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Abstract

We are interested in the numerical reconstruction of a vector field
with prescribed divergence and curl in a general domain of R3 or R2, not
necessarily contractible. To this aim, we introduce some basic concepts of
finite element exterior calculus [2] and rely on recent results of P. Leopardi
and A. Stern [9]. The goal of the paper is to take advantage of the links
between usual vector calculus and exterior calculus and show the utility of
the exterior calculus framework, without too much prior knowledge of the
subject. We start by describing the method used for contractible domains
and its implementation using the FEniCS library (see fenicsproject.
org). We then address the problems encountered with non-contractible
domains and general boundary conditions and explain how to adapt the
method to handle these cases. Finally we give some numerical results
obtained with this method, in dimension 2 and 3.

Keywords: Finite Element, exterior calculus, Biot-Savart law, Hodge
decomposition, Hodge-Dirac complex, de Rham complex, mixed element.

MSC2010 classification: 35F15, 65N30, 76B47, 76M10, 78M10.

Acknowledgements
The first author would like to thank the Isaac Newton Institute for Mathemat-
ical Sciences, Cambridge, for support and hospitality during the programme
GCS-Geometry, compatibility and structure preservation in computational dif-
ferential equations, 2019 where work on this paper was initiated. This work was
supported by EPSRC grant no EP/R014604/1.

∗pascal.azerad@umontpellier.fr
†marien-lorenzo.hanot@umontpellier.fr

1

fenicsproject.org
fenicsproject.org
mailto:pascal.azerad@umontpellier.fr
mailto:marien-lorenzo.hanot@umontpellier.fr


1 Outline of the paper
In electromagnetism or fluid mechanics, one often encounters the problem of
reconstructing a vector field with prescribed divergence and curl. As is well-
known, the Biot-Savart law allows the reconstruction of a solenoidal that is,
divergence-free vector field u in the whole space Rd from its curl.

u(x, t) =

∫
Rd

K(x, y)× curlu(y, t) dy

with

K(x, y) =

{
1
4π

x−y
|x−y|3 if d = 3

1
2π

x−y
|x−y|2 if d = 2.

However it is a singular integral in the whole space and is not easily converted
to a numerical algorithm, nor suitable in a bounded domain. The div-curl
problem (1) has been addressed theoretically e.g. in [6] or [5]. The numerical
computation of the solution in a bounded domain is less documented, see e.g.
[11] for a finite element solution using divergence free elements and an coercive
variational form. The purpose of this paper is to show that the framework of
differential forms and exterior calculus greatly simplifies both the theory and
the finite element solution. In section 2 we show how the div-curl problem is
related to the classical Helmholtz decomposition. In section 3 we introduce the
main tools of exterior calculus. In section 4 we give a natural weak formulation
of the div-curl problem, introduced in [9], which is well posed. In section 5 we
detail the mixed finite elements compatible with the weak formulation. The
implementation within the unified form language [10] is sketched in section 6.
The particular case of the 2D case is detailed in section 7. The case when the
domain is not contractible is addressed in section 8. In section 9 we describe
the cases of natural and essential boundary conditions. We close the paper with
numerical tests in 2 and 3 dimensions in section 10.

2 Helmholtz decomposition
Let Ω be a bounded domain in Rd with d ∈ {2, 3}, the div-curl problem consists
in finding a vector field with a prescribed divergence and curl. Note that in
dimension d = 2, the curl of a vector field is a scalar field, and the curl of a
scalar field is the rotated gradient, hence is a vector field. The presentation in
this section pertains to the d = 3 case. For g a scalar field and f a vector field
we seek u such that

∇ · u = g in Ω,

∇× u = f in Ω.
(1)

Of course, one must add boundary conditions and specify the regularity of these
fields. The existence of a solution is not guaranteed, indeed some vector fields
are not written as the curl of other vector fields. The uniqueness is also an
issue, indeed depending on the domain topology there may exist non trivial
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fields with vanishing divergence and curl, the so called harmonic fields. Theses
problem make the elaboration of a stable scheme for the numerical solution quite
complicated, because one must make sure that the fields f and g are compatible
and in some way filter out the harmonic fields.

Problem (1) is very close to the Helmholtz decomposition. The Helmholtz
decomposition is central in vector calculus. In its classical formulation it states
that any field of R3 which is sufficiently smooth and decreases sufficiently fast at
infinity can be decomposed into the sum of a gradient and a curl. The problem
is then to compute this decomposition. For a given vector field F, find a vector
potential A and a scalar potential φ such that

F = −∇φ+∇×A. (2)

Although this is not equivalent to the equations (1), we can see the relation by
taking u = A in (2) and f = F.

Thus, the problem of the absence of compatibility of f in (1) can be solved
by looking simultaneously for a vector potential u and a scalar potential φ as
described by (2). The general idea is then to couple these problems to obtain a
well-posed system.

