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ABSTRACT
In this paper, we present three methods to achieve reliable drillbit angular velocity control for deep drilling
operations. We consider a multi-sectional drilling system with the bit off-bottom, which represents the
system at the start-up of a drilling operation, e.g., after a connection. The three control procedures are
all based on a distributed model for the drilling system. The proposed model has been field validated
and considers Coulomb friction between the drillstring and the borehole. The first algorithm we propose
combines the industry standard ZTorque controller with a feedforward component. The second procedure
is based on a multiplicity-induced-dominancy (MID) design that corresponds to a pole-placement for
the downhole state. Finally, the last class of controllers relies on a recursive interconnected dynamics
framework. All the controllers are combined with a disturbance rejection procedure whose design is based
on a switching-mode approach. These three algorithms are illustrated in simulations with field scenarios
on several test-cases. Their complexities, effectiveness and limitations regarding industrial implementation
criteria are discussed.

INDEX TERMS drillstring vibrations, stick-slip, downhole boundary, bit off-bottom, distributed systems,
ODE-PDE-ODE system, differential flatness, delay equations, multiplicity-induced-dominancy (MID),
performance analysis

I. INTRODUCTION

EXTRACTION of resources in the earth’s subsurface -
oil, gas, minerals, and thermal energy - necessitates

drilling long slender boreholes from the surface to the sub-
surface target. The diameters of the wells required to extract
these resources range from 10 to 50 cm, and lengths can
frequently exceed 10,000 m, leading to mechanical sys-
tems with extreme aspect ratios. These drillstrings consist
of sections of steel drill pipe and stiffer drill collars. These
systems are the source of complex dynamic behaviors as
many dynamic phenomena are involved such as vibrations,
bending and twisting quasi-static motion, and bit-rock in-
teractions [1], [2]. In particular, the drillstring interaction
with the borehole gives rise to a wide variety of undesired
oscillations [3]–[5] which can be classified depending on
the direction they appear. Among these oscillations, torsional
vibrations can appear due to downhole conditions (such as

significant drag, tight annular clearances or formation char-
acteristics [6] for instance) or due to side forces induced by
Coulomb friction terms [7]. These oscillations are known as
stick-slip and are considered to be the most destructive as
they may cause fatigue of the equipment, a deterioration of
the performance of the process, or a premature failing of the
bit [8]. This may result in catastrophic damages and at least
wear to expensive components of the drillstring [9]. These
oscillations are characterized by a series of stick (a cessation
of bit rotation) and slip (a sudden release of energy) cycles
[10], [11].

As a clear understanding of drillstring dynamics appears
to be crucial to control these vibrations and consequently
improve the performance of drilling systems (Rate Of Pen-
etration) or prevent any eventual damage and reduce safety
risks, a wide range of models have been proposed in the lit-
erature to explain stick-slip oscillations. In the simplest mod-
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els, stick-slip oscillations are induced from a non-linearity
of the frictional force at the bit. More precisely, the bit-
rock interaction takes the form of a discontinuous frictional
force at the bit. A simplified formulation of drillstring dy-
namics can be modeled as a lumped mass, representing
the bottom hole assembly (BHA) inertia combined with a
torsional spring, representing the drillstring stiffness [12],
[13]. More complex models have been introduced in [6],
[14]. However, it has been observed that stick-slip oscilla-
tions can occur off-bottom and do not require a velocity
weakening in the bit–rock interaction. The aforementioned
simple models do not properly encompass this well-known
phenomenon from the field. It is hypothesized to be caused
by a negative difference between static and kinetic along-
string Coulomb-type friction [15]–[17]. This cause is distinct
from the regenerative effect in the bit–rock interaction which
is already known to generate stick-slip oscillations, partic-
ularly in vertical or near vertical wells [18], [19]. This is
particularly important in modern wellbores, which are rarely
straight and must follow pre-planned well plans, ranging
from simpler horizontal or deviated wells to complex three-
dimensional paths, thus increasing the effect of torque and
drag. In this context, distributed models appear to be more
relevant to characterize stick-slip oscillation. In the model
proposed in [7], the drillstring dynamics are modeled as
a set of hyperbolic Partial Differential Equations (PDEs),
namely wave equations, coupled with Ordinary Differential
Equations (ODEs) through their boundaries. Such a model
encompasses Coulomb friction-induced side forces using an
inclusion term. We will use this class of models in the present
paper.

During the drilling process, the operator usually seeks
to control the downhole behavior of the drillstring (e.g.,
reach a given angular velocity or a given orientation.) and
optimize the Rate Of Penetration (ROP) while avoiding un-
desired oscillations. It is usually possible to impose (using
the top drive) the weight on the drillstring and the torque
at the surface. Through the last decades, a significant re-
search effort has been conducted to design various types
of stick-slip mitigation controllers in order to fulfill these
control objectives [11], [20]. In our opinion, this explains
why a large variety of stick-slip mitigation controllers can
be found in the literature: Proportional-Integral-Derivative
(PID) controllers [21], impedance matching controllers [22],
sliding mode controllers [23], and others [24], [25]. Most of
the controllers applied in industrial applications correspond
to high-gains PI control laws, following the SoftSpeed and
SoftTorque approaches. These approaches are easy to im-
plement and to analyze since the gains are tuned to obtain
a certain reduction in the proximal reflection coefficient
over a limited frequency range [26]. However, they may
present several fundamental limitations as possible poor
inherent robustness margins [27] (which can be overcome
using impedance matching controllers such as ZTorque [22])
or the generation of significant oscillations when changing
the set-points. Moreover, the Coulomb side-forces effect

is not always well compensated by such PI control laws.
Consequently, a flatness-based approach has been developed
in [28] to cancel the impact of the Stribeck-like effect of
the torque acting on the BHA as rotation is initiated. The
control law then combines three terms: a feed-forward term
to compensate the effect of the Coulomb friction terms, a
trajectory term, and a stabilization term (that corresponds to
a ZTorque PI controller), thus conforming to the canonical 3-
DOF controller design for tracking and disturbance rejection.
Such an add-on requires a minimal implementation effort
for practitioners. However, it has only been designed for a
uni-sectional pipe and may not handle the case of multi-
sectional drillstring where the different segments of pipe that
compose the drillstring may have different physical proper-
ties (as weight, diameter, or inertia). Indeed, the change of
the characteristic line impedance may cause reflections in
the traveling waves and deteriorate the performance of the
closed-loop system. In addition, although simple to imple-
ment, the stabilizing part of the controller still corresponds to
a PI control law (SoftTorque or ZTorque). The incentive to do
so is to reduce the computational effort and preserve a sim-
ple controller architecture. However, explicitly taking into
account the delays and high-frequency content in the model
should lead to overall increased performance with respect to
a given set of specifications. Indeed, the torsional dynamics
of a drilling system corresponds to an interconnected system
composed of ODEs coupled with wave equations. Several
controllers have already been developed for such systems
in the literature (at least in a theoretical framework). For
instance, the multiplicity induced-dominancy (MID) property
was outlined in [29], [30] for retarded time-delay systems and
extended to neutral delay differential equations of orders 1
and 2 [31]–[33] (a mathematical class of systems to which
the dynamics considered in this paper belong). The MID
property was established in a general framework in [34]
for generic retarded delay differential equations. It relies on
existing links between quasipolynomials with a real root of
maximal multiplicity and Kummer’s confluent hypergeomet-
ric function in terms of the location of the characteristic roots.
Such an approach opens interesting perspectives in control
design, such as the systematic tuning of the gains of the well-
known PID controller [31]. It consists of two steps: the first
step, which is a quasipolynomial interpolation, corresponds
to forcing a spectral value to have a prescribed admissible
multiplicity; the second step consists in establishing the
conditions in the parameters guaranteeing such a multiple
spectral value to be dominant (i.e., the remaining spectral
values of the closed-loop system are located to the left of
the assigned poles [35], [36]). More recently, another control
strategy has been proposed in [37] using a recursive dynamics
interconnection framework. Roughly speaking, the control
law is recursively obtained by considering stabilizing virtual
inputs for each subsystem and by ensuring the outputs of each
subsystem converge to these desired virtual inputs. This re-
cursive framework can also be used to estimate the boundary
states. Such control laws could be potential competitors with
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the SoftTorque/ZTorque control laws.
In this paper, we present the derivation of and compare

three different control strategies to achieve angular velocity
control in the case of a multi-sectional drillstring with the
bit off-bottom. The three control approaches correspond to
the extension of the ZTorque feedforward control law pro-
posed in [28], to a MID-based controller (that extends the
control law proposed in [33]) and to a recursive dynamics
inter-connection framework [37]–[39]. All the controllers are
based on the infinite-dimensional model proposed in [28].
These controllers are coupled with a disturbance compensa-
tion strategy that compensates for the effects of the Coulomb
friction terms. This compensation of the disturbance relies on
a switching-mode procedure. We first guarantee the release
of the BHA from the stick phase by setting the control input
to an arbitrarily large value. The disturbance term then be-
comes constant and can be easily removed. The three control
procedures present an increasing order of complexity. They
will be compared with respect to performance indices ad-
justed from classical industrial implementation specifications
which include ease of implementation (both computationally
and difficulty of integration in industrial motor controllers),
performance and robustness to latency and delay. Such a
comparison is crucial to improve the overall performance of
the drilling operations. Some of these algorithms may require
an estimation of the distributed states. Although an adaptive
soft sensor has been proposed in [40] for the case of a single-
sectional drillstring, we present here a new type of estimator,
which is based on our recursive dynamics framework.

