π (Fig. 1b). Figure 2 shows its probability density functions (PDF)

for different values of α. The diameters are essentially distributed around a major peak,
even if a tiny secondary peak, due to rare coalescence events, is observed for α > 7%.
In the present configuration, coalescence can therefore be neglected. It is however worth
mentioning that in preliminary tests carried out without MgSO4, the coalescence was so
intense that it was impossible to generate a stable bubble swarm. In contrast, coalescence
was shown to be negligible in unconfined bubble swarm without MgSO4 for a comparable
range of parameters (Riboux et al. 2010). This difference suggests that the confinement
changes the hydrodynamic interaction between bubbles. Here, the most probable diame-
ter increases moderately from 3.9 to 4.6 mm as α increases from 1.4 to 13.6%. Moreover,
almost all bubble diameters range between 3.5 and 5 mm for all volume fractions, which
means that the relevant dimensionless groups lie in the following ranges:

– Archimedes number, 650 6 Ar = ρ
√
g d d/µ 6 1100,

– Bond number, 1.7 6 Bo = ρgd2/σ 6 3.5,
– Reynolds number, 370 6 Re = ρV0d/µ 6 630
– Weber number, 0.5 6 We = ρV 2

0
/σ 6 1,

– gap to diameter ratio, 0.2 6 w/d 6 0.3,



where g is gravity acceleration, ρ water density, µ water viscosity, σ surface tension and
V0 velocity of the bubble.

According to Roig et al. (2011), isolated bubbles with 600 6 Ar 6 1500 belong to a
single flow regime characterized by a constant elliptical shape with an aspect ratio close
to 1.3 and path oscillations with bubble-centre velocity components given by

Vx(t) = V0 + Ṽx cos(2ωt), (2.1a)

Vy(t) = Ṽy cos(ωt + φ), (2.1b)

where V0 = 0.57
√
gd, ω ≈ 1.3V0/d, Ṽx is close to 0.1V0 and Ṽy to 0.45V0. These bubbles

are followed by an unsteady wake with periodic vortex shedding. Both the wake and the
vortices are damped by the wall friction, which causes them to decay exponentially with
a timescale proportional to Tν = w2/ν. In particular, the velocity defect evolves with the
distance x to the bubble as V0 exp(−x/lw) with lw = TνV0/7.

For the present configuration, differences in the bubble size have thus not a significant
influence on the dynamics and we will focus on the role of the gas volume fraction.

The shape, position and velocity of the bubbles are determined by processing of video
images. The measurement window is a square of size 190×190 mm2 located 350 mm above
the tips of the capillary tubes and 100 mm under the top of the cell (Fig. 1a). The gas
volume fraction and bubble velocity statistics have been checked to be uniform within this
region. The cell is illuminated from behind by means of a panel of diodes which provides
a homogeneous and constant light perpendicular to the cell plates. A high-speed camera
(Photron RS3000) equipped with a 35-mm lens is placed on the other side of the cell,
facing the lighting. It takes images of 1024×1024 pixels and 256 grey levels. The depth of
field is larger than the gap and the pixel size is 185±1 µm. Bubble contours are seen as fine
dark shadows (Fig. 3) that are detected by applying a threshold to each recorded image –
after subtraction of the background image obtained in the absence of bubbles. Images are
then binarized and bubbles identified as blobs of pixels. A difficulty arises when bubbles
come into contact and hence appear as merged blobs. Using what is a priori known about
bubble size and shape, our algorithm allows nevertheless to identify individual bubbles
in all cases. For each bubble i in a given image, the instantaneous bubble characteristics
are determined. In particular, the area is obtained with an accuracy of ±17 pixels and
the coordinates, xi, yi, of the centre of each bubble are measured with an accuracy of
±1 pixel.
Two different series of acquisition have been carried out. First, a frame rate of 1/4 fps

has been used to collect at least 4,600 uncorrelated pairs of images for each gas volume
fraction. This ensures the statistical convergence of the gas volume fraction, which is
obtained from the bubble area, of the bubble spatial distribution, and of the bubble
velocity. Second, samples of 25 s duration are recorded at 250 fps in order to continuously
follow individual bubbles as they cross the measurement window. For that purpose, a
tracking algorithm has been developed to recognize each bubble from image to image.
Bubble trajectories are thus recorded and bubble velocity components, Vxi

, Vyi
, are

obtained by differentiation with an accuracy of ±3 mm·s−1. Statistics of bubble velocities
are finally computed from more than 20,000 events and dispersion characteristics from
1500 to 2500 bubble histories.