The classical Helmholtz decomposition (2) assumes that functions are smooth
in the whole space. For bounded domains, we have the following standard result,
see e.g. [8] or chapter 9 of [7]. Let Ω be a bounded, simply-connected, Lipschitz
domain in R3, for any F ∈ (L2(Ω))3 there exists φ ∈ H1(Ω) and A ∈ H(curl,Ω)
such that the decomposition (2) is valid. Of course, there is no uniqueness, since
one can add constants to φ and any gradient field to A. Prescribing boundary
conditions, we get the L2-orthogonal decompositions, proved e.g. in Arnold [2]:

(L2(Ω))3 = ∇(H1(Ω)) ∇× (H0(curl,Ω)) (3)
(L2(Ω))3 = ∇(H1

0 (Ω)) ∇× (H(curl,Ω)). (4)

We recall the standard definitions: H1
0 (Ω) = {u ∈ L2(Ω); ∇u ∈ L2(Ω)3, u =

0 on ∂Ω}, H0(curl,Ω)) = {u ∈ L2(Ω)3; curl(u) ∈ L2(Ω)3, u× n = 0 on ∂Ω}, n
being the unit outer normal to the boundary ∂Ω.
Remark 1. The relevant decompositions for d = 2 are simply

(L2(Ω))2 = ∇(H1(Ω)) ∇× (H1
0 (Ω)) (5)

(L2(Ω))2 = ∇(H1
0 (Ω)) ∇× (H1(Ω)). (6)

3 Exterior calculus
Exterior calculus is based on differential forms, which are mappings that at any
point of the domain associate an alternating multilinear form. In particular
the 0-forms are simply functions and the 1-forms can be seen as vector fields
(by identifying linear forms with vectors, thanks to the usual inner product ).
These spaces are endowed with a natural inner product (built from the one on
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vectors), which can be integrated on the whole domain. This allows us to define
Hilbert spaces, in particular we will denote L2Λk(Ω) the set of L2-integrable k-
forms. As alternating multilinear mappings, it is possible to define an operation
between a k-form α and an l-form β denoted by the wedge product ∧ giving
a k + l-form α ∧ β = (−1)klβ ∧ α. This operation is pointwise and allows to
define a basis of the whole algebra from a basis of 1-forms. In dimension 3 a
local basis is given in the table 1.

Space Λ0(Ω) Λ1(Ω) Λ2(Ω) Λ3(Ω)
Basis 1 dx, dy, dz dy ∧ dz,−dx ∧ dz, dx ∧ dy dx ∧ dy ∧ dz

Table 1: Basis of the exterior algebra on a domain of R3.

These forms are also equipped with the exterior derivative operator d. This
operator acts globally on the exterior algebra d :

⊕
k=0

HΛk(Ω) →
⊕
k=0

HΛk(Ω)

but it is often interesting to look at its action restricted to each space, where it
will respect a notion of degree, specifically :

d : HΛk(Ω) → HΛk+1(Ω) .

The operator d is defined as the usual differential on the 0-forms, by the property
d◦d = 0 and extended on the other forms degree by d(α∧β) = dα∧β+(−1)kα∧
dβ for a k-form α. This differential operator is of course not defined on all L2-
forms but only on a dense subset. As for the Sobolev spaces, we then consider
the subset of L2-forms such that their exterior derivative is again L2. We denote
this set HΛ(Ω).

One can see a great similarity with vector calculus, for instance d ◦ d = 0
corresponds to the well known identity curl(grad) = 0 and div(curl) = 0. This
similarity is deep since there is a natural identification between vector fields and
differential forms, the identification commuting with these differential operators.
The identification is depicted by Diagram 2 for dimension 2 and Diagram 1 for
dimension 3. We use the natural shortcut dx → x, dy → y, dz → z to mean that
the one form a dx+b dy+c dz is identified with the vector a ·ex+b ·ey+c ·ez =
(a, b, c). In the same way, for 2-forms dy ∧ dz → x, dz ∧ dx → y, dx ∧ dy → z
means that a dy ∧ dz+ b dz ∧ dx+ c dx∧ dy is identified with the vector (a, b, c),
whereas for 3-forms dx∧dy∧dz → 1 simply means that the 3 form a dx∧dy∧dz
is identified with the scalar a. In dimension 2, the same conventions apply. We
can notice that there are two possible identifications in dimension 2. We will
refer to the first one in which ∇× appears as the curl identification and to the
other one (in which ∇· appears) as the divergence identification. We refer again
to [2] for a thorough exposition of this so called ”proxy” identifications.

The advantages of using exterior calculus are twofold. First, a lot of work
has already been done for the discretization of these spaces and operator d (see
[2], [3]) as we will see in Section 5. Second is that the previously described vector
- differential form identifications makes the nature of our operators clearer. In-
stead of having three different operators ∇, ∇· and ∇× we see that they become
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H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)

HΛ0(Ω) HΛ1(Ω) HΛ2(Ω) HΛ3(Ω)

1 x y z x y z 1

1 dx dy dz dy ∧ dz

−dx ∧ dz

dx ∧ dy dx ∧ dy ∧ dz

∇ ∇× ∇·

d d d

Figure 1: Identification between vectors and forms on a domain Ω ⊂ R3.

H1(Ω′) H(curl,Ω′) L2(Ω′)

HΛ0(Ω′) HΛ1(Ω′) HΛ2(Ω′)

1 x y 1

1 dx dy dx ∧ dy

∇ ∇×

d d

H1(Ω′) H(div,Ω′) L2(Ω′)

HΛ0(Ω′) HΛ1(Ω′) HΛ2(Ω′)

1 x y 1

1 dy−dx dx ∧ dy

∇⊥ ∇·

d d

Figure 2: Two possibles identification between vectors and forms on a domain
Ω′ ⊂ R2.
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after identification a single operator d applied to different spaces. This allows
us to unify the different types of ”Helmholtz decomposition” (called Hodge de-
composition in the context of exterior calculus) into a single one and allows us
to understand how to find stable formulations of the problems (1) and (2).