More precisely, the contribution of the paper is three-fold.
First, we extend the feed-forward control strategy proposed
in [28] to the case of a multi-sectional drillstring. Then,
we propose two new alternative control strategies and a
simple real-time estimation procedure of the state. Finally,
we compare the different algorithms for several industrial im-
plementation criteria. This comparison will be made against
a high-fidelity model derived from [28].

The paper is organized as follows. In Section II, we present
the torsional model we utilize in this paper to describe
the torsional motion of a multi-sectional drilling system
with the bit off-bottom. The model is adopted from [7]
where it was validated against field data. We also present
the control objectives and specifications before introducing
the different control strategies. The ZTorque feed-forward
controller is presented in Section III. The second class of
controllers corresponds to neutral-type (MID) controllers and
is derived in Section IV. Finally, the last class of controllers
we consider relies on a recursive interconnected dynamics
framework and is described in Section V. A disturbance
rejection procedure is introduced in Section VI. We present
in Section VII a state-observer that can be used to design
output-feedback controllers. In Section VIII, we compare the
different controllers against field scenarios. We give some
remarks about implementation requirements in Section IX.
Some concluding remarks are given in Section X.

ω0

τ(t,x)
ω(t,x)

x

INC x=L

S(ω)

ωc

ω

ro(x)μsFN(x)

1
kt

ro(x)μkFN(x)

FIGURE 1: Schematic showing a two segment drillstring
of length L lying in a deviated borehole. Inset: Schematic
illustrating the friction source term S(ω, x). The shaded
region represents the angular velocities for which a constant
value of static torque is assumed and the red curve indicates
the dynamic torque as a function of angular velocity (figure
from [7]).

II. TORSIONAL VIBRATIONS MODEL
This section summarizes a hyperbolic partial differential
equations model with distributed friction terms to describe
the torsional motion of a drilling device. A full derivation of
the high-fidelity model is given in [7] where it was validated
against field data. Its computational simplicity allows it to
be used in control and estimation applications. Since the
objective of the proposed contribution is to compare the
performance of different control strategies, it is reasonable
to perform this comparison in the most amenable case. The
main assumptions are as follows:

• Torsional motion is the dominant dynamic.
• Static and dynamic friction is modeled as a jump, i.e.,

the Stribeck curve is assumed negligible.
• The effect of along-string cuttings distribution is as-

sumed constant and homogeneous.
• The effect of the pressure differential, inside and outside

the drillstring, on the bending moment is not represented
and is assumed to be negligible.

• As we are investigating the performance of each control
during start-up, the bit is off-bottom which means there
is no bit-rock interaction.

These assumptions are consistent with the ones given in [7]
and are reasonable when considering that the bit is off-
bottom.

A. DISTRIBUTED TORSIONAL DYNAMICS
We model the dynamics of a directional drilling system of
length L (Figure 1). In this model, x denotes the curvilinear
abscissa, x = 0 is the position of the top-drive, while x = L
is the position of the drill bit. The torsional motion of the
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drillstring is assumed to be the dominating dynamic behavior,
which is particularly true at the start of rotation after a
connection. The torsional dynamics is represented using the
popular model (see [7], [41]) of a distributed wave model
where discontinuities in impedance can be included to model
different sections of the drillstring, such as a pipe and a collar
section. We refer to [7] for the full model derivation.

A schematic representation of the drillstring is given in
Fig. 1. Let us denote Φ(t, x) the rotary angle of the drillstring.
It is a function of (t, x) evolving in {(t, x) | 0 < t <
T, x ∈ [0, L]} (where T is positive time). We denote the
angular velocity and torque as ω(t, x), τ(t, x), respectively,
with (t, x) ∈ [0,∞) × [0, L] (L being the length of the
drillstring). The angular torque associated to Φ can be found
from the strain, given as the local relative compression:

τ(t, x) = JG
(Φ(t, x)− Φ(t, x+ dx))

dx
, (1)

J being the polar moment of inertia, G the shear modulus
and dx→ 0 the infinitesimal position increment. The angular
velocity satisfies

ω(t, x) =
∂Φ(t, x)

∂t
.

The diameter to length ratio of a drillstring, typically
less than 10−4, implies that the drillstring can be modeled
using an Euler–Bernoulli beam model. More precisely, we
can derive the dynamics of interest by assuming elastic
deformations and using equations of continuity and state.
The torsional motion satisfies the following wave partial
differential equations (that can be found in [7])

∂τ(t, x)

∂t
+ JG

∂ω(t, x)

∂x
= 0, (2)

Jρ
∂ω(t, x)

∂t
+
∂τ(t, x)

∂x
= −ktρJω(t, x)−F(t, x), (3)

where ρ is the drillstring density, and where the damping
constant kt represents the viscous shear stresses. We will
denote ct =

√
G
ρ as the torsional propagation velocity. The

function F(t, x) that appears in equation (3) is a differential
inclusion that represents the Coulomb friction between the
drillstring and the borehole, also known as the side force.
This side force is modeled using the following inclusion [7]

F(t, x) = ro(x)µkFN (x), ω(t) > ωc,

F(t, x) ∈ ±ro(x)µsFN (x), |ω(t)| ≤ ωc,
F(t, x) = −ro(x)µkFN (x), ω(t) < −ωc,

(4)

where µs is the static friction coefficient (i.e. the friction
between two or more solid objects that are not moving
relative to each other) and µk is the kinetic friction coefficient
(also known as dynamic friction or sliding friction, which
occurs when two objects are moving relative to each other
and rub together), ωc is the threshold on the angular velocity
where the Coulomb friction transits from static to dynamic,
ro(x) is the outer drillstring radius. The function FN is the
normal force acting between the drillstring and the borehole

wall. The function F(t, x) ∈ ±ro(x)µsFN (x) (that needs to
be computed when |ω(t)| < ωc ) denotes the inclusion where

F(t, x) = −∂τ(t, x)

∂x
− ktρJω(t, x)

∈ [−ro(x)µsFN (x), ro(x)µsFN (x)], (5)

and takes the boundary values±µsFN (x) if this relation does
not hold.

Using the torque model of [42] it is possible to derive the
normal force profile FN (x) (see [7] for details). We consider
in this work that the different constant physical parameters
are perfectly known. In particular, the friction factors and
the velocity threshold are known, which can appear as a
restrictive condition. However, an adaptive soft sensor has
been proposed in [40] to estimate these parameters. This
soft sensor only requires sampled top-drive angular velocity
measurements that are available during typical drilling opera-
tions. The control strategies we present in this paper can then
be combined with such an observer.

B. DISCONTINUITIES OF A MULTIPLE SECTIONED
DRILLSTRING
The drillstring is usually made up of different segments of
pipes. For instance, the lower part of the drillstring is made
up of drill collars that may have a great impact on the global
dynamics due to their high inertia [43]. In particular, these
pipes may have different lengths, density, inertia or Young’s
modulus. This change of the characteristic line impedance
may cause reflections in the traveling waves. Let us assume
we have N different sections (N ∈ N), and let us denote
xi the spatial coordinate of the junction point between the
(i)th-section and the (i+ 1)th-section. Let us denote x0 = 0,
xN = L and (τ i(t, x), ωi(t, x)) the torque and angular
velocity along the ith section of the drillstring. The corre-
sponding physical parameters will also be expressed using
the superscript i (for instance ρi will be the density of the ith

section). The boundary conditions at the transition are given
by the following continuity constraints

τ i(t, xi) = τ i+1(t, xi), ωi(t, xi) = ωi+1(t, xi). (6)

When there is no ambiguity, this superscript will be omitted
to ease the notations.

C. TOP-DRIVE BOUNDARY CONDITIONS
The drillstring is connected at the top to the top-drive sus-
pended over the drill floor by the traveling block. This top-
drive is actuated by a motor torque uT = τm. This yields

ITD
∂ω(t, x)

∂t
|x=0 = uT (t)− τ(t, 0), (7)

In what follows, we denote ωTD = ω(t, 0) and τTD =
τ(t, 0) as the angular velocity and torque at the top of the
drillstring. Similarly, we will denote ωDH = ω(t, L) and
τDH = τ(t, L) as the angular velocity and torque at the
bottom of the drillstring.
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D. DOWNHOLE BOUNDARY CONDITION: LUMPED BHA
Since the bit is off-bottom, the torque at the bottom of
the drillstring is equal to zero: τDH(t) = 0. However, as
Bottom Hole Assemblies (BHAs) often consist of a variety of
different drilling or sensing tools, stabilizers and drill collars,
it is desirable to approximate the BHA section as a single
lumped inertial element to simplify the analysis (series of
rigid bodies connected by springs). This approximation is
justified because the length of the BHA (≈ 200m) is much
smaller than the one of the drillstring (≈ 2000m). Moreover,
much of the torque acting on the drillstring will come from
stabilizers located in, or close to, the BHA. Thus, the source-
terms acting on (3) can be lumped into an ODE coupled with
the drillstring [28], [44], [45]. Another reason to consider
an ODE at the BHA is that this kind of structure naturally
appears when dealing with bit-rock interaction. The inertia
of the lumped BHA is given by