3. Spatial distribution of the bubbles

Even if the gas volume fraction is spatially uniform, bubble locations may not be
statistically independent from each others. A way to address this point is to consider the



radial pair distribution function, G(r), which measures the probability to find the centre
of a bubble at a distance r from that of a given bubble (Fig. 1c). Here, it is estimated by
counting the number of bubbles j located at a distance rij = r ±∆r from all bubbles i
located within the circle of radius R having its center in the middle of the measurement
window:

G(r) =
π R2

Nb (Nb − 1)

1

2π r∆r

Nb∑

i=1

Nb∑

i=1,j 6=i

H(rij − r +∆r)−H(rij − r −∆r). (3.1)

H(x) is the Heaviside function that is zero for x < 0 and unity for x > 1. ∆r = d/10
is small enough to allow a good resolution. R ≈ 9d is less than one quarter of the
measurement window side to avoid statistical biases related to finite size of the domain.
Nb is the number of bubbles counted in the test section for all images, which is large
enough (between 104 and 4 × 104 depending on α) to ensure statistical convergence for
the chosen bin size, ∆r. With this definition, G(r) is unity when bubble locations are
statistically independent, larger than one when there is an excess of bubbles and smaller
when there is a deficit.

Figure 4 shows the evolution of G(r/d) for various values of α from 1.4% to 13.6%.
For rigid disks that cannot overlap, G should be equal to zero for r/d < 1. Here, since
bubbles are ellipsoids that are free to move and rotate, bubble centers can get closer
than d. Positive values of G are thus observed for 0.6 6 r/d 6 1, especially at the largest
values of α.

At the lowest gas volume fractions (α 6 3.4%), the pair distribution function shows a
significant deficit of bubble up to 4d, which is approximately the distance between two
injection tubes. The bubbles probably keep a memory of the injection conditions when
there are not enough interactions before bubbles reach the measurement window. This
effect vanishes as α is increased, only a weak deficit being still observed up to 2.5d at
α=4.8%. For larger α, G is unity for any distance larger than 2d.

At short distances (d 6 r 6 2d), an accumulation of bubbles is observed when α
becomes larger than 10%. At the largest investigated volume fraction (α=13.6%), G
reaches a peak value of 1.16 at 1.5d. Figure 5 compares the pair distribution functions
computed for two different sample subsets with the vector connecting the bubble centers
of each pair belonging to the subset limited by ± 45◦ either the horizontal direction
(subset 1) or the vertical direction (subset 2). For α = 10%, there is no accumulation
whatever the considered direction. For α=13.6%, the accumulation is essentially observed
in the horizontal direction with a peak-value of 1.2 at 1.5d, indicating a weak short-range
preferential ordering of bubbles in this direction. These small clusters, which involve
2-3 bubbles, are less significant than those observed for three-dimensional bubbles by
Figueroa-Espinoza & Zenit (2005) in the same ranges of Reynolds and Bond numbers.
From visual inspection of video sequences, it can be seen that the present clusters are
not persistent: they form and disappear as bubbles get closer and separate.

Provided injection conditions are forgotten (which is the case for α > 3.4%), it is
observed that the position of a bubble is independent of the presence of other bubbles
located at distances larger than 2d. Only a weak preferential ordering of bubbles is
observed in the horizontal direction for smaller bubble distances at volume fractions larger
than 10%. We can therefore conclude that bubble interactions do not alter significantly
the spatial distribution of the bubbles.