Before stating this decomposition, let us introduce the adjoints of the oper-
ator d. Indeed, as we can see in the diagram 1, after identification the image of
∇ and that of ∇× do not belong to the same space. This is perfectly normal
because these two operators will not occur in the same decomposition, ∇ will
occur in the decomposition of 1-forms and ∇× in that of 2-forms. The operators
completing these decompositions are the adjoints of these operators.

We define the codifferential operator δ as the adjoint operator of d. Since it is
not defined on the whole L2Λ(Ω), we denote its domain Ḣ?Λ(Ω). Explicitly for
Ω a bounded domain of R3, the adjoint of (∇,H1(Ω)) is (−∇·,H0(div,Ω)), the
adjoint of (∇×,H(curl,Ω)) is (∇×,H0(curl,Ω)) and the adjoint of (∇·,H(div,Ω))
is (−∇,H1

0 (Ω)), [2] for details. Thus under the identification in Figure 1 we have

(−∇·,H0(div,Ω)) = (δ, Ḣ?Λ1(Ω)),

(∇×,H0(curl,Ω)) = (δ, Ḣ?Λ2(Ω)),

(−∇,H1
0 (Ω)) = (δ, Ḣ?Λ3(Ω)).

(7)

Let Ω be a bounded, contractible, Lipschitz domain. To the two Helmholtz
decompositions (3)-(4) correspond the two following Hodge decompositions, ac-
cording to the identification of (L2(Ω))3 with L2Λ1(Ω) or with L2Λ2(Ω). They
are respectively given by

L2Λ1(Ω) = d(HΛ0(Ω)) δ(Ḣ?Λ2(Ω)), (8)

L2Λ2(Ω) = δ(Ḣ?Λ3(Ω)) d(HΛ1(Ω)). (9)

Considering Λ4(Ω) ≡ {0} we can also extend the decomposition to the 3-
forms:

L2Λ3(Ω) = d(HΛ2(Ω)). (10)

This reflects the fact that ∇ · (H(div,Ω)) = L2(Ω).
To extend the formula to 0-forms, one must be careful. Indeed the con-

stant functions are exactly the kernel of ∇ and are orthogonal to the range of
(∇·,H0(div,Ω)), which is a generic fact that we will develop in Section 8 gen-
eralizing the algorithm to non-contractible domains. We will call such function
harmonic (0-)forms and denote their set H0 ⊂ L2Λ0(Ω) (the set of constant
0-forms). The Hodge decomposition is then

L2Λ0(Ω) = δ(Ḣ?Λ1(Ω)) H0. (11)

We can gather the decompositions (8)-(11) into a decomposition of the total

space L2Λ(Ω) =
3⊕

k=0

L2Λk(Ω) and on this domain, the Hodge decomposition is

given by
L2Λ(Ω) = d(HΛ(Ω)) δ(Ḣ?Λ(Ω)) H0. (12)

6



4 Weak formulation
The Hodge decomposition (12) gives the quasi invertibility of the operator d+δ :
HΛ(Ω) ∩ Ḣ?Λ(Ω) → L2Λ(Ω). We mean by that the following statement.

Theorem 2. Let f ∈ L2Λ(Ω), there exists w ∈ HΛ(Ω) ∩ Ḣ?Λ(Ω) and h ∈ H0

such that f = (d+ δ)w + h.

Proof. Let f be in L2Λ(Ω), from the Hodge decomposition 12, there exist u ∈
HΛ(Ω), v ∈ Ḣ?Λ(Ω) and h ∈ H0 such that

f = du+ δv + h.

Let us apply the Hodge decomposition to u and v. We can write u = dm+δp+q
and v = dr + δs + t, where m, r belong to HΛ(Ω), p, s belong to Ḣ?Λ(Ω) and
q, t are in H0. Now take w = δp + dr. Using d2 = δ2 = 0 and the fact that q
and t are harmonic forms, we can compute

(d+ δ)w = dδp+ δdr = d(dm+ δp+ q) + δ(dr + δs+ t) = du+ δv.

So we have proved that f = (d+δ)w+h. Furthermore we have that δp ∈ L2Λ(Ω)
and dm ∈ L2Λ(Ω), thus w ∈ L2Λ(Ω). Now dw = dδp = du belongs to L2Λ(Ω)
and δw = δdr = δv belongs to L2Λ(Ω), hence w ∈ HΛ(Ω) ∩ Ḣ?Λ(Ω).

This operator is called the Hodge-Dirac operator and is thoroughly studied
in [9]. The non-invertibility of this operator comes from the space of harmonic
forms H = H0, where we omit the superscript from now on, being both in the
kernel of the operator and orthogonal to its range. This can be circumvented
by using a space orthogonal to the harmonic forms.