IBHA = ρBHALBHAJBHA, (8)

where ρBHA and JBHA are the average density and polar
moment of inertia of the BHA, while LBHA is its length. The
downhole boundary condition at x = L can then be obtained
from a torque balance on the lumped BHA. This yields

d

dt
ωDH(t) =

1

IBHA
(τDH(t)− d(t)), (9)

where ωDH(t) = ω(t, Lp) and τDH(t) = τ(t, Lp) (Lp being
the length of the pipe before the lumped section), where d(t)
accounts for the now lumped effect of the distributed source
term, i.e.:

d(t) =

∫ L

0

(F(t, x)− ktρω(t, x))dx. (10)

The function d(t) can then be seen as a disturbance acting
on the downhole boundary condition. An evaluation of the
error introduced by the lumped approximation has been
derived in [28]. Using this lumped approximation of the
BHA, we obtain what is sometimes referred as the semi-
lumped approximation. This approximation for the dynamics
of the BHA simplifies the simulation of the system (as the
BHA could be composed of a large number of pipes) and
the mathematical analysis as the disturbance terms are now
lumped at the boundary. It results in an ODE-PDE-ODE
configuration, the first ODE corresponds to the top-drive
dynamics, the second ODE being the lumped BHA. Note
that such an ODE-PDE-ODE configuration naturally appears
when considering bit-rock interaction [18], [46]. The system
can now be rewritten as

∂τ i(t, x)

∂t
+ J iGi

∂ωi(t, x)

∂x
= 0 (11)

J iρi
∂ωi(t, x)

∂t
+
∂τ i(t, x)

∂x
= 0 (12)

with the boundary conditions

ITDω̇TD(t) = uT (t)− τTD(t), (13)
IBHAω̇DH(t) = τDH(t)− d(t), (14)

and the continuity conditions

τ i(t, xi) = τ i+1(t, xi), ωi(t, xi) = ωi+1(t, xi). (15)

Remark 1: In the proposed lumped model, the effect of the
disturbance term induced by the Coulomb friction only acts
on the downhole boundary condition (ODE). For a multi-
sectional drilling device, it may appear more accurate to
consider several disturbance terms di(t) that account for
the lumped effect of the distributed source term on each
subsection. Such terms would appear on the continuity con-
ditions (15). Although these terms make the analysis more
complex, the procedures we propose in this paper can easily
be adjusted to encompass them.

E. RIEMANN INVARIANTS
The Riemann invariants of a hyperbolic PDE are the states
that correspond to a transformation of the system for which
the transport matrix has been diagonalized, i.e. the system
can be written as a series of transport equations only cou-
pled through the source terms [47]. For each subsection, we
denote the Riemann invariants as αi(t, x) and βi(t, x) with
(t, x) ∈ [0,∞)× [0, L]. They are defined by

αi = ωi +
cit

J iGi
τ i, βi = ωi − cit

J iGi
τ i, (16)

where we recall that the torsional propagation velocity is

defined by cit =
√

ρi

Ji . Consequently, on each subsection,
the Riemann invariants verify

∂αi(t, x)

∂t
+ cit

∂αi(t, x)

∂x
= 0, (17)

∂βi(t, x)

∂t
− cit

∂βi(t, x)

∂x
= 0. (18)

In the Riemann coordinates, the boundary conditions at the
junctions (6) rewrite for 1 < i < N

αi+1(t, xi) = ai1α
i(t, xi) + ai2β

i+1(t, xi), (19)

βi(t, xi) = ai3α
i(t, xi) + ai4β

i+1(t, xi), (20)

where

ai1 =
2

1 + Zi
, ai2 =

Zi − 1

1 + Zi
, ai3 =

1− Zi

1 + Zi
, ai4 =

2Zi

1 + Zi
,

where we denote the relative magnitude of the impedance as

Zi =
ciξ
J iGi

/
ci+1
ξ

J i+1Gi+1
(21)

Note the meaning of these boundary conditions as reflections
of incoming waves from both sides, as they are split into an
upward and a downward traveling wave. In the case of the
same material being used at both sides of the discontinuity,
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the coefficient Zi can be simplified as the only change is the
polar moment of inertia. The other boundary conditions read

α1(t, 0) = −β1(t, 0) + 2ωTD(t), (22)

βN (t, L) = 2ωDH(t)− αN (t, L), (23)

ω̇TD(t) =
1

ITD
uT (t)− J1G1

c1t ITD
(ωTD(t)− β1(t, 0)), (24)

ω̇DH(t) =
JNGN

cNt IBHA
(αN (t, L)− ωDH)− 1

IBHA
d(t),

(25)

To avoid useless case distinctions for the first subsystem and
the last one, we will use the following conventions

α0(t, 0) = ωTD, βN+1(t, L) = ωDH , (26)

a0
1 = 2, a0

2 = −1, a0
3 = 0, a0

4 =
J1G1

c1t ITD
, (27)

aN1 =
JNGN

cNt IBHA
, aN2 = 0, aN3 = −1, aN4 = 2. (28)

We will also denote ti = xi−xi−1

cit
as the transport time on the

ith junction.

F. CONTROL OBJECTIVE AND SPECIFICATIONS
The main control objective of this paper is to regulate the
downhole angular velocity at the start-up of a drilling op-
eration (e.g. after a connection) while avoiding entering a
stick slip limit cycle. More precisely, we aim to track a given
reference trajectory. The control input corresponds to the
top-drive motor torque. The resulting system corresponds to
an ODE-PDE-ODE configuration where the top-drive ODE
is actuated. Note that the configuration would be slightly
simpler (PDE-ODE) if we could control the top-drive angular
velocity. In the case of the change of set-points, to construct
reference trajectories for the downhole angular velocity ωDH
that are both smooth, and have vanishing derivatives at the
end and start points, we used a semi-analytical function
(mollifier). As suggested in [28], we use the integral of the
“bump” function as a smooth approximation of the step
function with vanishing derivatives. We will denote m(t)
such a mollifier function. It is defined by

m(t) =

∫ 1

0

φ(s− 1)ds, (29)

where the bump function φ(t) is defined by

φ(t) =


exp (− 1

1−t2 )∫ 1

−1
exp (− 1

1−ξ2 )dξ
for t ∈ (−1, 1),

0 otherwise,

(30)

This mollifier is used to design reference trajectories for the
downhole RPM, by choosing an amplitude Am, switching
time tsd, and switching duration tsr:

ωref = Amm

(
t− tsd
tsr

)
. (31)

Note that if the reference trajectory is already a smooth
function, there is no need to use the mollifier, whose main
purpose is to avoid brutal changes of the reference signal.
An alternative way to design the reference signal could be to
consider it as the output of a regular exogenous system [48].

The control objective consists in tracking this reference
trajectory, i.e. we want ωDH → ωref . In this paper, we
present several methodologies for the regulation of the down-
hole angular velocity. The different algorithms we propose
feature specific advantages and limitations. They will be
compared with respect to standard criteria that are listed
below: overshoot, existence and amplitude of residual oscil-
lations, convergence time, computational effort, simplicity of
the controller structure. In what follows, we introduce the
control strategies in increasing inherent design complexity.

Below, we summarize the main ideas behind the three
proposed approaches and detail their corresponding require-
ments, limitations and performance w.r.t the proposed crite-
ria. These performances have been evaluated by a series of
field case simulations described in Section VIII.

1) ZTorque and feed-forward controller. A feedforward
controller which can easily be added to the standard
industry ZTorque feedback controllers without disturb-
ing the closed-loop behavior has been proposed in [28].
The proposed control law conforms to the 3DOF con-
troller architecture [49] since it has three components:
a feedback term, a feedforward term (exploiting the
model’s differential flatness [50]), and a disturbance
cancellation term. However, such a control law has
been designed for a single-sectional drillstring (with
a lumped BHA) and cannot be straightforwardly ex-
tended to multi-sectional drilling devices. In particular,
the estimation procedure for d(t) needs to be modified.
The revised version of this algorithm is given in Sec-
tion III.

• Requirements: Knowledge of top-drive torque,
estimation of the disturbance term (at least distur-
bance magnitude).

• Limitations: No rigorous proof of convergence.
• Performance: State-of-the art controller. The

feedforward component and the disturbance com-
pensation term considerably reduce the residual
oscillations. Possible overshoot and relatively long
convergence time due to the oscillations. Simple to
implement with a low computational effort.

2) Multiplicity Induced Dominancy Controller. In this
procedure, we consider the transfer function between
the downhole angular velocity and the actuator. This
transfer function corresponds to a time-delay system
for which we can design a control law that guarantees
the placement of the dominant root in the complex
plane (and consequently the stability of the closed-loop
system). This algorithm is presented in Section IV.

• Requirements: Estimation of the downhole angu-
lar velocity, estimation of the disturbance terms.
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• Limitations: Requires derivative terms, no rigor-
ous proof if more that one section.

• Performance: Slight overshoot and oscillations.
Low computational effort. Sensitivity to noise (due
to the derivation) that may be reduced using a low-
pass filter.

3) Recursive dynamics interconnection framework. In
this procedure, we consider the different sections of the
pipe independently. For each section, we find the vir-
tual input that stabilizes the section and guarantees that
the output converges towards the virtual input of the
next subsystem. The virtual input of the last subsystem
(downhole ODE) is chosen to guarantee the tracking
of the reference signal. This approach transforms the
complex tracking problem into simple interconnected
control problems. It is described in Section V

• Requirements: Estimation of the disturbance
term, estimation of the states at the junctions,
predictions of these states.

