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Non-conservative Rayleigh Scattering. A Perturbation Approach

The continuous spectra of stellar and planetary atmospheres may be linearly polarized by Rayleigh or Thomson scattering. The polarization rate follows the Chandrasekhar's law for the Milne or diffuse reflection problems, if scattering processes are the only source of absorption and emission.

Deviations from the Chandrasekhar's law due to true absorptions by bound-free or free-free transitions are derived from a perturbation analysis of the polarized radiative transfer equation, using as expansion parameter the ratio ǫ = κ c /(κ c + σ c ), with κ c and σ c the true absorption and scattering absorption coefficients. An expansion in powers of ǫ is proposed for the polarization rate. A comparison with numerical results shows an excellent fit for ǫ up to 10 -3 but a systematic underestimation above this value.

Physical context : formation of stellar or planetary continuous spectra

In stellar and planetary atmospheres, the main physical processes contributing to continuous spectra are the bound-free and free-free transitions and the scattering of radiation on particles with a size smaller than the wavelength : Rayleigh scattering on atoms and molecules and Thomson scattering on electrons. Rayleigh and Thomson scattering produce linear polarization, a full description of which requires the three Stokes parameters I, Q, U. Two of them, usually chosen to be I and Q, are sufficient for a cylindrically symmetric radiation field.

For a plane parallel medium with cylindrical symmetry, the radiative transfer equation for the two-component radiation field I λ (z, µ) may be written as

µ ∂ I λ ∂z (z, µ) = -[σ c + κ c ] I λ (z, µ) + σ c 1 2 +1 -1 P(µ, µ ′ ) I λ (z, µ ′ ) dµ ′ + κ c Q * λ (z). ( 1 
)
Here λ is the wavelength of the radiation, z the geometrical depth, µ = cos θ, with θ the colatitude of the ray with respect to the z-axis, κ c the absorption coefficient for boundfree and free-free transitions, σ c the scattering coefficient (both coefficients depending on z and λ), and P(µ, µ ′ ) the polarization phase matrix, which is the same for Rayleigh and Thomson scattering. Finally κ c Q * λ (z) is a primary source term, assumed to be of thermal origin. A fundamental role is played by the ratio

ǫ λ (z) = κ c (λ, z)/[σ c (λ, z) + κ c (λ, z)].
(2)

It goes to zero in a purely scattering atmosphere and to unity in a purely absorbing one; it can be interpreted as a destruction probability per scattering. In the following 101 Frisch it is assumed that this ratio is independent of z and λ. Introducing the monochromatic optical depth dτ λ = -[σ c (λ, z) + κ c (λ, z)] dz, the radiative transfer equation takes the form

µ ∂ I ∂τ (τ, µ) = I(τ, µ) -(1 -ǫ) 1 2 +1 -1 P(µ, µ ′ ) I(τ, µ ′ ) dµ ′ -ǫ Q * (τ). ( 3 
)
This equation is the starting point for the perturbation analysis in the limit ǫ → 0 (the dependence on λ is omitted since there is no frequency coupling).

The perturbation method

For a dilute and extended medium where photons can suffer a large number of scatterings before being destroyed by absorption in a bound-free or free-free transition, the parameter ǫ defines a scale of variation of the radiation field, usually referred to as the thermalization length, here denoted τ eff . For monochromatic scattering, τ eff ≃ 1/ √ ǫ, for unpolarized (scalar) as well as polarized radiation. For the scalar case, it has been shown by [START_REF] Larsen | [END_REF] that, in the limit of small ǫ, the transfer problem can be separated into two simpler ones. In the interior of the medium the radiation field can be described in terms of a rescaled optical depth τ = τ/τ eff ≃ √ ǫτ. Close to boundaries, the scale of variation of the radiation field is the optical depth itself τ = τ/ √ ǫ. This approach can be generalized to radiation, linearly polarized by Rayleigh and/or Thomson scattering (Frisch 2018, in preparation).

In the interior, one assumes

I(τ, µ) = I int (τ, µ), τ = √ ǫ τ. (4) 
In the boundary layer, say at τ = 0, one assumes

I(τ, µ) = I int (τ, µ) + I bl (s, µ) s = τ/ √ ǫ, s ∈ [0, ∞[. (5) 
The fields I int (τ, µ) and I bl (s, µ) are coupled by two conditions, one at the surface in the direction of incoming rays and one at infinity in the variable s :

I int (0, µ) + I bl (0, µ) = I ext (µ), µ ∈ [-1, 0]; lim s→∞ I bl (s, µ) = 0. ( 6 
)
Here I ext (µ) is a given incident radiation. The condition at infinity ensures that the interior solution is represented by I int (τ, µ).