Hence the primal formulation of (1) becomes:
Given f ∈ L2Λ(Ω)∩H⊥, find u ∈ HΛ(Ω)∩Ḣ?Λ(Ω)∩H⊥ such that ∀v ∈ HΛ(Ω),

〈du, v〉+ 〈δu, v〉 = 〈f, v〉. (13)

By orthogonality arguments we can see that testing with v ⊥ H does not matter.
Since d is adjoint to δ we can see that (13) is equivalent to:
Given f ∈ L2Λ(Ω) ∩ H⊥, find u ∈ HΛ(Ω) ∩ H⊥ such that ∀v ∈ HΛ(Ω),

〈du, v〉+ 〈u, dv〉 = 〈f, v〉. (14)

We remove the condition of orthogonality f ∈ H⊥ by introducing a new pair
of variables. The problem becomes:
Given f ∈ L2Λ(Ω), find u ∈ HΛ(Ω), p ∈ H such that ∀v ∈ HΛ(Ω),∀q ∈ H,

〈du, v〉+ 〈u, dv〉+ 〈p, v〉 = 〈f, v〉, (15)
〈u, q〉 = 0. (16)

We have added the component 〈p, v〉 to the equation (15), since by orthogonality
we must have p = PHf (the orthogonal projection of f on H) and so we will
effectively solve for (d + δ)u = f − PHf . Equation (16) ensures the injectivity
of the problem of finding u in Equation (15) by imposing PHu = 0. Problem
(15)-(16) is well-posed. We have the following result.
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Theorem 3. For any f ∈ L2Λ(Ω), there is a unique (u, p) ∈ HΛ(Ω) × H
solution of (15)-(16). Moreover there exists c > 0 depending only on Ω such
that ‖u‖+ ‖du‖+ ‖p‖ ≤ c‖f‖.

For the sake of completeness we give the proof, which follows closely the one
given by Leopardi and Stern, [9, Theorem 6].

Proof. Let u ∈ HΛ(Ω) and p ∈ H, from the Hodge decomposition (12), there
exist m ∈ HΛ(Ω), n ∈ Ḣ?Λ(Ω) and o ∈ H such that u = dm + δn + o.
Applying once again the Hodge decomposition to m, there exist r ∈ HΛ(Ω),
s ∈ Ḣ?Λ(Ω) and t ∈ H such that m = dr + δs + t. Take v = dδn + δs + p
and q = o in (15)-(16). Noticing that dv = dδs = dm, du = dδn, using the
Poincaré inequality ‖δn‖ ≤ cp‖dδn‖ and using the orthogonality of the Hodge
decomposition the equation reads:

〈du, v〉+ 〈u, dv〉+ 〈p, v〉+ 〈u, q〉 = 〈dδn, dδn〉+ 〈u, dm〉+ 〈p, p〉+ 〈u, o〉
= ‖dδn‖2 + ‖dm‖2 + ‖p‖2 + ‖o‖

≥ 1

2
‖dδn‖2 + 1

2c2p
‖δn‖2 + ‖dm‖2 + ‖p‖2 + ‖o‖

≥ 1

2
‖du‖2 +min(1,

1

2c2p
)‖u‖2 + ‖p‖2.

(17)
Moreover we can bound the HΛ-norm of (v, q) by the HΛ-norm of (u, p) with
a Poincaré inequality:

‖v‖2 + ‖dv‖2 + ‖q‖2 = ‖dδn‖2 + ‖δs‖2 + ‖p‖2 + ‖dδs‖2 + ‖o‖2

≤ ‖du‖2 + c2p‖dm‖2 + ‖p‖2 + ‖dm‖2 + ‖o‖2

≤ (1 + c2p)‖u‖2 + ‖du‖2 + ‖p‖2.
(18)

By the symmetry of the formulation this is enough to conclude with the
Babuška–Lax–Milgram theorem.

Finally, let us translate the problem given by (15), (16) into the language
of vector calculus in R3 (the R2 case being analogous with the appropriate
definition of scalar and vector curl). First of all the unknowns are in fact a
4-tuple of fields, so we will write u = (u0, u1, u2, u3), the subscript pertaining
to the degree of the corresponding differential form. We will keep the notation
H for the space of harmonic forms which is simply a vector space of dimen-
sion 1 containing the constant functions. The problem is then written: Given
(f0, f1, f2, f3) ∈ L2(Ω)× (L2(Ω))3 × (L2(Ω))3 × L2(Ω),
find u0 ∈ H1(Ω), u1 ∈ H(curl,Ω), u2 ∈ H(div,Ω), u3 ∈ L2(Ω), p ∈ H such that
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∀v0 ∈ H1(Ω), ∀v1 ∈ H(curl,Ω), ∀v2 ∈ H(div,Ω), ∀v3 ∈ L2(Ω), ∀q ∈ H,

〈u1,∇v0〉+ 〈p, v0〉 = 〈f0, v0〉,
〈u2,∇× v1〉+ 〈∇u0, v1〉 = 〈f1, v1〉,

〈u3,∇ · v2〉+ 〈∇ × u1, v2〉 = 〈f2, v2〉,
〈∇ · u2, v3〉 = 〈f3, v3〉,

〈u0, q〉 = 0.

(19)

This weak formulation was introduced in [9], where its wellposedness is also
established, thanks to the standard finite element exterior calculus tools [2].
Natural boundary condition result from the weak formulation (19) hence a solu-
tion (u0, u1, u2, u3) satisfies u1 ∈ H0(div,Ω), u2 ∈ H0(curl,Ω) and u3 ∈ H1

0 (Ω).
Thus a solution of (19) satisfies

−∇ · u1 + p = f0,

∇u0 +∇× u2 = f1,

∇× u1 −∇u3 = f2,

∇ · u2 = f3.

(20)

with the natural boundary conditions

u1 · n = 0 on ∂Ω,

u2 × n = 0 on ∂Ω,

u3 = 0 on ∂Ω.

(21)

Solving the problem (19) simultaneously solves two div-curl problems (1),
computes two Helmholtz decompositions (of f1 and f2) and finds two functions
with prescribed gradient. Assuming that the fi-functions are compatible (for
the sake of simplicity only, otherwise the problem is solved for their orthogonal
projection in the appropriate spaces) the problem div-curl (1) solved are:

∇ · u1 = −f0
∇× u1 = f2

u1 · n = 0 on ∂Ω
and

∇ · u2 = f3
∇× u2 = f1

u2 × n = 0 on ∂Ω
.