• Limitations: Inversion of the ODE dynamics that
creates a non-strictly proper control law, thus im-
plying some robustness issues. May be overcome
by combining the control law with a low-pass
filter. Computational effort.

• Performance: Fast convergence without any
residual oscillations. Instantaneous high control
effort (mostly due to the compensation of the
disturbance). Complex control algorithm with an
important computational effort (due to the use of
predictors). Robustness is guaranteed by the use
of low-pass filter.

The performance and requirements of these three different
procedures are summarized in Table 2. A more detailed
analysis is proposed in Section VIII. All three procedures
require the knowledge of the disturbance term induced by the
Coulomb friction terms. Moreover, the two last algorithms
require real-time estimation of the state. A state-estimation
procedure is proposed in Section VII.

III. SOFTTORQUE, ZTORQUE AND FEED-FORWARD
TRACKING
A. PRESENTATION OF THE CONTROLLER
Most of the controllers used in industrial applications corre-
spond to high gain PI controllers and ensure rapid tracking
of the top drive set point [51]. Although simple to imple-
ment and easy to analyze, these control laws may present
aggressive behavior and do not always handle well changes
of set-points (generating significant oscillations). Moreover,
they cannot compensate the disturbance term d(t) and avoid
stick-slip. The current industry standard in handling torsional
vibrations are the two products NOV’s SoftSpeed [21], [52]
and Shell’s SoftTorque [22], [26]. In these solutions, the main
objective is to reduce the reflection coefficient at the top drive
in a particular key frequency range [51]. The main advantage
of the ZTorque solution (compared to SoftTorque) relies on

the measurement of the torque between the drillstring and
top drive, which allows the user to minimize the reflection
coefficient of the top drive for a broader range of frequencies.
All in all, this feedback control law “artificially” has the top-
drive match the impedance of the drill-pipe, ζ = J

√
Gρ. The

block diagram of the ZTorque control law is given in Fig 3.
The control signal has the following structure

uCT = −(C ? (ωSP − ωTD)), (32)

where ωSP is the reference set point for the top-drive angular
velocity. Obviously the set point depends on the reference
signal we want to track. Moreover, tracking a reference signal
implies adding a feed-forward term uFT to the stabilizing term
uCT .

Compared to a simple PI control law, ZTorque also re-
quires measurement of the torque acting from the drillstring
on the top drive to work effectively. Thus, it may be nec-
essary to combine the control algorithm with an estimation
procedure (state-observer). Even in the absence of a specific
disturbance rejection procedure, the ZTorque control law
effectively removes stick-slip oscillations at the costs of
delivering high instantaneous torque (both positive and neg-
ative, which are required to nearly instantaneously overcome
top drive motor inertia, field measurements have shown that
pipe torque is never negative) to the top drive to allow for
impedance matching through rapid velocity changes and a
significantly slower response in rotational velocity of the top-
drive [53]. However, as shown in [28], it may be relevant to
compensate the disturbance term d(t) to avoid undesirable
oscillations. Thus, the control design is done in two steps:
we first find the top-drive reference signal that corresponds
to the downhole reference trajectory we aim to track. This
is done using the flatness properties of the system. This
reference signal also induces a feed-forward term uFT that is
added to the stabilizing term uCT . Next, we compensate the
disturbance. These two steps can be done separately using
the superposition principle.

B. LAPLACE ANALYSIS AND DERIVATION OF THE
TRACKING COMPONENT
We aim to express the top-drive velocity and control input
as functions of the downhole reference velocity. In other
words, we are looking for the transfer function between the
downhole angular velocity and the control input. To simplify
the computations, we will use the Laplace transform. We
denote s the Laplace variable. Provided it is defined, the
Laplace transform of a function f will be denoted f̂ . Note
that the computations in the Laplace domain that we present
below will be used to design the MID controller in the next
section. Consider the ith subsystem: from equations (19)
and (20), we obtain(

ai1 0
−ai3 1

)(
αi(t, xi)
βi(t, xi)

)
=

(
1 −ai2
0 ai4

)(
αi+1(t, xi)
βi+1(t, xi)

)
.
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Controller Requirements Performance
Overall good perf. but Residual oscillations + overshoot

ZTorque Top-drive torque Slow convergence
+feedforward Estim. dist. magnitude Low computational effort

Simple control architecture
Estim. DH velocity Slight overshoot/residual oscillations

MID Estim. disturbance Low computational effort
Sensitive to noise (derivative term)

Excellent performance
Estim. disturbance No overshoot nor oscillations

Recursive Estim. states High instantaneous torque
Procedure Prediction of the states High computational effort

Complex control architecture

FIGURE 2: Comparison of the requirements and performance for the three proposed procedures

FIGURE 3: Control diagram for a ZTorque system with
direct pipe torque measurement. For ZTorque Z = 1

ζ is used.
If Z = 0, the control diagram is equivalent to a SoftTorque
or stiff speed controller system (figure from [28]).

It gives(
αi(t, xi)
βi(t, xi)

)
=

1

ai1

(
1 −ai2
ai3 −ai2ai3 + ai4a

i
1

)(
αi+1(t, xi)
βi+1(t, xi)

)
= Di

(
αi+1(t, xi)
βi+1(t, xi)

)
,

Using the transport structure of equations (17)-(18) and tak-
ing the Laplace transform, we obtain for i < N(

α̂i(s, xi−1)

β̂i(s, xi−1)

)
=

(
etis 0
0 e−tis

)(
α̂i(s, xi)

β̂i(s, xi)

)
= D̄i(s)

(
α̂i+1(s, xi)

β̂i+1(s, xi)

)
, (33)

We also have(
α̂N (s, xN−1)

β̂N (s, xN−1)

)
=

(
etNs 0

0 e−tNs

)(
1 0
−1 2

)(
α̂N (L)
ω̂DH(s)

)
,

Taking the Laplace transform of the downhole ODE (25), we
obtain

ω̂DH(s) =
aN1

s+ aN1
α̂N (s, L),

which gives(
α̂N (xN−1)

β̂N (xN−1)

)
=

(
etNs 0

0 e−tNs

)(
1 0
−1 2

)( s+aN1
aN1
1

)
ω̂DH

= D̄N (s)ω̂DH(s). (34)

The top-drive boundary condition (23) rewrites

ω̂TD(s) =
(

1
2

1
2

)(α̂1(s, 0)

β̂1(s, 0)

)
. (35)

Thus, we obtain

ω̂TD(s) =
1

2

(
1 1

)
D(s)ω̂DH(s), (36)

where the matrix D(s) is defined as

D(s) = D̄1(s)D̄2(s) . . . D̄N (s).

From (24), we obtain

ûT (s) = ITD(s+ a0
4)ωTD − a0

4β
1(s, 0)

=
1

2
(ITD(s+ a0

4), ITD(s+ a0
4)− 2a0

4)D(s)ω̂DH(s)

= A(s)ω̂DH(s), (37)

where

A(s) =
1

2
(ITD(s+ a0

4), ITD(s+ a0
4)− 2a0

4)D(s)ω̂DH(s).

This corresponds to the transfer function between the input
and the state ωDH . Thus, if we consider a downhole reference
angular velocity ωref (t), the corresponding feed-forward
tracking contribution to the top drive set-point will be defined
by

ω̂SP (s) = D(s)ω̂ref (s), (38)

and the actuation contribution term as

ûFT (s) = A(s)ω̂ref (s). (39)

This feed-forward control term uFT is added to the stabilizing
control term uCT in the ZTorque control law to ensure trajec-
tory tracking.
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C. DISTURBANCE CANCELLATION-SWITCHING MODE
PROCEDURE

A procedure was proposed in [28] to compensate for the
effect of the disturbance term d(t). In this procedure, the
disturbance was assumed to take the form of a Heaviside step
function acting the instant the BHA releases from the stick
phase. The value of the disturbance term was either computed
using the torque and drag model directly (see equation (10))
or by computing the changes in motor torque induced by the
stick-slip oscillations. However, these two methods cannot
be straightforwardly extended to the case of a multi-sectional
drillstring (due to the multiple reflection nodes). It is essential
to emphasize that the disturbance term becomes constant
once the BHA releases from the stick phase, since in that
case, the function F defined by (4) only depends on the
spatial variable x (and consequently its integral is constant).
A constant disturbance term becomes much simpler to es-
timate and compensate accurately. It is possible to envision
a switching mode control law to reduce the performance
limitations related to a wrong estimation of the disturbance
term. In the first mode, we impose an arbitrary constant value
(large enough) as the control input reference to guarantee the
BHA release from the stick phase. Once this has been done,
we switch to the second mode, where we can consider the
disturbance term d as a constant and compensate for it. It is
then possible to add a compensation term in the control input
to eliminate the constant disturbance term. The compensation
procedure will be given in Section VI. This disturbance rejec-
tion term will be directly added to the control input (due to
the superposition principle). All the controllers will be based
on the same switching-mode procedure disturbance rejection
procedure as we aim to compare the nominal performance
without the stick-slip oscillations.