4. Bubble velocity

We analyze now how hydrodynamic interactions may affect the bubble motions, start-
ing with the average velocity before to consider fluctuations.

4.1. Mean velocity

Figure 6 shows the evolution with the gas volume fraction of the two components, 〈Vx〉
and 〈Vy〉, of the bubble average velocity. Since the mean liquid velocity is zero everywhere,
these components also represent the mean velocity difference between the bubble and
the liquid. They have been normalized by the average velocity of a single rising bubble,
V0, in order to focus on the role of the gas volume fraction. The measured horizontal
component 〈Vy〉 is very small, confirming the satisfactory statistical convergence. The
evolution of the vertical component 〈Vx〉 is more interesting: for α less than 4%, 〈Vx〉/V0

remains almost unity; it then regularly increases by 12% as α increases from 4 to 10%
and eventually reaches a constant value. Such an increase of the mean bubble velocity
with the gas volume fraction was already observed by Spicka et al. (2001) in an unstable
two-dimensional bubble column. It appears to be a particular feature of confined bubbly
flows since a decrease of the bubble mean velocity is most often observed in unconfined
situations, as discussed in the introduction and illustrated on the present figure by the
measurements of Riboux et al. (2010). It is therefore clear that the hindrance effect that
is often evoked to explain the evolution of the mean bubble velocity in three-dimensional
situations is not relevant here.
This increase of the bubble velocity can however be understood by considering the

average velocity of a bubble Vc(x, y) conditioned by the presence of another bubble
located at the origin. Figure 7a shows the difference between this conditional average
and the unconditional average in the vertical direction: ∆Vcx(x, y) = (Vcx(x, y)− 〈Vx〉).
Here, ∆Vcx/〈Vx〉 is represented for α = 2.3%, but its spatial structure is similar for all
values of α. We observe that the velocity of bubbles rising in line is increased while that of
side-by-side bubbles is decreased. The most important deviation in the vertical velocity is
concentrated at the rear of the bubble. Figure 7b, shows the evolution of ∆Vcx(x, 0)/〈Vx〉
along the symmetry axis behind the bubble for various gas volume fractions. Similarly
to the wake of a single rising bubble, it decays exponentially as exp(−|x|/lrear) with
a lengthscale close to the lengthscale lw of the wake: lrear ≈ 0.8lw for α 6 4.8% and
lrear ≈ 0.6lw for larger α. The change in the vertical velocity of a bubble is clearly
related to the liquid disturbance generated by another bubble in its vicinity, which is
mostly due to the bubble wake. Because its decay is controlled by the wall friction, this
wake evolves weakly with the gas volume fraction and keeps the same structure as that
of a single bubble.
We can also wonder if the short-range excess or deficit of bubbles observed in the ra-

dial pair distribution may contribute to the evolution of the bubble mean velocity with
the gas volume fraction. To answer this question we have computed an unconditional
averaged velocity 〈Vu〉 from the measured conditional one, Vc(x, y), by assuming that
bubble positions were independent to each others. The procedure is as follows. Nb bub-
ble positions (xi, yi) are randomly chosen in a domain which has the same size as the
measurement window, under only the constraint that bubbles must not overlap. Nb is
fixed according to the prescribed value of α. The velocity of bubble i is given by

Vi = V0ex +
1

Nb − 1

∑

j 6=1

(Vc(xi − xj)− V0ex), (4.1)

where V0 is the mean velocity of the single rising bubble (α = 0), Vc is the conditional



bubble velocity at the corresponding value of α and ex is the unit vertical vector. The
unconditional average velocity for uniformly distributed bubbles is then obtained by
summation of all individual bubble velocities,

〈Vu〉 =
1

Nb

Nb∑

i=1

Vi. (4.2)

The two components 〈Vux〉 and 〈Vuy〉 are represented by dashed lines on figure 6. They
perfectly match the measurements, proving that small departures to the ideal bubble
distribution plays no role in the evolution of the bubble mean velocity.