Remark 4. There are two differences between the two problems, first u1 and
u2 do not follow the same boundary conditions, moreover as we shall see below
in section 5, the discretization of the problem does not treat the differential
and codifferential symmetrically. In particular, the discrete solution is in the
domain of the continuous differential, but not in the domain of the continuous
codifferential.

5 Finite elements
The design for finite elements suitable for exterior calculus saw substantial
progress recently, with the seminal work of [3],[2]. For the Hodge-Dirac problem
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(as well as for the Hodge-Laplacian problem), these elements can be realized in
a very generic way as shown in the periodic table of the finite elements [4].

The main properties of these elements are that they form a discrete sub-
complex and admit bounded cochain projections. Being a discrete subcomplex
means that the functions constructed on these elements belong to the domain
of the exterior derivative (just as the functions are respectively included in H1,
H(curl), H(div), L2) and that their derivative (respectively their gradient, curl
and div) are included in the functions of the next element. This last prop-
erty allows to have properties exactly verified at the discrete level (for example
discrete fields with exactly zero divergence). Bounded cochain projections are
projections from continuous space to discrete space commuting with the exterior
derivative. The boundedness for different norms ensures stability and accurate
estimation of the error. These projections exist mainly as theoretical tools and
their calculation is never performed in the numerical scheme.

The space of harmonic forms H remains in this case the space of constant
functions. Its determination can however be more complicated when using gen-
eral domains or other boundary conditions. This problem is detailed in section
9.
Remark 5. The discrete spaces are then subspaces of continuous spaces and we
use a conforming method. This will not always be the case for general domains
where the space of discrete harmonic forms may be different from the continuous
space, though they have the same dimensions, see [2].

Although other types of meshes such as quadrilaterals are possible [4], we
focus on simplicial meshes. For each degree of forms, there are two families of
piecewise polynomial elements indexed by their polynomial degree. Consider a
simplicial mesh T (and denote the cells of the mesh by T ∈ T) and a polynomial
degree r. The first family is the complete space of polynomials, differing by the
type of continuity desired at the interfaces, it is given by

PrΛ
0(T) = {ω ∈ H1(Ω), ∀T ∈ T, ω|T ∈ Pr(T,R)},

PrΛ
1(T) = {ω ∈ H(curl,Ω), ∀T ∈ T, ω|T ∈ Pr(T,R3)},

PrΛ
2(T) = {ω ∈ H(div,Ω), ∀T ∈ T, ω|T ∈ Pr(T,R3)},
PrΛ

3(T) = {ω ∈ L2(Ω), ∀T ∈ T, ω|T ∈ Pr(T,R)}.

(22)

The space Pr(T,Rk) denotes the set of polynomials of degree r, defined on the
domain T with value in Rk. The second family is the so-called trimmed spaces
with less degrees of freedom, it follows the same continuity conditions at the
interfaces as the first one but uses only a subset of the polynomials, the exact
definition of this set can be found in [2], we will simply denote them here by
P−
r Λk. This second family is then given by

P−
r Λ0(T) = {ω ∈ H1(Ω), ∀T ∈ T, ω|T ∈ P−

r Λ0},
P−
r Λ1(T) = {ω ∈ H(curl,Ω), ∀T ∈ T, ω|T ∈ P−

r Λ1},
P−
r Λ2(T) = {ω ∈ H(div,Ω), ∀T ∈ T, ω|T ∈ P−

r Λ2},
P−
r Λ3(T) = {ω ∈ L2(Ω), ∀T ∈ T, ω|T ∈ P−

r Λ3}.

(23)
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We always have P−
r Λ0(T) = PrΛ

0(T) and P−
r Λ3(T) = Pr−1Λ

3(T). The
common names (as referred to in the table [4]) for these elements in R3 are

• Lagrange elements of degree r for P−
r Λ0(T),

• Nedelec’s face elements of the first kind for P−
r Λ1(T) and of the second

kind for PrΛ
1(T),

• Nedelec’s edge elements of the first kind for P−
r Λ2(T) and of the second

kind for PrΛ
2(T),

• discontinuous Galerkin for PrΛ
3(T).

From these elements, we have to build a sequence of degree increasing forms.
For each degree, we can take either the full polynomial element or the trimmed
polynomial element. However, we must choose the appropriate polynomial de-
gree, following a simple rule: if the next element is a complete polynomial we
must go down one degree, if it is trimmed we keep the same polynomial degree.
Thus for any degree r the sequences

P−
r Λ0(T) → P−

r Λ1(T) → P−
r Λ2(T) → P−

r Λ3(T), (24)

Pr+3Λ
0(T) → Pr+2Λ

1(T) → Pr+1Λ
2(T) → PrΛ

3(T) (25)

are both correct.
The main difference between the two families comes from their approxi-

mation properties. We define the approximation error for a discrete space
Vh embedded in a continuous space V and a function u ∈ V by E(u) =
infvh∈Vh

‖u − vh‖. Error estimates for schemes are often expressed in terms
of these approximation errors. These errors depend on the size h of the cells
in the mesh, and converge to 0 when h tends to 0. For these spaces we have
in all cases an error estimate of the form E(u) ≤ C hl‖u‖Hl with C a constant
independent of h and l the order of convergence. For complete spaces of degree
r the order of convergence of the approximation error (of a sufficiently regular
function) is r+1 and the order of convergence of its derivative is r. For trimmed
spaces of degree r the order of convergence is r and the order of convergence of
its derivative is also r.
Remark 6. To complete remark 4, we can see that in the discrete case an-
other difference appears between the 1-forms and the 2-forms regarding the
regularity of the solutions. Depending on whether we use Raviart-Thomas-
Nedelec face (resp. edge) elements the discrete solution uh belongs to H(div,Ω)
(resp. H(curl,Ω)). In the continuous case, the solution u belongs to both
H(div,Ω) ∩H(curl,Ω).