IV. NEUTRAL-TYPE MODEL FOR THE TORSIONAL
OSCILLATIONS
In this section, we consider a low complexity control design
that is inspired from [33], [54] and is based on the multi-
plicity induced-dominancy (MID). We first rewrite ωDH(t)
as the solution of a neutral-type equation that depends on the
control input uT , thus relating the system variables at both
ends of the drilling rod. We can show that there is a one-
to-one correspondence between the solutions of the mixed
problem for hyperbolic PDE and the initial value problem for
the associated system of functional equations [55]. We will
neglect the disturbance term in the design of the control law
since this term can be canceled using the procedure described
in Section VI.

A. NEUTRAL FORMULATION AND LOW COMPLEXITY
CONTROLLER DESIGN

The first step before applying the MID procedure consists in
rewriting the PDE system as a time-delay system. To simplify
the computations, we will use the Laplace analysis presented
in the previous section. Following the approach of [33], [54],

we can reduce (37) to an I/O system of neutral type. Let us
define ∆(s) as

∆(s) = ΠN
i=1e−tis = e−ttots.

Multiplying equation (37) by ∆(s), we can remove all the
positive-delay exponential terms (i.e. the terms etis). Using
the Laplace transform, we can rewrite equation (37) as a
quasipolynomial including multiple delays:

e−ttotsûT (s) = L(s)ω̂DH(s), (40)

where the function L is defined by
L(s) = P (s) +

N+1∑
i=1

Qi(s)e
−sδi ,

P (s) =

N+1∑
k=0

aks
k, Qi(s) =

N+1∑
k=0

biks
k,

(41)

where the δi are positive delays corresponding to (partial)
sums of ti and where the ak, bik are real coefficients. In
the sequel, we apply the MID property to design a reduced-
order controller thanks to the delayed action of the angular
position, angular speed, and angular acceleration.

B. MID-CONTROLLER FOR A SINGLE-SECTION
DRILLSTRING

In this section we consider the case N = 1 (case of a
drillstring composed of an unique pipe). The objective is to
show how to apply the MID procedure on a simple case.
Equation (37) considerably simplifies as after a multiplica-
tion by 2e−ttots, it rewrites as a neutral equation of order 2:

2e−ttotsûT (s) = (
J1G1

c1t
+ (IBHA + ITD)s+

c1t
J1G1

IBHA

ITDs
2)ω̂DH(s)− (

J1G1

c1t
− (IBHA + ITD)s

+
c1t

J1G1
IBHAITDs

2)e−2ttotsω̂DH(s). (42)

Proposition 1: Consider Equation (42) with the control law
given by:

ûT (s) = −
(
α0 + α1 s+ α2 s

2
)
e(−ttot s) ω̂DH(s). (43)

If the polynomial

R(Z) = 3IBHA(c1t )
4ITD + 3IBHAG

1J1c1t
2
x1 + 3ITDG

1J1

(c1t )
2x1 + 2(G1)2J12

x2
1 + (6IBHAITD(c1t )

2 + 2IBHAG
1

(44)

J1x1 + 2ITDG
1J1x1)Z + 2IBHAITDZ

2
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admits two roots Z2 < Z1 < 0 then the following tuning

α0 =
q0 e

2s0x1
c1t + 2IBHAITDG

12J12c1t
2
x21

4IBHAc1t
3ITDG1J1x21

,

α1 =
q1 e

2s0x1
c1t −G1J1x1c

1
t
2
(ITD + IBHA)

2G1J1x1c1t
2 ,

α2 =

((
2s0x1c

1
t + 2c1t

2
)
ITD +G1J1x1

)
IBHA + ITDG

1J1x1

2c1tG
1J1e

− 2s0x1
c1t

+
IBHAITDc

1
t
2

2c1t
(45)

where

q0 =2((21s0x1c
1
t
4
+

27

2
c1t

5
)I2TD + 6x1G

1(s0x1 +
5c1t
2

)J1c1t
2

ITD +G12J12x21(s0x1 +
3c1t
2

))c1t I
2
BHA + 12x1G

1(c1t
3
(s0x1

+
5c1t
2

)I2TD +
11ITDG

1J1c1t
2
x1

6
+
G12J12x21

6
)J1IBHA

+ 2x21

(
c1t (s0x1 +

3c1t
2

)ITD +G1J1x1

)
G12ITDJ

12,

q1 =2

(
(6s0x1c

1
t
2
+

9

2
c1t

3
)ITD +G1J1x1(s0x1 + 4c1t )

)
c1t IBHA + 2x1G

1 (c1t (s0x1 + 4c1t
)
ITD + 2G1J1x1

)
J1,

ρ =
4s0x1c

1
t IBHAITD + 6IBHAITDc

1
t
2
+ 2IBHAG

1J1x1

IBHAITDc1t
2

+
2IBHAG

1J1x1 + 2ITDG
1J1x1

IBHAITDc1t
2 ,

satisfying 2
√
3 < ρ < 4,

is a stabilizing design which ensures the assignment of the
closed-loop rightmost root at the quadruple root at s0 =
Z1/(c

1
t x1), which corresponds to the exponential decay of

the closed-loop system’s solution.
The proof of Proposition 1 relies on a result from [31] where
a systematic design of the classical PID controller able to
stabilize delayed first-order plants is proposed (see also [34]
for a more detailed proof).
Proof 1: The closed-loop characteristic function correspond-
ing to (42) and (43) writes:

L(s) =((− IBHAc
1
t ITD

2J1G1
+ α2)s

2 + (−−IBHAG
1J1c1t − ITDG

1J1c1t
2c1tJ

1G1

+ α1)s−
J1G1

2c1t
+ α0)e

− 2sx1
c1t +

IBHAc
1
t ITDs

2

2J1G1

+

(
IBHAG

1J1c1t + ITDG
1J1c1t

)
s

2c1tJ
1G1

+
J1G1

2c1t

Forcing a spectral value to have multiplicity four allows not
only the tuning of the controllers gains (45) but also (after
the scaling and the normalization z = c1t (s − s0)/2x1) a
normalized representation of the quasipolynomial function
L̃(z) = 4x2

1/c
1
t
2
L(s)

L̃(z) = z2 + (ρ− 6) z − 3 ρ+ 12 + [
(ρ

2
− 1
)
z2

+ (2 ρ− 6) z + 3 ρ− 12]e−z. (46)

where ρ = (4s0x1c
1
t IBHAITD + 6IBHAITDc

1
t
2

+ 2

IBHAG
1J1x1 + 2ITDG

1J1x1) /IBHAITDc
1
t
2.

The value s = s0 is a root of multiplicity 4 of L if and
only if z = 0 is a root of multiplicity 4 of the normalized
quasipolynomial L̃, i.e., the dominance of s0 as a root of
L is equivalent to the dominance of z = 0 as a root of
L̃. Next, integrating by parts yields the following integral
representation of L̃

L̃(z) =
z4

2

∫ 1

0

t (1− t) (t(ρ− 4) + 2) e−tz dt. (47)

It is shown in [34] that under 2
√

3 < ρ < 4 the integral
function (47) has all its roots in the complex left half-plane,
which ends the proof.

C. COMMENTS OF THE CASE OF A MULTI-SECTIONAL
DRILLING DEVICE
As established in (41), the propagation of the vibration
through a multi-sectional drilling device is governed by a
multiple delay neutral system.
Although the partial pole placement paradigm for time-delay
systems remains restricted to the single delay case, numerical
investigations suggest its validity in the case of multiple delay
neutral systems. Extending such a design methodology to this
case or to the case of distributed delays becomes an interest-
ing theoretical research direction. To the best of the authors’
knowledge, the only particular case in such a class for which
a proof for the MID to hold is the first order retarded equation
with two discrete delays, see for instance [56]. Extensions
to more general cases will require new ideas and techniques
to build the necessary and sufficient conditions for multiple
spectral values to be dominant. Here, we will solve the
problem numerically, assuming that Proposition 1 extends in
this case.

V. RECURSIVE DYNAMICS INTERCONNECTION
FRAMEWORK
The last class of controllers we consider in this paper relies
on a recursive interconnected dynamics framework. Roughly
speaking, the proposed control law is recursively obtained by
considering for each subsystem a virtual input that stabilizes
it but also guarantees that the subsystem’s output converges
towards the virtual input of the next subsystem. The virtual
input of the last subsystem guarantees the convergence of
the ODE state towards the reference signal. This approach
has been introduced in [57] and completed in [37] to design
output-feedback controllers. It is somehow inspired by the
original philosophy of the backstepping methodology [58].
Let us first introduce the following terminology
Definition 1: For a subsystem i, we denote V̂i(t) the action of
the (i−1)th subsystem on this subsystem. This function will
be called virtual input acting on the ith subsystem. We also
denote χi(t) the action of the (i+ 1)th subsystem on the ith

subsystem. This function will be called virtual disturbance
acting on the ith subsystem.

10 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

These different notations are summarized in Figure 4. With
these notations, we have, for instance, V̂2(t) = a1

1α
1(t, x1),

χ2(t) = a2
3β

3(t, x2).

FIGURE 4: Schematic representation of the interactions be-
tween the different subsystems

In the proposed procedure, each subsystem is stabilized
using its leftward neighbor. Again, we neglect the disturbance
term in the design of the control law for the moment since
this term can be canceled using the procedure described in
Section VI.

A. DOWNHOLE ODE
Let us consider the downhole ODE (25). For this equation,
the virtual input V̂N+1 corresponds to αN (t, L) (i.e. the value
of the Riemann invariant αN evaluated at x = L). It rewrites

ω̇DH(t) = V̂N+1(t)− aN1 ωDH(t)− 1

IBHA
d(t).

