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NUMERICAL SOLUTION OF THE DIV-CURL PROBLEM BY
FINITE ELEMENT EXTERIOR CALCULUS.

PASCAL AZERAD AND MARIEN-LORENZO HANOT. ∗

Abstract. We are interested in the numerical reconstruction of a vector field with prescribed
divergence and curl in a general domain of R3 or R2, not necessarily contractible. To this aim, we
introduce some basic concepts of finite element exterieur calculus [2] and rely heavily on recent re-
sults of P. Leopardi and A. Stern [9]. The goal of the paper is to take advantage of the links between
usual vector calculus and exterior calculus and show the interest of the exterior calculus framework,
without too much prior knowledge of the subject. We start by describing the method used for con-
tractible domains and its implementation using the FEniCS library (see fenicsproject.org). We then
address the problems encountered with non contractible domains and general boundary conditions
and explain how to adapt the method to handle these cases. Finally we give some numerical results
obtained with this method, in dimension 2 and 3.

Key words. Finite Element, exterior calculus, Biot-Savart law, Hodge decomposition, Hodge-
Dirac complex, de Rham complex, mixed element.

AMS subject classifications. 35F15, 65N30, 76B47, 76M10, 78M10.

1. Outline of the paper. In electromagnetism or fluid mechanics, one often
encounter the problem of reconstructing a vector field with prescribed divergence and
curl. As is well-known, the Biot-Savart law allows the reconstruction of a solenoidal
vector field u in the whole space Rd from its curl.

u(x, t) =

∫
Rd

K(x, y)× curlu(y, t) dy

with

K(x, y) =

{
1
4π

x−y
|x−y|3 if d = 3

1
2π

x−y
|x−y|2 if d = 2.

However it is a singular integral in the whole space and is not easily converted to a
numerical algorithm, nor suitable in a bounded domain. The div-curl problem (2.1)
has been addressed theoretically e.g. in [6] or [5]. The numerical computation of the
solution in a bounded domain is less documented, see e.g. [11] for a finite element
solution using divergence free elements and an coercive variational form. The purpose
of this paper is to show that the framework of differential forms and exterior calculus
greatly simplifies both the theory and the finite element solution. In section 2 we
show how the div-curl problem is related to the classical Helmholtz decomposition.
In section 3 we introduce the main tools of exterior calculus. In section 4 we give
a natural weak formulation of the div-curl problem, introduced in [9], which is well
posed. In section 5 we detail the mixed finite elements compatible with the weak
formulation. The implementation within the unified form language [10] is sketched in
section 6. The particular case of the 2D case is detailed in section 7. The case when
the domain is not contractible is addressed in section 8. In section 9 we describe the
cases of natural and essential boundary conditions. We close the paper with numerical
tests in 2 and 3 dimensions in section 10.

∗ IMAG, Université de Montpellier, CNRS, Montpellier, FRANCE, pas-
cal.azerad@umontpellier.fr, marien-lorenzo.hanot@umontpellier.fr.
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2. Helmholtz decomposition. Let Ω be a bounded domain in Rd, the div-curl
problem consists in finding a vector field with a prescribed divergence and curl. For
g a scalar field and f a vector field we seek u such that

(2.1)
∇ · u = g in Ω,

∇× u = f in Ω.

Of course, one must add boundary conditions and specify the regularity of these fields.
The existence of a solution is not guaranteed, indeed some vector fields are not written
as the curl of other vector fields. The uniqueness is also an issue, indeed depending
on the domain topology there may exist non trivial fields with vanishing divergence
and curl, the so called harmonic fields. Theses problem make the elaboration of a
stable scheme for the numerical solution quite complicated, because one must make
sure that the fields f and g are compatible and in some way filter out the harmonic
fields.

Problem (2.1) is very close to the Helmholtz decomposition. The Helmholtz
decomposition is central in vector calculus. In its classical formulation it states that
any field of R3 which is sufficiently smooth and decreases sufficiently fast at infinity
can be decomposed into the sum of a gradient and a curl. The problem is then to
compute this decomposition. For a given vector field F, find a vector potential A and
a scalar potential φ such that

(2.2) F = −∇φ+∇×A.

Although this is not equivalent to the equations (2.1), we can see the relation by
taking u = A in (2.2) and f = F.

Thus, the problem of the absence of compatibility of f in (2.1) can be solved by
looking simultaneously for a vector potential u and a scalar potential φ as described
by (2.2). The general idea is then to couple these problems to obtain a well-posed
system.

The classical Helmholtz decomposition (2.2) assumes that functions are smooth
in the whole space. For bounded domains, we have the following standard result, see
e.g. [8] or chapter 9 of [7]. Let Ω be a bounded, simply-connected, Lipschitz domain
in Rd, for any F ∈ (L2(Ω))d there exists φ ∈ H1(Ω) and A ∈ H(curl,Ω) such that
the decomposition (2.2) is valid. Of course, there is no uniqueness, since one can add
constants to φ and any gradient field to A. Prescribing boundary conditions, we get
the L2-orthogonal decompositions, proved e.g. in Arnold [2]:

(L2(Ω))d = ∇(H1(Ω)) ∇× (H0(curl,Ω))(2.3)

(L2(Ω))d = ∇(H1
0 (Ω)) ∇× (H(curl,Ω)).(2.4)

We recall the standard definitions: H1
0 (Ω) = {u ∈ L2(Ω); ∇u ∈ L2(Ω)d, u =

0 on ∂Ω}, H0(curl,Ω)) = {u ∈ L2(Ω)d; curl(u) ∈ L2(Ω)d, u × n = 0 on ∂Ω}, n
being the unit outer normal to the boundary ∂Ω.