Now it has been shown that the main mechanism is the entrainment by the wake, the
evolution of the mean vertical bubble velocity with α can be interpreted. For α less than
4%, the average distance between two bubbles, δ ∼ dα−1/2, is larger than the wake length
lw ≈ 4d; very few bubbles enter into the wake of another bubble and 〈Vx〉 remains close
to V0. For α between 4 and 10%, more and more bubbles are located into wakes and 〈Vx〉
is observed to increase. Due to their small extension, the wakes are rapidly filled up by
bubbles and 〈Vx〉 attains a maximal value at larger values of α.

4.2. Velocity fluctuations

We consider now the time fluctuations v′x and v′y of the two components of the bubble
velocity.

Figure 8 shows their standard deviations 〈v′x
2〉1/2 and 〈v′y

2〉1/2 against the gas volume
fraction. The results at α=0 (grey squares and circles) have been measured for single
rising bubbles, they hence correspond to the reference situation in the absence of any
hydrodynamic interactions. These fluctuations are the signature of the bubble path os-
cillations described by Eq. (2.1), which are generated by vortex shedding and mainly
occur in the horizontal direction. Measurements in the bubble swarm configuration have
been obtained from α=1.4% up to 13.6%. The two components show totally different
behaviors.

For any value of α, the horizontal component keeps a constant value equal to that of

a single bubble: 〈v′y
2〉1/2 ≈ 0.45V0. This suggests that the agitation of the bubbles in

the horizontal direction remains caused by the vortex shedding, the intensity of which
is not altered by the presence of the other bubbles. A similar trend has already been
observed for three dimensional bubbles, as illustrated by the measurements of Riboux et

al. (2010) which are reported in the present figure. It is important to mention that the
measurements in the three dimensional swarm correspond neither to the horizontal nor
the vertical velocity fluctuation but are a measure of the global bubble agitation that
includes motion, rotation and deformation – in which the vertical velocity fluctuation
probably takes a minor part.

On the other hand, the vertical standard deviation, 〈v′x
2〉1/2, regularly increases from

0.1V0 at α=1.4% up to 0.3V0 at α=13.6%, although it remains always less than the
horizontal one. Even if we ignore what occurs between α=0 and α=1.4%, it is intriguing
that the extrapolation of the measurements done within the bubble swarm do not seem to
join the value corresponding to isolated bubbles. Moreover, preliminary measurements of
the liquid velocity show that the standard deviation of the vertical liquid velocity scales
as α0.46. Such a scaling, represented by the dashed line on figure 8, also gives a reasonable

fit of 〈v′x
2〉1/2. This agreement between liquid and bubble fluctuations suggests that the

intensity of the bubble agitation in the vertical direction is controlled by hydrodynamic
interactions, provided the gas volume fraction is not too small.



Additional insights are obtained by considering probability density functions. Figure 9
shows the PDFs of the vertical and horizontal bubble velocity fluctuations normalized
by their standard deviations, in both linear and semilog plots, for various gas volume
fractions. Again, the two components show very different behaviors.

Let us consider first the horizontal direction (Fig. 9b&d). At the lowest gas volume
fraction (α=1.4%), the PDF of v′y takes the typical double-peak shape of the sine function.
As α increases the maximum values slowly decrease and the gap between the peaks is
progressively filled. It is only at the largest volume fraction (α=13.6%) that the PDF

becomes almost Gaussian. Since the standard deviation, 〈v′y
2〉1/2, remains constant, the

process can be interpreted as follows. Side-by-side interactions, which only occur at very
short distances, disturb the phase of the bubble oscillatory motions without changing
their energy which remains controlled by the intensity of the vortex shedding. In the
horizontal direction, the role of hydrodynamic interactions on the bubble fluctuations
is thus restricted to make oscillations progressively loss their time coherence as the gas
volume fraction is increased.

The PDFs of vertical fluctuations follow a radically different trend (Fig. 9a&c). A
weak footprint of the double-peak shape is only discernible at α=1.4%. Then the PDF of
v′x adopts the typical behavior of liquid velocity fluctuations in bubbly flows: asymmetric
shape almost invariant with α with large upward fluctuations more probable than large
downward ones. This confirms that vertical bubble fluctuations are controlled by vertical
liquid fluctuations.