Then, it is sufficient to choose V̂N+1(t) as

V̂N+1(t) =ω̇ref (t) + aN1 ωref (t)

−KD(ωDH(t)− ωref (t)), (48)

where KD is a positive constant.

B. OUTPUT TRACKING FOR THE PDES SUBSYSTEMS
Consider now the ith-subsystem (17)-(18). We have

αi(t, xi) = V̂i(t− ti) + ai2β
i(t− ti, xi−1),

and we want ai+1
1 αi(t, xi) to track V̂i+1(t). Thus, we can

choose

V̂i(t) =
1

ai+1
1

(V̂i+1(t+ ti)− ai2βi(t, xi−1)), (49)

to guarantee the tracking of the reference control signal V̂i+1.

C. OUTPUT TRACKING FOR THE TOP-DRIVE ODE
Consider now the top-drive ODE (24). We want the signal
2ωTD to track V̂0(t). Then, we can choose uT as

uT (t) =
ITD

2
(−a0

4β
1(t, 0) +

˙̂
V1(t) + a0

4V̂1(t)

−K0(ωTD − V̂1(t)). (50)

The control uT guarantees the tracking of the reference
downhole angular velocity.

The control law (50) features several important drawbacks
1) It requires the knowledge of future values of the PDE

states and of the downhole ODE state.

2) The inversion of the ODE dynamics may result to a
non-strictly proper control law, thus implying some
robustness issues.

To overcome these limitations, we will design an observer-
predictor that can provide future values of the different states
of the system. This will be done in Section VII. To obtain
a strictly proper control law (thus guaranteeing admissible
robustness margins), it is possible to low-pass filter the non-
strictly proper terms that appear in the control input uT
(see [59] or [60, Chapter 7] for instance). Provided that the
low-pass filter is well-tuned, we can guarantee the tracking
of the reference signal with a strictly proper controller.
Remark 2: In the case of a uni-sectional drilling device (with
a lumped BHA), the control law (50) does not require the
prediction of the downhole ODE state when choosing KD =
0 (since the downhole ODE is naturally exponentially stable).

VI. DISTURBANCE REJECTION
In this section, we propose a procedure to eliminate the
effect of the disturbance term d(t). Following the switching-
mode strategy presented in Section III-C, we can consider
this disturbance as a constant. It now becomes possible to
adjust the recursive methodology presented in Section V to
eliminate the disturbance. Indeed, define for all i

V̂ dN+1(t) =
d

IBHA
, (51)

V̂ di (t) =
1

ai+1
1

(V̂ di+1(t+ ti)− ai2βi(t, xi−1)), (52)

udT (t) =
ITD

2
(−a0

4β
1(t, 0) +

˙
ˆ dV1(t) + a0

4V̂
d
1 (t)

−K0(ωTD − V̂ d1 (t)). (53)

The control input udT can be seen as a disturbance rejection
term. It can be added to the different controllers due to the
superposition principle.

VII. STATE ESTIMATION AND OUTPUT-FEEDBACK
CONTROL
Simple control algorithms (as PID controllers) directly use
the available measurements to design a stabilizing control
input. However, more complex control procedures may re-
quire a real-time estimation of the distributed states all over
the drillstring. The incentive to do so, rather than relying
on simple controllers, is a performance criterion: explicitly
taking into account the delays and high-frequency content
in the design of the controller should lead to overall in-
creased performance for the chosen specifications. Thus, it
may be necessary to design a ’soft-sensor’ (observer) that
combines measurements from physical sensors (here the top
drive angular velocity ωTD(t)) with the model of the system
dynamics to provide estimates of the states. It combines
’open-loop’ terms (based on the equations describing the
evolution of the system) and ’closed-loop’ terms (output
injection gains) that correct the dynamics based on the error
between the estimated output and the measured one.
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An adaptive soft sensor has been proposed in [40] for the
case of a single-sectional drillstring (a lumped approximation
was used for the collar section and the BHA). The observer
was based on a backstepping methodology inspired by [61].
This observer guarantees fast and robust convergence of the
estimates. Moreover, it is adaptive in that it estimates the
side forces and updates the observer model kinetic or static
friction factor iteratively. However, it cannot estimate the
transition velocity ωc (which might limit its performance).

Here, we present a different type of state-observer,
which is based on our recursive dynamics framework.
It can be seen that a system i will act on the subsys-
tem i + 1 through αi(t, xi), and on the subsystem i − 1
through βi(t, xi−1). Then, going recursively from one sub-
system to the next, we can estimate the states at each sub-
system’s boundaries. However, due to the system’s natural
inertia (induced by the transport phenomenon in the PDEs),
there are some delays in the estimations. More precisely, we
can only estimate past values of the boundary states. It is
then possible to apply similar predictors to those designed
in [37] to obtain non-delayed estimations. Such an approach
(that combines delayed estimations and state-predictions) is
similar to the one used for finite-dimensional systems [62].

A. BOUNDARY STATE ESTIMATION

Since equations (17)-(18) are transport equations, it is possi-
ble to express the states αi(t, x) and βi(t, x) as functions of
the boundary states. Indeed, we have for all x ∈ [xi−1, xi]

αi(t, x) = αi(t− x− xi−1

cit
, xi−1)

= ai−1
1 αi−1(t− x− xi−1

cit
, xi−1)

+ ai−1
2 βi(t− x− xi−1

cit
, xi−1), (54)

βi(t, x) = βi(t− xi − x
cit

, xi) = ai4β
i+1(t− xi − x

cit
, xi)

+ ai3α
i(t− xi − x

cit
, xi). (55)

Thus, it is sufficient to estimate the boundary states αi(t, xi)
and βi(t, xi−1) to obtain an estimation of the distributed
states (αi, βi). We have the following Lemma.

Lemma 1: Consider i ∈ [1, N ] and assume thatαi−1(t, xi−1),
βi(t, xi−1) are known on the time interval [t, t + ti]. Then,
there exist two linear operators Lαi and Lβi , such that

αi(t, xi) = Lαi(αi−1(·, xi−1), βi(·, xi−1)),

βi+1(t, xi) = Lβi(αi−1(·, xi−1), βi(·, xi−1)).

Proof 2: Using the method of characteristics, we immediately

obtain

αi(t, xi) = αi(t− ti, xi−1) = ai−1
1 αi−1(t− ti, xi−1)

+ ai−1
2 βi(t− ti, xi−1), (56)

βi+1(t, xi) =
1

ai4
βi(t+ ti, xi−1)− ai3a

i−1
2

ai4
βi(t− ti, xi−1)

− ai3a
i−1
1

ai4
αi−1(t− ti, xi−1). (57)

This gives the operators Lαi and Lβi .
This Lemma expresses the fact that knowing the boundary
states αi−1(t, xi−1), βi(t, xi−1) at time t, it becomes pos-
sible to estimate the boundary states αi(t, xi), βi+1(t, xi) at
time t − ti. Thus, knowing the states β1(t, 0) and ωTD(t),
it becomes possible to estimate delayed values of the PDE
states and of the downhole ODE state ωDH (using equa-
tion (23)), the value of the delay depending of the considered
subsystem. As the state ωTD corresponds to the measure-
ment, it is already known (as well as its delayed values).
However the state β1(s, 0) (or its delayed values) remains
unknown. From equation (24), we have

β1(t, 0) =
c1t ITD
J1G1

(ω̇TD(t)− 1

ITD
uT (t)) + ωTD(t), (58)

which gives us the value of β1(t, 0). However, this estimation
requires differentiating the output signal ωTD, which may
amplify potential noise. From a control point of view, this
problem can be avoided by coupling the control law with a
well-tuned low-pass filter (as explained in [59] or [60, Chap-
ter 7]) to still fulfill the stabilization objective. Recursively
applying Lemma 1, we can obtain delayed estimations of
the states αi(t, xi) and βi+1(t, xi) (the corresponding delays
being

∑i
j=1 tj). More precisely, we define the ttot-delay

operator ·̄ such that for any function γ, we have

γ̄(t) = γ(t− ttot),

where ttot =
∑N
i=1 ti is the total transport time. We can

then define ˆ̄αi(t, xi) and ˆ̄βi+1(t, xi) as the estimations of
these ttot-delayed states. Note that these estimations are
actually available on a time horizon [t, t + ttot −

∑N
j=1 tj ].

In what follow, we will combine these estimations with state
predictors to compute un-delayed estimations of the states.
From these predictions, it will be straightforward to compute
the distributed states using equation (55). The design of the
predictors will require the knowledge of a (delayed) version
of the disturbance d(t), which is possible using equation (10).