3. Exterior calculus. Exterior calculus is based on differential forms, which
are applications that at any point of the domain associate an alternating multilinear
form. In particular the 0-forms are simply functions and the 1-forms can be seen
as vector fields (by identifying linear forms with vectors, thanks to the usual inner
product ). These spaces are endowed with a natural inner product (built from the one
on vectors), which can be integrated on the whole domain. This allows us to define
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Hilbert spaces, in particular we will note L2Λk(Ω) the set of L2-integrable k-forms.
As alternating multilinear applications, it is possible to define an operation between
a k-form α and an l-form β denoted by the wedge product ∧ giving a k + l-form
α∧ β = −β ∧α. This operation is pointwise and allows to define a basis of the whole
algebra from a basis of 1-forms. In dimension 3 a local basis is given in the table 3.1.

Space Λ0(Ω) Λ1(Ω) Λ2(Ω) Λ3(Ω)
Basis 1 dx, dy, dz dy ∧ dz,−dx ∧ dz, dx ∧ dy dx ∧ dy ∧ dz

Table 3.1: Basis of the exterior algebra on a domain of R3.

These forms are also equipped with the exterior derivative operator d. This
operator acts globally on the exterior algebra d :

⊕
k=0

HΛk(Ω)→
⊕
k=0

HΛk(Ω) but it is

often interesting to look at its action restricted to each space, where it will respect a
notion of degree, specifically :

d : HΛk(Ω)→ HΛk+1(Ω) .

The operator d is defined as the usual differential on the 0-forms, by the property
d ◦ d = 0 and extended on the other forms degree by d(α∧β) = dα∧β+ (−1)kα∧ dβ
for a k-form α. This differential operator is of course not defined on all L2-forms but
only on a dense subset. As for the Sobolev spaces, we then consider the subset of
L2-forms such that their exterior derivative is again L2. We note this set HΛ(Ω).

One can see a great similarity with vector calculus, for instance d ◦ d = 0 corre-
sponds to the well known identity curl(grad) = 0 and div(curl) = 0. This similarity is
deep since there is a natural identification between vector fields and differential forms,
the identification commutating with these differential operators. The identification is
depicted by diagrams 3.2 for dimension 2 and 3.1 for dimension 3. We use the natural
shortcut dx → x, dy → y, dz → z to mean that the one form a dx + b dy + c dz is
identified with the vector a ·ex + b ·ey + c ·ez = (a, b, c). In the same way, for 2-forms
dy ∧ dz → x, dz ∧ dx→ y, dx∧ dy → z means that a dy ∧ dz+ b dz ∧ dx+ c dx∧ dy is
identified with the vector (a, b, c), whereas for 3-forms dx∧dy∧dz → 1 simply means
that the 3 form a dx∧dy∧dz is identified with the scalar a. In dimension 2, the same
conventions apply. We can notice that there are two possible identifications in dimen-
sion 2. We will refer to the first one in which ∇× appears as the curl identification
and to the other one (in which ∇· appears) as the divergence identification. We refer
again to [2] for a thorough exposition of this so called ”proxy” identifications.

Advantages of using exterior calculus are twofold. First a lot of work has already
been done for the discretization of these spaces and operator d (see [2], [3]) as we
will see in Section 5. Second is that the previously described vector - differential
form identifications makes the nature of our operators clearer. Instead of having
three different operators ∇, ∇· and ∇× we see that they become after identification
a single operator d applied to different spaces. This allows us to unify the different
types of ”Helmholtz decomposition” (called Hodge decomposition in the context of
exterior calculus) into a single one and allows us to understand how to find stable
formulations of the problems (2.1) and (2.2).

Before stating this decomposition, let us introduce the adjoints of the operator d.
Indeed, as we can see in the diagram 3.1, after identification the image of ∇ and that
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H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)

HΛ0(Ω) HΛ1(Ω) HΛ2(Ω) HΛ3(Ω)

1 x y z x y z 1

1 dx dy dz dy ∧ dz
−dx ∧ dz

dx ∧ dy dx ∧ dy ∧ dz

∇ ∇× ∇·

d d d

Fig. 3.1: Identification between vectors and forms on a domain Ω ⊂ R3.

H1(Ω′) H(curl,Ω′) L2(Ω′)

HΛ0(Ω′) HΛ1(Ω′) HΛ2(Ω′)

1 x y 1

1 dx dy dx ∧ dy

∇ ∇×

d d

H1(Ω′) H(div,Ω′) L2(Ω′)

HΛ0(Ω′) HΛ1(Ω′) HΛ2(Ω′)

1 x y 1

1 dy−dx dx ∧ dy

∇⊥ ∇·

d d

Fig. 3.2: Two possibles identification between vectors and forms on a domain Ω′ ⊂ R2.

of ∇× do not belong to the same space. This is perfectly normal because these two
operators will not occur in the same decomposition, ∇ will occur in the decomposition
of 1-forms and ∇× in that of 2-forms. The operators completing these decompositions
are the adjoints of these operators.

We define the codifferential operator δ as the adjoint operator of d. Since it
is not defined on the whole L2Λ(Ω), we note its domain Ḣ?Λ(Ω). Explicitly for Ω
a bounded domain of R3, the adjoint of (∇, H1(Ω)) is (−∇·, H0(div,Ω)), the ad-
joint of (∇×, H(curl,Ω)) is (∇×, H0(curl,Ω)) and the adjoint of (∇·, H(div,Ω)) is
(−∇, H1

0 (Ω)), [2] for details. Thus under the identification in fig. 3.1 we have

(3.1)

(−∇·, H0(div,Ω)) = (δ, Ḣ?Λ1(Ω)),

(∇×, H0(curl,Ω)) = (δ, Ḣ?Λ2(Ω)),

(−∇, H1
0 (Ω)) = (δ, Ḣ?Λ3(Ω)).

Let Ω is a bounded, contractible, Lipschitz domain, to the two Helmholtz decom-
positions (2.3)-(2.4) correspond the two following Hodge decompositions, depending
on the choice to identify (L2(Ω))3 with L2Λ1(Ω) or with L2Λ2(Ω). They are respec-
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tively given by

(3.2) L2Λ1(Ω) = d(HΛ0(Ω)) δ(Ḣ?Λ2(Ω)),

(3.3) L2Λ2(Ω) = δ(Ḣ?Λ3(Ω)) d(HΛ1(Ω)).