5. Bubble dispersion

The two-dimensional bubble swarm is particularly well suited to investigate the La-
grangian bubble statistics since it allows to track the bubbles continuously along their
path. In figure 10, different individual bubble trajectories have been superimposed by
defining the origin as the position where they are detected for the first time within the
measurement window. Subfigure (a) shows the paths of two single rising bubbles. We
observe nice regular oscillations around the vertical direction, which means that path
oscillations generated by vortex shedding are not able to disperse bubbles in the absence
of interactions with other bubbles. Subfigure (b) and (c) show 1,000 bubble trajectories
recorded for α=2.1% and α=13%, respectively. The horizontal bubble dispersion can be
appreciated from the envelope of the different paths: it is clearly larger at the largest gas
volume fraction.
In order to make a quantitative description, let us introduce the difference between the

bubble-centre position at instant t and the average displacement of the bubbles during the
same time interval: (x′(t), y′(t)) = (x(t), y(t)) − (〈x(t)〉, 〈y(t)〉), where the time origin is
the instant when all these quantities vanish. Figure 11 shows the PDFs of x′(t) and y′(t)

normalized by their respective standard deviations 〈x′(t)2〉1/2 and 〈y′(t)2〉1/2. Results
for two different times (t = 0.2 s, t = 0.6 s) and various gas volume fractions between
3.2% and 13% are presented. In all cases, no significant departure from the Gaussian
distribution is visible. The knowledge of the variances 〈x′(t)2〉 and 〈y′(t)2〉 is therefore
sufficient to fully characterize these PDFs.
Other important quantities for the dispersion are the Lagrangian autocorrelation co-

efficients, Cxx(τ) = 〈v′x(t)v′x(t+ τ)〉/〈v′x
2〉 and Cyy(τ) = 〈v′y(t)v′y(t+ τ)〉/〈v′y

2〉. They
are plotted in figure 12 for various gas volume fractions. In the horizontal direction,
Cyy is a damped cosine function. Its period is independent of α and equals to that of
the oscillation of an isolated bubble, Tosc = 2π/ω ≈0.17 s, whereas its damping rate is



an increasing function of α. This confirms the interpretation of horizontal bubble fluc-
tuations proposed in the previous section: bubble oscillations remain driven by vortex
shedding but lose progressively their time correlation due to hydrodynamic interactions
as α increases. In the vertical direction, the behavior of the correlation is very different.
In contrast with Cyy, Cxx is not symmetric about the time axis. The damped cosine
function is still present, with a period which corresponds to that of the oscillation of an
isolated bubble in the vertical direction (half that in the horizontal direction). However,
it constitutes only a minor contribution to the correlation. The main contribution is now
a positive decreasing function as expected for a particle in a turbulent flow. Moreover,
the damping of the cosine contribution of Cxx is much larger than that of Cyy, so the
oscillating part has almost completely vanished at α=13%.

The efficiency of the dispersion in both directions is measured by the dispersion coef-
ficients,

Dx =
1

2

d〈x′2〉
dt

= 〈v′2x 〉Tx and Dy =
1

2

d〈y′2〉
dt

= 〈v′2y 〉Ty, (5.1)

where the variance of the displacements 〈x′2〉 and 〈y′2〉 are considered at times that
are large compared to the Lagrangian integral timescales, which are defined by Tx =∫∞
0