B. STATE-PREDICTION
In the previous section, we used our recursive dynamics
interconnection framework to estimate delayed values of the
PDEs boundary states and of the ODE states as well as
the delayed disturbance term. However, to design an output
feedback control law for our system, we need to estimate
non-delayed values of these boundary states. We now design
a predictor for the boundary states ᾱi(t, xi) and β̄i(t, xi).
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The predictor will give ttot +
∑i
j=1 tj ahead of time val-

ues of these delayed boundary states. Using the method of
characteristics, we have

ᾱi(t, xi) = ai−1
1 ᾱi−1(t− ti, xi−1) + ai−1

2 β̄i(t− ti, xi−1),
(59)

β̄i(t, xi−1) = ai4β̄
i+1(t− ti, xi) + ai3ᾱ

i(t− ti, xi). (60)

and

˙̄ω0(t) =
1

ITD
ūT (t)− J1G1

c1t ITD
(ω̄TD(t)− β̄1(t, 0)), (61)

˙̄ωDH(t) =
JNGN

cNt IBHA
(ᾱN (t, L)− ω̄DH(t))− 1

IBHA
d̄,

(62)

We can then define the functions Pβ̄i
(t, s), Pᾱi(t, s)

as the state prediction of future values of β̄i(t, xi−1)
(resp. ᾱi(t, xi)) ahead a time ttot +

∑i−1
j=1 tj (resp ttot +∑i

j=1 tj) by the set of equations (63)-(64).

Pᾱi
(t, s) =



ˆ̄αi(s+ ttot +

i∑
j=1

tj , 1)

if s ∈ [t− 3ttot −
∑i
j=1 tj , t− ttot −

∑i
j=1 tj ]

ai−1
1 P̄ᾱi−1

(t, s) + ai−1
2 Pβ̄i

(t, s)

otherwise,
(63)

Pβ̄i
(t, s) =



ˆ̄βi(s+ ttot +

i−1∑
j=1

tj , 1)

if s ∈ [t− 3ttot −
∑i−1
j=1 tj , t− ttot −

∑i−1
j=1 tj ]

ai4P̄β̄i+1
(t, s− 2ti) + ai3Pᾱi

(t, s− 2ti)

otherwise,
(64)

Note that these predictors are well-defined and causal. The
right-end of the chain is interconnected with the ODE, de-
scribed by equation (62). We can also define Pω̄DH

(t, s)
(see [63], [64]) as the state prediction of future values of ω̄DH
(ahead a time

∑N
j=1 tj), for s ∈ [t − ttot −

∑N
j=1 tj , t], by

equation (65).

Pω̄DH
=



ˆ̄ωDH(s+ 2ttot) if s ∈ [t− 2ttot −
∑N
j=1 tj , t− 2ttot]

e
− JNGN

cNt IBHA
ttot

(ˆ̄ωDH(s) +

∫ s+ttot

s

e
− JNGN

cNt IBHA
(s−ν)

(
JNGN

cNt IBHA
PᾱN

(t, ν − ttot + Pd(t, ν − ttot))dν)

otherwise.
(65)

where the prediction of the disturbance term Pd̄ is computed
using the predictions of the PDE states and equation (10)
(expressed in the Riemann coordinates). The explicit expres-

sion is not given here for sake of simplicity. From these
definitions, we immediately have:

Pᾱi
(t, s) = ˆ̄αi(s+ ttot +

i−1∑
j=1

tj , 0), s ∈ [t− 2ttot −
∑i−1
j=1 tj , t],

Pᾱi
(t, s) = ˆ̄αi(s+ ttot +

i∑
j=1

tj , 1), s ∈ [t− 2ttot −
∑i
j=1 tj , t],

Pω̄DH
(t, s) = ˆ̄ωDH(s+ ttot +

N∑
j=1

tj), s ∈ [t− 2ttot −
∑N
j=1 tj , t].

Note that there is no need to predict the ODE state ω̄0 on
[t, t + ttot] since it is actually measured. To numerically
compute the predictions, we first initialize the predictors
using the estimations obtained above. These values are stored
in a buffer. Then, it becomes possible to directly use equa-
tions (63)-(65) to compute the prediction at the next time
step. These predictions of the states can be used to obtain
output-feedback versions of the state-feedback control laws
introduced in the previous sections. As stated above, they
can be coupled with a well-tuned low-pass filter to be strictly
proper and avoid the effects of high-frequency noise.

VIII. SIMULATION RESULTS
In this section, we test the performance of our different al-
gorithms against simulated data representing field scenarios.
We consider the 2D wellbore profile shown in Figure 5. The
well represents a simple build and hold well used through-
out the world. It corresponds to an S-Shaped well. More
discussion of this synthetic example may be found in [7].
The pipe is made of two sections, whose coefficients are
given in Table 5. The static and kinematic friction factors
are assumed to be constant along the drillstring. We will
consider the performance of the different algorithms in three
scenarios that correspond to different lengths for the drilling
device (we will denote this length MD) for the wellbore
survey pictured in Figure 5. Depending on the choice ofMD,
different behavior can be expected

• In the first scenario we consider that MD = 1400m,
which corresponds to the vertical section of the well.
Consequently, the effect of the Coulomb friction terms
is almost negligible. This case will be referred as the
"free drillstring" case.

• In the second scenario, we consider thatMD = 2200m,
which means that the lower part of the drillstring is
almost horizontal and is subject to important Coulomb
side forces.

• In the last scenario we consider that MD = 3200m,
which corresponds to the complete S-Shaped well.

In the model’s numerical implementation, the wave equa-
tion is transformed into transport equations discretized us-
ing a first-order upwind scheme. This choice is made to
ensure numerical robustness and avoid spurious oscillations,
as higher-order schemes perform poorly due to the temporal
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TABLE 1: Numerical values of the parameters for the drill-
string model in Figure 5.

Param. Value Param. Value
A1 0.005 m2 A2 0.0229 m2

J1 2.28× 10−5 m4 J2 1.49× 10−4 m4

G1 6.1× 1010 m G2 6.7× 1010 m
ρ1 7850 kg/m3 ρ2 7850 kg/m3

x1 1570 m L 1700 m
µk 0.28 µs 0.45
ITD 2900 kg.m2 IBHA 152.9 kg.m2

ωc 1.5 rads−1

500 m

1400 m

800 m

1800 m
2200 m

3200 m

4000 m

DLS = 3 /30m

DLS = 2  /30m

o

o

FIGURE 5: Wellbore survey of the well.

discontinuities introduced by the distributed differential in-
clusions used to represent the Coulomb friction. To guarantee
numerical accuracy, we choose a sufficiently fine spatial grid.
This is an amenable approach since the simulation speed is
not of critical importance for the present analysis (only the
computational efforts of the estimation algorithms matter).
In all simulations, a spatial grid of 500 cells is used for the
drillstring. We choose the time-step such that the Courant-
Friedrichs-Lewy (CFL) condition [65] is satisfied. All the
simulations are done using MATLAB. This simulation ex-
ample has been proved to be reliable against field data (see
[7]).

A. SCENARIO A: FREE DRILLSTRING
Similarly to what has been done in [28], we initially consider
the case of a drillstring spinning freely and neglect the kine-
matic and static friction terms. The objective is to highlight
the respective features of the proposed control strategies.
This scenario somehow corresponds to the vertical part of
the wellbore pictured in in Figure 5 (MD = 1400m). The
drillstring is initially at rest, and we first change the setpoint
to 120 RPM before going back to 60 RPM. More precisely,
the velocity setpoint is changed in two approximate steps
according to

ωSP = 120m

(
t− 20

10

)
− 60m

(
t− 60

10

)
. (66)

As the amount of power available to the rig is limited (due
to a constraint in on-site generating capacity), we add a

torque limitation the actuator. Indeed, on typical AC top
drives, torque is proportional to electric current. Thus, a
large increase in current may cause a power overload and a
large increase in torque may also exceed the torque limits on
gearing or other components in the top drive or near- surface
rotary equipment. To depict this effect in the proposed simu-
lations, we add a 30 kNm max torque constraint.

We have pictured in Figure 6 the temporal evolution of
the top-drive and downhole velocities. We have also plotted
the corresponding control efforts (to compare the energy-
requirements for each strategy). We see that without the
trajectory feed-forward component, the set-point changes
induce oscillations that do not vanish (subfigures (a,b)).
Among the different control strategies, the recursive algo-
rithm (subfigures (e,f)) presents the smoothest behavior with
a reasonable control effort and no overshoot nor oscillations.
However, one must keep in mind that this is done at the cost
of a higher numerical complexity. The MID algorithm and
the feedforward procedure present comparable performance.
Note that with the given set of coefficients, the transport
delay between the top-drive and the BHA is equal to 0.71s. It
explains why the two curves look almost identical during the
transient.