Considering Λ4(Ω) ≡ {0} we can also extend the decomposition to the 3-forms:

L2Λ3(Ω) = d(HΛ2(Ω)).

This reflects the fact that ∇ · (H(div,Ω)) = L2(Ω).
Finally, if we try to extend the formula to 0-forms we will encounter a problem.

Indeed, the constant functions are not in the range of (∇·, H0(div,Ω)). Moreover the
constant functions are exactly the kernel of ∇ and are orthogonal to the range of
(∇·, H0(div,Ω)), which is a generic fact that we will develop in Section 8 generalizing
the algorithm to general domains. We will call such function harmonic (0-)forms and
note their set H0 ⊂ L2Λ0(Ω) (the set of constant 0-forms). The Hodge decomposition
is then

L2Λ0(Ω) = δ(Ḣ?Λ1(Ω)) H0.

We can gather these four decompositions into a decomposition of the total space

L2Λ(Ω) =
3⊕
k=0

L2Λk(Ω) and on this domain, the Hodge decomposition is given by

(3.4) L2Λ(Ω) = d(HΛ(Ω)) δ(Ḣ?Λ(Ω)) H0.

4. Weak formulation. The Hodge decomposition (3.4) gives the quasi invert-
ibility of the operator d + δ : HΛ(Ω) ∩ Ḣ?Λ(Ω) → L2Λ(Ω). We mean by that the
following statement.

Theorem 4.1. Let f ∈ L2Λ(Ω), there exists w ∈ HΛ(Ω) ∩ Ḣ?Λ(Ω) and h ∈ H0

such that f = (d+ δ)w + h.

Proof. Let f be in L2Λ(Ω), from the Hodge decomposition 3.4, there exist u ∈
HΛ(Ω), v ∈ Ḣ?Λ(Ω) and h ∈ H0 such that

f = du+ δv + h.

Let us apply the Hodge decomposition to u and v. We can write u = dm+ δp+ q and
v = dr + δs + t, where m, r belong to HΛ(Ω), p, s belong to Ḣ?Λ(Ω) and q, t are in
H0. Now take w = δp+ dr. Using d2 = δ2 = 0 and the fact that q and t are harmonic
forms, we can compute

(d+ δ)w = dδp+ δdr = d(dm+ δp+ q) + δ(dr + δs+ t) = du+ δv.

So we have proved that f = (d + δ)w + h. Furthermore we have that δp ∈ L2Λ(Ω)
and dm ∈ L2Λ(Ω), thus w ∈ L2Λ(Ω). Now dw = dδp = du belongs to L2Λ(Ω) and
δw = δdr = δv belongs to L2Λ(Ω), hence w ∈ HΛ(Ω) ∩ Ḣ?Λ(Ω).

This operator is called the Hodge-Dirac operator and is thoroughly studied in [9]. The
non-invertibility of this operator comes from the space of harmonic forms H = H0,
where we omit the superscript from now on, being both in the kernel of the operator
and orthogonal to its range. This can be circumvented by using a space orthogonal
to the harmonic forms.
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Hence the primal formulation of (2.1) becomes:
Given f ∈ L2Λ(Ω) ∩ H⊥, find u ∈ HΛ(Ω) ∩ Ḣ?Λ(Ω) ∩ H⊥ such that ∀v ∈ HΛ(Ω),

(4.1) 〈du, v〉+ 〈δu, v〉 = 〈f, v〉.

By orthogonality arguments we can see that testing with v ⊥ H does not matter.
Since d is adjoint to δ we can see that (4.1) is equivalent to:
Given f ∈ L2Λ(Ω) ∩ H⊥, find u ∈ HΛ(Ω) ∩ H⊥ such that ∀v ∈ HΛ(Ω),

(4.2) 〈du, v〉+ 〈u, dv〉 = 〈f, v〉.

We remove the condition of orthogonality f ∈ H⊥ by introducing a new pair of
variables. The problem becomes:
Given f ∈ L2Λ(Ω), find u ∈ HΛ(Ω), p ∈ H such that ∀v ∈ HΛ(Ω),∀q ∈ H,

〈du, v〉+ 〈u, dv〉+ 〈p, v〉 = 〈f, v〉,(4.3)

〈u, q〉 = 0.(4.4)

We have added the component 〈p, v〉 to the equation (4.3), since by orthogonality we
must have p = PHf (the orthogonal projection of f on H) and so we will effectively
solve for (d+δ)u = f−PHf . Equation (4.4) ensures injectivity by imposing PHu = 0.

Theorem 4.2. For any f ∈ L2Λ(Ω), there is a unique (u, p) ∈ HΛ(Ω) × H so-
lution of (4.3)-(4.4). Moreover there exists c > 0 depending only on Ω such that
‖u‖+ ‖du‖+ ‖p‖ ≤ c‖f‖.
For the sake of completeness we give the proof, which follows closely the one given by
Stern, [9, Theorem 6].

Proof. Let u ∈ HΛ(Ω) and p ∈ H, from the Hodge decomposition (3.4), there
exist m ∈ HΛ(Ω), n ∈ Ḣ?Λ(Ω) and o ∈ H such that u = dm+ δn+ o. Applying once
again the Hodge decomposition to m, there exist r ∈ HΛ(Ω), s ∈ Ḣ?Λ(Ω) and t ∈ H
such that m = dr + δs+ t. Take v = dδn+ δs+ p and q = o in (4.3)-(4.4). Noticing
that dv = dδs = dm, du = dδn, using the Poincaré inequality ‖δn‖ ≤ cp‖dδn‖ and
using the orthogonality of the Hodge decomposition the equation reads:
(4.5)
〈du, v〉+ 〈u, dv〉+ 〈p, v〉+ 〈u, q〉 = 〈dδn, dδn〉+ 〈u, dm〉+ 〈p, p〉+ 〈u, o〉

= ‖dδn‖2 + ‖dm‖2 + ‖p‖2 + ‖o‖

≥ 1

2
‖dδn‖2 +

1

2c2p
‖δn‖2 + ‖dm‖2 + ‖p‖2 + ‖o‖

≥ 1

2
‖du‖2 + min(1,

1

2c2p
)‖u‖2 + ‖p‖2.