Cxx(τ) dτ and Ty =
∫∞
0

Cyy(τ) dτ . Figure 13 shows the evolution of 〈x′2〉 and 〈y′2〉
with t. As excepted from the trajectories (Fig. 10) and the autocorrelations (Fig. 12),
the horizontal variance 〈y′2〉 shows oscillations that decrease as α increases while oscilla-
tions are hardly visible in the evolution of the vertical variance 〈x′2〉, even at the lowest
gas volume fraction. These oscillations however play no role in the dispersion which is
controlled by the global increases of the variances. Here, 〈x′2〉 and 〈y′2〉 have been nor-
malized by 〈v′2x 〉 and 〈v′2y 〉 so that the slopes of the curves may directly correspond to
the Lagrangian integral timescales. For each value of α, Tx and Ty can been determined
either from the integral of the autocorrelation coefficients or from the derivative of the
normalized displacement variances for t larger than 0.7 s after filtering residual oscilla-
tions out. We have checked that the two methods give the same results and will present
here only values computed from the slopes. Tx and Ty are plotted against the gas volume
fraction in the insets. If we exclude the lowest gas volume factions (α < 3%), the vertical
timescale is observed to be constant, Tx ≈ 0.21 s, whereas the horizontal one increases
linearly as 0.33α s. Figure 14 shows the evolution of the dispersion coefficients, Dx and
Dy, with the gas volume fraction. Both evolve almost linearly with α even if the disper-
sion is much more efficient in the vertical direction. Considering they are the product of
velocity variance by the Lagrangian timescale (Eq. 5.1), it however appears clearly that
the physical mechanisms are very different in the two directions.

In the vertical direction, Tx is almost constant (Fig. 13) whereas 〈v′2x 〉 evolves almost
linearly with α. Assuming Tx = 0.21 s and 〈v′2x 〉 = 7.4× 10−3 α0.92 m2·s−2 (which is the
fit proposed in Fig. 8), we indeed get the reasonable fit of Dx drawn in figure 14. (At the
largest volume fraction, the fit deviates from the measurements due to a small decrease of
Tx.) The increase of Dx with α is thus mainly due to that of 〈v′2x 〉. This behavior can be
understood by considering what we have learnt about the bubble velocity. Conditional
averaging of the bubble velocity shows that the major effect of bubble interactions is
entrainment by the wakes. Moreover, the length, lw, and the intensity of the wake only
weakly depends on the gas volume fraction. This has two consequences. First, when the
total number of bubbles is increased, the number of bubbles within the wakes is increased
in the same proportion, which explains why 〈v′2x 〉 increases almost linearly with α. Second,
the Lagrangian timescale Tx corresponds to the time spent by a bubble within the wake
of another bubble: it scales as lw/V0 (≈ 0.15 s) and is therefore almost independent of α.



In the horizontal direction, the roles are reversed, the variance is constant and the
integral timescale is proportional to the gas volume fraction. The fit of Dy in figure 14 is
obtained by the product of 〈v′2y 〉 ≈ 2.6×10−3 m2·s−2 (Fig. 8) and Ty = 0.33α s (Fig. 13).
As discussed earlier, the agitation of the bubbles in the horizontal direction is driven by
wake-induced oscillations. Its energy, measured by 〈v′2y 〉, is therefore independent of α.
On the other hand, horizontal velocity oscillations centered around zero are not able
to disperse bubbles. However, each time a bubble gets very close to another bubble, the
regular oscillations are perturbed and the bubble deviates from this vertical average path.
The integral timescale Ty is thus controlled by the rate at which a bubble encounters
other bubbles along its rising path, which is an increasing function of the gas volume
fraction. The horizontal bubble dispersion thus results from a loss of time coherence of
bubble oscillations due to hydrodynamic interactions.

6. Conclusion

The dynamics of the gas phase has been investigated in a homogeneous swarm of
bubbles rising within a Hele-Shaw cell for gas volume fractions between 1 % and 14 %.
In the considered flow regime, inertia plays a major role (Re ≈500). Each bubble is
followed by unstable wake where a regular vortex shedding occurs, and rises along an
oscillatory path while keeping an almost constant elliptical shape. However, in contrast
to what is observed in unconfined situations, the wake is strongly attenuated by the wall
friction and has almost vanished at only 4 diameters behind a bubble.