B. SCENARIO B: DRILLSTRING WITH A HORIZONTAL
SECTION
We now consider a more realistic case with the presence of
Coulomb friction terms. Compared to the previous scenario,
the lowest part of the drilling device (collar and BHA) is now
almost horizontal (MD= 2200 m now). In this scenario, the
stationary drillstring is initially kept in place by the Coulomb
friction until enough torque is built up to overcome it. Then,
pipe rotation is initiated, and the Coulomb friction is reduced
as it changes from static to dynamic. Negative torque is seen
a the top drive to decelerate the motor inertia, but is not
transferred to the attached pipe. We consider the switching
mode procedure described in Section III-C to facilitate the
estimation/cancellation of the disturbance. The torque is in-
creased to break the static friction before starting the control
procedure. The reference trajectory (66) remains unchanged.
Then, the disturbance term is seen as a constant that can be
directly compensated using the procedure developed in Sec-
tion VII. We consider state-feedback controllers here since
the objective is to compare the performance of the different
controllers in an ideal case. The performance of the different
algorithms are shown in Figure 7 (temporal evolution of the
downhole angular velocity and of the motor torque). Here,
one can easily notice the importance of the feedforward
component and the disturbance cancellation term to reduce
the oscillations induced by the Coulomb friction terms. In-
deed, in the absence of the feedforward term, the ZTorque
controller induces high oscillation for the angular velocity
in steady-state (which implies a considerable performance
degradation). Although oscillations are still present with the
feedforward term, their amplitude has been considerably
reduced. Once again, the recursive controller presents the
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(c) ZTorque + feedforward: angular velocities
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(e) MID algorithm: angular velocities
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(g) Recursive algorithm: angular velocities
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(h) Recursive algorithm: motor torque

FIGURE 6: Comparison of response to velocity set-point changes in terms of downhole angular velocity and motor torque
τm for: (a,b) ZTorque feedback controller, (c,d) ZTorque feedback controller with the proposed differential flatness trajectory
planning feed-forward component, (e,f) the MID feedback law, (g,h) the recursive algorithm (50). Set-point changes uses the
mollifier (31) with a tsr = 10 s switching duration. All the simulations are performed in the absence of Coulomb friction terms
and under a 30 kN torque saturation constraint (MD=1500m).
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best behavior (no overshoot and oscillations and fast conver-
gence). However there is now an undesirable initial transient
with a substantial control effort to compensate for the dis-
turbance. Note that once, the disturbance term is cancelled,
the change of set point is smooth. The MID procedure now
presents a better behavior (at least in steady-state, once the
disturbance-term is cancelled) compared to the feedforward
procedure (almost no oscillation and an admissible control
effort). Moreover, compared to the recursive procedure, this
procedure is numerically less complex (most of the compu-
tations can be done offline). This test case emphasizes the
potential advantages of the proposed alternative approaches
compared to industry-standards controllers in the presence of
important friction effects.

C. SCENARIO C: S-SHAPE WELLBORE
In this last scenario, we consider the complete S-shape
wellbore pictured in Figure 5 (MD=3200m), which means
that the Coulomb side-forces now act on a subsequent part
of the drilling device. We still consider the switching mode
procedure described in Section III-C to facilitate the estima-
tion/cancellation of the disturbance. The reference trajectory
(66) remains unchanged. We have pictured in Figure 8 the
time-evolution of the downhole angular velocity and the
motor torque. Due to the considerable impact of the Coulomb
side-forces in this scenario, we have low-pass filtered the
control input to reduce oscillations. We did not picture the
performance of the standard ZTorque controller as it was
failing to reach the reference without a reasonable amount
of oscillations. Performance is considerably degraded due to
the difficulties in compensating the friction terms and the
angular velocity of the drillstring experiences high oscillation
in steady-state. This could be expected as state-of-the-art
controllers do not usually handle well such a configuration
[28]. However, the oscillations remain in an acceptable range
which underlines the promising potentials of the approaches
we propose in the paper. Moreover, there is now a consid-
erable delay between the reference signal and the real state.
This is because compensation of the disturbance term is now
more demanding. However, it can be easily overcome by
anticipating this delay. From the plots, we can notice that the
feedforward controller presents significant oscillations com-
pared to the two other ones. The MID procedure presents a
significant overshoot. However, it offers a satisfying behavior
in steady state.

D. COMPARISON BETWEEN THE DIFFERENT
ALGORITHMS
To simplify a comparison of the three controllers, we present
a graphical comparison of the performance of the different
control methods we have presented in this paper to suppress
drilling vibrations. The radar chart given in Figure 9 allows
examining, in a simple manner, the results obtained with the
different control approaches with respect to some industrial
implementation criteria, which include ease of implemen-
tation (both computationally and difficulty of integration in

industrial motor controllers), performance and robustness to
noise, latency and delay.. The results have been summarized
in Table 2 presented in Section II-F. Thus, we only give a
global comparison in this section. The basic ZTorque con-
troller is the simplest one, but it does not mitigate stick-slip
oscillations in the presence of significant friction. Combining
it with a feedforward term and a disturbance compensation
procedure allows a substantial reduction of the oscillations.
The MID procedure is slightly more complex but can bet-
ter handle the oscillations induced by the friction terms in
complex geometries. Nevertheless, it creates a significant
overshoot and requires time-derivative of the measurement
(which implies the development of filtering strategies). Fi-
nally, the recursive algorithm is the most efficient one as it
fully encompasses the dynamics of the system. However, it
requires high instantaneous torque and is complex to imple-
ment (high computational effort and design of predictors).
To avoid noise sensitivity, it is important to combine it with
a low-pass filter. The good design of such a filter is out of
the scope of this paper [59]. Note that although we did not
consider the robustness properties of the different controllers,
we believe that they are robust to small uncertainties in
the parameters. This should be shown adjusting the time-
delay approach proposed in [33] or in [27]. Moreover, the
filtering strategy would guarantee the robustness with respect
to delays [59].

IX. IMPLEMENTATION REQUIREMENTS
Modern drilling rigs found in the field have AC motors in
top drives which are controlled via variable frequency drives
(VFD). A typical variable frequency drive has a built-in
proportional-integral (PI) controller with a 1-10 ms control
loop. The default implementation for an off-the-shelf top
drive is stiff speed control, where the P and I gains are
high (typical values of kp = 10000, ki = 3000). VFDs
are typically controlled via fiber optic, ethernet or analog
connections to the central rig network, and are capable of
handling small amounts (10 to 20 instructions) of embedded
code. Systems such as SoftTorque and ZTorque are typically
implemented as either embedded programming in the VFD
or via bolt on cards connected via ethernet or analog in-
put/outputs. These bolt on implementations suffer from in-
creased signal delay (between 5 and 50 ms) which can reduce
controller performance. Rig networks typically operate at 10
to 100 ms and supervisory control systems typically operate
at 200 to 1000 ms. The complexity of the control solution
dictates at which implementation level the controller may
operate, which in turn, dictates controller performance. A
thorough review of latency and delay, and the effects on
drilling control, was presented by Cayeux et al. [66].

X. CONCLUSION
In this paper, we have presented three control algorithms that
achieve angular velocity regulation for directional drilling
operations. These strategies are designed to avoid torsional
stick-slip oscillations at the start-up of a drilling operation,
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(g) Recursive algorithm: angular velocities
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(h) Recursive algorithm: motor torque

FIGURE 7: Comparison of response to velocity set-point changes in terms of downhole angular velocity and motor torque
τm for: (a,b) ZTorque feedback controller, (c,d) ZTorque feedback controller with the proposed differential flatness trajectory
planning feed-forward component, (e,f) the MID feedback law, (g,h) the recursive algorithm (50). Set-point changes uses the
mollifier (31) with a tsr = 10 s switching duration. All the simulations are performed for a well with a horizontal collar part
and under a 30 kN torque saturation constraint (MD=1700m).
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(a) ZTorque + feedforward: angular velocities
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FIGURE 8: Comparison of response to velocity set-point changes in terms of downhole angular velocity and motor torque τm
for: (a,b) ZTorque feedback controller with the proposed differential flatness trajectory planning feed-forward component, (c,d)
the MID feedback law, (e,f) the recursive algorithm (50). Set-point changes uses the mollifier (31) with a tsr = 10 s switching
duration. All the simulations are performed for a S-shape well and under a 30 kN torque saturation constraint (MD=2000m).
The control input is low-pass filtered
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FIGURE 9: Radar diagram illustrating the performance of the
proposed controllers on various assessment aspects related
to the drilling torsional dynamics. There are four polygons
with different contours; each one of them corresponds to
a different control strategy: lightgray for the ZTorque con-
troller, loosely dotted for ZTorque feedback controller with
the proposed differential flatness trajectory planning feed-
forward component, double line for the recursive algorithm,
and loosely dashed for the MID procedure.

e.g., after a connection. The first strategy corresponds to
the industry standard ZTorque controller, to which is added
a feedforward component and disturbance compensation
terms. It corresponds to an extension of [28] for a multi-
sectional drilling device. Although simple to implement and
with a low computational effort, such a procedure cannot can-
cel all the oscillations induced by the stick-slip phenomenon.
The second procedure corresponds to a pole placement for
the downhole state. It presents satisfying performance and
is robust to parameter uncertainties. Moreover most of the
computations can be done offline, which results in a simple
control algorithm. However, it requires a derivative term (that
can be sensitive to noise) but it does not mitigate stick-slip
oscillations in the presence of significant friction. Finally, the
last procedure relies on a recursive interconnected dynamics
framework. It presents excellent performance at the cost of
a high instantaneous control effort. However, its complexity
may imply a substantial computational cost (as it requires
estimating the different states of the PDEs). These three
procedures have been validated on a high-fidelity simulator
that has been shown to reproduce, in open-loop simula-
tions, the dynamics of a drilling system during start-up.
Their performance have been compared on several test-cases
(bit off-bottom). Future improvements include reducing the
numerical complexity of the different control strategies. A
possible path to follow would consist in emulating the PDE
describing the motion of the drilling device using deep
learning algorithms. This would considerably reduce the
estimation procedure while enabling satisfying estimates of

the friction parameters. Such an estimation procedure could
then be tested against field data to obtain a complete analysis
of the inherent computational effort. The use of an event-
triggered output-feedback law (as presented in [67]) could
also avoid useless actuator solicitations. Another topic of
future investigations will consists in adjusting the proposed
algorithms in the case of a coupled axial-torsional dynamics
with bit-rock interaction.
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