Moreover we can bound the HΛ-norm of (v, q) by the HΛ-norm of (u, p) with a
Poincaré inequality:

(4.6)

‖v‖2 + ‖dv‖2 + ‖q‖2 = ‖dδn‖2 + ‖δs‖2 + ‖p‖2 + ‖dδs‖2 + ‖o‖2

≤ ‖du‖2 + c2p‖dm‖2 + ‖p‖2 + ‖dm‖2 + ‖o‖2

≤ (1 + c2p)‖u‖2 + ‖du‖2 + ‖p‖2.

By the symmetry of the formulation this is enough to conclude with the
Babuška–Lax–Milgram theorem.
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Finally, let us translate this problem into the language of vector calculus in R3

(the R2 case being analogous with the appropriate definition of scalar and vector
curl). First of all the unknowns are in fact a 4-tuple of fields, so we will write u =
(u0, u1, u2, u3), the subscript pertaining to the degree of the corresponding differential
form. We will keep the notation H for the space of harmonic forms which is simply a
vector space of dimension 1 containing the constant functions. The problem is then
written: Given (f0, f1, f2, f3) ∈ L2(Ω)× (L2(Ω))3 × (L2(Ω))3 × L2(Ω),
find u0 ∈ H1(Ω), u1 ∈ H(curl,Ω), u2 ∈ H(div,Ω), u3 ∈ L2(Ω), p ∈ H such that
∀v0 ∈ H1(Ω), ∀v1 ∈ H(curl,Ω), ∀v2 ∈ H(div,Ω), ∀v3 ∈ L2(Ω), ∀q ∈ H,

(4.7)

〈u1,∇v0〉+ 〈p, v0〉 = 〈f0, v0〉,
〈u2,∇× v1〉+ 〈∇u0, v1〉 = 〈f1, v1〉,
〈u3,∇ · v2〉+ 〈∇ × u1, v2〉 = 〈f2, v2〉,

〈∇ · u2, v3〉 = 〈f3, v3〉,
〈u0, q〉 = 0.

This weak formulation was introduced in [9], where its wellposedness is also estab-
lished, thanks to the standard finite element exterior calculus tools [2]. Natural bound-
ary condition result from the weak formulation (4.7) hence a solution (u0, u1, u2, u3)
satisfies u1 ∈ H0(div,Ω), u2 ∈ H0(curl,Ω) and u3 ∈ H1

0 (Ω). Thus a solution of (4.7)
satisfies

(4.8)

−∇ · u1 + p = f0,

∇u0 +∇× u2 = f1,

∇× u1 −∇u3 = f2,

∇ · u2 = f3.

with the natural boundary conditions

(4.9)

u1 · n = 0 on ∂Ω

u2 × n = 0 on ∂Ω

u3 = 0 on ∂Ω

Solving the problem (4.7) simultaneously solves two div-curl problems (2.1), com-
putes two Helmholtz decompositions (of f1 and f2) and finds two functions with
prescribed gradient. Assuming that the fi-functions are compatible (for the sake of
simplicity only, otherwise the problem is solved for their orthogonal projection in the
appropriate spaces) the problem div-curl (2.1) solved are:

∇ · u1 = −f0
∇× u1 = f2

u1 · n = 0 on ∂Ω
and

∇ · u2 = f3
∇× u2 = f1

u2 × n = 0 on ∂Ω
.

Remark 4.3. There are two differences between the two problems, first u1 and u2
do not follow the same boundary conditions, moreover as we shall see below in section
5, the discretization of the problem does not treat the differential and codifferential
symmetrically. In particular, we have no error estimates for the convergence of the
discrete codifferential ||δu− δhuh||L2 , see section 10.
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5. Finite elements. The design for finite elements suitable for exterior calculus
saw substantial progress recently, with the seminal work of [3],[2]. For the Hodge-
Dirac problem (as well as for the Hodge-Laplacian problem), these elements can be
realized in a very generic way as shown in the periodic table of the finite elements [4].

The main properties of these elements are that they form a discrete subcomplex
and admit bounded cochain projections. Being a discrete subcomplex means that
the functions constructed on these elements belong to the domain of the exterior
derivative (just as the functions are respectively included in H1, H(curl), H(div),
L2) and that their derivative (respectively their gradient, curl and div) are included
in the functions of the next element. This last property allows to have properties
exactly verified at the discrete level (for example discrete fields with exactly zero
divergence). Bounded cochain projections are projections from continuous space to
discrete space commuting with the exterior derivative. The boundedness for different
norms ensures stability and accurate estimation of the error. These projections exist
mainly as theoretical tools and their calculation is never performed in the numerical
scheme.

Remark 5.1. Although the discrete exterior derivative operator dh is the same as
the continuous d (more precisely its restriction on the discrete spaces), the discrete
codifferential operator δh has little to do with the continuous operator δ. Indeed, it
is the adjoint of the same operator but on a different space. This is why we have
removed any occurrence of δ from the formulation (4.1).

The space of harmonic forms H remains in this case the space of constant func-
tions. Its determination can however be more complicated when using general domains
or other boundary conditions. This problem is detailed in section 9.

Remark 5.2. The discrete spaces are then subspaces of continuous spaces and we
use a conforming method. This will not always be the case for general domains where
the space of discrete harmonic forms may be different from the continuous space,
though they have the same dimensions, see [2].

Although other types of meshes such as quadrilaterals are possible [4], we focus
on simplicial meshes. For each degree of forms, there are two families of piecewise
polynomial elements indexed by their polynomial degree. Consider a simplicial mesh
T (and denote the cells of the mesh by T ∈ T) and a polynomial degree r. The first
family is the complete space of polynomials, differing by the type of continuity desired
at the interfaces, it is given by

(5.1)

PrΛ
0(T) = {ω ∈ H1(Ω), ∀T ∈ T, ω|T ∈ Pr(T,R)},

PrΛ
1(T) = {ω ∈ H(curl,Ω), ∀T ∈ T, ω|T ∈ Pr(T,R3)},

PrΛ
2(T) = {ω ∈ H(div,Ω), ∀T ∈ T, ω|T ∈ Pr(T,R3)},
PrΛ

3(T) = {ω ∈ L2(Ω), ∀T ∈ T, ω|T ∈ Pr(T,R)}.