The interior field satisfies the equation

√ ǫ µ ∂ I ∂τ (τ, µ) = I(τ, µ) -(1 -ǫ) 1 2 +1 -1 P(µ, µ ′ ) I(τ, µ ′ ) dµ ′ -ǫ Q * (τ). ( 7 
)
The primary source term is also assumed to be slowly varying. One looks for a solution in the form of a perturbation expansion

I int (τ, µ) = I int 0 (τ, µ) + √ ǫ I int 1 (τ, µ) + ǫ I int 2 (τ, µ) + . . . . (8) 
Inserting Eq. ( 8) into Eq. ( 7) and collecting terms of the same order in ǫ, one obtains a hierarchy of equations providing relations between expansion coefficients I int k (τ, µ)
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In the boundary layer, the boundary layer contribution to the radiation field satisfies the equation

µ ∂ I bl ∂s (s, µ) = I bl (s, µ) -(1 -ǫ) 1 2 +1 -1 P(µ, µ ′ ) I bl (s, µ ′ ) dµ ′ . ( 9 
)
The primary source term is included in the interior equation. One also looks for a power expansion of the type written in Eq. ( 8). Collecting terms of the same order in ǫ, one finds that the expansion coefficients I bl k (s, µ), for k = 0, 1, satisfy Eq. ( 9) with ǫ = 0. Associated to the boundary condition in Eq. ( 6), this equation describes a diffuse reflection problem, i.e. conservative scattering of a given incident field in a semi-infinite medium. If I ext (µ) = 0, the incident field is the opposite of the interior field.

As shown by Chandrasekhar (1946), monochromatic conservative scattering in a semi-infinite medium can be solved exactly. For diffuse reflection, explicit expressions can be written for the emergent radiation field (Chandrasekhar 1960, p. 256) and for the radiation field at infinity. The value at infinity allows one to show that the leading term I bl 0 (s, µ) is zero, that I bl 2 (s, µ), the term of order ǫ, also satisfies a diffuse reflection problem and to find the missing boundary conditions for the interior diffusion equation.

Main results

The results presented below hold for an unpolarized primary source and I ext (µ) = 0. The medium is a plane parallel slab with a total optical thickness T , much larger than the thermalization length. In the interior, at leading order, the radiation field is isotropic and unpolarized, i.e. I 0 (τ, µ) = [i 0 (τ), 0] T , and i 0 (τ) satisfies the diffusion equation 1 3

d 2 i 0 d τ2 (τ) -i 0 (τ) + Q * (τ) = 0, (10) 
where Q * (τ) is the unpolarized primary source. The boundary condition is i 0 (τ) = 0 on the boundary (at τ = 0 and τ = T ). At order √ ǫ, I 1 (τ, µ) is still unpolarized, but is anisotropic, the anisotropic term varying as µ di 0 (τ)/d τ. At order ǫ, the field is anisotropic and polarized and Stokes Q is given by Q

(τ, µ) = -ǫ(1 -µ 2 )d 2 i 0 /(3d τ2 ).
For the emergent radiation field, the leading term is of order √ ǫ. Its components I l and I r , parallel and perpendicular to the scattering plane (related to Stokes I and Q by I = I l + I r and Q = I l -I r ) may be written as

I em l (µ) = √ ǫ H l (µ) q √ 2 1 2 di 0 d τ | 0 , I em r (µ) = √ ǫH r (µ) µ + c √ 2 1 2 di 0 d τ | 0 , (11) 
where the functions H l (µ) and H r (µ) and the constants q and c have been introduced by Chandrasekhar (1946) for the polarized Milne problem. The derivative of i 0 (τ) is taken at the surface. At order ǫ, I em l (µ) and I em r (µ) are also proportional to H l (µ) and H r (µ)

Polarization rate in percent for several values of ǫ. Dashed lines : perturbation expansion; solid lines : numerical results calculated with a PALI code provided by Sampoorna, based on Nagendra et al. (1999). From top to bottom, Chandrasekhar's law, log 10 ǫ = -4, -3, -2, -1. The Chandrasekhar's law is graphically indistinguishable from the ǫ = 10 -4 curve. respectively, times some rather complicated function of µ, and of the first and second derivatives of i 0 (τ) taken at τ = 0.

The perturbation analysis shows that the polarization rate, defined by

may be written as

where p 0 (µ) is the Chandrasekhar's law, i.e. the polarization rate of the Milne problem. In Fig. 1, we show p(µ) for a uniform primary source Q * (τ) = q * and several values of ǫ. The effects of a finite value of ǫ appear only for ǫ ≥ 10 -4 and the predictions of the perturbation analysis are in excellent agreement with the numerical results for ǫ ≤ 10 -3 . The function p 1 (µ) describing the deviation from the Chandrasekhar's law has a fairly complicated expression, but its µ-dependence is roughly linear, going as (1 -µ). For ǫ larger than 10 -3 , the polarization rate is underestimated. The agreement could be improved by adding terms to the perturbation expansion, but beyond the order ǫ, there is no explicit solution for the boundary layer solution. For ǫ = 10 -1 (i.e. √ ǫ ≃ 0.3), the assumption on which the perturbation analysis is based is not valid anymore.