The spatial distribution of the bubbles remains very close to the ideal situation where
bubble locations are independent to each others. Only small departures to this ideal have
been detected. There are however limited to bubble separations less than two diameters
and have negligible influence on statistics of the bubble dynamics. Two phenomena con-
trol the statistics of the bubble motions: the wake-induced oscillations and the strong
velocity disturbances localized at the bubble rears. Depending on the direction that is
considered, the relative importance of these two phenomena is changed and the physical
mechanisms are totally different.

In the vertical direction, the principal mechanism is the entrainment by the wakes.
First, it induces an increase of the mean bubble rise velocity, which remains however slight
probably because it is partly counterbalanced by the classic hindrance effect observed
in unconfined situations. Second, it causes an almost linear increase of the variance of
the vertical bubble velocity as the gas volume fraction is increased. This linearity comes
from the fact that the bubble wake remains almost unchanged as α increases whereas the
probability that a bubble is located within the wake of another bubble is proportional to
α. Finally, wake entrainment generates a vertical dispersion of the bubble characterized
by a dispersion coefficient with is almost proportional to α. Indeed, since no stable clusters
are formed, the time spent by a bubble in the wake of another bubble does not depend on
the gas volume fraction. The evolution of the vertical dispersion coefficient of the bubbles
with the gas volume fraction is thus driven by that of the bubble velocity variance.

In the horizontal direction, the bubble agitation is essentially caused by the wake-
induced oscillations, the intensity of which is independent of the gas volume fraction. As
a consequence, the variance of the bubble velocity is independent of α. Sinusoidal oscil-
lations are unable to cause dispersion. However, random interactions between bubbles,
by causing the decay of the sinusoidal time correlation of the bubble velocity, generate a
horizontal bubble dispersion, which increases as the rate at which a bubble is perturbed
by an other bubble. The horizontal diffusion coefficient is also found to increases linearly
with α but remains smaller than that in the vertical direction.



Thanks to the advantages of a two-dimensional configuration for optical measurements,
we have been able to draw a quite comprehensive picture of the mechanisms controlling
the bubble dynamics. Unfortunately, such a detailed description is not available in un-
confined flow, especially concerning bubble dispersion. It is thus not possible to conclude
definitively concerning the differences between three-dimensional and two-dimensional
configurations. It seems however very likely that the mechanisms related to wake en-
trainment and bubble path oscillations are major mechanisms in three-dimension too.
Their relative importance according to each direction is however probably different. In
particular, the predominance of the wake entrainment in the vertical direction, which
causes the mean bubble velocity to increase with the gas volume fraction, is probably
specific to two-dimensional flows.

Further insights into this matter will be obtained from the investigation of the dynam-
ics of the liquid phase.
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Figure 1. (a) Schematic view of the cell (bubbles are not to scale). (b) Side view of a bubble
with a vertical velocity Vx, rising within the gap. (c) Definition of the vector rij joining the
centroids of bubbles i and j.
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Figure 3. Images of bubble swarms after subtraction of the background image. (a), α=2%; (b),
α =13%; (c) and (d) are zooms of (a) and (b) with bubble trajectories recorded during 0.16 s.
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Figure 9. Normalized probability density functions of the velocity fluctuations for various gas
volume fractions. (a) linear plot for vertical component; (b) linear plot for horizontal component;
(c) semilog plot for vertical component; (d) semilog plot for horizontal component. Dashed lines
in (c) and (d) represent Gaussian distributions.



Figure 10. Superimposed bubble-center paths: (a), two isolated bubbles; (b), α = 2.1 %
(1,000 bubbles); (c), α = 13 % (1,000 bubbles ).
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Figure 11. Normalized probability density functions of bubble-centre displacements at two
different times after dispersion starts and for various gas volume fractions. (a), vertical direction;
(b) horizontal direction. Dashed line represent Gaussian distribution.
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Figure 13. Variance of the bubble-centre displacements divided by bubble velocity variance for
various gas volume fractions. (a), horizontal direction; (b), vertical direction. The insets show
the corresponding Lagrangian integral timescale as a function of the gas volume fraction. The
dotted line is a linear fit of the horizontal timescale: Ty = 0.33α s.
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