The space Pr(T,Rk) denotes the set of polynomials of degree r, defined on the domain
T with value in Rk. The second family are the so-called trimmed space with less
degrees of freedom, it follows the same continuity conditions at the interfaces as the
first one but uses only a subset of the polynomials, the exact definition of this set can
be found in [2], we will simply denote them here by P−r Λk. This second family is then
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given by

(5.2)

P−r Λ0(T) = {ω ∈ H1(Ω), ∀T ∈ T, ω|T ∈ P−r Λ0},
P−r Λ1(T) = {ω ∈ H(curl,Ω), ∀T ∈ T, ω|T ∈ P−r Λ1},
P−r Λ2(T) = {ω ∈ H(div,Ω), ∀T ∈ T, ω|T ∈ P−r Λ2},

P−r Λ3(T) = {ω ∈ L2(Ω), ∀T ∈ T, ω|T ∈ P−r Λ3}.

We always have P−r Λ0(T) = PrΛ
0(T) and P−r Λ3(T) = Pr−1Λ3(T). The common

names (as referred to in the table [4]) for these elements in R3 are
• Lagrange elements of degree r for P−r Λ0(T),
• Nedelec’s face elements of the first kind for P−r Λ1(T) and of the second kind

for PrΛ
1(T),

• Nedelec’s edge elements of the first kind for P−r Λ2(T) and of the second kind
for PrΛ

2(T),
• discontinuous Galerkin for PrΛ

3(T).
From these elements, we have to build a sequence of degree increasing forms. For

each degree, we can take either the full polynomial element or the trimmed polynomial
element. However, we must choose the appropriate polynomial degree, following a
simple rule: if the next element is a complete polynomial we must go down one
degree, if it is trimmed we keep the same polynomial degree. Thus for any degree r
the sequences

(5.3) P−r Λ0(T)→ P−r Λ1(T)→ P−r Λ2(T)→ P−r Λ3(T),

(5.4) Pr+3Λ0(T)→ Pr+2Λ1(T)→ Pr+1Λ2(T)→ PrΛ
3(T)

are both correct.
The main difference between the two families comes from their approximation

properties. We define the approximation error for a discrete space Vh embedded in a
continuous space V and a function u ∈ V by E(u) = infvh∈Vh

‖u−vh‖. Error estimates
for schemes are often expressed in terms of these approximation errors. These errors
depend on the size h of the cells in the mesh, and converge to 0 when h tends to 0. For
these spaces we have in all cases an error estimate of the form E(u) ≤ C hl‖u‖Hl with
C a constant independent of h and l the order of convergence. For complete spaces of
degree r the order of convergence of the approximation error (of a sufficiently regular
function) is r + 1 and the order of convergence of its derivative is r. For trimmed
spaces of degree r the order of convergence is r and the order of convergence of its
derivative is also r.

Remark 5.3. To complete remark 4.3, we can see that in the discrete case another
difference appears between the 1-forms and the 2-forms regarding the regularity of the
solutions. According to whether we use Raviart-Thomas-Nedelec edge (resp. face)
elements the discrete solution uh belongs to H(div,Ω) (resp. H(curl,Ω)). In the
continuous case, the solution u belongs to both H(div,Ω) ∩H(curl,Ω).

Let V 0
h → V 1

h → V 2
h → V 3

h be the chosen discrete space sequence and Hh be the
space of discrete harmonic forms, the discrete problem is then:
Given (f0, f1, f2, f3) ∈ L2(Ω)× (L2(Ω))3× (L2(Ω))3×L2(Ω) find uh0 ∈ V 0

h , uh1 ∈ V 1
h ,

uh2 ∈ V 2
h , uh3 ∈ V 3

h , ph ∈ Hh such that ∀vh0 ∈ V 0
h , ∀vh1 ∈ V 1

h , ∀vh2 ∈ V 2
h , ∀vh3 ∈ V 3

h ,
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∀qh ∈ Hh,

(5.5)

〈uh1,∇vh0〉+ 〈ph, vh0〉 = 〈f0, vh0〉,
〈uh2,∇× vh1〉+ 〈∇uh0, vh1〉 = 〈f1, vh1〉,
〈uh3,∇ · vh2〉+ 〈∇ × uh1, vh2〉 = 〈f2, vh2〉,

〈∇ · uh2, vh3〉 = 〈f3, vh3〉,
〈uh0, qh〉 = 0.

The error estimates are calculated in [9]. Let K be the solution operator which
takes f → u in (4.7) and πh be the bounded cochain projection mentioned at the
beginning of section 5. We define η = ‖(I − πh)K‖ and µ = ‖(I − πh)PH‖. In our
case, both converge to 0, and in practice we can use their expressions computed in [3],
which for discrete spaces using polynomial degrees r give η = O(h) and µ = O(hr+1).
The error estimate for u the continuous solution of (4.7) and uh the discrete solution
of (5.5) gives:

(5.6)

‖d(u− uh)‖ . E(du),

‖u− uh‖ . E(u) + η(E(du) + E(p)),

‖p− ph‖ . E(p) + µE(du).

Where the notation A . B means that there is a constant C independent of u
and h such that A ≤ CB. The equations (5.6) include all the components of
u = (u0, u1, u2, u3).