Let V 0
h → V 1

h → V 2
h → V 3

h be the chosen discrete space sequence and Hh be
the space of discrete harmonic forms, the discrete problem is then:
Given (f0, f1, f2, f3) ∈ L2(Ω) × (L2(Ω))3 × (L2(Ω))3 × L2(Ω) find uh0 ∈ V 0

h ,
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uh1 ∈ V 1
h , uh2 ∈ V 2

h , uh3 ∈ V 3
h , ph ∈ Hh such that ∀vh0 ∈ V 0

h , ∀vh1 ∈ V 1
h ,

∀vh2 ∈ V 2
h , ∀vh3 ∈ V 3

h , ∀qh ∈ Hh,

〈uh1,∇vh0〉+ 〈ph, vh0〉 = 〈f0, vh0〉,
〈uh2,∇× vh1〉+ 〈∇uh0, vh1〉 = 〈f1, vh1〉,

〈uh3,∇ · vh2〉+ 〈∇ × uh1, vh2〉 = 〈f2, vh2〉,
〈∇ · uh2, vh3〉 = 〈f3, vh3〉,

〈uh0, qh〉 = 0.

(26)

The error estimates are calculated in [9]. Let K be the solution operator
which takes f → u in (19) and πh be the bounded cochain projection mentioned
at the beginning of section 5. We define η = ‖(I−πh)K‖ and µ = ‖(I−πh)PH‖.
In our case, both converge to 0, and in practice we can use their expressions
computed in [3], which for discrete spaces using polynomial degrees r give η =
O(h) and µ = O(hr+1). The error estimate for u the continuous solution of (19)
and uh the discrete solution of (26) gives:

‖d(u− uh)‖ . E(du),

‖u− uh‖ . E(u) + η(E(du) + E(p)),

‖p− ph‖ . E(p) + µE(du).

(27)

Where the notation A . B means that there is a constant C independent of
u and h such that A ≤ CB. The equations (27) include all the components of
u = (u0, u1, u2, u3).

6 Implementation
With these elements, the implementation of the problem (26) in unified form
language (UFL), see [1], is straightforward:

1 degree = 2
2 elemf0 = FiniteElement('P', tetrahedron, degree)
3 elemf1 = FiniteElement('N1E', tetrahedron, degree)
4 elemf2 = FiniteElement('N1F', tetrahedron, degree)
5 elemf3 = FiniteElement('DG', tetrahedron, degree-1)
6 elemH = FiniteElement('Real', tetrahedron, 0)
7 W = MixedElement([elemf0,elemf1,elemf2,elemf3,elemH])
8

9 (u0,u1,u2,u3,uh) = TrialFunctions(W)
10 (v0,v1,v2,v3,vh) = TestFunctions(W)
11 a1 = (dot(grad(u0),v1) + dot(curl(u1),v2) + div(u2)*v3)*dx
12 a2 = (dot(u1,grad(v0)) + dot(u2,curl(v1)) + u3*div(v2))*dx
13 ah = uh*v0*dx + u0*vh*dx
14 a = a1 + a2 + ah

Listing 1: Implementation of the variational formulation in ufl.

Our FEniCS codes and tests are available through the GitHub repository https:
//github.com/mlhanot/divcurl_solver.
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Being a mixed finite element scheme, the assembled linear system is semidef-
inite, which for very large number of degrees of freedom could be an issue.
However for contractible domains we obtained reliable results on a standard
computer (16 GB RAM) with direct solvers up to several millions of degrees of
freedom. For non-contractible domains, the main workload is generated by the
computations of a linear basis of the harmonic forms. Indeed this amounts to
computing a basis of the null space of a matrix, which is trickier than solving a
regular linear system.

7 Problem in two dimensions
The exterior calculus framework is unified w.r.t. dimensions, hence the formu-
lation (15)-(16) remains perfectly valid without any change (except that one
needs Ω to be domain of R2 instead of R3).

The expression in the vector calculus formalism is however quite different,
in particular there are two possibilities of identification. The two corresponding
problems are then (respectively for the curl identification and the div identifi-
cation):
Given (f0, f1, f2) ∈ L2(Ω)×(L2(Ω))2×L2(Ω), find u0 ∈ H1(Ω), u1 ∈ H(curl,Ω),
u2 ∈ L2(Ω), p ∈ H such that ∀v0 ∈ H1(Ω), ∀v1 ∈ H(curl,Ω), ∀v2 ∈ L2(Ω),
∀q ∈ H,

〈u1,∇v0〉+ 〈p, v0〉 = 〈f0, v0〉,
〈u2,∇× v1〉+ 〈∇u0, v1〉 = 〈f1, v1〉,

〈∇ × u1, v2〉 = 〈f2, v2〉,
〈u0, q〉 = 0.