6. Implementation. With these elements, the implementation of the problem
(5.5) in unified form language (UFL), see [1], is straightforward:

1 degree = 2

2 elemf0 = FiniteElement(’P’, tetrahedron , degree)

3 elemf1 = FiniteElement(’N1E ’, tetrahedron , degree)

4 elemf2 = FiniteElement(’N1F ’, tetrahedron , degree)

5 elemf3 = FiniteElement(’DG’, tetrahedron , degree -1)

6 elemH = FiniteElement(’Real ’, tetrahedron , 0)

7 W = MixedElement ([elemf0 ,elemf1 ,elemf2 ,elemf3 ,elemH])

8

9 (u0 ,u1,u2,u3 ,uh) = TrialFunctions(W)

10 (v0 ,v1,v2,v3 ,vh) = TestFunctions(W)

11 a1 = (dot(grad(u0),v1) + dot(curl(u1),v2) + div(u2)*v3)*dx

12 a2 = (dot(u1,grad(v0)) + dot(u2,curl(v1)) + u3*div(v2))*dx

13 ah = uh*v0*dx + u0*vh*dx

14 a = a1 + a2 + ah

Listing 1: Implementation of the variational formulation in ufl.

Our FEniCS codes and tests are available through the GitHub repository https://
github.com/mlhanot/divcurl solver.

Being a mixed finite element scheme, the assembled linear system is semidefinite,
which for very large number of degrees of freedom could be an issue. However for
contractible domains we obtained reliable results on a standard computer (16 GB
RAM) with direct solvers up to several millions of degrees of freedom. For non
contractible domains, the main workload is generated by the computations of a linear
basis of the harmonic forms. Indeed this amounts to computing a basis of the null
space of a matrix, which is trickier than solving a regular linear system.
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7. Problem in two dimensions. The exterior calculus framework is unified
w.r.t. dimensions, hence the formulation (4.3)-(4.4) remains perfectly valid without
any change (except that one needs Ω to be domain of R2 instead of R3).

The expression in the vector calculus formalism is however quite different, in
particular there are two possibilities of identification. The two corresponding problems
are then (respectively for the curl identification and the div identification):
Given (f0, f1, f2) ∈ L2(Ω) × (L2(Ω))2 × L2(Ω), find u0 ∈ H1(Ω), u1 ∈ H(curl,Ω),
u2 ∈ L2(Ω), p ∈ H such that ∀v0 ∈ H1(Ω), ∀v1 ∈ H(curl,Ω), ∀v2 ∈ L2(Ω), ∀q ∈ H,

(7.1)

〈u1,∇v0〉+ 〈p, v0〉 = 〈f0, v0〉,
〈u2,∇× v1〉+ 〈∇u0, v1〉 = 〈f1, v1〉,

〈∇ × u1, v2〉 = 〈f2, v2〉,
〈u0, q〉 = 0.

Given (f0, f1, f2) ∈ L2(Ω) × (L2(Ω))2 × L2(Ω), find u0 ∈ H1(Ω), u1 ∈ H(div,Ω),
u2 ∈ L2(Ω), p ∈ H such that ∀v0 ∈ H1(Ω), ∀v1 ∈ H(div,Ω), ∀v2 ∈ L2(Ω), ∀q ∈ H,

(7.2)

〈u1,∇⊥v0〉+ 〈p, v0〉 = 〈f0, v0〉,
〈u2,∇ · v1〉+ 〈∇⊥u0, v1〉 = 〈f1, v1〉,

〈∇ · u1, v2〉 = 〈f2, v2〉,
〈u0, q〉 = 0.

The difference between the two is then the same as in the remark 4.3, namely the
boundary conditions and the preferred operator.

The choice of finite elements must also be appropriate, although similar to the
3-dimensional case, one must be careful about the vector element chosen. The appro-
priate elements are (using the same semantics as for (5.1) and (5.2)):

• Lagrange elements for P−r Λ0(T),
• Raviart-Thomas face (or edge) elements for P−r Λ1(T),
• Brezzi-Doublas-Marini face (or edge) elements for PrΛ

1(T),
• discontinuous Galerkin for PrΛ

2(T).
We must use edge elements for the problem (7.1) and face elements for the problem
(7.2).

Remark 7.1. The problem (7.2) is in fact simply the problem (7.1) to which we
apply a quarter rotation on the vector space. This means that we solve the problem
in the space of differential forms and only then apply the identification of Fig. 3.2 to
come back to the vector fields.

8. Non contractible domain and harmonic forms. When the domain is no
longer contractible, the Hodge decomposition as given in (3.4) is no longer valid. As
described in section 3 the problem comes from the appearing of harmonic forms, i.e.
elements in the kernel of the Hodge-Dirac operator (equivalently in the kernel of the
Hodge-Laplacian or fields f such that ∇ · f = 0 and ∇× f = 0).

This is not really an issue because we already had harmonic forms in (4.1) and
we can treat them in the same way. However this poses the problem of determining
the space of harmonic forms The theoretical aspect of the problem is solved thanks
to the famous theorem of De Rham giving the isomorphism between the harmonic
forms and the cohomology of the cochain complex. This cohomology has a very strong
geometrical interpretation, its dimension is given by the Betti numbers. Thus in di-
mension 2 the number of harmonic 0-forms is the number of connected components

11



Fig. 8.1: Harmonic 1-forms on a surface with two holes.

of the domain, the number of harmonic 1-forms is the number of holes of the domain
and there are no harmonic 2-forms. In dimension 3 the number of harmonic 0-forms
is still the number of connected components, the number of harmonic 1-forms corre-
sponds to the number of tunnels and the number of harmonic 2-forms corresponds to
the number of vacuum bubbles, there is no harmonic 3-forms. This is illustrated in
figure 8.1 showing the two harmonic 1-forms on a disk with two holes, and figures 8.2
and 8.3 showing the two harmonic 1-forms on a hollow torus.

Another important theorem gives the isomorphism between discrete and contin-
uous harmonic forms (see [2], chapter 5 and 7.6), so the dimension of the space of
harmonic forms does not depend on the discretization or the elements chosen.

However the actual search for these forms is much more complicated. The iso-
morphisms only give their dimension number, and a heuristic idea of their shapes. To
compute them, we will start from their definition as kernel of the Hodge-Dirac oper-
ator, which corresponds exactly to the kernel of the assembled matrix of the system
(see [3]). The problem of determining a basis of harmonic forms becomes in practice
a problem of finding kernels of matrices. The dimension of these kernels is a useful
information for many algorithms (for example to search for the smallest eigenvalues)
and the idea of the solution shapes can give a good initial guess. However, the problem
remains intricate because of the size of the linear systems.