(28)

Given (f0, f1, f2) ∈ L2(Ω)×(L2(Ω))2×L2(Ω), find u0 ∈ H1(Ω), u1 ∈ H(div,Ω),
u2 ∈ L2(Ω), p ∈ H such that ∀v0 ∈ H1(Ω), ∀v1 ∈ H(div,Ω), ∀v2 ∈ L2(Ω),
∀q ∈ H,

〈u1,∇⊥v0〉+ 〈p, v0〉 = 〈f0, v0〉,
〈u2,∇ · v1〉+ 〈∇⊥u0, v1〉 = 〈f1, v1〉,

〈∇ · u1, v2〉 = 〈f2, v2〉,
〈u0, q〉 = 0.

(29)

The difference between the two is then the same as in Remark 4, namely the
boundary conditions and the preferred operator.

The choice of finite elements must also be appropriate, although similar to
the 3-dimensional case, one must be careful about the vector element chosen.
The appropriate elements are (using the same semantics as for (22) and (23)):

• Lagrange elements for P−
r Λ0(T),

• Raviart-Thomas face (or edge) elements for P−
r Λ1(T),

• Brezzi-Doublas-Marini face (or edge) elements for PrΛ
1(T),
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• discontinuous Galerkin for PrΛ
2(T).

We must use edge elements for the problem (28) and face elements for the
problem (29).
Remark 7. The problem (29) is in fact simply the problem (28) to which we
apply a quarter rotation on the vector space. This means that we solve the
problem in the space of differential forms and only then apply the identification
of Figure 2 to come back to the vector fields.

8 Non-contractible domain and harmonic forms
When the domain is no longer contractible, the Hodge decomposition as given
in (12) is no longer valid. As described in Section 3 the problem comes from
the presence of harmonic forms, i.e. elements in the kernel of the Hodge-Dirac
operator (equivalently in the kernel of the Hodge-Laplacian or fields f such that
∇ · f = 0 and ∇× f = 0).

This is not really an issue because we already had harmonic forms in (13)
and we can treat them in the same way. However this poses the problem of
determining the space of harmonic forms. The theoretical aspect of the problem
is solved thanks to the famous theorem of De Rham giving the isomorphism
between the harmonic forms and the cohomology of the cochain complex. This
cohomology has a very strong geometrical interpretation, its dimension is given
by the Betti numbers. Thus in dimension 2 the number of harmonic 0-forms is
the number of connected components of the domain, the number of harmonic
1-forms is the number of holes of the domain and there are no harmonic 2-forms.
In dimension 3 the number of harmonic 0-forms is still the number of connected
components, the number of harmonic 1-forms corresponds to the number of
tunnels and the number of harmonic 2-forms corresponds to the number of
vacuum bubbles, there is no harmonic 3-forms. This is illustrated in Figure 3
showing the two harmonic 1-forms on a disk with two holes, and Figures 4 and
5 showing the two harmonic 1-forms on a hollow torus.

Another important theorem gives the isomorphism between discrete and
continuous harmonic forms (see [2], chapter 5 and 7.6), so the dimension of the
space of harmonic forms does not depend on the discretization or the elements
chosen.

However the actual search for these forms is much more complicated. The
isomorphisms only give their dimension number, and a heuristic idea of their
shapes. To compute them, we will start from their definition as kernel of the
Hodge-Dirac operator, which corresponds exactly to the kernel of the assembled
matrix of the system (see [3]). The problem of determining a basis of harmonic
forms becomes in practice a problem of finding kernels of matrices. The dimen-
sion of these kernels is a useful information for many algorithms (for example
to search for the smallest eigenvalues) and the idea of the solution shapes can
give a good initial guess. However, the problem remains intricate because of the
size of the linear systems.
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Figure 3: Harmonic 1-forms on a surface with two holes.

Figure 4: First harmonic 1-form on a 3D hollow torus (cross-section for visual-
isation).
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Figure 5: Second harmonic 1-form on a 3D hollow torus (cross-section for visu-
alisation).

In our numerical computations with FEniCS, we have achieved the best
results with the numerical algebra library SLEPc, see https://slepc.upv.es/.

Once a basis of harmonic forms is determined, it is enough to add them to
the space H in the scheme. The proofs are done in this general framework and
still give the right estimates.

9 Boundary conditions
So far, we have not imposed any essential (Dirichlet) conditions on our spaces,
so natural conditions have emerged. Although these conditions are sufficient
to ensure wellposedness, they fix the degree of forms in which we look for our
solution and we have noticed in the remarks 4 and 6 that these choices have
an impact on the convergence and the regularity of our solutions. Specifically,
natural boundary conditions u × n = 0 (resp. u · n = 0 ) requires u to be a
2-form, i.e. u ∈ H(div,Ω) (resp. u to be a 1-form, i.e. H(curl,Ω)). If we wish
to take u ∈ H0(div,Ω) or u ∈ H0(curl,Ω), then we must apply homogeneous
Dirichlet conditions to every spaces. The sequence then becomes

H1
0 (Ω) H0(curl,Ω) H0(div,Ω) L2(Ω).∇ ∇× ∇· (30)

From a theoretical point of view, enforcing Dirichlet conditions on all spaces
does not pose any problem, we just end up with another complex, dual of
the first one and all the theorems still work with one difference: the number
(dimension) of harmonic forms are inverted, so under these conditions there are
no harmonic 0-forms and as many harmonic 3-forms (in dimension 3) as there
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Figure 6: Harmonic 1-form on a contractible domain with mixed boundary
conditions.

are connected components. One must adjust the H space in the formulation, so
replace 〈p, v0〉 by 〈p, v3〉 in (19).