In our numerical computations with FEniCS, we have achieved the best results
with the numerical algebra library SLEPc, see https://slepc.upv.es/.

Once a basis of harmonic forms is determined, it is enough to add them to the
space H in the scheme. The proofs are done in this general framework and still give
the right estimates.
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Fig. 8.2: First harmonic 1-form on a 3D hollow torus sliced for visualisation.

Fig. 8.3: Second harmonic 1-form on a 3D hollow torus sliced for visualisation.

9. Boundary conditions. So far, we have not imposed any essential (Dirichlet)
conditions on our spaces, so natural conditions have emerged. Although these condi-
tions are sufficient to ensure wellposedness, they fix the degree of forms in which we
look for our solution and we have noticed in the remarks 4.3 and 5.3 that these choices
have an impact on the convergence and the regularity of our solutions. Specifically,
natural boundary conditions u×n = 0 (resp. u ·n = 0 ) imposes u to be a 2-form, i.e.
u ∈ H(div,Ω) (resp. u to be a 1-form, i.e. H(curl,Ω)). If we wish that uh belongs
to the space which does not correspond to the natural condition obtained, a simple
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Fig. 9.1: Harmonic 1-form on a contractible domain with mixed boundary conditions.

way is to apply homogeneous Dirichlet conditions to all spaces. The sequence then
becomes

(9.1) H1
0 (Ω) H0(curl,Ω) H0(div,Ω) L2(Ω).∇ ∇× ∇·

From a theoretical point of view, enforcing Dirichlet conditions on all spaces does
not pose any problem, we just end up with another complex, dual of the first one and
all the theorems still work with one difference: the number (dimension) of harmonic
forms are inverted, so under these conditions there are no 0 harmonic forms and as
many 3 harmonic forms (in dimension 3) as there are connected components. One
must adjust the H space in the formulation, so replace 〈p, v0〉 by 〈p, v3〉 in (4.7).

The situation becomes more complicated when mixed conditions are applied (nat-
ural on some faces, essential on others). New harmonic forms can then appear even
for simple domains as illustrated in figure 9.1.

10. Numerical application. To conclude we present some results computed
with the weak form (5.5). In dimension 2 we take for reference function (10.1) on
the unit square (0, 1)2, tailored to accommodate the boundary conditions, to have a
non-trivial divergence and curl without being symmetric. In dimension 3 we take for
reference function (10.2) on the unit cube (0, 1)3. The test with non-trivial harmonic
forms is delicate, indeed the reference function will not be orthogonal to these forms
and these forms are not known for most of the meshes. Thus we computed the rate of
convergence in dimension 2 only, using periodic conditions on the edges (x = 0) and
(x = 1) of the unit square with vanishing tangential components on the other edges
because the harmonic forms are explicitly known in this case, see Fig. 9.1.

(10.1) u =

(
sin(3πx) cos(πy)
sin(πy) cos(2πx)

)
14



h ‖u− uh‖ rate ‖∇ · (u− uh)‖ rate ‖∇ × (u− Puh)‖ rate
0.1414 0.1753 — 1.1268 — 2.8449 —
0.0707 0.0854 1.03 0.5660 0.99 4.8353 -0.76
0.0353 0.0427 0.99 0.2833 0.99 4.7347 0.03
0.0176 0.0213 1.00 0.1416 0.99 4.8947 -0.04
0.0088 0.0107 0.99 0.0708 0.99 4.3588 0.16
0.0044 0.0053 0.99 0.0354 0.99 4.0170 0.11
0.0022 0.0026 1.01 0.0177 0.99 4.7146 -0.23

Table 10.1: Convergence rates for the sequence (5.3) of degree 1 in 2-dimension with
the divergence identification.

(10.2) u =

 sin(3πx) cos(πy)z
sin(πy) cos(2πx) + z

sin(πz) cos(3πx) cos(πy)


We report the rate of convergence of the discrete solution towards the analytical

solution, the rate of convergence of its differential (divergence or curl as the case may
be) and the rate of convergence of its codifferential. The latter is calculated in two
steps, first we make the orthogonal projection P of the function on an appropriate
space (if the function has been defined on the face elements we project it on the corre-
sponding edge elements and inversely). Then we compute its codifferential. Although
there is no theoretical result on this convergence to our knowledge, we can observe
in the last columns of the tables a convergence rate for the codifferential but with a
loss of one degree with respect to the approximation property of the space of uh. Of
course as reported in tables 10.1, 10.5, 10.7 and 10.9, when degree one polynomials
are used no convergence of the codifferentials can be expected.

Using a contractible domain and the sequence of finite elements (5.3), we can see
the convergence rates in dimension 2 for the divergence identification for polynomials
of degree 1 and 2 in tables 10.1 and 10.2, for the curl identification in tables 10.5 and
10.6. In dimension 3 we can see the convergence rates for 1-forms in tables 10.7 and
10.8, for 2-forms in tables 10.9 and 10.10. We can see the convergence rates with the
sequence of elements (5.4) of degree r = 0 and r = 1 in dimension 2 with the divergence
identification in tables 10.3 and 10.4. Finally, we can see the rate of convergence when
harmonic 1-forms are present in dimension 2 with the divergence identification using
the sequence (5.4) of polynomial degree 2 in the table 10.11. We notice in tables 10.3
and 10.4 that using different polynomials degrees like in equation (5.4) we have no
loss of convergence for the codifferential. We have no theoretical proof of this fact.
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h ‖u− uh‖ rate ‖∇ · (u− uh)‖ rate ‖∇ × (u− Puh)‖ rate
0.1414 0.04518 — 0.43621 — 1.09441 —
0.0707 0.01084 2.05 0.11165 1.96 0.50165 1.12
0.0353 0.00272 1.99 0.02806 1.99 0.25539 0.97
0.0176 0.00068 1.99 0.00702 1.99 0.12753 1.00
0.0088 0.00017 1.99 0.00175 1.99 0.06557 0.95
0.0044 0.00004 1.99 0.00043 1.99 0.03346 0.97

Table 10.2: Convergence rates for the sequence (5.3) of degree 2 in 2-dimension with
the divergence identification.

h ‖u− uh‖ rate ‖∇ · (u− uh)‖ rate ‖∇ × (u− Puh)‖ rate
0.1414 0.027239 — 1.126863 — 0.909705 —
0.0707 0.006622 2.04 0.566014 0.99 0.401096 1.18
0.0353 0.001653 2.00 0.283319 0.99 0.202041 0.98
0.0176 0.000413 2.00 0.141698 0.99 0.101697 0.99
0.0088 0.000103 1.99 0.070854 0.99 0.050725 1.00
0.0044 0.000026 1.99 0.035427 0.99 0.025886 0.97
0.0022 0.000006 2.00 0.017713 0.99 0.012923 1.00

Table 10.3: Convergence rates for the sequence (5.4) of degree 2-1-0 in 2-dimension
with the divergence identification.

h ‖u− uh‖ rate ‖∇ · (u− uh)‖ rate ‖∇ × (u− Puh)‖ rate
0.1414 0.041798 — 0.436218 — 0.092080 —
0.0707 0.009947 2.07 0.111658 1.96 0.021575 2.09
0.0353 0.002500 1.99 0.028061 1.99 0.005424 1.99
0.0176 0.000626 1.99 0.007024 1.99 0.001352 2.00
0.0088 0.000156 1.99 0.001756 1.99 0.000344 1.97
0.0044 0.000039 1.99 0.000439 1.99 0.000087 1.97

Table 10.4: Convergence rates for the sequence (5.4) of degree 3-2-1 in 2-dimension
with the divergence identification.

h ‖u− uh‖ rate ‖∇ × (u− uh)‖ rate ‖∇ · (u− Puh)‖ rate
0.1414 0.1754 — 0.6344 — 3.9210 —
0.0707 0.0832 1.07 0.3182 0.99 3.8695 0.01
0.0353 0.0414 1.00 0.1592 0.99 3.6632 0.07
0.0176 0.0207 1.00 0.0796 0.99 3.5675 0.38
0.0088 0.0104 0.99 0.0398 0.99 3.3669 0.08
0.0044 0.0052 0.98 0.0199 0.99 2.9584 0.18
0.0022 0.0026 1.01 0.0099 0.99 3.1698 -0.09

Table 10.5: Convergence rates for the sequence (5.3) of degree 1 in 2-dimension with
the curl identification.
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h ‖u− uh‖ rate ‖∇ × (u− uh)‖ rate ‖∇ · (u− Puh)‖ rate
0.1414 0.029911 — 0.207629 — 1.375620 —
0.0707 0.007369 2.02 0.052777 1.97 0.671374 1.03
0.0353 0.001851 1.99 0.013249 1.99 0.342535 0.97
0.0176 0.000463 1.99 0.003315 1.99 0.171992 0.99
0.0088 0.000116 1.99 0.000829 1.99 0.086888 0.98
0.0044 0.000029 1.99 0.000207 1.99 0.044053 0.97

Table 10.6: Convergence rates for the sequence (5.3) of degree 2 in 2-dimension with
the curl identification.

h ‖u− uh‖ rate ‖∇ × (u− uh)‖ rate ‖∇ · (u− Puh)‖ rate
0.3464 0.3128 — 2.2284 — 4.1974 —
0.1732 0.1590 0.97 1.1579 0.94 4.2920 -0.03
0.0866 0.0790 1.00 0.5852 0.98 4.1096 0.03
0.0044 0.0393 1.00 0.2934 0.99 3.9851 0.04

Table 10.7: Convergence rates for the sequence (5.3) of degree 1 for 1-forms in 3-
dimension.

h ‖u− uh‖ rate ‖∇ × (u− uh)‖ rate ‖∇ · (u− Puh)‖ rate
0.3464 0.0598 — 0.5617 — 1.9609 —
0.1732 0.0151 1.97 0.1476 1.92 0.9729 1.01
0.0866 0.0038 1.99 0.0373 1.98 0.4924 0.98

Table 10.8: Convergence rates for the sequence (5.3) of degree 2 for 1-forms in 3-
dimension.

h ‖u− uh‖ rate ‖∇ · (u− uh)‖ rate ‖∇ × (u− Puh)‖ rate
0.3464 0.2949 — 1.0490 — 4.4544 —
0.1732 0.1439 1.03 0.5307 0.98 3.8759 0.20
0.0866 0.0722 0.99 0.2663 0.99 3.9021 -0.00
0.0044 0.0361 0.99 0.1333 0.99 3.9106 -0.00

Table 10.9: Convergence rates for the sequence (5.3) of degree 1 for 2-forms in 3-
dimension.

h ‖u− uh‖ rate ‖∇ · (u− uh)‖ rate ‖∇ × (u− Puh)‖ rate
0.3464 0.1083 — 0.8580 — 1.9663 —
0.1732 0.02649 2.03 0.2301 1.89 0.9586 1.03
0.0866 0.0067 1.97 0.0587 1.97 0.4971 0.94

Table 10.10: Convergence rates for the sequence (5.3) of degree 2 for 2-forms in 3-
dimension.
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h ‖u− uh‖ rate ‖∇ · (u− uh)‖ rate ‖∇ × (u− Puh)‖ rate
0.1414 0.04518 — 0.43621 — 1.09441 —
0.0707 0.01084 2.05 0.11165 1.96 0.50165 1.12
0.0353 0.00272 1.99 0.02806 1.99 0.25539 0.97
0.0176 0.00068 1.99 0.00702 1.99 0.12753 1.00
0.0088 0.00017 1.99 0.00175 1.99 0.06557 0.95

Table 10.11: Convergence rates for the sequence (5.3) of degree 2 in 2-dimension with
the divergence identification on a non contractible domain.
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