The situation becomes more complicated when mixed conditions are applied
(natural on some faces, essential on others). New harmonic forms can then
appear even for simple domains as illustrated in Figure 6.

10 Numerical application
To conclude we present some results computed with the weak form (26). In
dimension 2 we take for reference function (31) on the unit square (0, 1)2, tai-
lored to accommodate the boundary conditions, to have a non trivial divergence
and curl without being symmetric. In dimension 3 we take for reference func-
tion (32) on the unit cube (0, 1)3. The test with non trivial harmonic forms
is delicate, indeed the reference function will not be orthogonal to these forms
and these forms are not known for most of the meshes. Thus we computed the
rate of convergence in dimension 2 only, using periodic conditions on the edges
(x = 0) and (x = 1) of the unit square with vanishing tangential components on
the other edges because the harmonic forms are explicitly known in this case,
see Fig. 6.

u =

(
sin(3πx) cos(πy)
sin(πy) cos(2πx)

)
(31)

u =

 sin(3πx) cos(πy)z
sin(πy) cos(2πx) + z

sin(πz) cos(3πx) cos(πy)

 (32)
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We report the rate of convergence of the discrete solution towards the an-
alytical solution, the rate of convergence of its differential (divergence or curl
as the case may be) and the rate of convergence of its codifferential. As men-
tioned in Remark 4, we cannot really compute the (continuous) codifferential
of the discrete solution. Therefore, we must devise other methods to evaluate
the error on the codifferential. We propose here two different methods. The
first one is to compute the error between the discrete codifferential of the dis-
crete solution and the continuous codifferential of the continuous solution. The
second one is to first project the discrete solution into a space contained in the
domain of the continuous codifferential, and then to compute the error between
the codifferential of the projection and of the continuous solution.

The errors computed in dimension 2 with the sequence (24) are given in
Figure 7. They are given for the sequence (25) in Figure 8, with a non trivial
topology in Figure 9, and in dimension 3 in Figure 10. The polynomial degree
differs between the spaces in the sequence (25). For the test, we started the
sequence with polynomials of degree r + 1 (so that the discrete solution uh is
sought in a space of degree r). There is no significant difference between the
behavior of the two identifications in dimension 2. The presence of harmonic
forms also has very little influence. In all cases we observe the convergence rate
for u and du announced in (27). When we use the sequence (25), we observe a
superconvergence of the L2-norm of u for odd degrees.

More interesting is the behavior of the codifferential: Regarding the error
with the orthogonal projection, although there is no theoretical result to our
knowledge, we observe in all cases a convergence one degree lower with the
sequence (24) and no loss of convergence with the sequence (25). Regarding the
error between the discrete and continuous codifferential, we can expect that it
depends on the approximation property in the norm L2 of the image space. In
dimension 2 this space is Pr for the sequence (24) and Pr+1 for the sequence
(25). Accordingly, we obtain a convergence of order r+1 and r+2, respectively.
In dimension 3, the image space of the codifferential is different according to
the degree of the form considered. For 1-forms, the space is Pr and for 2-forms
it is the Nedelec’s face elements. We can observe a convergence of order r + 1
and r respectively.
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r = 1
r = 2
r = 3

divergence identification
curl identification

10−2 10−1
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

1

1

2

1

3

‖u− uh‖

10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1

1

1

2

1

3

‖du− duh‖

10−2 10−1

10−8

10−6

10−4

10−2

100

1

2

1

3

1

4

‖δu− δhuh‖

10−2 10−1

10−4

10−3

10−2

10−1

100

101

1

1

1

2

‖δu− δPV ∗
h
uh‖

Figure 7: Error for the sequence (24) in 2-dimension.
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r = 1
r = 2
r = 3

10−2 10−1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

2

1

4

‖u− uh‖

10−2 10−1

10−5

10−4

10−3

10−2

10−1

100

1

1

1

2

1

3

‖du− duh‖

10−2 10−1
10−11

10−9

10−7

10−5

10−3

1

3

1

4

1

5

‖δu− δhuh‖

10−2 10−1

10−6

10−5

10−4

10−3

10−2

10−1

100

1

1

1

2

1

3

‖δu− δPV ∗
h
uh‖

Figure 8: Error for the sequence (25) in 2-dimension with the divergence iden-
tification.
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r = 1
r = 2
r = 3
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3
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10−2 10−1
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10−3
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1

1

1

2

1

3

‖du− duh‖

10−2 10−1

10−7

10−6

10−5

10−4

10−3

10−2
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1

2

1

3

1

4

‖δu− δhuh‖

10−2 10−1

10−3

10−2

10−1

100

101

1

1

1

2

‖δu− δPV ∗
h
uh‖

Figure 9: Error for the sequence (24) in 2-dimension with the divergence iden-
tification on a non-contractible domain.
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r = 1
r = 2
r = 3

1-form
2-form

10−1.4 10−1.2 10−1 10−0.8 10−0.6 10−0.4
10−4

10−3

10−2

10−1

1

1

1

2

1

3
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10−1.4 10−1.2 10−1 10−0.8 10−0.6 10−0.4
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100

1

1

1

2

1

3
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1

1

1

2

1
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10−1.4 10−1.2 10−1 10−0.8 10−0.6 10−0.4
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10−1
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1

1

1

2

‖δu− δPV ∗
h
uh‖

Figure 10: Error for the sequence (24) in 3-dimension.
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